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Abstract: Tie-breaker experimental designs are hybrids of Randomized
Controlled Trials (RCTs) and Regression Discontinuity Designs (RDDs)
in which subjects with moderate scores are placed in an RCT while sub-
jects with extreme scores are deterministically assigned to the treatment
or control group. In settings where it is unfair or uneconomical to deny the
treatment to the more deserving recipients, the tie-breaker design (TBD)
trades off the practical advantages of the RDD with the statistical advan-
tages of the RCT. The practical costs of the randomization in TBDs can
be hard to quantify in generality, while the statistical benefits conferred by
randomization in TBDs have only been studied under linear and quadratic
models. In this paper, we discuss and quantify the statistical benefits of
TBDs without using parametric modelling assumptions. If the goal is esti-
mation of the average treatment effect or the treatment effect at more than
one score value, the statistical benefits of using a TBD over an RDD are
apparent. If the goal is nonparametric estimation of the mean treatment
effect at merely one score value, we prove that about 2.8 times more sub-
jects are needed for an RDD in order to achieve the same asymptotic mean
squared error. We further demonstrate using both theoretical results and
simulations from the Angrist and Lavy (1999) classroom size dataset, that
larger experimental radii choices for the TBD lead to greater statistical
efficiency.
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1. Introduction

In this paper we study a nonparametric regression approach to tie-breaker
studies. In the settings of tie-breaker studies, there is a costly treatment while
the control is inexpensive or even free. In addition, an investigator can decide
how to allocate the costly treatment using a priority ordering on the subjects.
The priority ordering could be based on how deserving of the treatment each
subject is, or based on how strongly each subject is expected to respond to the
treatment. Examples include offering scholarships or school placement to stu-
dents (Angrist, Autor and Pallais, 2020), offering a drug rehabilitation program
to people of varying needs (Cappelleri and Trochim, 2003), or assigning inter-
ventions to reduce risk factors for child abuse and neglect (Krantz, 2022). In
these settings a randomized controlled trial (RCT) is inappropriate because it is
extremely inefficient economically, or even ethically questionable. The natural,
even automatic, approach to settings like this is to rank the subjects i = 1, . . . , N
according to their value of a running variable xi and assign the treatment to
only those subjects with the highest values of xi. For simplicity one can assume
that the number of subjects to treat is fixed and that the treatment is offered
to subject i if and only if xi > t for some threshold t.

The problem with a deterministic treatment based on xi is that it complicates
causal inference of the effect of the treatment. One can use regression discon-
tinuity analysis (Thistlethwaite and Campbell, 1960, Cattaneo and Titiunik,
2022) but the regression discontinuity design (RDD) is known to give treatment
effect estimates a very high variance. See, for example, Gelman and Imbens
(2019). In a parametric regression model the treatment and running variable
are highly correlated, making for an inefficient design (Goldberger, 1972, Jacob
et al., 2012). In a tie-breaker design (TBD), the subjects are given the treat-
ment with a probability that increases with xi. The top ranked subjects get
the treatment with probability one, the bottom ranked subjects do not get the
treatment and subjects in between are randomly assigned to either treatment
or control. The tie-breaker design interpolates between two extremes: the RCT
and the RDD, trading off statistical efficiency with the short term economic
value of aligning treatment to the running variable.



Kernel regression analysis of tie-breaker designs 245

We believe that there are many more good uses for TBDs. Many compa-
nies interact electronically with their customers and partners. Perks, such as
service upgrades, can easily be assigned with some randomization. Because the
treatment is costly, it is important to evaluate the treatment efficacy later. This
provides a strong motivation to introduce randomization. When the perk is sim-
ply a gift to some subjects there is less ethical concern over whether it goes to
the most loyal customers or introduces some randomization. We also expect
that tie-breakers will be useful in evaluating governmental programs such as the
one in Krantz (2022), as well as educational programs such as those in Angrist,
Autor and Pallais (2020).

TBDs have been primarily studied as experimental designs using paramet-
ric regression modeling assumptions. While the design literature focuses on
parametric models, the RDD literature primarily uses nonparametric regres-
sion methods. In this paper, we quantify the statistical gains to be obtained by
conducting a TBD instead of an RDD using nonparametric regression.

Our main theoretical contributions are as follows. We study a kernel weighted
local linear regression with a slope and intercept for both treated and control
subjects and bandwidth h. The RDD can consistently estimate the treatment
effect only at x = t, and so we focus our comparison at that point. We find
an expression for the optimal bandwidth for estimating the treatment effect at
x = t under the TBD. We then compare the optimal mean squared error at
x = t for the two designs. For the popular triangular kernel, a TBD reduces
the asymptotic mean squared error (AMSE) by a factor of about 2.27 compared
to an RDD of the same sample size, N . For other popular kernels, the AMSE
is reduced by a slightly greater factor. In this setting, the AMSE decreases
proportionally to N−4/5, and using N points in an RDD is comparable to using
only 0.36N points in a TBD. The asymptotic analysis has a bandwidth that
converges to zero. Since this convergence is at the very slow N−1/5 rate, we
cannot assume that in practice h will be small enough such that subjects without
randomized treatment are discarded. Therefore, we also compare the designs
when h is fixed and large enough to include nonnrandomized subjects in the
regression. In this setting, the efficiency ratio, which we define as the relative
variance of treatment effect estimators under the two designs, can be as large
as four. For a fixed bandwidth and for the triangular and boxcar kernels, we
also find that the efficiency ratio is monotone non-decreasing in the proportion
of subjects who are given a randomized treatment assignment.

A further advantage of the TBD is that it can give consistent nonparametric
estimates of the treatment effect for any value of x in the randomization window.
It can also be used to estimate the average causal effect over that window. These
additional advantages are described more explicitly in Section 3.

An outline of this paper is as follows. Section 2 reviews the literature on
tie-breakers as well as the much larger literature on RDDs. In Section 3, we
define a causal parameter of interest that can be used to compare the TBD to
the RDD. We also introduce the causal identification assumptions needed and
the local linear regressions used for estimating that parameter. In Section 4, we
compare the mean squared error (MSE) in asymptotically optimal estimation
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of our causal parameter of interest under an RDD to that under a TBD. In
that asymptotic setting, the optimal bandwidth decreases at the slow O(N−1/5)
rate and then the local linear regression is eventually supported entirely in the
experimental region of the TBD. In Section 5, we investigate another regime
where the bandwidth h is fixed and is assumed to be larger than the radius Δ of
the experimental region. For this setting, deferring an investigation of the bias to
Appendix D, we study the variance of our estimator as a function of Δ and find
the efficiency ratio to be monotone in Δ for the triangular and boxcar kernels.
Section 6 shows how one can compute efficiency ratios empirically using one’s
actual assignment variable levels, focusing on the Israeli classroom size data from
Angrist and Lavy (1999) as an example. The curves of the empirical efficiency
ratios are quite similar to the ones obtained theoretically. Section 7 presents
a discussion. Appendix C extends our results to TBDs in which each subject
in the experimental group is given the treatment with probability p �= 1/2.
Appendices A, B, E, and F contain some of our proofs.

2. Literature review

Here we survey the small TBD literature and some recent developments in
the much larger RDD literature. We also note connections to the experimental
design literature. Most of the TBD literature has focused on global parametric
models. Those are also the dominant model for experimental design. The TBD
is usually compared to the RDD, for which nonparametric models are the norm.

2.1. Regression discontinuity methods

Here we present some concepts from the regression discontinuity literature
drawing heavily on Cattaneo and Titiunik (2022). We begin with a setting
where there is a running variable xi (also called a score or index) for subject
i = 1, . . . , N . Subjects with xi > t are given the treatment and others get the
control. The treatment levels are typically Ti ∈ {0, 1} with Ti = 0 being the
control. For the TBD setting it is more convenient to use Zi ∈ {−1, 1} with
Zi = −1 indicating the control. The potential outcomes for subject i are Yi+ if
treated and Yi− for control.

There are two main approaches to RDD in causal inference, continuity-based
and local randomization-based. The continuity-based approach assumes that
the mean response for treated subjects is continuous in x as is that for control
subjects. If the mean response for all subjects shows a discontinuity at x = t,
then the magnitude of this discontinuity is defined to be the causal effect of
treatment on subjects at x = t, and one then considers how to estimate that
effect. The version from Hahn, Todd and der Klaauw (2001) has IID tuples
(xi, Yi+, Yi−) where Yi equals Yi+ for xi > t and Yi equals Yi− otherwise. The
treatment effect is then

τ = lim
x↓t

μ+(x) − lim
x↑t

μ−(x)
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where μ± = E(Y± | X = x). We will work primarily with a superpopulation
setting where the subjects in the study are sampled from a joint distribution.
Cattaneo and Titiunik (2022) discuss this setting along with some other settings
that focus on causal inference for the given subjects.

The local randomization approach from Cattaneo, Frandsen and Titiunik
(2015) assumes the existence of a window W = [t−h, t+h] such that for x ∈ W
the treatment variable is ‘as good as randomized’. In the local randomization
approach we assume a) that the joint distribution of the Zi for xi ∈ W is
known, and, b) that the potential outcomes (Yi+, Yi−) are independent of xi. In
particular, both mean responses must be constant functions of x ∈ W. A variant
of local randomization has the treatment based on a threshold of x where x is
a noisy version of a latent variable u (Eckles et al., 2020) and where we have
outside information under which the probability of treatment given u is known.

Both frameworks have challenges. The obvious difficulty with local random-
ization is choosing the window W (or knowing the treatment probability given
u). A smaller window provides a smaller dataset to use while making the win-
dow larger will normally increase the discrepancy between the model and the
ground truth. The TBD can be viewed as a strategy to impose by design the first
assumption in the local randomization approach while not making the second
assumption.

The challenge in the continuity framework is in estimating the necessary
limits. In a parametric model, those limits are estimated from all the data but
have a bias due to lack of fit of the parametric model. As a result, nonparametric
regression methods based on local polynomial models are favored. The challenge
there is that one must choose a bandwidth h, analogously to the window size
from the local randomization framework. Because the mean responses are only
locally polynomial we must contend with a bias-variance tradeoff in estimating
the limits.

Our theoretical and numerical results compare the TBD to the RDD in the
continuity framework. We think that this is the more likely alternative analysis
for our motivating applications if randomization had not been used, because the
local randomization assumptions do not seem natural in those applications. We
focus on the accuracy of point estimation. There is also a large literature on
constructing confidence intervals around the RDD estimate (see Cattaneo and
Titiunik (2022)). We describe some of those concepts in this paper, but we do
not develop confidence intervals for the TBD due to space constraints.

There are many different settings where treatments depend in a discontinuous
way on x. In a sharp design, the treatment is Zi = 1 if and only if xi > t.
In a fuzzy design, the assignment to treatment or control might not perfectly
match xi > t versus xi � t, for reasons beyond the control of the investigator.
For instance there may be subjects that do not comply with their assigned
treatment. A related issue is that some subjects might be able to manipulate
their value of the running variable in order to get (or avoid) the treatment.
Rosenman and Rajkumar (2019) discuss some ways to counter that problem. In
the settings we consider, the investigator has control of the treatment and so we
study the sharp design. We also do not address issues of subject compliance, as
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we suppose that the effect of the treatment assignment or the intent to treat is
of sufficient interest to the investigator.

The RDD setting has been extended well beyond the simple framework de-
scribed above. There are versions with treatments at more than two levels
as well as versions with continuous treatments. The cutoff can be defined in
terms of a vector of covariates yielding a discontinuity set of dimension one
less than the vector has. The treatment discontinuity could be defined by ge-
ographical boundaries. There are multi-cutoff settings where subject i gets
the treatment when xi > ti. There are models where it is the derivative of
E(Y |x, Z = 1) −E(Y |x, Z = −1) that has a step discontinuity at t. For discus-
sion and references to the variants above, see Cattaneo and Titiunik (2022).

2.2. Experimental design

While we study TBDs in comparison to regression discontinuity, they can also
be considered within an experimental design framework such as the covariate-
dependent designs considered by Metelkina and Pronzato (2017). That paper
emphasizes sequential problems, and like most of the design literature it works
primarily with parametric models. They find conditions where the treatment
policies converge to optimal deterministic functions of a covariate vector. The
TBD does not use deterministic allocations which is an advantage if the response
distribution is subject to change between experiments.

Experimental design, especially in a sequential setting is closely related to
bandit methods. We are motivated by problems where the responses Yi arrive
too slowly for bandit methods to be suitable. In a business setting, the responses
may arrive after a year or calendar quarter while the effect of a scholarship on
graduation rates can only be seen years later.

2.3. Tie-breakers

The simplest tie-breaker design replaces the threshold t by two thresholds
t ± Δ. Subjects with xi > t + Δ get the treatment, subjects with xi < t − Δ get
the control and other subjects are randomized to either treatment or control.
The simplest choice has

Pr(Zi = 1 |xi) =

⎧⎪⎨
⎪⎩

0, xi < t − Δ,
1
2 , |xi − t| � Δ
1, xi > t + Δ.

(1)

Campbell (1969) describes the Δ = 0 version of this design. Some subjects are
exactly at the threshold t and then randomization breaks the ties among them.
Boruch (1975) considers positive values of Δ such that differences in the running
variable among subjects with |x − t| � Δ are essentially arbitrary because x is
an imperfect measure. Abdulkadiroğlu et al. (2022) study the New York school
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system that breaks ties among applicants by lottery, or standardized test, or
audition, depending on the program. We only consider randomized tie-breaking.

Goldberger (1972) considers a simple two line regression model that in our
notation is

Yi = β1 + β2xi + β3Zi + β4xiZi + εi (2)

for IID errors εi with mean zero and variance σ2. He finds that an RDD estimates
these coefficients with a variance that is asymptotically π/(π − 2) ≈ 2.75 times
as large as it would be under an RCT. His setting has Gaussian xi and β4 = 0.
Jacob et al. (2012) generalizes the above model to polynomials of degree two or
three in x with or without interactions between x and Z. Their Table 6 shows
that an RCT is 4 times as efficient as the RDD for a uniformly distributed
running variable with t at the midpoint of its range. They also provide similar
efficiency estimates for other polynomial models for both uniform and Gaussian
x and include settings where t is not at the median of the distribution of x.

The above comparisons of RCTs to RDDs do not include tie-breakers. Cap-
pelleri, Darlington and Trochim (1994) compare small, medium and large ran-
domization windows in which 20%, 35% and 50%, respectively, of the subjects
get a randomized treatment. They tabulate the sample sizes needed to attain a
certain level of statistical power for three treatment effect sizes in these TBDs as
well as in an RDD and in an RCT. All designs had half of the subjects getting
the treatment. The running variable x was normally distributed. The model
was (2) with β4 = 0, making the treatment effect constant. The power calcu-
lations were done by Monte Carlo sampling. The required sample sizes became
smaller with increased randomization at any level of power and effect size.

Owen and Varian (2020) work out the asymptotic variance of β̂ in the model
(2) as a function of Δ. They consider both U[−1, 1] and N (0, 1) distributions for
x and a threshold t at the median of x’s distribution. The estimated treatment
effect is 2(β̂3+β̂4x) and they find for uniform x that this estimate has asymptotic
variance proportional to 16(1 + 3x2)/[1 + 3Δ2(2 − Δ2)] where Δ = 0 describes
the RDD and Δ = 1 is the RCT. This decreases monotonically in Δ while
increasing monotonically in |x|.

They also consider the opportunity cost of experimentation compared to
the RDD. For xi ∼ U[−1, 1] the expected value of

∑N
i=1 Yi is approximately

(β1 + β4(1 − Δ2)/2)N . If larger Yi are better and β4 > 0 then the opportunity
cost grows proportionally to β4Δ2. They discuss how one might trade off this
opportunity cost against statistical efficiency.

The TBD has so far been analyzed for simpler methods than the RDD has.
This can be understood by comparing their workflows. In a TBD we measure
xi, then sample Zi and then some time later observe Yi. For an RDD we usually
get (xi, Zi, Yi) all at once. The investigator planning a TBD only has xi, must
decide how to assign the Zi, and may not know what model will be fit later,
and then chooses some specific model to design for. When one studies the TBD
theoretically, one does not even have the xi and then it is natural to assume a
distribution for them. The TBD is prospective while the RDD is retrospective.
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When vectors xi of covariates are available, Owen and Varian (2020, Section
8) describe how to investigate numerically the efficiency of a TBD that fits a
regression model on some collection of features of xi that interact with Zi where
the treatment window is based on a linear combination of xi.

Morrison and Owen (2022) study multiple regression for a tie-breaker in a
regression model Yi = xT

i β + Zix
T
i γ + εi with Pr(Zi = 1) = pi ∈ [0, 1]. They

study a prospective D-optimality criterion that maximizes the determinant of
E(X TX ), where X is the (random) design matrix built from xi and Zi. For any
known xi, the finite sample optimal pi can be computed by convex optimization.
For as yet unobserved xi the prospective D-optimality criterion averages over
both random Zi and random xi from an assumed distribution for xi. For random
xi, they study a three level tie-breaker with running variable xT

i η and treatment
probabilities 0, 0.5 and 1.

Owen and Varian (2020) consider replacing the simple trichotomy (1) by var-
ious sliding scales where Pr(Zi = 1 |xi) is a monotone function of xi. They find
no advantage to such alternatives when xi has a symmetric distribution about
t and half the subjects are treated. Li and Owen (2022) revisit that problem
for the two line model and find optimal designs for general xi distributions and
general fractions of treated subjects without assuming that half of the subjects
will be treated. These optimal designs can greatly improve upon the design de-
fined in (1). They still have Pr(Zi = 1 |xi) as piecewise constant functions of xi.
If we impose monotonicity Pr(Zi = 1 |xi) � Pr(Zi′ = 1 |xi′) whenever xi � xi′ ,
then only two treatment probability levels are needed.

A limitation of previous comparisons between RDDs and TBDs is that they
all assume parametric regression models for the response Yi. We compare them
using local linear regression. For simplicity, we restrict our attention to the three
level version of the TBD in (1).

Our model assumes an additive error on top of smooth functions of x for the
data points where |x − t| > Δ. When h > Δ, the causal estimate we consider
merges deterministic and randomized treatment allocations and then cannot be
analyzed in a potential outcomes framework. It is common in causal inference
to ignore such data. For instance, a rule of thumb in Crump et al. (2009) is to
omit data where the treatment probability is outside [0.1, 0.9]. Asymptotically,
h < Δ and then a potential outcomes analysis is available. Otherwise, to stay
within the potential outcomes framework, one must choose between ignoring
some data and using the additive error model like we do.

3. Causal estimand and problem formulation

Throughout the text we will compare the TBD to the RDD. In our com-
parison, we will define t to be the putative RDD threshold and Δ to be the
experimental radius, and we consider allocation of the treatments to the N
subjects according to the 3-level tie-breaker design (1).

Next we discuss the estimands of interest. For each subject we consider the
assignment variable X ∈ R, the treatment Z ∈ {−1, 1} and two potential out-
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comes: Y+ = Y (Z = 1) and Y− = Y (Z = −1). Defining

μ+(x) ≡ E
(
Y+ |X = x

)
and μ−(x) ≡ E

(
Y− |X = x

)
, (3)

the treatment effect at X = x is

τ(x) = E(Y+ − Y− |X = x) = μ+(x) − μ−(x).

If the investigator chooses an RDD with a threshold at t, then under certain
regularity conditions, the causal estimand

τthresh ≡ τ(t)

can be consistently estimated. In particular, we assume IID samples (or suffi-
ciently weak dependence between the samples) and that:

(i) The density f(·) of the assignment variable X is continuous at t with
f(t) > 0.

(ii) The conditional mean functions μ+ and μ− in (3) have at least 3 continuous
derivatives in an open neighborhood of t.

(iii) The conditional variance functions σ2
±(x) ≡ Var

(
Y± | X = x

)
are both

bounded in a neighborhood of t and continuous at t.
Under these conditions, τthresh can be consistently estimated by local linear
regression with Op(N−2/5) errors (Imbens and Kalyanaraman, 2012). On the
other hand, the conditions above do not suffice to let an RDD consistently
estimate τ(x) for any x �= t.

If an investigator runs a TBD with Δ > 0, then assumptions like those above
replacing t by x allow consistent estimation of τ(x) for any x ∈ (t − Δ, t + Δ).
Furthermore, as long as var(Y±) < ∞,

τATE(Δ) ≡ E(τ(X) | t − Δ < X < t + Δ)

can be consistently estimated with error Op(N−1/2) in a TBD without requiring
assumptions (i), (ii), and (iii).

The discussion above leaves open the possibility that an RDD could be better
than a TBD when estimating τthresh. Therefore, for the remainder of the paper
our primary focus will be on showing that even if the only goal is estimating
τthresh, it is still beneficial to run a TBD rather than an RDD. Our other focus
will be to show that when the only goal is to estimate τthresh, it is beneficial to
pick a larger Δ in the experimental design stage when the option is available.
Picking a larger Δ has other benefits as well such as making τ(x) identifiable
for more values of the assignment variable and making τATE(Δ) more repre-
sentative of the overall population and easier to estimate. Naturally, there are
non-statistical reasons to keep Δ smaller.

Local linear estimation

In keeping with current RDD practice, we suppose that under an RDD τthresh
will be estimated with local linear regression. In particular, we assume that a
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parameter vector β defined by

β̂ = arg min
β∈R4

N∑
i=1

K
(xi − t

h

)(
Yi − (β1 + β2xi + β3Zi + β4xiZi)

)2 (4)

will be fit for some symmetric kernel function K(·) � 0 and bandwidth param-
eter h > 0, and that τthresh will be estimated with

τ̂thresh = 2β̂3 + 2β̂4t. (5)

While this formulation of estimating τ̂thresh may be less familiar than the ap-
proach of fitting separate local linear regressions for the treatment and control
groups, it is easy to check that the two formulations yield the same estimator.

Throughout the paper, we suppose that under a TBD, τ̂thresh will also be
estimated using local linear regression according to (4) and (5). We do not use
the same bandwidth h for the TBD and RDD. Indeed, in the next section we
see that the optimal bandwidth choice (in terms of AMSE) is different for the
two designs.

Because kernels with unbounded support are not typically used in RDD anal-
ysis (Cattaneo and Titiunik (2022)), we only consider kernels with bounded
support. We assume without loss of generality, that the kernel is supported on
[−1, 1]. We have a special interest in a uniform (boxcar) kernel KBC(x) = 1|x|�1
because it is a popular kernel choice and is a local version of the regression
model (2). We are also interested in a triangular spike kernel KTS(x) = (1−|x|)+
where z+ = max(0, z). This kernel was shown by Cheng, Fan and Marron (1997)
to optimize a bias-variance tradeoff for extrapolation from xi > t to E(Y |x = t)
and has been advocated for RDD analysis by Imbens and Kalyanaraman (2012)
and Calonico, Cattaneo and Titiunik (2014) among others.

The local linear regression estimator from (5) has a bias and variance that
both depend on the bandwidth h. Larger h typically bring greater bias because
the true regression is not precisely linear over a region centered on t. Smaller
h bring greater variance because then fewer data points are in the regression.
Imbens and Kalyanaraman (2012) develop a method for choosing the bandwidth
h that is asymptotically mean squared optimal for the RDD. In the next section,
we compare the AMSE of the TBD with that of the RDD, when each of them
has their asymptotically optimal bandwidth choice.

In this paper, we focus on the accuracy of the estimated treatment effect. The
RDD literature includes several papers devoted to the construction of confidence
intervals. There it is necessary to account for the bias in a local polynomial
regression. A simple approach is to choose h to undersmooth the regression
function, resulting in a bias of lower order than the standard error, and this
simplifies confidence interval construction. Undersmoothing, however, brings less
accuracy (Calonico, Cattaneo and Titiunik, 2014). See Calonico, Cattaneo and
Farrell (2019) for a discussion of bandwidth choices to optimize estimation, or
optimize confidence interval construction, or to get robust (asymptotically valid)
confidence intervals using the bandwidth that is optimal for estimation.
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4. Asymptotic mean square optimal error

In this section, we demonstrate the advantage of the TBD over the RDD when
each design’s bandwidth is chosen to minimize the AMSE in the estimation of
τthresh = μ+(t)−μ−(t). Following Imbens and Kalyanaraman (2012), we assume
the following more general regularity conditions for estimating the causal effect
at X = t:

(i) The triples
(
Xi, Yi+, Yi−

)
for i = 1, . . . , N are IID.

(ii) The distribution of Xi has density f(·), which is continuously differentiable
at t with f(t) > 0.

(iii) Conditional means μ±(·) both have at least three continuous derivatives in
an open neighborhood of t, with the k’th derivatives at t denoted μ

(k)
± (t).

(iv) The kernel K(·) is nonnegative, symmetric, bounded, has support [−1, 1],
is continuous on its support, and is strictly positive somewhere.

(v) The conditional variances σ2
±(x) ≡ var(Yi± |Xi = x) are both bounded in

an open neighborhood of t and are continuous and strictly positive at t.
(vi) μ

(2)
+ (t) �= μ

(2)
− (t).

Under an RDD, Zi = 1 if Xi > t and is −1 otherwise, so these assumptions
imply Assumptions 3.1–3.6 that Imbens and Kalyanaraman (2012) make for an
RDD. To allow for analysis in the TBD setting, our assumptions (i)–(vi) are
slightly stronger than those in Imbens and Kalyanaraman (2012). For example,
unlike in our Assumption (iii), Imbens and Kalyanaraman (2012) make no as-
sumptions on μ+(·) in the interval (−∞, t) or on μ−(·) in the interval (t, ∞).
Regarding assumption (vi), Imbens and Kalyanaraman (2012) also consider the
case where μ

(2)
+ (t) = μ

(2)
− (t) and show that in this case, their proposed method

of estimating τthresh has error Op(N−3/7) rather than Op(N−2/5). We do not
consider the case where μ

(2)
+ (t) = μ

(2)
− (t) in detail for the TBD as the result

should be similar to that for the RDD and is of less interest for our head-to-
head comparison of TBD with RDD.

Because our assumptions (i)–(vi) imply Assumptions 3.1–3.6 in Imbens and
Kalyanaraman (2012) for an RDD, if we let

ν̃j ≡
∫ ∞

0
ujK(u) du and π̃j ≡

∫ ∞

0
ujK2(u) du

for j ∈ N, and let

C̃1 ≡ 1
4

( ν̃2
2 − ν̃1ν̃3

ν̃0ν̃2 − ν̃2
1

)2
and C̃2 ≡ ν̃2

2 π̃0 − 2ν̃1ν̃2π̃1 + ν̃2
1 π̃2

(ν̃2ν̃0 − ν̃2
1)2 , (6)

and define

AMSERDD(h, N) ≡ C̃1
(
μ

(2)
+ (t) − μ

(2)
− (t)

)2
h4 + C̃2

Nh

(σ2
+(t) + σ2

−(t)
f(t)

)
, (7)

then Lemma 3.1 of Imbens and Kalyanaraman (2012) holds. We reproduce the
statement of this lemma below.
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Lemma 1. Under Assumptions (i)–(vi), if an RDD determines the treatment
assignment and both h → 0 and Nh → ∞ as the number of samples N → ∞,
then the mean squared error in estimating τthresh is given by

MSERDD(h, N) = AMSERDD(h, N) + op

(
h4 + 1

Nh

)
, (8)

and the asymptotically optimal bandwidth, defined by arg minh AMSERDD(h, N)
is given by

hopt,RDD(N) =
( C̃2

4C̃1

)1/5( σ2
+(t) + σ2

−(t)
f(t)

(
μ

(2)
+ (t) − μ

(2)
− (t)

)2

)1/5
N−1/5. (9)

Proof. Imbens and Kalyanaraman (2012, Lemma 3.1).

Because we wish to compare the RDD to the tie-breaker design, we derive
a similar result for the asymptotic MSE for the tie-breaker design. The TBD
counterparts to the RDD quantities above are

νj ≡
∫ ∞

−∞
ujK(u) du and πj ≡

∫ ∞

−∞
ujK2(u) du (10)

for j ∈ N,

C1 ≡ 1
4

(ν2
2 − ν1ν3

ν0ν2 − ν2
1

)2
and C2 ≡ 2ν2

2π0 − 4ν1ν2π1 + 2ν2
1π2

(ν2ν0 − ν2
1)2 , (11)

and

AMSETBD(h, N) ≡ C1
(
μ

(2)
+ (t) − μ

(2)
− (t)

)2
h4 + C2

Nh

(σ2
+(t) + σ2

−(t)
f(t)

)
. (12)

Lemma 2. Under Assumptions (i)–(vi), if a TBD with a fixed experimental
radius Δ > 0 determines the treatment assignment and both h → 0 and Nh → ∞
as the number of samples N → ∞, then the mean squared error in estimating
τthresh is given by

MSETBD(h, N) = AMSETBD(h, N) + op

(
h4 + 1

Nh

)
, (13)

and the asymptotically optimal bandwidth, defined by arg minh AMSETBD(h, N)
is

hopt,TBD(N) =
( C2

4C1

)1/5( σ2
+(t) + σ2

−(t)
f(t)

(
μ

(2)
+ (t) − μ

(2)
− (t)

)2

)1/5
N−1/5. (14)

Proof. See Appendix A.

The proof of this lemma is very similar to the proof of Lemma 3.1 in Imbens
and Kalyanaraman (2012), from their appendix. Instead of pointing to their
proof and noting the parts of their proof that differ in the tie-breaker design
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Fig 1: A comparison of the asymptotic bias-variance tradeoff for the regression discon-
tinuity design (dotted lines) versus for the tie-breaker design (solid lines). The x-axes
are in units of asymptotically MSE optimal bandwidth for RDD given at (9) while the
y-axes are the leading order terms in units of αN−4/5 where N is the sample size and
α is a constant given in (15) that depends on properties of the joint distribution of
(X, Y, Z) in a neighborhood of the cutoff.

setting, we write out the proof of Lemma 2 in Appendix A to ensure there are
no subtle issues with using their proof in the tie-breaker design setting.

The leading order MSE formulas are derived by evaluating and summing
the leading order terms for both the squared-bias and the variance. In formu-
las (7) and (12) for the leading order MSE, the first term gives the leading
order squared-bias while the second term gives the leading order variance. See
formulas (36) and (37) for explicit calculations of the leading order bias and
variance in the TBD case, and see the formulas for ‘B’ and ‘V’ in the appendix
of Imbens and Kalyanaraman (2012) for explicit calculations of these quantities
in the RDD case. It is not surprising that the formulas for the leading order
squared-bias, variance and MSE are different for the two design types because
for an RDD, estimation of τthresh involves estimation of the mean functions at
a boundary point, whereas for a TBD, estimation of τthresh involves estimation
of mean functions at an interior point.

In Figure 1, we plug in scalar multiples of the optimal bandwidth for the
RDD given in Lemma 1 to the first and second terms of formulas (7) and (12)
to visualize the trade-off for the leading order squared-bias and variance in a
tie-breaker design compared to a regression discontinuity design. The formulas
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simplify when defining the quantity

α ≡ 5
4
(
μ

(2)
+ (t) − μ

(2)
− (t)

)2/5
(σ2

+(t) + σ2
−(t)

f(t)

)4/5
, (15)

which does not depend on h, N or the kernel choice.
In practice, the optimal bandwidth is not known and must be estimated. For

both the RDD and the TBD, the optimal bandwidth depends on the quantity

γ ≡
( σ2

+(t) + σ2
−(t)

f(t)
(
μ

(2)
+ (t) − μ

(2)
− (t)

)2

)1/5
(16)

which must be estimated from the observed data. We consider the regular-
ized estimator for γ of Imbens and Kalyanaraman (2012). We take the esti-
mated optimal bandwidth ĥopt proposed in their Section 4.2 and set γ̂RDD =
(4C̃1/C̃2)1/5ĥoptN

1/5. It can be seen from the proof of Theorem 4.1 in Imbens
and Kalyanaraman (2012) that under assumptions (i)–(vi), γ̂RDD

p−→ γ. In the
TBD case, we know a consistent estimator of γ exists. For example, if we let
γ̂TBD,naive be an estimator of γ that is constructed similarly to γ̂RDD using only
the subset of the data which looks like an RDD, γ̂TBD,naive

p−→ γ. Of course such
an estimator of γ is inefficient; in practice one should instead use an estimator
of γ that does not throw out all of the control samples for which x > t and all
of the treated samples for which x < t. For our theoretical comparison of TBDs
with RDDs, we are not concerned with the actual form of γ̂TBD as long as it is
consistent. Therefore, in the TBD case we will let γ̂TBD be any estimator that
satisfies γ̂TBD

p−→ γ. We make a few remarks about estimation of γ in the TBD
setting in the discussion section.

To compare the AMSE for the RDD versus the TBD, we will assume that if
the investigator were to run an RDD and were seeking mean squared optimal
estimation of τthresh, they would ultimately use the bandwidth

ĥopt,RDD(N) =
( C̃2

4C̃1

)1/5
γ̂RDDN−1/5, (17)

where γ̂RDD is the consistent estimator for γ described above and C̃j are de-
fined at (6). We will also assume that if the investigator were to run a TBD
seeking mean squared optimal estimation of τthresh, they would ultimately use
the bandwidth

ĥopt,TBD(N) =
( C2

4C1

)1/5
γ̂TBDN−1/5, (18)

where γ̂TBD is any consistent estimator of γ and Cj are defined at (11).
The following theorem compares the RDD with N points to a TBD with θN

points for some θ > 0. We will use the value of θ that provides equal MSEs for
estimation of τthresh as a metric to compare the two designs.
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Theorem 1. Let θ > 0 be a constant. Under assumptions (i)–(vi), as N → ∞

MSERDD
(
ĥopt,RDD(N), N

)
MSETBD

(
ĥopt,TBD(θN), θN

) p−→ θ4/5
( C̃1C̃4

2
C1C4

2

)1/5
(19)

holds for any tie-breaker design of the form (1) with Δ > 0.

Proof. See Appendix B.

Theorem 1 uses the assumption that Pr(Zi = 1 | xi) = 1/2 for xi in the
randomization window. If σ2

+(t) �= σ2
−(t), then we might prefer to offer the

treatment with probability p �= 1/2. In Appendix C, we study a treatment
probability p ∈ (0, 1). When p = σ+(t)/(σ+(t) + σ−(t)), the asymptotic MSE is
minimized, though an investigator would also want to account for the cost of the
treatment. If one chooses p using poor prior estimates of σ± it is possible that
the resulting TBD will have a higher asymptotic MSE than the RDD. However,
for any of the kernels in Table 1, one can protect against that by choosing
p ∈ [0.18, 0.82].

Asymptotic MSE comparison for some specific kernels

We now use Theorem 1 to compare the MSE in estimating τthresh for the RDD
versus the TBD, under optimal bandwidth choices for various kernels of interest.
See Table 1. If an investigator is deliberating between an RDD with N samples
versus conducting a TBD (for a fixed Δ > 0) with N samples, and either ex-
perimental design is to be analyzed with the asymptotically optimal bandwidth
choice for the prespecified kernel, then the ratio of the MSEs will converge in
probability to

(
(C̃1C̃4

2 )/(C1C4
2 )
)1/5 as N → ∞. Using formulas (6) and (11), the

fourth column of Table 1 gives the value of the quantity
(
(C̃1C̃4

2 )/(C1C4
2 )
)1/5

rounded to 2 decimal places. For the boxcar and triangular kernels respectively,
this quantity is precisely 641/5 and 60.466181/5 without rounding.

It is also interesting to consider the quantity given by

θ∗ = C
1/4
1 C2

C̃
1/4
1 C̃2

. (20)

As a result of Theorem 1, an experimental designer deciding to use a TBD rather
than an RDD would only need to collect θ∗ times as many samples in order to
achieve the same asymptotic MSE in estimating τthresh.

Table 1 shows that the kernel choice has a remarkably small impact on the
relative benefit of using a TBD rather than an RDD to estimate τthresh. It is
well known in the usual kernel smoothing setting that there is little difference
in performance among the widely used kernels. See Wand and Jones (1994).
If τthresh is to be estimated with local linear regression using one of the seven
popular kernel choices exhibited in Table 1, then the RDD has an asymptotic
MSE that is about 2.3 times as large as that of the TBD, and the TBD will
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Table 1

An asymptotic comparison of the regression discontinuity designs with tie-breaker designs in
Kernel regression-based estimation of τthresh. The fourth column gives the quantity(

(C̃1C̃4
2 )/(C1C4

2 )
)1/5, which is computed using (6) and (11) and rounded to 2 decimal

places. The last column gives the quantity θ∗ given by (20) rounded to 3 decimal places.

Kernel Function K(u) Support Relative AMSE θ∗

Boxcar 1/2 [−1, 1] 2.30 0.354
Triangular (1 − |u|)+ [−1, 1] 2.27 0.359
Epanechnikov 3

4 (1 − u2)+ [−1, 1] 2.31 0.351
Quartic 15

16 (1 − u2)2
+ [−1, 1] 2.29 0.355

Triweight 35
32 (1 − u2)3

+ [−1, 1] 2.28 0.357
Tricube 70

81 (1 − |u|3)3
+ [−1, 1] 2.31 0.352

Cosine π
4 cos

(
π
2 u

)
[−1, 1] 2.31 0.352

require 64 to 65 percent fewer samples than the RDD in order to achieve the
same asymptotic MSE.

We think that a version of Theorem 1 will hold also for unbounded kernels
such as the N (0, 1) density under reasonable but stronger regularity conditions
on f(·), μ±(·) and σ±(·). We do not develop such a result as Cattaneo and
Titiunik (2022) state that kernels with unbounded support are not used in RDD
analysis.

5. Variance comparisons at fixed h > Δ

The AMSE comparison in Section 4 depends upon the optimal TBD band-
width, ĥopt,TBD, eventually becoming smaller than the positive experimental
radius Δ. However, the optimal h converges to zero only at the very slow rate
N−1/5. Furthermore, the constant in that rate includes the factor |μ(2)

+ (t) −
μ

(2)
− (t)|−2/5 which could be very large. We believe that in many applied settings

the optimal value of h will not be smaller than Δ. Then Δ/h is not necessarily
within the support of the kernel and Y values data from outside the experimen-
tal region are included in the local linear regression.

In this section, we complement the prior analysis with one where h is fixed
and larger than Δ. We assume a symmetric kernel function that is Lipschitz
continuous on its support.

The kernel regression estimate of τ̂thresh has a leading bias of O(h2). In the
regime where the bandwidth is bigger than Δ, mean squared optimality analysis
for estimating τthresh is complicated by the fact that for the TBD there will often
exist an h > Δ such that the constant in this O(h2) term vanishes. Remarkably,
such a bandwidth depends only on the experimental radius Δ and the kernel
K. It does not depend on μ+, μ−, f , or N . In Appendix D, we prove that under
certain regularity conditions on f , μ±, and K, a bandwidth h that solves ν2

2 =
4
∫∞

Δ/h
uK(u) du

∫∞
Δ/h

u3K(u) du removes the leading order bias, and moreover,
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such a solution exists. See Table D.1 for numerical solutions of this equation for
the kernel choices considered previously. We find that for these kernel choices,
the bandwidth removing the leading order bias ranges from approximately 3.13Δ
for the Boxcar kernel to approximately 4.84Δ for the Triweight kernel. We
caution investigators against picking this bandwidth because it does not shrink
with N . It could place too little weight on reducing variance for small N and
the third order bias term will be O(1).

Due to the existence of a fixed bandwidth bigger than Δ that removes the
leading order bias of τ̂thresh, analysis of bias and mean squared optimality using
second order Taylor expansions of μ±(·) would be misleading. Hence, we do not
conduct an analysis similar to that seen in Section 4 for the regime where h > Δ.
For that regime, we instead restrict our attention to the variance in estimating
τthresh at a fixed bandwidth h.

The variance of the local linear estimator τ̂thresh given in (4) and (5) can be
computed as follows. The design matrix for the regression is X ∈ RN×4 with
i’th row (1, xi, Zi, xiZi). The response is Y = (Y1, . . . , YN )T. For simplicity we
assume var(Y |X ) = σ2IN and without loss of generality we assume t = 0. The
kernel weights are K(xi/h), and we let W = W(h) ∈ RN×N = diag(K(xi/h)).
Then

β̂ = β̂(Δ) = (X TWX )−1X TWY , (21)

and under the assumption that var(Y |X ) = σ2IN we have

var(β̂ |X ; Δ) = (X TWX )−1X TW2X (X TWX )−1σ2. (22)

Formula (21) for β̂ matches the familiar generalized least squares formula for
the case where var(Y | X ) = Wσ2. Here W arises from weights that are not
of inverse variance type and hence the formula for var(β̂ | X ; Δ) involves a W2

factor and less cancellation than we might have expected. The boxcar kernel
is special because then K(xi/h) ∈ {0, 1} equals its own square. In that case
var(β̂ | X ; Δ) = (X TWX )−1σ2. The estimator is τ̂thresh = 2β̂3. Therefore, we
study var(β̂3 | X ; Δ) under a tie-breaker design as (var(β̂ | X ; Δ))3,3 using the
expression in (22).

At the stage where the experiment is being designed and Δ is being chosen,
the investigator does not have much information about X ∈ RN×4 but we will
later see, quite a bit is known about the quantity N × var(β̂3 |X ; Δ)/σ2. For xi

from a real dataset, we see in Section 6 (e.g. Figure 5) that this quantity does
not vary much for different simulations of the random treatment assignments
(Zi)N

i=1. To get theoretical insight, we turn our attention to the uniformly spaced
setting with xi = (2i − N − 1)/N to develop tractable theoretical results. We
give an asymptotic justification for this assumption using results from Fan and
Gijbels (1996) in Section 6. This rank transformation is also used in Owen and
Varian (2020).

For xi = (2i − N − 1)/N , the matrices X TWX /N and X TW2X /N contain
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elements that can be approximated by integrals of the form

Irst = Irst(Δ, h, K) ≡ 1
2

∫ 1

−1
xrE(Zs |x; Δ)K

(x

h

)t

dx (23)

for integer exponents r, s and t. Our expressions will simplify somewhat because
Z2 = 1 making every Ir,2,t = Ir,0,t and also because both x and E(Z | x; Δ)
are antisymmetric functions of x making them orthogonal to K(x/h) which we
have assumed to be symmetric. The error in those moment approximations is
Op(N−1/2) if the Zi are independent random variables. The error can be much
less with other sampling schemes. For instance, we could use stratified sampling,
forming pairs of subjects (i, i + 1) in the experimental region and randomly
setting Zi = ±1 and Zi+1 = −Zi. We will use ≈ to describe approximations
that are Op(N−1/2) or better.

Applying first Z2 = 1 and then using symmetry and anti-symmetry

1
N

X TWX ≈

⎡
⎢⎢⎢⎢⎣

1 x z xz

1 I001 I101 I011 I111

x I101 I201 I111 I211

z I011 I111 I021 I121

xz I111 I211 I121 I221

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

I001 0 0 I111

0 I201 I111 0
0 I111 I001 0

I111 0 0 I201

⎤
⎥⎥⎥⎥⎦ .

Because K2(·) is also a symmetric function we also get

1
N

X TW2X ≈

⎡
⎢⎢⎢⎢⎣

I002 0 0 I112

0 I202 I112 0
0 I112 I002 0

I112 0 0 I202

⎤
⎥⎥⎥⎥⎦ .

From all of the symmetries involved in the 32 components of these two matri-
ces, we need to consider at most six distinct integrals. We rewrite those matrices,
beginning with

1
N

X T WX ≈

⎡
⎢⎢⎣

κ0 0 0 φ(Δ)
0 κ2 φ(Δ) 0
0 φ(Δ) κ0 0

φ(Δ) 0 0 κ2

⎤
⎥⎥⎦ (24)

where

κ0 = 1
2

∫ 1

−1
K
(x

h

)
dx, κ2 = 1

2

∫ 1

−1
x2K

(x

h

)
dx, and

φ(Δ) = 1
2

∫ −Δ

−1
(−x)K

(x

h

)
dx + 1

2

∫ 1

Δ
xK

(x

h

)
dx =

∫ 1

Δ
xK

(x

h

)
dx.

(25)
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Note that κ0 and κ2 may depend on h but they do not depend on Δ. A similar
argument shows that

1
N

X T W2X ≈

⎡
⎢⎢⎣

λ0 0 0 ψ(Δ)
0 λ2 ψ(Δ) 0
0 ψ(Δ) λ0 0

ψ(Δ) 0 0 λ2

⎤
⎥⎥⎦ (26)

for

λ0 = 1
2

∫ 1

−1
K2

(x

h

)
dx, λ2 = 1

2

∫ 1

−1
x2K2

(x

h

)
dx, and

ψ(Δ) =
∫ 1

Δ
xK2

(x

h

)
dx.

(27)

Now we are ready to describe the asymptotic variance of β̂3.

Theorem 2. Let xi = (2i − N − 1)/N , select Zi ∈ {−1, 1} by the tie-breaker
equation (1) with t = 0. Let Yi be uncorrelated random variables with common
variance σ2, conditionally on X = ((1, x1, Z1, x1Z1), · · · , (1, xN , ZN , xN ZN )).
Next, for a symmetric kernel K(·) � 0 that is Lipschitz continuous on its support
and a bandwidth h > 0, let β̂ be estimated by the kernel weighted regression (4).
Then

Nvar(β̂3 |X ; Δ) =
σ2(κ2

2λ0 − 2κ2φ(Δ)ψ(Δ) + λ2φ2(Δ)
)

(
κ0κ2 − φ2(Δ)

)2 + Op

( 1√
N

)
, (28)

where κ0, κ2 and φ(Δ) are defined in (25) and λ0, λ2 and ψ(Δ) are defined
in (27).

Proof. Reordering the components of β we find after substituting equations (24)
and (26) into (22) that

√
N(β̂1, β̂4, β̂2, β̂3) has variance

⎛
⎜⎜⎝

κ0 φ 0 0
φ κ2 0 0
0 0 κ0 φ
0 0 φ κ2

⎞
⎟⎟⎠

−1⎛
⎜⎜⎝

λ0 ψ 0 0
ψ λ2 0 0
0 0 λ0 ψ
0 0 ψ λ2

⎞
⎟⎟⎠
⎛
⎜⎜⎝

κ0 φ 0 0
φ κ2 0 0
0 0 κ0 φ
0 0 φ κ2

⎞
⎟⎟⎠

−1

σ2 + Op

( 1√
N

)
.

Now (28) follows directly by matrix inversion and multiplication.

Our Lipschitz condition on the kernel K is present for technical reasons.
Using a formulation with fixed and discrete xi = (2i − N − 1)/N , this condition
allows us to obtain the same error rate of Op(N−1/2) as would be obtained using
the formulation with random xi

IID∼ U[−1, 1]. Without the Lipschitz condition,
an adversarially chosen kernel K(·) might have point discontinuities at every
rational multiple of the bandwidth h. We remark that our Lipschitz condition
can be loosened to a 1/2-Hölder continuity condition, with details available from
the first author upon request.
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The variance formula in Theorem 2 does not require the linear model (2) to
hold. When it does not hold there will generally be some bias where E(2β̂3 |
X ; Δ) �= μ+(0) − μ−(0). We suppose that the user will choose an h to appro-
priately navigate the bias variance tradeoff, but that step takes place after the
outcomes Yi are observed, which are not available when Δ is chosen, so we resort
to comparing the variance for any choice of h.

We are primarily interested in comparing the asymptotic variance of τ̂0 = 2β̂3
for various choices of Δ. We especially want to compare the efficiency of tie-
breaker designs with Δ > 0 to the RDD with Δ = 0. To do this we consider the
efficiency ratio

Eff(N)(Δ) ≡ var(τ̂thresh |X ; 0)
var(τ̂thresh |X ; Δ) = var(β̂3 |X ; 0)

var(β̂3 |X ; Δ)
. (29)

Using Theorem 2, Eff(N)(Δ) converges in probability to the asymptotic effi-
ciency ratio

Eff(Δ) =
(
κ2

2λ0 − 2κ2φ(0)ψ(0) + λ2φ2(0)
)(

κ0κ2 − φ2(Δ)
)2(

κ2
2λ0 − 2κ2φ(Δ)ψ(Δ) + λ2φ2(Δ)

)(
κ0κ2 − φ2(0)

)2 (30)

using quantities that we defined at (25) and (27).

Efficiency with boxcar and triangular kernels

In this subsection we present the efficiency ratios under the conditions of
Theorem 2 for the two kernels of greatest interest: the boxcar kernel and the
triangular kernel. We work with xi = (2i−N −1)/N throughout this subsection.

For the boxcar kernel KBC(u) = 1|u|�1, we can assume without loss of gen-
erality that h � 1 because there are no data with |xi − t| = |xi| > 1, and then
any h > 1 will give the same estimate as h = 1. We find for this kernel that

κ0 = λ0 = h, κ2 = λ2 = h3

3 , and φ(Δ) = ψ(Δ) = (h2 − Δ2)+

2 . (31)

Using some foresight, we define the local tie-breaker constant δ = Δ/h. This is
the fraction of the local regression region in which the treatment was assigned
at random.

Proposition 1. Under the conditions of Theorem 2 and using the boxcar kernel
KBC, the asymptotic efficiency ratio of the tie-breaker design is

EffBC = 1 + 6δ2 − 3δ4 (32)

for δ = Δ/h � 1. If δ > 1, then EffBC = 4.

Proof. Because many quantities from (31) are identical, substituting them into
(30) produces numerous simplifications that yield

EffBC = κ0κ2 − φ2(Δ)
κ0κ2 − φ2(0) =

h4

3 − (h2−Δ2)2
+

4
h4

3 − h4

4
= 4 − 3(1 − δ2)2

+.



Kernel regression analysis of tie-breaker designs 263

For 0 � δ < 1 formula (32) follows from expanding the quadratic while for δ > 1
the positive part term vanishes.

Choosing h = 1 makes the local regression a global one. We then get the
same efficiency ratio as in equation (6) from Owen and Varian (2020). By taking
derivatives it is easy to show that the efficiency ratio in (32) is strictly increasing
as the local amount of experimentation δ varies over the interval 0 < δ < 1.
Figure 2 plots EffBC versus δ.

The triangular spike kernel KTS(x) = (1 − |x|)+ (triangular kernel for short)
is more complicated than the boxcar kernel because for it, K2 is not proportional
to K. Once again, we assume that h ∈ [0, 1]. For this kernel we compute

κ0 = h

2 , κ2 = h3

12 , λ0 = h

3 , and λ2 = h3

30

and then using δ = Δ/h, we get

φ(Δ) = h2

6 (1 − 3δ2 + 2δ3) and ψ(Δ) = h2

12(1 − 6δ2 + 8δ3 − 3δ4).

Proposition 2. Under the conditions of Theorem 2 and using the triangular
kernel KTS, the asymptotic efficiency of the tie-breaker design is

EffTS =
2
(
3 − 2(1 − 3δ2 + 2δ3)2)2

5 − 5(1 − 3δ2 + 2δ3)(1 − 6δ2 + 8δ3 − 3δ4) + 2(1 − 3δ2 + 2δ3)2 (33)

for δ = Δ/h � 1.

Proof. This follows from plugging in the values of κ0, κ2, λ0, λ2, φ(Δ), and ψ(Δ)
for the triangular kernel into (30). See Appendix E for the explicit calculations.

The second panel in Figure 2 shows EffTS versus the local experiment size δ.
The efficiency curve has a similar monotone increasing shape as we saw for the
boxcar kernel. The maximum efficiency ratio, at δ = 1, is 18/5 = 3.6 instead of
4. The efficiency ratio is a rational function of δ with a numerator of degree 12
and a denominator of degree 7. It is strictly increasing on the interval 0 < δ < 1,
though the proof is lengthy enough to move to the Appendix.

Proposition 3. The derivative of EffTS with respect to δ is positive for 0 <
δ < 1.

Proof. See Appendix F.

6. Classroom size data

We explored the efficiency ratio for the tie-breaker design for xi with a uni-
form distribution. While that can be arranged by using ranks, in other situations
we might prefer to use the original value of a running variable and those might
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Fig 2: The left panel shows the efficiency ratio of the tie-breaker design for uniform xi

and the boxcar kernel as a function of δ = Δ/h. The right panel shows this efficiency
ratio for the triangular kernel.

not be uniformly distributed. We show how to do this using a dataset from
Angrist and Lavy (1999) on classroom sizes.

Angrist and Lavy (1999) studied the causal effect of classroom size on test
performance of elementary school students in Israel. In Israel, the Maimonides
rule mandates that elementary school classes cannot exceed 40 students. If a
school has 41 students enrolled in a particular grade that grade must be split
into two classes. Note that grades that have 40 or fewer enrolled students are
allowed to split into multiple classes and that grades with slightly more than 40
students occasionally violate the Maimonides rule and do not split into multiple
classes. Despite this, we can consider this a setting for RDD where the treatment
variable is whether or not the school is legally mandated to split a particular
grade into smaller classes.

The dataset, published on the Harvard Dataverse (Angrist and Lavy, 2009),
has verbal and math scores for 3rd, 4th and 5th graders across Israel. We chose
to focus exclusively on 4th grade verbal scores as our response variable and 4th
grade enrollments as our assignment variable because Angrist and Lavy (1999)
suggest that a slightly significant effect of the treatment on 4th grade verbal
scores exists. Even though the data were not generated by a tie-breaker we can
still compute the relative efficiency that a tie-breaker design would have had.

To simplify the analysis, we removed all schools that either had more than
80 students or more than two 4th-grade classes from the dataset. We further
removed all schools that had NA entries for either class size or verbal scores,
leaving N = 711 schools in our filtered dataset. See Figure 3 for a visualization
of the distribution of the 4th grade enrollments and Figure 4 for visualizations of
the local linear regression based-RDD on this dataset using boxcar and triangu-
lar kernels. We use the bandwidths hIK given by the Imbens and Kalyanaraman
(2012) procedure, which were computed using that paper’s MATLAB code. The
apparent benefit from smaller classrooms is positive but small and it turns out,
not statistically significant in this analysis. The 95% confidence interval (as-
suming homoscedastic errors) for the effect size at the boundary of the local
linear regression-based RDD was (−1.5, 9.2) when a boxcar kernel with band-
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Fig 3: A histogram of 4th grade enrollments for our filtered dataset (with schools
exceeding 80 4th grade students or three 4th grade classes removed).

Fig 4: RDD fit to the 4th grader verbal scores from the Angrist and Lavy (2009)
dataset when using a boxcar kernel (left) and a triangular kernel (right). For these two
fits, the bandwidths hIK,BC and hIK,TS were chosen as in Imbens and Kalyanaraman
(2012).

width hIK,BC = 7.09 was used. The 95% confidence interval for the effect size at
boundary of this RDD was (−2.4, 9.4) when a triangular kernel with bandwidth
hIK,TS = 9.02 was used.

Next we illustrate how an investigator can estimate the efficiency ratio of tie-
breaker designs as a function of Δ on sample values of the assignment variable.
First we translate the data, replacing xi by xi −40.5 to move the threshold from
t = 40.5 to t = 0. Next, for each Δ of interest we use 1000 Monte Carlo samples
to estimate var(β̂3 | X ; Δ) and also var(β̂3 | X ; 0), both up to a constant σ2.
That gives us 1000 efficiency ratios Eff(N)(Δ) = var(β̂3 |X ; 0)/var(β̂3 |X ; Δ) for
each Δ. In each of our 1000 samples, we simulate random assignments Zi for a
tie-breaker design at the given experimental radius Δ. The random assignments
are stratified: in each consecutive pair of classroom sizes in the experimental
region, one was randomly chosen to have Z = 1 and the other got Z = −1.
The xi and the random Zi let us compute the matrices X and W defined in the
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Fig 5: Boxplots of the Monte-Carlo efficiency ratio estimates for various values of
Δ ∈ N when using a boxcar kernel (left) and a triangular kernel (right). For both
kernels we used bandwidths from Figure 4: hIK,BC = 7.09 and hIK,TS = 9.02. The
dashed lines give the theoretical efficiency curves under the assumption of a uniform
assignment variable, given by Propositions 1 (left) and 2 (right).

beginning of Section 5, from which we compute a non-asymptotic var(β̂3 |X ; Δ)
using (22). We do not simulate any Yi values because efficiency only depends on
X , and we are retaining the bandwidths from the Imbens and Kalyanaraman
(2012) procedure on the original data. A more detailed simulation randomizing
the bandwidth choice is out of scope. Our simulations demonstrate that the
TBD is more efficient at each fixed h, so we expect that it will also be more
efficient at a randomly chosen h. There could be exceptions if the bandwidth is
adversarially correlated with the estimation errors but we do not think that is
likely.

Figure 5 shows boxplots of 1000 simulated Eff(N)(Δ) values for various choices
of Δ ∈ N to plot the full efficiency curve. It is clear from Figure 5 that with
stratified allocations the efficiency is very reproducible. Figure 6 shows results
for different bandwidths, ranging from hIK/2 to 3hIK/2. Because the efficiencies
are so reproducible given the bandwidth, we just plot curves of the mean and
standard deviations of estimated Eff values. For both the boxcar and triangular
kernels, we see that the tie-breaker design is reproducibly more efficient than
the RDD and the effect increases as δ = Δ/h increases for all h we studied. The
efficiency curves for this dataset under various bandwidth choices look similar
to the theoretical efficiency curves derived in Section 5 for the case of a uniform
assignment variable.

For a further discussion of the Maimonides rule, see Angrist et al. (2019).
They consider different data sets and also investigate the possibility that the
class sizes are sometimes manipulated to be above the threshold triggering a
classroom split.

Comparison with theoretical results for uniform assignment variable

Our theoretical analysis in Section 5 is for a uniformly spaced assignment
variable. We can offer one explanation for why the empirical efficiencies on non-
uniformly distributed data look so similar to the theoretical ones for uniformly
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Fig 6: Monte-Carlo estimates of the expected value (left) and standard deviation
(right) of Eff(N)(Δ) versus Δ/h for the Angrist and Lavy (2009) dataset of 4th grader
verbal scores. For these plots a boxcar kernel (top) and a triangular kernel (bottom)
were used. The bandwidths plotted are scalar multiples of hIK,BC and hIK,TS from the
procedure of Imbens and Kalyanaraman (2012). The legend for the plots on the right
is the same as for the plots on the left. These curves are not smooth because, to avoid
redundancy, only points that corresponded to integer values of Δ were used. The thick
dashed lines give the theoretical efficiency curves EffBC (top left) and EffTS (bottom
left) derived in Section 5.

distributed data (see the left panels in Figure 6). The explanation uses some
results about non-parametric regression from Fan and Gijbels (1996, Table 2.1).
Nonparametric regression estimates μ̂(t) typically have an asymptotic variance
where the leading term is proportional to 1/f(t) where f is the probability
density of the xi. This arises because the local sample size is asymptotically
proportional to f(t). Hence, when considering nonuniform distributions, the
1/f(t) factors in the leading order variance terms will cancel out when comput-
ing the efficiency ratios. Some of the nonparametric regression estimators, such
as the Nadaraya-Watson estimator, have a lead term in their bias that depends
on the derivative f ′(t), and while f ′(t) = 0 for uniformly distributed data, it
is not zero in general. Kernel weighted least squares methods (with symmetric
K(·)) do not have a dependency on f ′(t) in their bias. There is a curvature bias
from μ′′(t) but that is not related to the sampling distribution of the xi. The
lead terms in bias and variance for local linear regressions do not distinguish
between distributions with the same value of f(t) but different f ′(t). Thus the
effects of non-uniformity of X are asymptotically negligible.



268 D. M. Kluger and A. B. Owen

7. Discussion

If an investigator is able to implement a 3-level tie-breaker design with any
experimental radius Δ ∈ (0, Δmax), our results show that the TBD has consid-
erable statistical advantages over the RDD.

The most obvious advantage is that the TBD allows estimation of multiple
causal parameters of interest including the average treatment effect over subjects
with x ∈ (t−Δ, t+Δ) as well as the expected treatment effect at any particular
x ∈ (t − Δ, t + Δ). The former is estimable at a faster rate and with fewer
assumptions, whereas the latter may still be of interest for choosing a future
policy threshold. Meanwhile, the RDD only allows estimation of τthresh, the
expected treatment effect at x = t.

Even if the only goal is estimation of τthresh, our results indicate a statistical
advantage to running a TBD rather than an RDD and an advantage to picking
a larger experimental radius Δ ∈ (0, Δmax). As seen in Section 4, to achieve
the same asymptotic MSE in mean squared optimal estimation of τthresh, a
TBD would require roughly 64 percent fewer samples than would be needed
for an RDD. Moreover, the asymptotic advantage for a TBD is largely driven
by its lower variance (Figure 1). Hence, if the convenient, but controversial,
method of undersmoothing to construct asymptotically valid confidence inter-
vals for τthresh is used instead of more nearly optimal approaches, the TBD
would exhibit even greater advantages over the RDD. We point readers to the
introduction of Calonico, Cattaneo and Farrell (2018) for an overview of the
history of undersmoothing, and Calonico, Cattaneo and Farrell (2019) for a
modern approach to constructing confidence intervals that has better coverage
properties than undersmoothing has.

In terms of the statistical advantages of picking a larger Δ, Owen and Varian
(2020) found an efficiency advantage for the tie-breaker in a global regression,
wherein the estimation variance decreased monotonically in Δ. We provide a
comparable finding for the now more standard local linear regression approach:
for any fixed bandwidth h, we see a theoretical efficiency that increases with
the amount Δ of experimentation. We have not investigated the effect of Δ on
the subsequent choice of h when ĥopt,TBD > Δ, although one candidate choice
is an h > Δ that removes the leading order bias term, which we derived in
Appendix D.

There is room for an improved estimator of γ in the TBD context which uses
data from both treatments on both sides of the threshold t. We leave this for
further work. A critical ingredient is the estimation of μ

(2)
± (t). Compared to the

method in Imbens and Kalyanaraman (2012), one could use a bandwidth tuned
for an internal point t instead of one tuned for an endpoint. Also the curvature
estimates in Imbens and Kalyanaraman (2012) use local quadratic regressions
while Fan and Gijbels (1996, p 63) suggest using local cubic regressions for
curvature estimation at an interior point.
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Appendix A: Proof of Lemma 2

Without loss of generality suppose t = 0 (if this is not the case we can define
a new assignment variable to be a translation of the original assignment variable
by t). It is convenient to define

Z+ ≡{i ∈ {1, 2, . . . , N} : Zi = 1} and Z− ≡{i ∈ {1, 2, . . . , N} : Zi = −1}.

Also define N± ≡ |Z±|. Letting Kh(u) ≡ K(u/h)/h, define

Fj,± ≡ 1
N±

∑
i∈Z±

Xj
i Kh(Xi) and Gj,± ≡ 1

N±

∑
i∈Z±

Xj
i K2

h(Xi)σ2
±(Xi),

for nonnegative integers j.
Next, let f± be the conditional density of Xi given that Zi = ±1. That is

f+(x) =

⎧⎪⎨
⎪⎩

f(x)
Pr(Zi=1) , x � Δ

f(x)/2
Pr(Zi=1) , |x| < Δ
0, x � −Δ

and f−(x) =

⎧⎪⎨
⎪⎩

0, x � Δ
f(x)/2

Pr(Zi=−1) , |x| < Δ
f(x)

Pr(Zi=−1) , x � −Δ.

(34)

We now prove some helpful small bandwidth approximations for Fj,± and Gj,±.

Lemma A.1. In the setting of Lemma 2, for nonnegative integers j,

Fj,± = hjf±(0)νj + op(hj)

with νj =
∫ ∞

−∞ ujK(u) du.

Proof. We will prove this for Fj,+ and the proof for Fj,− will be identical. First
note that Fj,+ is the average of N+ IID random variables so

Fj,+ = E[XjKh(X)|Z = 1] + Op

(√
Var[XjKh(X)|Z = 1]/N+

)
.

Now note that

E[XjKh(X)|Z = 1]

=
∫ ∞

−∞

1
h

K(x/h)xjf+(x) dx

= hj

∫ ∞

−∞
K(u)ujf+(uh) du

= hj

∫ ∞

−∞
K(u)ujf+(0) du + hj+1

∫ ∞

−∞
K(u)uj+1 f+(hu) − f+(0)

hu
du

= hjf+(0)νj + hj+1
∫ ∞

−∞
K(u)uj+1 f+(hu) − f+(0)

hu
du

= hjf+(0)νj + O(hj+1),
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where the last equality holds because K(·) is bounded with bounded support,
f+ is continuously differentiable at 0, and asymptotically h → 0.

Meanwhile, the term Var[XjKh(X)|Z = 1] is upper bounded by

E[(Kh(X))2X2j |Z = 1] = 1
h2

∫ ∞

−∞

(
K(x/h)

)2
x2jf+(x) dx

= h2j−1
∫ ∞

−∞
K2(u)u2jf+(hu) du

= O(h2j−1),

where the last equality holds because K(·) is bounded with bounded support,
f+ is continuous and strictly positive at 0, and asymptotically h → 0. Thus

Var[XjKh(X)|Z = 1]
N+

� E[(Kh(Xi))2X2j
i |Z = 1]

N+

= O(h2j−1)
N+

= O
(h2j

hN

)
· N

N+
= op(h2j),

where last equality holds because as N → ∞, hN → ∞, so h2j/hN = o(h2j),
and because N/N+ = Op(1).

Combining previous results

Fj,+ = hjf+(0)νj + O(hj+1) + Op(op(hj)) = hjf+(0)νj + op(hj).

Lemma A.2. In the setting of Lemma 2, for nonnegative integers j,

Gj,± = hj−1σ2
±(0)f±(0)πj(1 + op(1))

with πj =
∫ ∞

−∞ ujK2(u) du.

Proof. We will prove this for Gj,+ and the proof for Gj,− will be identical. First
note that Gj,+ is the average of N+ IID random variables so

Gj,+ = E[XjK2
h(X)σ2

+(X)|Z = 1] + Op

(√
Var[XjK2

h(X)σ2
+(X)|Z = 1]/N+

)
.

Now note that E[XjK2
h(X)σ2

+(X)|Z = 1] equals

1
h2

∫ ∞

−∞
K2(x/h)xjσ2

+(x)f+(x) dx

= hj−1
∫ ∞

−∞
K2(u)ujσ2

+(hu)f+(hu) du

= hj−1πjσ2
+(0)f+(0) + hj−1

∫ ∞

−∞
K2(u)uj

[
σ2

+(hu)f+(hu) − σ2
+(0)f+(0)

]
du

= hj−1πjσ2
+(0)f+(0) + o(hj−1), (35)

where the last equality holds because K(·) is bounded with bounded support,
σ2

+(·)f+(·) is continuous at 0, and asymptotically h → 0.
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Meanwhile, the term Var[XjK2
h(X)σ2

+(X)|Z = 1] is upper bounded by

E[(Kh(X))4X2jσ4
+(X)|Z = 1] = 1

h4

∫ ∞

−∞
K4(x/h)x2jσ4

+(x)f+(x) dx

= h2j−3
∫ ∞

−∞
K4(u)u2jσ4

+(hu)f+(hu) du

= O(h2j−3),

where the last equality holds because K(·) is bounded with bounded support,
σ2

+(·)f+(·) is continuous and strictly positive at 0, and asymptotically h → 0.
Thus
Var[XjK2

h(X)σ2
+(X)|Z = 1]

N+
� E[XjK2

h(X)σ2
+(X)|Z = 1]

N+

= O(h2j−3)
N+

= O(h2j−2

hN
) · N

N+
= op(h2j−2),

where the last equality holds because as N → ∞, hN → ∞, so h2j/hN = o(h2j),
and because N/N+ = Op(1). Combining previous results,

Gj,+ = hj−1πjσ2
+(0)f+(0) + o(hj−1) + Op(op(hj−1))

= hj−1πjσ2
+(0)f+(0) + op(hj−1).

We are now ready to compute an asymptotic approximation for the bias
and variance of the causal estimator τ̂thresh = τ̂(0). Recall that as discussed in
Section 3, τ̂(0) can be equivalently estimated by solving two separate local linear
regressions, one for the treatment group and one for the control group, rather
than solving (4) and plugging the solution into (5). In this proof, we use the
two separate local linear regression formulation, so that the proof more closely
resembles that seen in the appendix of Imbens and Kalyanaraman (2012).

In particular, define X+ ∈ RN+×2 and X− ∈ RN−×2 to be the design matrices
for the local linear regression restricted to the treated group and the control
group respectively. That is define

X+ ≡
[
1 (Xi)i∈Z+

]
and X− ≡

[
1 (Xi)i∈Z−

]
.

Also define the corresponding local linear regression weight matrices by

W+ ≡ diag
((

Kh(Xi)
)

i∈Z+

)
and W− ≡ diag

((
Kh(Xi)

)
i∈Z−

)
,

and similarly define the corresponding conditional variance matrices by

Σ+ ≡ diag
((

σ2
+(Xi)

)
i∈Z+

)
and Σ− ≡ diag

((
σ2

−(Xi)
)

i∈Z−

)
.

Finally, define Y+ ≡ (Yi)i∈Z+ , Y− ≡ (Yi)i∈Z− , and let e1 = (1, 0). The causal
estimator for τ(0) = μ+(0) − μ−(0) is given by τ̂(0) = μ̂+(0) − μ̂−(0), where
μ̂+(0) and μ̂−(0) are the local linear regression estimators given by

μ̂+(0) = eT
1 (X T

+W+X+)−1X T
+W+Y+ and μ̂−(0) = eT

1 (X T
−W−X−)−1X T

−W−Y−.
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Let X ∈ RN×4 be the full design matrix whose ith row is (1, Xi, Zi, XiZi),
and note that the matrices X+ and X− and the sets Z+ and Z− are functions
of the full design matrix.

In the next subsection, we compute the asymptotic approximation to the bias
of the estimator E[τ̂(0)|X ] − τ(0), and in the following subsection, we compute
the asymptotic approximation to its variance Var[τ̂(0)|X ]. These calculations
leverage Lemmas A.1 and A.2.

Asymptotic approximation of the bias

Define B+ ≡ E[μ̂+(0) | X ] − μ+(0) and B− ≡ E[μ̂−(0)|X ] − μ−(0), and note
that

E[τ̂(0)|X ] − τ(0) = B+ − B−.

We will compute the asymptotic formula for B+, and by an identical argument,
the asymptotic formula for B− will follow.

To do this note that

E[μ̂+(0)|X ] = eT
1 (X T

+W+X+)−1X T
+W+E[Y+|X ] = eT

1 (X T
+W+X+)−1X T

+W+M+

where M+ =
(
μ+(Xi)

)
i∈Z+

.
Since μ+(·) has at least three continuous derivatives in an open neighborhood

of 0, for each i ∈ Zi,

μ+(Xi) = μ+(0) + μ
(1)
+ (0)Xi + 1

2μ
(2)
+ (0)X2

i + Ti,

where |Ti| � |X3
i | · supx∈[−|Xi|,|Xi|] |μ(3)

+ (x)|.
So letting T+ =

(
Ti

)
i∈Z+

and S+ =
(
μ

(2)
+ (0)X2

i /2
)

i∈Z+
it follows that

M+ = X+

[
μ+(0)
μ

(1)
+ (0)

]
+ S+ + T+.

Combining previous results

B+ = eT
1 (X T

+W+X+)−1X T
+W+M+ − μ+(0)

= eT
1 (X T

+W+X+)−1X T
+W+(S+ + T+).

Since ν0ν2 − ν2
1 > 0 (by the Cauchy-Schwartz inequality), Lemma A.1 and a

first order Taylor expansion, as h → 0 and N → ∞, yield

1
F0,+F2,+ − F 2

1,+
= 1

h2f2
+(0)[ν0ν2 − ν2

1 ]

( 1
1 + op(1)

)
= 1 + op(1)

h2f2
+(0)[ν0ν2 − ν2

1 ] .
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Hence, by Lemma A.1 again,

( 1
N+

X T
+W+X+

)−1
=
[
F0,+ F1,+
F1,+ F2,+

]−1

= 1
F0,+F2,+ − F 2

1,+

[
F2,+ −F1,+

−F1,+ F0,+

]

=
(
1 + op(1)

)⎡⎢⎣
h2[f+(0)ν2+op(1)]
h2f2

+(0)[ν0ν2−ν2
1 ]

−h[f+(0)ν1+op(1)]
h2f2

+(0)[ν0ν2−ν2
1 ]

−h[f+(0)ν1+op(1)]
h2f2

+(0)[ν0ν2−ν2
1 ]

f+(0)ν0+op(1)
h2f2

+(0)[ν0ν2−ν2
1 ]

⎤
⎥⎦

=
[

ν2
f+(0)(ν0ν2−ν2

1 ) + op(1) −ν1
hf+(0)(ν0ν2−ν2

1 ) + op(1/h)
−ν1

hf+(0)(ν0ν2−ν2
1 ) + op(1/h) ν0

h2f+(0)(ν0ν2−ν2
1 ) + op(1/h2)

]

=
[

Op(1) Op(1/h)
Op(1/h) Op(1/h2)

]
.

Now note, that since μ
(3)
+ (·) is continuous in an open neighborhood of 0,

there exists an a > 0 for which supx∈[−a,a] |μ(3)
+ (x)| ≡ a+ < ∞. Since K(·) has

bounded support, there exists an ε > 0 such that for all h ∈ (0, ε), Kh(x) = 0
whenever |x| > a. Therefore for all h < ε and all i,

|Kh(Xi)Ti| �
∣∣∣Kh(Xi) · |X3

i | · sup
x∈[−|Xi|,|Xi|]

|μ(3)
+ (x)|

∣∣∣ � a+Kh(Xi)|X3
i |.

Thus for all h sufficiently small,

1
N+

X T
+W+T+ � a+

[ 1
N+

∑
i∈Z+

Kh(Xi)|X3
i |

F4,+

]
=
[
Op(h3)
Op(h4)

]

where the bottom equality holds by Lemma A.1, and the top equality holds
by the exact same argument as the proof of Lemma A.1 except with absolute
values.

Combining the two previous results and multiplying through and dividing by
N+,

eT
1 (X T

+W+X+)−1X T
+W+T+ = Op(1)Op(h3)+Op(1/h)Op(h4) = Op(h3) = op(h2).

Similarly, by Lemma A.1,

1
N+

X T
+W+S+ =

μ
(2)
+ (0)

2

[
F2,+
F3,+

]
=

μ
(2)
+ (0)

2 f+(0)
[
ν2h2 + op(h2)
ν3h3 + op(h3)

]
,

and therefore,

B+

= eT
1 (X T

+W+X+)−1X T
+W+(S+ + T+)
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= eT
1 ( 1

N+
X T

+W+X+)−1( 1
N+

X T
+W+S+) + op(h2)

= 1
2μ

(2)
+ (0)f+(0)

[
[ ν2

f+(0)(ν0ν2 − ν2
1) + op(1)][ν2h2 + op(h2)]

]

+ 1
2μ

(2)
+ (0)f+(0)

[
[− ν1

hf+(0)(ν0ν2 − ν2
1) + op(1/h)][ν3h3 + op(h3)]

]
+ op(h2)

= 1
2μ

(2)
+ (0)

(ν2
2 − ν3ν1

ν0ν2 − ν2
1

)
h2 + op(h2).

A similar argument shows that

B− = 1
2μ

(2)
− (0)

(ν2
2 − ν3ν1

ν0ν2 − ν2
1

)
h2 + op(h2).

Hence, recalling that the bias is given by E[τ̂(0)|X ] − τ(0) = B+ − B− it follows
that the asymptotic formula for the bias is

biasτ̂(0) = E[τ̂(0)|X ]−τ(0) = 1
2

(
μ

(2)
+ (0)−μ

(2)
− (0)

)(ν2
2 − ν3ν1

ν0ν2 − ν2
1

)
h2+op(h2). (36)

Squaring the above formula, we recover the leading order squared-bias. As noted
in Section 4, the leading order squared-bias is the first term in (12).

Asymptotic approximation of the variance

Defining V± = Var(μ̂±(0) |X ), the variance for our causal estimator is

Var[τ̂(0) |X ] = V+ + V− + 2Cov[μ̂+(0), μ̂−(0) |X ] = V+ + V−,

where the last equality holds because (Xi, Yi+, Yi−) are IID by assumption mak-
ing Y+ and Y− independent conditionally on the treatment assignments which
then implies that μ̂±(0) are independent conditionally on X .

We now compute an asymptotic formula for V+ and by an identical argument,
the asymptotic formula for V− will follow.

First note that

V+ = Var[eT
1 (X T

+W+X+)−1X T
+W+Y+|X ]

= eT
1 (X T

+W+X+)−1X T
+W+Var[Y+|X ]W T

+X+(X T
+W+X+)−1e1

= eT
1 (X T

+W+X+)−1X T
+W+Σ+W+X+(X T

+W+X+)−1e1

Now the middle factor rescaled by 1/N+ is

1
N+

X T
+W+Σ+W+X+ =

[
G0,+ G1,+
G1,+ G2,+

]

and recall from the previous subsection that( 1
N+

X T
+W+X+

)−1
= 1

F0,+F2,+ − F 2
1,+

[
F2,+ −F1,+

−F1,+ F0,+

]
.
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Thus,

N+V+

= 1
(F0,+F2,+ − F 2

1,+)2 eT
1

[
F2,+ −F1,+

−F1,+ F0,+

] [
G0,+ G1,+
G1,+ G2,+

] [
F2,+ −F1,+

−F1,+ F0,+

]
e1

=
F 2

2,+G0,+ − 2F1,+F2,+G1,+ + F 2
1,+G2,+

(F0,+F2,+ − F 2
1,+)2

=
σ2

+(0)
f+(0) ·

(
ν2

2π0h3 − 2ν1ν2π1h3 + ν2
1π2h3

)
[1 + op(1)]3

(ν0ν2h2 − ν2
1h2)2[1 + op(1)]4

=
σ2

+(0)
hf+(0)

(ν2
2π0 − 2ν1ν2π1 + ν2

1π2

(ν0ν2 − ν2
1)2 + op(1)

)

=
2σ2

+(0) Pr(Zi = 1)
hf(0)

(ν2
2π0 − 2ν1ν2π1 + ν2

1π2

(ν0ν2 − ν2
1)2 + op(1)

)
.

Thus dividing through by N+ and rearranging terms,

V+ =
2σ2

+(0)
Nhf(0)

(ν2
2π0 − 2ν1ν2π1 + ν2

1π2

(ν0ν2 − ν2
1)2 + op(1)

)
· N Pr(Zi = 1)

N+
.

By the weak law of large numbers N Pr(Zi = 1)/N+ = (1 + op(1)) and
therefore,

V+ =
2σ2

+(0)
Nhf(0)

(ν2
2π0 − 2ν1ν2π1 + ν2

1π2

(ν0ν2 − ν2
1)2

)
+ op

( 1
Nh

)
.

A similar argument shows that

V− =
2σ2

−(0)
Nhf(0)

(ν2
2π0 − 2ν1ν2π1 + ν2

1π2

(ν0ν2 − ν2
1)2

)
+ op

( 1
Nh

)
,

and hence because Var[τ̂(0)|X ] = V+ + V−,

Var[τ̂(0)|X ] =
σ2

+(0) + σ2
−(0)

Nhf(0)

(2ν2
2π0 − 4ν1ν2π1 + 2ν2

1π2

(ν0ν2 − ν2
1)2

)
+ op

( 1
Nh

)
. (37)

As remarked in Section 4, the leading order variance matches the second term
in formula (12).

Asymptotic expression for mean squared error

To complete the proof of the asymptotic expression for the tie-breaker design
MSE in Lemma 2, note that

MSETBD(h, N)
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= E
[(

τ̂(0) − τ(0)
)2∣∣X ]

= bias2
τ̂(0) + Var[τ̂(0)|X ]

= C1
(
μ

(2)
+ (0) − μ

(2)
− (0)

)2
h4 + op(h4) + C2

Nh

(σ2
+(0) + σ2

−(0)
f(0)

)
+ op

( 1
Nh

)
= AMSETBD(h, N) + op

(
h4 + 1

Nh

)
where the second last equality holds from combining equations (37), (36), and
(11), while the last equality holds from definition (12).

Asymptotically optimal bandwidth expression

To complete the proof of Lemma 2, recall that we define

hopt,TBD(N) = arg min
h

AMSETBD(h, N)

and by (12),

AMSETBD(h, N) ≡ C1
(
μ

(2)
+ (0) − μ

(2)
− (0)

)2
h4 + C2

Nh

(σ2
+(0) + σ2

−(0)
f(0)

)
.

Because by assumption μ
(2)
+ (0) �= μ

(2)
− (0) and f(0) > 0, a simple calculus

exercise shows that

hopt,TBD(N) =
( C2

4C1

)1/5( σ2
+(0) + σ2

−(0)
f(0)

(
μ

(2)
+ (0) − μ

(2)
− (0)

)2

)1/5
N−1/5.

Appendix B: Proof of Theorem 1

First note that by plugging (17) into (7), AMSERDD
(
ĥopt,RDD(N), N

)
equals

C̃1
(
μ

(2)
+ (t) − μ

(2)
− (t)

)2
ĥ4

opt,RDD(N) + C̃2

Nĥopt,RDD(N)

(σ2
+(t) + σ2

−(t)
f(t)

)

=
(
4C̃1C̃4

2
)1/5

N−4/5
[1

4
(
μ

(2)
+ (t) − μ

(2)
− (t)

)2
γ̂4

RDD +
σ2

+(t) + σ2
−(t)

γ̂RDDf(t)

]

=
(
4C̃1C̃4

2
)1/5

N−4/5
[1

4
(
μ

(2)
+ (t) − μ

(2)
− (t)

)2(
γ + op(1)

)4 +
σ2

+(t) + σ2
−(t)(

γ + op(1)
)
f(t)

]

=
(
4C̃1C̃4

2
)1/5

N−4/5
[1

4
(
μ

(2)
+ (t) − μ

(2)
− (t)

)2
γ4 +

σ2
+(t) + σ2

−(t)
γf(t) + op(1)

]
=
(
4C̃1C̃4

2
)1/5

N−4/5[α + op(1)
]
,

where the third equality holds since γ̂RDD
p−→ γ and the last inequality uses

definitions (15) and (16).
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Plugging (18) into (12), an identical argument that uses γ̂TBD
p−→ γ and

definitions (15) and (16) yields

AMSETBD
(
ĥopt,TBD(θN), θN

)
=
(
4C1C4

2
)1/5(θN)−4/5[α + op(1)

]
.

In applying Lemma 1, it will be helpful to note that letting c=
(
C̃2/(4C̃1)

)1/5,

ĥ4
opt,RDD(N) + 1

Nĥopt,RDD(N)
= c4γ̂4

RDDN−4/5 + 1
cγ̂RDD

N−4/5

=
(

c4(γ + op(1)
)4 + 1

c
(
γ + op(1)

))N−4/5

=
(
c4γ + 1

cγ
+ op(1)

)
N−4/5

= Op(N−4/5).

Therefore under the conditions of Theorem 1, by applying Lemmas 1 and 2 and
combining the previous results,

MSERDD
(
ĥopt,RDD(N), N

)
MSETBD

(
ĥopt,TBD(θN), θN

)
=

AMSERDD
(
ĥopt,RDD(N), N

)
+ op(Op(N−4/5))

AMSETBD
(
ĥopt,TBD(θN), θN

)
+ op(Op(N−4/5))

=
(
4C̃1C̃4

2
)1/5

N−4/5[α + op(1)
]

+ N−4/5op(1)(
4C1C4

2
)1/5(θN)−4/5

[
α + op(1)

]
+ N−4/5op(1)

=
(
4C̃1C̃4

2
)1/5[

α + op(1)
]

+ op(1)(
4C1C4

2
)1/5

θ−4/5
[
α + op(1)

]
+ op(1)

= θ4/5
( C̃1C̃4

2
C1C4

2

)1/5
+ op(1).

Appendix C: Extensions to assignment probability p �= 1/2

In this appendix we consider the MSE of a generalization of the 3-level TBD
given by (1), where we allow the assignment probabilities to Z = 1 and Z =
−1 to differ from 1/2 within the interval of experimentation. In particular, we
consider a design with the following assignment probabilities

Pr(Zi = 1 |xi) =

⎧⎪⎨
⎪⎩

0, xi − t � −Δ
p, |xi − t| < Δ
1, xi − t � Δ,

(38)
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for some p ∈ (0, 1). Under this more general version of the TBD, one can show
that the AMSE formula given in (12) changes to

AMSETBD(p)(h, N) ≡ C1
(
μ

(2)
+ (t) − μ

(2)
− (t)

)2
h4 + C2

Nh

( 1
2p σ2

+(t) + 1
2(1−p) σ2

−(t)
f(t)

)
,

(39)
and that the following lemma holds.

Lemma C.1. Under the conditions of Lemma 2, with the exception that the
assignment probabilities follow (38) rather than (1), the mean squared error in
estimating τthresh is given by

MSETBD(p)(h, N) = AMSETBD(p)(h, N) + op

(
h4 + 1

Nh

)
,

and the asymptotically optimal bandwidth, defined by arg minh AMSETBD(p)(h, N)
is

hopt,TBD(p)(N) =
( C2

4C1

)1/5( 1
2p σ2

+(t) + 1
2(1−p) σ2

−(t)

f(t)
(
μ

(2)
+ (t) − μ

(2)
− (t)

)2

)1/5
N−1/5. (40)

Proof. The proof is identical to the proof of Lemma 2 in Appendix A, except
that the formulas for the functions f±(·) presented at (34) are instead given by

f+(x) =

⎧⎪⎨
⎪⎩

f(x)
Pr(Zi=1) , x � Δ

pf(x)
Pr(Zi=1) , |x| < Δ
0, x � −Δ

and f−(x) =

⎧⎪⎨
⎪⎩

0, x � Δ
(1−p)f(x)
Pr(Zi=−1) , |x| < Δ

f(x)
Pr(Zi=−1) , x � −Δ.

The changes in the formulas for f±(·) do not affect the leading order bias formula
but do affect the leading order variance and optimal bandwidth formulas.

Analogously to the empirical bandwidth choice given by (18), an investigator
running a TBD of the form (38) seeking mean squared optimal estimation of
τthresh would ultimately use the bandwidth

ĥopt,TBD(p)(N) =
( C2

4C1

)1/5
γ̂TBD(p)N

−1/5,

where γ̂TBD(p) is some consistent estimator of the quantity

( 1
2p σ2

+(t) + 1
2(1−p) σ2

−(t)

f(t)
(
μ

(2)
+ (t) − μ

(2)
− (t)

)2

)1/5
.

To derive an analogue of Theorem 1 for a TBD of the form (38), it is conve-
nient to define the relative variance measure

r(t) ≡ σ2
+(t)

σ2
+(t) + σ2

−(t) . (41)

The following theorem compares the RDD with N points to a TBD of the
form (38) with θN points for some θ > 0.
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Fig C.1: Relative AMSE given by Theorem C.1 as function of p and r(t). Here we
consider the same sample size for each design (θ = 1), and that the most favorable
kernel for the RDD (the triangular kernel) is to be used. The color scale for the
contour plot is displayed on the right, with the added blue lines denoting a level of 1.
Outside the blue lines, the RDD performs better than the TBD asymptotically. The
vertical black lines, between which the relative AMSE is always greater than 1, are
placed at p = θ∗/2 and p = 1 − θ∗/2, for θ∗ = 60.46618−1/4. The pair of green lines
give the boundaries of the two triangular regions in which the TBD with assignment
probabilities (38) has a smaller AMSE than the default TBD with p = 1/2 has.

Theorem C.1. Under the assumptions of Theorem 1, as N → ∞

MSERDD
(
ĥopt,RDD(N), N

)
MSETBD(p)

(
ĥopt,TBD(p)(θN), θN

) p−→ θ4/5
( C̃1C̃4

2
C1C4

2

)1/5(r(t)
2p

+ 1 − r(t)
2(1 − p)

)−4/5

(42)
holds for any tie-breaker design of the form (38) with Δ > 0.

Proof. The proof is the same as that of Theorem 1, except the formulas for
AMSETBD(p)(h, N), hopt,TBD(p)(N), and ĥopt,TBD(p)(N) are different in the set-
ting of a tie-breaker design of the form (38).

We visualize the implications of Theorem C.1 in Figure C.1. While the figure
focuses on the case of the triangular kernel with θ = 1, the relative AMSE as a
function of p and r(t) will be a scalar multiple of that shown in Figure C.1 for
different kernels and values of θ. We also explicitly list a few notable implications
of Theorem C.1 below.

1. The AMSE for the TBD is minimized by p = σ+(t)/
(
σ−(t) + σ+(t)

)
.

2. If either r(t) � p � 1/2 or 1/2 � p � r(t), then
(r(t)

2p
+ 1 − r(t)

2(1 − p)

)−4/5
� 1.

As a result, whenever p is between r(t) and 1/2 inclusive, the advantage of
a TBD over an RDD (in terms of relative asymptotic MSE in estimation of
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τthresh) is at least as large as that described in Table 1, which corresponds
to the p = 1/2 case.

3. Suppose that a TBD and RDD are to be conducted with the same sample
size N (i.e. θ = 1), and that under both designs the asymptotically MSE
optimal bandwidth is to be used. Then, regardless of the unknown value of
r(t) ∈ [0, 1], for any choice of p ∈ (θ∗/2, 1 − θ∗/2) with θ∗ defined at (20),
the TBD given by (38) will have lower AMSE than the RDD. Conversely,
if p /∈ [θ∗/2, 1−θ∗/2], there will exist a range of values of r(t) contained in
[0, 1] for which the TBD will have higher AMSE than the RDD. Note that
amongst the common kernel choices considered in Table 1, θ∗ is largest
for the triangular kernel with a value of precisely 60.46618−1/4, suggesting
that for any of these kernel choices the TBD will have lower AMSE than
an RDD in estimating τthresh as long as p ∈ [0.18, 0.82], but outside that
range, the TBD may have larger AMSE depending on the kernel choice
and the unknown value of r(t).

The first fact may be difficult to leverage in practice because at the time an
experiment is being designed, the investigator is unlikely to have outcome data
from both treatment and control units that they can use to estimate the ratio
σ+(t)/σ−(t). If the investigator has some prior knowledge about whether or
not σ+(t)/σ−(t) is smaller or greater than 1, they could potentially leverage the
second fact to design a TBD that has lower AMSE than a TBD with the default
of p = 1/2 has. The third statement is true for any value of r(t) or σ+(t)/σ−(t),
suggesting that a design with p /∈ [0.18, 0.82] should only be considered with
caution.

Appendix D: Bandwidth that removes leading order bias

In the asymptotic analysis from Section 4, the bias for the local linear esti-
mator of τ̂thresh was Op(h2). However, that analysis relied on a simplification
that arose by assuming that h → 0 as N → ∞. In this appendix, we derive an
asymptotic expression for the bias of τ̂thresh that does not rely on the assumption
that h → 0 as N → ∞. In this expression for the bias, the leading order term is
quadratic in h. We also show that for some value of h/Δ, which depends only
on the kernel K(·), the quadratic bias term vanishes. In Table D.1, we present
a numerical approximation of the value of h/Δ that removes the leading order
bias for common kernel choices.

We consider the following regularity conditions, which were not needed in the
main text.

(I) The mean functions μ±(·) are three times differentiable. Further, the third
derivatives of the mean functions, μ

(3)
± (·), are bounded.

(II) The density f of the assignment variable satisfies |f(x) − f(t)| � L|x − t|
for some L < ∞.

In the proof of Lemma 2, where we computed the leading order bias, we did
not need to assume (I) and (II) because we supposed that h → 0 as N → ∞. In
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the following theorem about the leading order bias, because we do not assume
h → 0, we assume (I) and (II) in addition to (i)–(vi).

Theorem D.1. Suppose conditions (i)–(vi) from the main text and conditions
(I) and (II) hold, and that N → ∞. Let Δ > 0 be fixed. Under the tie-breaker
design defined by (1) and estimation of τthresh according to (4) and (5) for some
bandwidth h > 0, the bias of τ̂thresh is given by

μ
(2)
+ (t) − μ

(2)
− (t)

2

(ν2
2 − 4

∫∞
Δ/h

uK(u) du
∫∞

Δ/h
u3K(u) du

ν0ν2 − 4[
∫∞

Δ/h
uK(u) du]2

)
h2+O(h3)+Op

( 1√
N

)
,

(43)
where νj is defined at (10). As a result, the leading order bias term is equal to
0 whenever the bandwidth h is chosen so that

∫ ∞

Δ/h

uK(u) du

∫ ∞

Δ/h

u3K(u) du =
(∫ ∞

0
u2K(u) du

)2
. (44)

Moreover, there must exist an h > Δ > 0 that satisfies (44).

Proof. Fix Δ > 0 and suppose without loss of generality that t = 0. Define
Kh(·), Z±, N±, Fj,± for j = 0, 1, . . . , 4, f±(·), X±, W±, Y±, μ̂±(0), and B±,
according to the same definitions presented in Appendix A.

We will first derive a formula for Fj,± that is similar to that given in Lemma
A.1, except here we will not rely on a simplification that occurs in the asymptotic
regime where h → 0, eventually dropping below Δ.

For any nonnegative integer j, because the samples are IID, we get

Fj,+ = 1
N+

∑
i∈Z+

Xj
i Kh(Xi)

= E[XjKh(X)|Z = 1] + Op

(√
Var[XjKh(X)|Z = 1]/N+

)
= 1

h

∫ ∞

−∞
xjK(x/h)f+(h) dx + Op

(
1/
√

N+
)

= hj

∫ ∞

−∞
ujK(u)f+(hu) du + Op(1/

√
N)

=
hj
( ∫ Δ/h

−Δ/h
ujK(u)f(hu) du + 2

∫∞
Δ/h

ujK(u)f(hu) du
)

2 Pr(Zi = 1) + Op(1/
√

N).

To simplify this expression further, observe that, for any a, b ∈ [−∞, ∞] and
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nonnegative integer j,∣∣∣∣
∫ b

a

ujK(u)
[
f(hu) − f(0)

]
du

∣∣∣∣ =
∣∣∣∣h
∫ b

a

uj+1K(u)
[f(hu) − f(0)

hu

]
du

∣∣∣∣
� h

∫ b

a

∣∣∣f(hu) − f(0)
hu

∣∣∣ · |uj+1|K(u) du

� Lh

∫ b

a

|uj+1|K(u) du

= O(h),

where above the last two steps hold by Assumptions (II) and (iv) respectively,
and as a consequence, for any a < b,∫ b

a

ujK(u)f(hu) du =
∫ b

a

ujK(u)f(0) du +
∫ b

a

ujK(u)
[
f(hu) − f(0)

]
du

= f(0)
∫ b

a

ujK(u) du + O(h).

Combining this with the above formula for Fj,+,

Fj,+ =
hjf(0)

( ∫ Δ/h

−Δ/h
ujK(u) du + 2

∫∞
Δ/h

ujK(u) du + O(h)
)

2 Pr(Zi = 1) + Op(1/
√

N)

= hjf+(0)νj,+(Δ/h) + O(hj+1) + Op(1/
√

N),

where
νj,+(δ) ≡

∫ δ

−δ

ujK(u) du + 2
∫ ∞

δ

ujK(u) du.

If we define νj,−(δ) ≡
∫ δ

−δ
ujK(u) du + 2

∫ −δ

−∞ ujK(u) du, a similar argument
yields an analogous formula for Fj,−, and hence

Fj,± = hjf±(0)νj,±(Δ/h) + O(hj+1) + Op(1/
√

N) for all j ∈ Z�0. (45)

By noting the similarities between the formula for Fj,+ in Lemma A.1 and
that from (45), the formula for B+ can be derived by the same argument pre-
sented in Appendix A, by simply replacing νj terms with νj,+(Δ/h), op(hj)
terms with O(hj+1) + Op(1/

√
N) terms, and intermediary Op(hj) terms with

O(hj) + Op(1/
√

N), for any integer j. Because we now no longer assume h → 0
as N → ∞, there are three steps where we have to use a slightly different ar-
gument from that presented in Appendix A. First, since we no longer assume
that h → 0, the 2nd order Taylor expansion of the mean functions with the
remainder terms Ti require that μ

(2)
± (·) is continuous everywhere, rather than

merely in a neighborhood of t which is given by Assumption (iii). Assump-
tion (I) that μ

(3)
± (·) is bounded, guarantees that μ

(2)
± (·) is continuous every-

where because differentiability implies continuity. Second, we can use Assump-
tion (I) that μ

(3)
± (·) is bounded to show that there exists an ā+ < ∞ for which
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Kh(Xi) supx∈[−Xi,Xi] |μ(3)
+ (x)| � ā+Kh(Xi) for any h > 0. In Appendix A, we

did not need Assumption (I) since we supposed that h → 0, so it was enough to
show that inequality holds for any sufficiently small h. Third, the argument in-
volves a first order Taylor expansion of the quantity (F0,+F2,+ −F 2

1,+)−1. In the
current setting where we do not suppose h → 0 as N → ∞, we must now ascer-
tain that with probability approaching 1 as N → ∞, F0,+F2,+ −F 2

1,+ is positive
and bounded away from zero. Recalling that up to an Op(1/

√
N) term, Fj,+,

equals hj
∫ ∞

−∞ ujK(u)f+(hu) du, by the Cauchy-Schwartz inequality it follows
that

F 2
1,+ = h2

(∫ ∞

−∞
uK(u)f+(hu) du

)2

+ Op(1/
√

N)

= h2
(∫ ∞

−∞

√
K(u)f+(hu) ·

√
u2K(u)f+(hu) du

)2

+ Op(1/
√

N)

< h2
∫ ∞

−∞
K(u)f+(hu) du

∫ ∞

−∞
u2K(u)f+(hu) du + Op(1/

√
N)

= F0,+F2,+ + Op(1/
√

N).

Hence with probability converging to 1 as N → ∞, F0,+F2,+ − F 2
1,+ is positive

and bounded away from zero. Consequently, the following first order Taylor
expansion holds for all h > 0

h2f2
+(0)

F0,+F2,+ − F 2
1,+

= 1
[ν0,+(Δ/h)ν2,+(Δ/h) − ν1,+(Δ/h)2] + O(h) + Op(1/

√
N)

= 1
ν0,+(Δ/h)ν2,+(Δ/h) − ν1,+(Δ/h)2 + O(h) + Op(1/

√
N),

where the denominator in the first term is positive and bounded away from 0
by a similar Cauchy-Schwartz argument that leverages symmetry of K.

By the same derivation of the bias formula presented in Appendix A, with
the exceptions in the argument noted above, the bias of μ̂+(0) is given by

B+ = 1
2μ

(2)
+ (0)

( [ν2,+(Δ/h)]2 − ν1,+(Δ/h)ν3,+(Δ/h)
ν0,+(Δ/h)ν2,+(Δ/h) − [ν1,+(Δ/h)]2

)
h2 + O(h3) + Op(1/

√
N).

A similar argument shows that,

B− = 1
2μ

(2)
− (0)

( [ν2,−(Δ/h)]2 − ν1,−(Δ/h)ν3,−(Δ/h)
ν0,−(Δ/h)ν2,−(Δ/h) − [ν1,−(Δ/h)]2

)
h2 + O(h3) + Op(1/

√
N).

Now note that the bias of τ̂thresh is given by B+ − B−. To simplify the
expression for B+ − B−, observe that by symmetry of K(·), for any h > 0

νj,−(Δ/h) =
{

νj,+(Δ/h) = νj for even j,

−νj,+(Δ/h) = −2
∫∞

Δ/h
ujK(u) du for odd j.
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The νj above is defined at (10). Hence, subtracting B− from B+ the bias for
τ̂thresh is given by

h2

2
(
μ

(2)
+ (0)−μ

(2)
− (0)

)ν2
2 − 4

∫∞
Δ/h

uK(u) du
∫ ∞

Δ/h
u3K(u) du

ν0ν2 − 4[
∫∞

Δ/h
uK(u) du]2

+O(h3)+Op(1/
√

N).

Since we supposed t = 0 without loss of generality, this proves (43).
Now, since ν0ν2 − 4[

∫∞
Δ/h

uK(u) du]2 is bounded away from zero, the lead-
ing order term in h in formula (43) for the bias of τ̂thresh is zero whenever h
satisfies (44).

To prove the final claim, that there exists an h > Δ solving (44), define

�(h) ≡ 4
∫ ∞

Δ/h

uK(u) du

∫ ∞

Δ/h

u3K(u) du for h > 0.

Clearly by boundedness and continuity of K(·), �(·) is continuous on [0, ∞).
Recalling Assumption (iv) that K(·) is supported on [−1, 1], �(Δ) = 0. Since
ν2 > 0, �(Δ) < ν2

2 . Also note that by symmetry of the kernel and the Cauchy-
Schwartz inequality,

ν2
2 =

(
2
∫ ∞

0
u2K(u) du

)2

= 4
(∫ ∞

0

√
uK(u) ·

√
u3K(u) du

)2

< 4
∫ ∞

0
uK(u) du

∫ ∞

0
u3K(u) du

= lim
h→∞

�(h).

Since �(Δ) < ν2
2 < limh→∞ �(h), and since �(·) is continuous on [Δ, ∞), there

must exist some h̃ ∈ (Δ, ∞) with �(h̃) = ν2
2 . Clearly this h̃ satisfies equation (44)

and h̃ > Δ.

Appendix E: Proof of Proposition 2

Note that for the triangular kernel, λ0 = (2/3)κ0 and λ2 = (2/5)κ2. By
substituting these expressions into formula (30) for the efficiency ratio and can-
celling out a common factor of 2κ2/15 from the numerator and denominator, it
follows that

EffTS = 5κ0κ2 − 15φ(0)ψ(0) + 3φ2(0)
5κ0κ2 − 15φ(Δ)ψ(Δ) + 3φ2(Δ) × (κ0κ2 − φ2(Δ))2

(κ0κ2 − φ2(0))2 . (46)

Next 5κ0κ2 − 15φ(Δ)ψ(Δ) + 3φ2(Δ) equals

5h4

24 − 15h4

72(1 − 3δ2 + 2δ3)(1 − 6δ2 + 8δ3 − 3δ4) + h4

12(1 − 3δ2 + 2δ3)2,
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Table D.1

Table of bandwidths that remove the leading order bias term, rounded to 4 decimal points in
units of Δ, for various kernel choices.

Kernel Function K(u) Support Bandwidth solving (44)

Boxcar 1/2 [−1, 1] 3.1342Δ
Triangular (1 − |u|)+ [−1, 1] 4.0343Δ
Epanechnikov 3

4 (1 − u2)+ [−1, 1] 3.7866Δ
Quartic 15

16 (1 − u2)2
+ [−1, 1] 4.3432Δ

Triweight 35
32 (1 − u2)3

+ [−1, 1] 4.8367Δ
Tricube 70

81 (1 − |u|3)3
+ [−1, 1] 4.3805Δ

Cosine π
4 cos

(
π
2 u

)
[−1, 1] 3.8613Δ

and so the first factor in (46) is

2
5 − 5(1 − 3δ2 + 2δ3)(1 − 6δ2 + 8δ3 − 3δ4) + 2(1 − 3δ2 + 2δ3)2 .

Turning to the second factor

κ0κ2 − φ2(Δ) = h4

24 − h4

36(1 − 3δ2 + 2δ3)2 = h4

72
(
3 − 2(1 − 3δ2 + 2δ3)2),

and so the second factor equals (3 − 2(1 − 3δ2 + 2δ3)2)2, establishing (33).

Appendix F: Proof of Proposition 3

We want to show that this function

EffTS(δ) =
2
(
3 − 2(1 − 3δ2 + 2δ3)2)2

5 − 5(1 − 3δ2 + 2δ3)(1 − 6δ2 + 8δ3 − 3δ4) + 2(1 − 3δ2 + 2δ3)2

has a positive derivative for 0 < δ < 1. The numerator has degree 12 and the
denominator has degree 7. The customary formula for the derivative of a rational
function produces a rational function with a non-negative denominator and a
numerator of degree 18. We will work through a sequence of steps reducing the
degree of this polynomial to show that the numerator must be positive on (0, 1).
That then rigorously establishes the monotonicity of EffTS(δ) which is visually
apparent.

It is convenient to work instead with x = 1−δ. Then 1−3δ2 +2δ3 = 3x2 −2x3

and 1 − 6δ2 + 8δ3 − 3δ4 = 4x3 − 3x4. Therefore EffTS(δ) = f(1 − δ) where f is
a function given by

f(x) = 2(3 − 2(3x2 − 2x3)2)2

5 − 5(3x2 − 2x3)(4x3 − 3x4) + 2(3x2 − 2x3)2



286 D. M. Kluger and A. B. Owen

= 2(3 − 2x4(3 − 2x)2)2

5 − 5x5(3 − 2x)(4 − 3x) + 2x4(3 − 2x)2

= 2(3 − 2x4(3 − 2x)2)2

5 + [x4(3 − 2x)][6 − 24x + 15x2]

= 2(3 − 2g(x)(3 − 2x))2

5 + g(x)(6 − 24x + 15x2)

for g(x) = x4(3 − 2x) and having replaced δ by x = 1 − δ we will show that
f ′(x) < 0.

In the usual formula for the derivative of a ratio, f ′(x) has this numerator

n1(x) = 4(3 − 2g(x)(3 − 2x))(4g(x) − 2g′(x)(3 − 2x))[5 + g(x)(6 − 24x + 15x2)]
− 2(3 − 2g(x)(3 − 2x))2[g′(x)(6 − 24x + 15x2) + g(x)(−24 + 30x)].

Notice that 0 � g(x)(3 − 2x) � 1 for x ∈ [0, 1] and so 3 − 2g(x)(3 − 2x) > 0. As
a result, the sign of n1(x) is preserved by dividing it by 2(3 − 2g(x)(3 − 2x)),
yielding

n2(x) = 2(4g(x) − 2g′(x)(3 − 2x))[5 + g(x)(6 − 24x + 15x2)]
− (3 − 2g(x)(3 − 2x))[g′(x)(6 − 24x + 15x2) + g(x)(−24 + 30x)].

Now since g(x) = x3[x(3 − 2x)] and g′(x) = x3[12 − 10x] and x ∈ (0, 1) we can
divide n2(x) by x3/6 finding that it has the same sign as

n3(x) = 1
3
(
4x − 2(12 − 10x)

)
(3 − 2x)[5 + g(x)(6 − 24x + 15x2)]

− 1
6
(
3 − 2g(x)(3 − 2x)

)[
(12 − 10x)(6 − 24x + 15x2)

+ x(3 − 2x)(−24 + 30x)
]

= −8(1 − x)(3 − 2x)[5 + g(x)(6 − 24x + 15x2)]
− (3 − 2g(x)(3 − 2x))[−35x3 + 93x2 − 70x + 12]

= −8(1 − x)(3 − 2x)[5 + g(x)(6 − 24x + 15x2)]
− (3 − 2g(x)(3 − 2x))(1 − x)(35x2 − 58x + 12).

We can divide n3(x) by −(1 − x) getting a polynomial n4(x) with the opposite
sign from n3. This yields

n4(x)
= 8(3 − 2x)[5 + g(x)(6 − 24x + 15x2)]+(3−2g(x)(3−2x))(35x2 − 58x + 12)
= 8(3 − 2x)[−30x7 + 93x6 − 84x5 + 18x4 + 5]

+ (−8x6 + 24x5 − 18x4 + 3)(35x2 − 58x + 12)
= 8[60x8 − 276x7 + 447x6 − 288x5 + 54x4 − 10x + 15]

+ (−280x8 + 1304x7 − 2118x6 + 1332x5 − 216x4 + 105x2 − 174x + 36)
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= 200x8 − 904x7 + 1458x6 − 972x5 + 216x4 + 105x2 − 254x + 156.

Note that the coefficient of x3 in n4 is a zero that must not be left out when
entering the coefficients into symbolic differentiation codes.

We want to show that n4(x) > 0 for x ∈ (0, 1) which then makes n3(x) < 0
and ultimately f ′(x) < 0 so that Eff ′

TS(δ) > 0 for δ = 1 − x ∈ (0, 1).
Our next step is to show that n′′

4(x) > 0 for all x ∈ [0, 1]. Note that

n′′
4(x) = 11200x6 − 37968x5 + 43740x4 − 19440x3 + 2592x2 + 210.

Graphing n′′
4(x) versus x and evaluating it numerically, makes it is clear that

148 < n′′
4(x) < 369. Our next few steps are just to eliminate even an unreason-

able doubt about the sign of n′′
4 . Some readers might prefer to skip that and go

instead to the subsection marked “Conclusion of the proof”.

Positivity of n′′
4

We begin by writing

n′′′
4 (x) = 48x(1400x4 − 3955x3 + 3645x2 − 1215x + 108).

Then by the triangle inequality,

|n′′′
4 (x)| � 48(1400 + 3955 + 3645 + 1215 + 108) = 495504 � 219 (47)

for all x ∈ [0, 1].
Now for k ∈ {0, 1, . . . , 212} define xk = k2−12. For each k we will let n̂′′

4(xk)
be the numerical evaluation for the polynomial n′′

4(xk) computed using Horner’s
method with double-precision in R, implemented with the ‘horner’ function in
the pracma R package of Borchers (2019).

By formula (5.3) in Higham (2002), the absolute error in Horner’s method
for the polynomial

∑n
r=0 arxr is at most γ2np̃(|x|) where γ2n ≡ 2nu/(1 − 2nu),

u is the unit roundoff, and p̃(|x|) =
∑n

r=0 |ar||x|r.
Applying that bound to our 6th degree polynomial n′′

4(x), and noting that
for each x ∈ [0, 1], p̃(|x|) will be at most the sum of the absolute value of the
coefficients we find that

max
0�k�212

∣∣n′′
4(xk) − n̂′′

4(xk)
∣∣ � γ2×6p̃(|xk|) � 12u

1 − 12u
× 115,150. (48)

We need not worry about floating point error induced by evaluating xk, because
each xk is a floating point number. For double precision in R, the unit roundoff
is u = 2−53 � 2×10−15 from which 12u/(1−12u) � 10−13, and so the maximum
error in (48) is at most 10−7. The smallest value of n̂′′

4(xk) among all 212 + 1
evaluation points xk was 148.5743 and so min0�k�212 n′′

4(xk) � 148.
Now we are ready to prove that n′′

4(x) > 0 for all x ∈ [0, 1]. For any x ∈ [0, 1]
there exists k∗ ∈ {0, 1, . . . , 212} with |x − xk∗ | � 2−13. By (47) we know that n′′

4
is Lipschitz continuous on [0, 1] with Lipschitz constant 219. Therefore

n′′
4(x) � n′′

4(xk∗) − |n′′
4(xk∗) − n′′

4(x)| � 148 − 219 × 2−13 > 0,

holds for all x ∈ [0, 1].
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Conclusion of the proof

We have shown above that n′′
4(x) > 0 for any x ∈ [0, 1]. Now since n′

4(1) =
−20, and n′′

4(x) > 0 for all x ∈ [0, 1], it follows that n′
4(x) < 0 for all x ∈ [0, 1].

Finally since n4(1) = 5 and n′
4(x) < 0 for all x ∈ [0, 1], it follows that n4(x) > 0

for all x ∈ [0, 1]. This completes the proof.
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