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The Benjamini-Hochberg (BH) procedure remains widely popular despite having limited theoretical guarantees in
the commonly encountered scenario of correlated test statistics. Of particular concern is the possibility that the
method could exhibit bursty behavior, meaning that it might typically yield no false discoveries while occasionally
yielding both a large number of false discoveries and a false discovery proportion (FDP) that far exceeds its own
well controlled mean. In this paper, we investigate which test statistic correlation structures lead to bursty behavior
and which ones lead to well controlled FDPs. To this end, we develop a central limit theorem for the FDP in a
multiple testing setup where the test statistic correlations can be either short-range or long-range as well as either
weak or strong. The theorem and our simulations from a data-driven factor model suggest that the BH procedure
exhibits severe burstiness when the test statistics have many strong, long-range correlations, but does not otherwise.

Keywords: Empirical cumulative distribution function; functional central limit theorem; functional delta method;
multiple hypothesis testing; Simes line

1. Introduction

The Benjamini-Hochberg (BH) procedure is a widely used method for balancing Type I and Type II
errors when testing many hypotheses simultaneously. The procedure is designed to control the False
Discovery Rate (FDR), which is the expected value of the proportion of discoveries that are false
(FDP), below a user specified threshold (Benjamini and Hochberg (1995)). The procedure was orig-
inally shown to guarantee FDR control when the test statistics are assumed to be independent, an
assumption unlikely to hold in most application settings. The BH procedure was later proven in Ben-
jamini and Yekutieli (2001) to control the FDR when there are dependent test statistics satisfying the
Positive Regression Dependency (PRDS) property. While PRDS is quite restrictive (for example, it
does not hold for two-sided hypothesis tests when the test statistics are correlated or when there are
negatively correlated test statistics (Fithian and Lei (2022))), under more general conditions simulation
studies have found BH to conservatively control the FDR (Farcomeni (2006), Kim and van de Wiel
(2008)).

While FDR control is important, the motivation for this paper is our concern that FDR control alone
can give investigators who use BH false confidence in a low prevalence of false discoveries among
their rejected hypothesis. This can happen if the distribution of the FDP has both a wide right tail and
a mean that is still below the user specified threshold. As an example, it would be worrisome in the
plausible scenario that an investigator is led to believe that roughly 10 percent of their discoveries are
false, when in fact, a majority of them are false. To address such concerns, a number of multiple testing
procedures have been proposed to control the tail probability that the FDP exceeds a user specified
threshold (Korn et al. (2004), Romano and Shaikh (2006), Romano and Wolf (2007)). Efron (2007)
also raised concerns about high variability of FDP due to correlations of the test statistics and proposed
an empirical Bayes approach for estimating a dispersion parameter of the test statistics and controlling
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FDR conditionally on the dispersion parameter. Despite the promise of these methods, the BH proce-
dure remains overwhelmingly popular and the default method of choice for investigators with multiple
testing problems. It is therefore important to determine under which conditions are we assured that the
distribution of the FDP will be well concentrated about its mean, the FDR, and under which conditions
there is a risk that the distribution of the FDP has a wide right tail. Throughout this text we will refer
to the former scenario with low variability of the FDP about its mean as the non-bursty regime, and
the alarming, latter scenario where occasionally the FDP is much larger than expected as the bursty
regime.

While previous simulations in the literature can be used to identify some settings where the BH
procedure will exhibit burstiness (see for example, Figure 5 of Friguet, Kloareg and Causeur (2009) or
Figure 1 of Delattre and Roquain (2015)), the aim of this paper is to gain a theoretical understanding
of when burstiness is a concern for BH. We identify dependency structures among test statistics that
in conjunction with certain proportions of nonnulls make BH prone to delivering bursts of false dis-
coveries. We find other settings where such bursts must be rare. Our results are asymptotic and hold
in a two-group mixture model previously studied by Genovese and Wasserman (2004), Delattre and
Roquain (2016) and Izmirlian (2020). In that model, independent Bern(π1) variables define which hy-
potheses are nonnull, the null p-values have the Unif(0,1) distribution and the nonnull p-values have
some other distribution in common.

The BH procedure and the asymptotic distribution of the FDP is well studied for the setting where the
test statistics are independent. Finner and Roters (2001, 2002) study properties of the number of false
discoveries under independence both when there are no nonnulls and when the nonnull p-values are
always 0. The limiting distribution of the FDP was studied by Genovese and Wasserman (2004) under
independence of the test statistics; however, their asymptotic FDP results are derived for the “plug-in”
method (Benjamini and Hochberg (2000)) rather than the standard BH procedure. To our knowledge,
a CLT for the FDP of the BH procedure itself was first explicitly stated in Neuvial (2008), which uses
a functional delta method argument. Izmirlian (2020), using a CLT for a randomly stopped process,
provides a simpler proof of a CLT for the FDP and corrects an error in Neuvial’s asymptotic variance
formula. These works show that in the two group mixture model with Bernoulli parameter π1 and with
m hypotheses to test, when using the BH procedure at FDR control level q,

√
m
(
FDP − (1 − π1)q

)
converges as m → ∞ to a centered Gaussian with variance that depends on q, π1, and the common
nonnull p-value distribution.

There are fewer results on the limiting distribution of the FDP for dependent test statistics. Farcomeni
(2007) derives a CLT for the FDP of the plug-in procedure when the p-values are stationary and satisfy
some mixing conditions but for brevity omits explicitly stated FDP CLTs for the standard BH procedure.
Using the proof methodology of Neuvial (2008), Delattre and Roquain (2011) derive a CLT for the FDP
of the BH procedure for one sided testing, when the test statistics follow an equicorrelated Gaussian
model, with correlation parameter ρ→ 0 as the number of tests m→∞. Delattre and Roquain (2016)
extend this result to settings where the Gaussian test statistics follow arbitrary dependence structures
but the average pairwise correlation of the test statistics, and the average 2nd and 4th powers of the
pairwise correlations of the test statistics satisfy some constraints.

In Delattre and Roquain (2016), CLTs for the FDP are derived under two distinct regimes. In their
first regime, the average pairwise correlation among test statistics is strictly greater than O(1/m) for m
tests. Under this regime, the FDP is not

√
m-consistent for the product of the FDR control parameter

with the limiting proportion of nulls, and the FDP only converges to a Gaussian with scale factors much
smaller than

√
m. Their other regime considered has an average correlation among test statistics that

is at most O(1/m). For this regime Delattre and Roquain (2016) derive a CLT for the FDP with
√
m

scaling, but they require a restrictive assumption which they call “vanishing-second order”, precluding
settings where there are short-range correlations of constant order. Examples of test statistic correlation
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matrices to which Delattre and Roquain (2016) will not apply include tridiagonal Toeplitz correlation
matrices as well as block correlation matrices of constant block size, both of which are simple models
of interest for studying multiple testing under dependence.

With the aim of identifying dependency structures for which the investigator should be concerned
about bursty behavior of the BH procedure, in this paper, we introduce a model that allows for a
combination of long-range and potentially strong dependence among the test statistics via a factor
model, along with additional strongly-mixing noise that has rapidly decaying long-range dependence.
The model also allows for the proportion of nonnulls among the m hypothesis tests to vary as a function
of m. Under some regularity conditions on the factor model and on the noise with rapidly decaying
long-range dependence, we prove a CLT for the FDP under more general conditions than prior CLTs.
We also establish a CLT for the False Positive Ratio (FPR), which is the proportion of false discoveries
among all tests conducted. The new CLTs hold conditionally on the realized latent variable of the factor
model. Applying these new results, we make the following contributions to the literature of asymptotic
results for the BH procedure:

1. CLTs of the FDP for simple models, with short-range and constant-order dependency structures,
that were not covered by the results of Delattre and Roquain (2016). Examples include block
correlation structures with fixed block size and banded correlation structures. These results allow
for non-stationary test statistics, so they cannot be inferred from theorems in Farcomeni (2007)
either.

2. Conditional CLTs in settings where the long-range dependency is modeled by a factor model
which includes scenarios not covered in either Farcomeni (2007) or Delattre and Roquain (2016).

3. CLTs for the FPR rather than just the FDP because the FDP limiting behavior is unilluminating
when it converges in probability to 1.

4. CLTs where the expected proportion of nonnulls varies as the number of test statistics grows,
allowing for a sparse allocation of nonnulls.

5. A discussion of the dependency regimes under which the investigator should be concerned about
BH having bursty behavior, such as the setting where the number of nonnulls is op(

√
m), and the

dependency structure contains a factor model component.

To qualify point 2 above, we note that Delattre and Roquain (2016) include some CLTs for the FDP
under long-range dependency that our theorems do not. Ours all have a

√
m scaling. They include some

with a slower than
√
m scaling. For instance, they get such a CLT under an equicorrelated Gaussian

model with correlation ρ→ 0 but
√
mρ→∞. To clarify point 5 above, we characterize what causes

alarming burstiness of the BH FDP when the test statistics are dependent, which to our knowledge has
not been analyzed theoretically before. A separate issue is the pathologically low power of BH when
the FDR control level q is below a critical threshold (Chi, 2007). This issue was studied in greater
generality by Zhang, Fan and Yu (2011) using the framework of Storey, Taylor and Siegmund (2004).

The proof of our main theorem builds upon the proof structure seen in Neuvial (2008) and Delattre
and Roquain (2016). As is done in those works, we derive a functional CLT (FCLT) for the empirical
cumulative distribution functions (ECDFs) of the null and nonnull p-values, compute the Hadamard
derivative of the FDP written as a functional of the two ECDFs, and apply the functional delta method
to obtain a CLT for the FDP. While the proofs of previous FDP CLTs in the literature require estab-
lishing an FCLT for the p-value ECDFs defined on [0,1], in Section 2.3.4, we define a focal interval
[a,b] ⊂ (0,1), and our proof demonstrates that merely an FCLT for the ECDFs restricted to [a,b] is
needed. Our use of a focal interval allows us to obtain a CLT for the FDP in new settings where the
null and nonnull p-value ECDFs are poorly behaved asymptotically in either [0,a) or (b,1]. To obtain
an FCLT when restricting our attention to [a,b], we use an FCLT from Andrews and Pollard (1994) for
bounded function classes. The regularity conditions in Andrews and Pollard (1994) are conducive to
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obtaining an FCLT of the p-value ECDFs in settings where the test statistics follow block or banded
correlation structures (see point 1 above). Therefore, in addition to the contributions enumerated above,
our use of a focal interval and our use of an FCLT from Andrews and Pollard (1994) are contributions
to proof methodology for BH asymptotics.

Our results suggest that approaches which estimate and remove the factor model components from
the test statistics prior to applying BH can alleviate burstiness issues. A number of such approaches
for estimating and removing factor model components in multiple testing settings have been proposed
and have shown promise in simulations (Fan, Han and Gu, 2012, Fan et al., 2019, Friguet, Kloareg and
Causeur, 2009, Sun, Zhang and Owen, 2012, Wang et al., 2017). Our CLT for the BH method itself
can be a useful step towards deriving CLTs for methods that first estimate and remove factor model
components and subsequently apply BH.

Figure 1 shows simulations of the FDP under some models that we study in this paper. In each case,
there are 25,000 Monte Carlo simulations. The BH procedure is used with q = 0.1 on test statistics
that are N(0,1) for null hypotheses and N(2,1) for alternative hypotheses. Each hypothesis is inde-
pendently null with probability 0.9 and nonnull otherwise. The models differ in the correlation among
test statistics. For the first histogram, m = 22,283 test statistics were sampled with correlations based
on a 3-factor model fit to some Duchenne Muscular Dystrophy data described in Section 6. The sec-
ond histogram is for the same correlation matrix after dividing the off-diagonal entries by 10. Next
are two block correlation models with blocks of size 100 and within-block correlations of 0.5 or 0.05.
To keep m = 22,283 one of the blocks had only 83 test statistics in it. In all four settings the FDR is
seen to be controlled below 0.1, as desired. The positive False Discovery Rate (pFDR), defined as the

Figure 1. These are histograms of the false discovery proportion in 25,000 simulations. The data come from the
two-group mixture model as described in the text. Each histogram’s mean is marked with a triangle and each
histogram’s mean amongst nonzero FDP values is marked with a hollow diamond, which estimate the FDR and
pFDR respectively. For three of the histograms, the triangle and diamond are close enough to overlap. The target
FDR control is q = 0.1.
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expected value of the FDP conditional on there being at least one rejection, does not exceed 0.1 in
these simulations either. Of the four histograms, the one with data-driven correlations shows a long
tailed distribution for FDP that we consider extremely bursty, the two with synthetic block correlations
show FDPs that are typically quite close to the target FDR of q = 0.1, and the one with downscaled
data-driven correlations is intermediate.

The organization of this paper is as follows. In Section 2, we describe our multiple testing setup
and our model to account for both long-range correlations and short-range correlations among the test
statistics. We also introduce our notation, definitions and the conditions under which our results hold.
In Section 3, we state our most general CLTs for the FDP and FPR of the BH procedure. These hold
conditionally on the common latent factors in our model. The proofs of these theorems are provided in
the supplemental material (Kluger and Owen, 2024). In Section 4, we exploit these theorems to obtain
FDP CLTs (that are not conditional on a latent factor) for settings where the long-range dependence
is rapidly decaying and no factor model component is needed to account for long-range dependencies.
In Section 5, we exploit these theorems to obtain FDP and FPR CLTs conditional on the latent factor
that give insight into the burstiness of the BH procedure, and we show that the burstiness of the BH
procedure is particularly alarming when the test statistics follow a factor model and the number of non-
nulls is sparse (for example, if the number of nonnulls is op(

√
m) where m is the number of hypotheses

tested). In Section 6, we describe the Duchenne Muscular Dystrophy dataset and the 3-factor model
that was fit to it, and we show simulations based on the fitted factor model. In Section 7, we discuss
these results and their implications for multiple testing.

2. Setup and definitions

In this section we introduce our notation for the two-group mixture model. Our version relies on a
factor analysis model that we also introduce. We also review the BH procedure and state our regularity
conditions in this section.

2.1. Two-group mixture model with factors

Our setting has m hypothesis tests indexed by i = 1, . . . ,m and our asymptotics let m →∞. In a two-
group mixture model, the marginal distribution of each of the m p-values is a mixture of a common null
distribution and a common nonnull distribution, both of which do not depend on i. For 1 ≤ i ≤ m <∞,
let Hmi ∈ {0,1} be an indicator variable with Hmi = 1 if and only if hypothesis i of m is nonnull. We
take Hm1, . . . ,Hmm

iid∼ Bern(π(m)
1 ) for π(m)

1 ∈ (0,1).
Our two-group mixture model is thus based on a sequence of nonnull probabilities, and letting
π
(m)
1 → 0 will let us model sparsity of nonnull hypotheses. For instance, with π(m)

1 = λ/m, the number
of nonnulls has constant expectation λ and has an asymptotic Poisson distribution.

To focus on dependency among tests it is convenient to assume Gaussian test statistics Xmi for
1 ≤ i ≤ m < ∞. In our two-group mixture model, the test statistics where the null holds have mean
zero and the ones where the alternative hypothesis holds have common mean μA > 0. We assume that
Xmi = μAHmi +Zmi where (Zm1, . . . ,Zmm) is multivariate Gaussian, and we induce dependence among
our p-values by introducing correlations among the Zmi . We briefly remark that the common nonnull
mean assumption is not necessary for our theoretical results to hold, but is made for cleaner exposition,
as our primary interest is in investigating how the dependency between the test statistics can drive
bursty behavior.

We study two kinds of dependence operating simultaneously. One is an α-mixing dependence that
decays rapidly as the distance between hypothesis indices i increases. This model captures some of
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the dependence one expects from hypotheses corresponding to a linearly ordered variable such as the
position of a single nucleotide polymorphism (SNP) along the genome.

The other form of dependence we include is a factor model. Uses of factor models in multiple hy-
pothesis testing include Friguet, Kloareg and Causeur (2009), Lucas, Kung and Chi (2010), Sun, Zhang
and Owen (2012) and Gerard and Stephens (2020). A factor model can capture the dependency struc-
ture commonly seen among the test statistics in multiple testing problems involving gene expression
data because it can capture important aspects of the correlation matrix of gene expression measure-
ments. For example, Owen (2005) gives conditions where the correlation matrix for m test statistics
measuring association of a single phenotype with expression levels of m genes is actually equal to the
correlation matrix of the sampled gene measurements.

We construct the k-factor model for the array {Zmi : 1 ≤ i ≤ m < ∞} as follows. We assume that
the number of factors k remains fixed as m → ∞, as is assumed in Fan et al. (2019), among others.
We let W ∼ N(0, Ik ) be the latent factor, which we suppose is only drawn once and does not change
as m → ∞. We let {Lmi : 1 ≤ i ≤ m < ∞} be a triangular array of fixed ‘loading’ vectors in Rk .
The factor model component of Zmi is LT

miW . For our α-mixing model with possibly strong short-
range correlations but rapidly diminishing long-range correlations, we let {Σ(m)}∞

m=1 be a sequence
of covariance matrices and for each m, we let (εm1, . . . ,εmm) ∼ N(0,Σ(m)) independently of W . To
combine both dependency structures, we let Zmi = LT

miW + εmi , giving our correlation structure for
the array {Zmi : 1 ≤ i ≤ m <∞}.

We suppose that all of the test statistics have the same variance and without loss of generality, we
take this common variance to be one. We do not assume the factor model to have a perfect fit, and
assume instead that ‖Lmi ‖2

2 + Σ
(m)
ii = 1 where Σ(m)

ii > 0 for all i,m. Because Zmi = LT
miW + εmi , these

assumptions give Zm1, . . . ,Zmm ∼N(0,1) along with the two kinds of dependency discussed above.
We let ϕ and Φ denote the probability density function (PDF) and the cumulative distribution func-

tion (CDF), respectively, of N(0,1) and we let Φ̄ = 1−Φ be the complementary CDF. Then our p-values
for one-sided hypothesis tests are

Pmi = Φ̄(Xmi) = Φ̄
(
μAHmi + L

T
miW + εmi

)
(1)

for 1 ≤ i ≤ m < ∞, and so Pmi ∼ Unif(0,1) for the true null hypotheses. Fixing q ∈ (0,1), throughout
the text we will let τBH,m, Vm, FDPm, and FPRm denote the rejection threshold, the number of false
discoveries, the FDP, and the FPR respectively when applying the Benjamini-Hochberg procedure at
level q to the p-values (Pm1, . . . ,Pmm). The formulas for these quantities are given explicitly in the next
subsection, where we review the BH procedure. In our main theorems, we state CLTs for the quantities
FDPm and FPRm conditionally on the value of the latent factor W = w ∈ Rk .

2.2. The BH procedure

In this subsection, we describe how the BH procedure is conducted at level q on m tests with p-values
(Pm1, . . . ,Pmm). First take the sorted p-values Pm(1) ≤ · · · ≤ Pm(m) and set Pm(0) = 0. The number of
rejected hypothesis will be given by

Rm ≡ max
{
j : Pm(j) ≤

jq
m
, j ∈ {0,1, . . . ,m}

}
. (2)

The BH procedure rejects the hypotheses that correspond to the Rm smallest p-values: that is it
will reject all hypothesis i for which Pmi ≤ Pm(Rm) ≡ τBH,m. As noted in Neuvial (2008), τBH,m can
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equivalently be defined as the largest t ∈ [0,1] at which the empirical CDF (ECDF) of the p-values is
at least as large as t/q. We leverage this equivalence in our theorem proofs.

Letting Hm1, . . . ,Hmm be as defined in Section 2.1, the number of false discoveries is

Vm ≡
m∑
i=1

I{Pmi ≤ τBH,m,Hmi = 0}. (3)

Then FPRm ≡Vm/m and FDPm ≡Vm/max{Rm,1}.

2.3. Definitions and conditions

Here we present some definitions as well as regularity conditions sufficient for our conditional CLTs to
hold. All of the definitions, conditions and formulas in this subsection are conditional on a fixed value
of the latent factor W ∈ Rk .

2.3.1. Variance and mixing conditions on ε

Recall from our setup that var(εmi) > 0 for all m, i, allowing us to define ε̃mi ≡ εmi/
√

var(εmi) for
convenience. It is also helpful to introduce the following condition, which forces the variance of all εmi

terms to be bounded away from zero.

Condition 1. SL ≡ sup1≤i≤m<∞ ‖Lmi ‖2
2 < 1.

Note about Condition 1. recalling that ‖Lmi ‖2
2 + var(εmi) = 1 in our model, this condition provides a

uniform bound var(εmi) ≥ 1 − SL > 0 for all 1 ≤ i ≤ m <∞.
To describe the mixing condition on (εmi)1≤i≤m<∞, for 1 ≤ i ≤ m < ∞, define ξmi ≡ (εmi,Hmi).

Now let An
1 (m) be the σ-field generated by the variables ξmi for 1 ≤ i ≤ n and A∞

n+d
(m) be the σ-

field generated by the variables ξmi for n + d ≤ i ≤ m. For integers d ≥ 1 our α-mixing parameters
α(d) ∈ [0,1] are defined by

α(d) ≡ sup
n,m∈N

sup
A0∈An

1 (m)
A1∈A∞

n+d
(m)

��P(A0 ∩ A1) − P(A0)P(A1)
��. (4)

Condition 2. There exists an even integer Q > 2 and γ > 0 such that both

(i) γ

2 + γ
+

2
Q
< 1 and (ii)

∞∑
d=1

dQ−2α(d)
γ

Q+γ <∞

Notes about Condition 2. Throughout the text we will let Q, γ be such numbers. Note that it is
possible that this condition can be loosened to allow Q to be rational, but then we need to trust a claim
in Andrews and Pollard (1994) that their Theorem 2.2 would still hold for Q not an even integer.

Condition 2 will hold when the correlation between εmi and εmj is a rapidly decaying function of
|i − j |. If this correlation is always zero for each |i − j | > M (making the error sequences (εmi)1≤i≤m
M-dependent for each m), Condition 2 will hold. In the following remark, we argue that Condition 2
will typically hold when (ε̃mi)1≤i≤m is modelled by a stationary ARMA process or by a stationary
GARCH process (a definition of these processes can be found in Paolella (2019), for example).
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Remark 1. Suppose that the standardized errors ε̃mi just depend on i and not on m. If (ε̃i)i∈Z can be
modelled by a stationary ARMA model with absolutely continuous errors with respect to Lebesgue
measure on R, then Condition 2 will hold. To see this, note that by Theorem 1 in Mokkadem (1988),
such a stationary ARMA process (ε̃i)i∈Z will be geometrically completely regular and hence the α-
mixing coefficients of (ε̃i)i∈Z will be O(θd) for some θ ∈ (0,1). By independence of the Hmi and since
var(εi) > 0, this implies that α(d) = O(θd) will hold for that same θ ∈ (0,1), further implying that
Condition 2 will hold. By similar reasoning, if (ε̃i)i∈Z is modeled by a stationary GARCH process,
Theorem 8 in Lindner (2009) implies that under certain conditions on the GARCH process errors,
Condition 2 will hold.

2.3.2. Definitions of some subdistributions of p-values and their condition

For any positive integer m, define π(m)
0 ≡ 1 − π(m)

1 , and then write

Hmi0 ≡ 1 − Hmi and Hmi1 ≡ Hmi .

Our subsequent definitions use r = 0 for quantities based on the null hypotheses and r = 1 for quantities
from the nonnull hypotheses. For t ∈ [0,1] and r ∈ {0,1} let

F̂m,r (t) ≡
1
m

m∑
i=1

Hmir I{Pmi ≤ t} = 1
m

m∑
i=1

Hmir I{Φ̄(μAr + εmi + L
T
miW ) ≤ t}.

We call F̂m,0 and F̂m,1 the empirical subdistribution functions of the null and nonnull p-values respec-
tively. These empirical subdistribution functions sum to the ECDF of the p-values. Let γmir : [0,1] →
[0,1] be the monotone increasing bijection given by

γmir (t) ≡ Pr(Pmi ≤ t |Hmi = r,W = w) = Φ̄
( Φ̄−1(t) − μAr − LT

miw√
1 − ‖Lmi ‖2

2

)
.

We aggregate γmir in the following subdistribution functions

Fm,r (t) ≡ E
(
F̂m,r (t) |W = w

)
=
π
(m)
r

m

m∑
i=1

γmir (t)

and then let

Fr (t) ≡ lim
m→∞

Fm,r (t) = lim
m→∞

π
(m)
r

m

m∑
i=1

γmir (t). (5)

Condition 3 ensures that these quantities are well defined.

Condition 3. For all t ∈ [0,1] and r ∈ {0,1}, Fr (t) ≡ limm→∞ Fm,r (t) exists.

2.3.3. Defining the asymptotic ECDF and the Simes point

Now define Ĝm,G : [0,1] → [0,1] via

Ĝm(t) ≡ F̂m,0(t) + F̂m,1(t) and G(t) ≡ F0(t) + F1(t) (6)
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Figure 2. The curves are conditional asymptotic ECDFs of p-values in a 3-factor model based on some
Duchenne Muscular Dystrophy data described in Section 6. The three draws satisfy Φ(wA) = (0.8,0.4,0.9),
Φ(wB) = (0.45,0.56,0.62) and Φ(wC ) = (0.02,0.85,0.78). Filled circles show the Simes points. An open circle
for wA shows a crossing of the Simes line that is not the Simes point because it is not the final crossing.

for t ∈ [0,1]. Note that Ĝm is the ECDF of the p-values and G is the limiting expected ECDF of the p-
values. Throughout the text we will refer to G as the asymptotic ECDF because under most dependency
structures, we expect G to be the point-wise limit in probability of Ĝm.

The rejection threshold for the BH procedure at level q is the largest point t such that the ECDF of
the p-values evaluated at t lies above the line through the origin of slope 1/q, called the Simes line. It
is reasonable to expect the limiting p-value rejection threshold for the BH procedure at level q to be the
largest t at which (t,G(t)) intersects the Simes line. We use the term Simes point to describe the largest
point where the asymptotic ECDF intersects the Simes line. More precisely, the Simes point is

τ∗ ≡ sup
{
t ∈ (0,1) : G(t) ≥ t/q

}
, (7)

interpreting the supremum of the empty set to be zero. The Simes point satisfies 0 ≤ τ∗ ≤ q. The upper
limit follows from G(t) ≤ 1. Both G and τ∗ depend on the specific realization of latent factor W ∈ Rk
on which we condition.

Figure 2 illustrates the Simes points. The setting has μA = 2, π0 = 0.9 and q = 0.1. The horizontal
axis has putative p-values over the range t ∈ [0,0.01]. The Simes line is t/q. There are m = 22,283
hypotheses corresponding to genes in the GDS 3027 Duchenne Muscular Dystrophy data described in
Section 6. For three draws W ∼ N(0, I3) we show the asymptotic ECDF curves. One of them crosses
the Simes line twice and the Simes point is the last crossing. One crosses it only once and one has
Simes point τ∗ = 0 because the Simes line is never crossed.

We will need continuity of G(·) on (0,1) under Conditions 1 and 3. We do not know whether G must
be continuous at 0 or 1, but our results do not depend on that.

Proposition 2.1. Under Conditions 1 and 3, G is continuous on (0,1).
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Proof. It is sufficient to show that G is Lipschitz continuous on (ε,1 − ε) whenever 0 < ε < 1/2. For
any such ε , observe that for r ∈ {0,1} and integers 1 ≤ i ≤ m <∞

γ′mir (t) =
1

ϕ(Φ−1(t))
√

1 − ‖Lmi ‖2
2

ϕ

(
Φ̄−1(t) − LT

miw − μAr√
1 − ‖Lmi ‖2

2

)
.

Now ϕ(·) ≤ 1/
√

2π and then using Condition 1 it follows that for any t ∈ (ε,1 − ε),

|γ′mir (t)| ≤
1/
√

2π
ϕ(Φ−1(t))

√
1 − SL

≤ 1/
√

2π
ϕ(Φ−1(ε))

√
1 − SL

≡Cε .

Since supt∈(ε ,1−ε ) |γ′mir (t)| ≤ Cε < ∞, |γmir (t) − γmir (s)| ≤ Cε |t − s | for any t, s ∈ (ε,1 − ε). This ar-
gument holds for any 1 ≤ i ≤ m < ∞ and r ∈ {0,1}, and so for any t, s ∈ (ε,1 − ε) and integer m and
r ∈ {0,1},

|Fm,r (t) − Fm,r (s)| ≤
π
(m)
r

m

m∑
i=1

|γmir (t) − γmir (s)| ≤ Cε |t − s |.

Taking the limit as m→∞ of the left side of the above inequality, which exists by Condition 3, we get
|Fr (t) − Fr (s)| ≤ Cε |t − s | for all t, s ∈ (ε,1− ε) and for both r ∈ {0,1}. Thus, Fr is Lipschitz continuous
on (ε,1 − ε) for r ∈ {0,1} which implies G = F0 + F1 is Lipschitz continuous on (ε,1 − ε).

2.3.4. Defining a focal interval [a,b] ⊂ [0,1] for our processes

We are going to work with an interval [a,b] of positive length for which the Simes point τ∗ is the unique
element t ∈ (a,b) with G(t) = t/q. First we need a technical condition to rule out some pathological
behavior. Under this condition there will exist such an interval [a,b].

Condition 4. The Simes point is positive, is the largest point where G actually crosses the Simes line,
and is not an accumulation point for points of intersection of G and the Simes line. That is,

(i) τ∗ > 0,
(ii) τ∗ = sup

{
t ∈ (0,1) : G(t) > t/q

}
, and

(iii) τ∗ is not an accumulation point of
{
t ∈ (0,1) : G(t) = t/q

}
.

Note about Condition 4. For many factor model choices, Condition 4 will hold with some probability
in (0,1) depending on the specific realization of W ∼ N(0, Ik ). This is due to the dependence of τ∗
and G on the specific realization of the latent factor W ∈ Rk on which we condition. For example, see
Figure 2.

Proposition 2.2. If Conditions 1, 3, and 4 hold, then for any b ∈ (q,1) there exists a point a ∈ (0,q)
such that

(i) G(a) > a/q, and
(ii) the Simes point τ∗ is the unique t ∈ (a,b) solving G(t) = t/q.

Proof. Pick any b ∈ (q,1) and suppose that Conditions 1, 3, and 4 hold. By Condition 4,

τ∗ ≡ sup
{
t ∈ (0,1) : G(t) ≥ t/q

}
= sup

{
t ∈ (0,1) : G(t) > t/q

}
> 0.
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Now τ∗ ≤ q because G(t) ≤ 1 for all t ∈ (0,1). Also, G(τ∗) = τ∗/q by continuity of G (see Proposition
2.1). Hence, because τ∗ = sup{t ∈ (0,1) : G(t) > t/q} but G(τ∗) = τ∗/q, there exists a sequence an ↑
τ∗ such that for all n, G(an) > an/q and an < τ∗. Since {t ∈ (0,1) : G(t) = t/q} does not have an
accumulation point at τ∗ and since G(t) − t/q is continuous, there is a sufficiently large N∗ with G(t) >
t/q for all t ∈ [aN∗, τ∗). We choose a = aN∗ ∈ (0, τ∗) and then property (i) holds by our definition of
an. Also, a ∈ (0,q) because a < τ∗ ≤ q. Turning to property (ii), G(t) > t/q for all t ∈ [a, τ∗) by the the
choice of N∗ and a, while for all t ∈ (τ∗,b), G(t) < t/q by the definition of τ∗.

Throughout the text, when conditioning on W = w ∈ Rk , if Conditions 1, 3, and 4 hold, we will let
[a,b] be an interval satisfying the properties (i) and (ii) with a ∈ (0,q) and b ∈ (q,1) that are guaranteed
by Proposition 2.2.

2.3.5. Defining our stochastic process and its Gaussian process limit

Our stochastic processes of interest are two jointly distributed random càdlàg functions on [a,b]. We
will show convergence to a pair of Gaussian processes with continuous sample paths on [a,b]. The
expressions C([a,b] × {0,1}) and (C[a,b])2 are both awkward, while C[a,b]2 denotes functions on a
square region. Therefore, we use the symbol [a,b]2 to denote [a,b] × {0,1} and study random elements
in C[a,b]2 and D[a,b]2. Explicitly, C[a,b]2 is the collection of all pairs of real valued continuous
functions on [a,b] while D[a,b]2 is the collection of all pairs of real valued càdlàg functions on [a,b].
We study the following processes in D[a,b]2:

Wm,r (t) ≡
√
m
(
F̂m,r (t) − Fm,r (t)

)
and

Ŵm,r (t) ≡
√
m
(
F̂m,r (t) − Fr (t)

)
.

(8)

We are ultimately interested in a functional central limit theorem (FCLT) for the joint process(
Ŵm,0(·),Ŵm,1(·)

)
, so we must find the limiting joint covariance kernel of this pair of processes. To

describe this limiting covariance kernel, we introduce some convenient definitions and notation.
For convenience, throughout the text we will define {Γ(m)}∞

m=1 to be the sequence of correla-
tion matrices corresponding to {Σ(m)}∞

m=1 and, as before, for each m,i define ε̃mi ≡ εmi/
√

var(εmi) =

εmi/
√

1 − ‖Lmi ‖2
2 . Note that (ε̃m1, . . . , ε̃mm) ∼ N(0,Γ(m)) and that each ε̃mi has unit variance. For any

t, s ∈ [0,1] and |ρ| ≤ 1, define

ρ̃(t, s, ρ) ≡ Pr
(
ε̃1 ≥ Φ̄−1(t), ε̃2 ≥ Φ̄−1(s)

��� (ε̃1
ε̃2

)
∼N

(
0,
( 1 ρ
ρ 1

) ) )
− ts. (9)

Given a bivariate Gaussian with unit variance and correlation ρ, the above quantity is the covariance
between the indicator that the first coordinate of this bivariate Gaussian exceeds its 1 − t quantile and
the indicator that the second coordinate of this bivariate Gaussian exceeds its 1 − s quantile.

Now for any s, t ∈ (a,b) and r0,r1 ∈ {0,1} and m ∈ N+ define

c(r0,r1)
m (t, s) ≡ cov

(
Wm,r0(t),Wm,r1 (s)

)
.

It is convenient to break up the expression of c(r0 ,r1)
m (t, s) into two terms. Define

c(r0 ,r1)
m,diag(t, s) ≡

1
m

m∑
i=1

(
π
(m)
r0 γmir0(t ∧ s)I{r0 = r1} − π(m)

r0 π
(m)
r1 γmir0(t)γmir1(s)

)
,
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and define

c(r0,r1)
m,cross(t, s) ≡

π
(m)
r0 π

(m)
r1

m

∑
i�j

ρ̃
(
γmir0(t),γmjr1(s),Γ

(m)
i j

)
.

In the following proposition we show that cm = cm,diag + cm,cross.

Proposition 2.3. For any s, t ∈ [a,b] and r0,r1 ∈ {0,1} and m ≥ 2

c(r0,r1)
m (t, s) = c(r0 ,r1)

m,diag(t, s) + c
(r0 ,r1)
m,cross(t, s).

Proof. For i, j ∈ [m] define

C(r0 ,r1)
i, j ,m (t, s) ≡ cov

(
Hmir0 I{Pmi ≤ t},Hmjr1 I{Pmj ≤ s}

)
= cov

(
Hmir0 I{Φ̄(ε̃mi) ≤ γmir0(t)},Hmjr1 I{Φ̄(ε̃mj ) ≤ γmjr1(s)}

)
.

For i � j, Hmir0 , Hmjr1 and ε̃ are all independent, so

C(r0 ,r1)
i, j ,m (t, s) = π(m)

r0 π
(m)
r1 cov

(
I{Φ̄(ε̃mi) ≤ γmir0(t)}, I{Φ̄(ε̃mj ) ≤ γmjr1(s)}

)
= π

(m)
r0 π

(m)
r1 ρ̃

(
γmir0(t),γmjr1 (s),Γ

(m)
i j

)
.

When i = j, Hmir0Hmjr1 = Hmir0 I{r0 = r1} and ε̃mi = ε̃mj , so that

C(r0 ,r1)
i, j ,m (t, s) =π(m)

r0 I{r0 = r1}γmir0(t ∧ s) − π(m)
r0 π

(m)
r1 γmir0(t)γmir1(s).

Since the above expressions hold for any i, j ∈ [m],

c(r0 ,r1)
m (t, s) = cov

(
Wm,r0(t),Wm,r1 (s)

)
= mcov

(
F̂m,r0(t), F̂m,r1 (s)

)
=

1
m

m∑
i=1

m∑
j=1

cov
(
Hmir0 I{Pmi ≤ t},Hmjr1 I{Pmj ≤ s}

)

=
1
m

m∑
i=1

m∑
j=1

C(r0 ,r1)
i, j ,m (t, s)

=
1
m

m∑
i=1

C(r0 ,r1)
i,i,m (t, s) + 1

m

∑
i�j

C(r0 ,r1)
i, j ,m (t, s)

= c(r0 ,r1)
m,diag(t, s) + c

(r0 ,r1)
m,cross(t, s).

Now define

c(r0 ,r1)(t, s) ≡ lim
m→∞

c(r0 ,r1)
m (t, s). (10)

By the simplified formula for c(r0 ,r1)
m (t, s), the above limit exists by Condition 3 if we further impose

Condition 5 below.
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Condition 5. For any (s, t) ∈ [a,b] and r0,r1 ∈ {0,1},

lim
m→∞

π
(m)
r0 π

(m)
r1

m

m∑
i=1

γmir0(t)γmir1(s) and

lim
m→∞

π
(m)
r0 π

(m)
r1

m

∑
i�j

ρ̃(γmir0(t),γmir1(s),Γ
(m)
i j

)

both exist.

It is easy to see that the function c(·, ·) defined above gives a joint covariance kernel that is symmetric
and positive semidefinite because it is the limit of symmetric and positive semidefinite joint covariance
kernels cm.

2.3.6. Regularity conditions on F0, F1, Fm,0 and Fm,1

Before introducing the main theorems, we introduce another two conditions that will be used in their
proof.

Condition 6. Both F0 and F1 are differentiable at τ∗.

The final condition is needed to derive a
(
Ŵm,0(·),Ŵm,1(·)

)
FCLT from a

(
Wm,0(·),Wm,1(·)

)
FCLT.

We would like to hold the subdistribution functions Fm,0 and Fm,1 constant as m changes but this does
not hold in all cases of interest. Instead we assume that they approach limits F0 and F1 at a fast rate.

Condition 7. For r ∈ {0,1}, limm→∞ supt∈[a,b]
��√m (

Fm,r (t) − Fr (t)
) �� = 0.

Notes about Condition 7. As with all of the other conditions in Section 2.3, Condition 7 merely needs
to hold for the fixed value of the latent factor W ∈ Rk on which we condition. In addition, a version of
Theorem 3.1 below will still hold if we loosen Condition 7 to say that there exist Gaussian processes
Z0 and Z1 on [a,b] that are independent from the noise ε such that for both r ∈ {0,1},

√
m
(
Fm,r (·) − Fr (·)

) D−−→ Zr (·).

This looser condition can be useful to study asymptotic behavior of the BH procedure in settings where
the nonnull effect sizes μA are not constant and instead are assumed to come from some prior distribu-
tion. However, if we use this looser condition, the resulting theorem statement will be messier.

3. Statement of the theorems
Theorem 3.1. For the model of Section 2.1, suppose that conditionally on a specific value of the latent
factorW = w ∈ Rk that Conditions 1–7 all hold. Then

√
m
(
FDPm − qF0(τ∗)

τ∗
|W = w

)
d−→N(0,σ2

L) (11)

as m→∞ where

σ2
L ≡ q2

τ2
∗

(
(1 + α)2c(0,0)(τ∗, τ∗) + α2c(1,1)(τ∗, τ∗) + 2α(1 + α)c(1,0)(τ∗, τ∗)

)
(12)
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for the function F0 given at (5), the asymptotic ECDF G given at (6), the Simes point τ∗ from (7), the
covariances c(r0 ,r1)(·, ·) given by (10) and

α ≡
F ′

0(τ∗) − F0(τ∗)/τ∗
1/q −G′(τ∗)

. (13)

Proof. See the supplemental material for a proof of this theorem.

The proof is quite long but to summarize we first derive an FCLT for the joint process (F̂m,0, F̂m,1) by
proving finite dimensional distribution convergence using a CLT from Neumann (2013) and then extend
to an FCLT by using a result from Andrews and Pollard (1994). We then define Ψ(FDP) : D[a,b]2 → R
to be a particular function satisfying FDPm = Ψ

(FDP)(F̂m,0, F̂m,1) with probability converging to 1 as
m→∞. Then we argue that Ψ(FDP) is Hadamard differentiable at (F0,F1) tangentially to C[a,b]2 and
compute the Hadamard derivative by mimicking the approach in Neuvial (2008). To complete the proof
of the CLT given in (11), we tie these results together with the functional delta method in Chapter 20.2
of van der Vaart (1998). Using the same proof technique we obtain the following conditional CLT for
the ratio Vm/m.

Theorem 3.2. Under the conditions of Theorem 3.1,

√
m
(Vm
m

− F0(τ∗)
��W = w) d−→N(0,σ2

R) as m→∞ (14)

where

σ2
R ≡ (1 + β)2c(0,0)(τ∗, τ∗) + β2c(1,1)(τ∗, τ∗) + 2β(1 + β)c(1,0)(τ∗, τ∗) (15)

for

β ≡
F ′

0(τ∗)
1/q −G′(τ∗)

. (16)

Proof. See the supplemental material for a proof of this theorem.

It is often the case that for a particular factor and noise model, Conditions 1–7 will not hold for all
values of the latent factor W = w ∈ Rk . Condition 4 will often be violated when drawing W ∼N(0, Ik ).
We do not expect a positive probability that τ∗ will be an accumulation point of {t : G(t) = t/q}, nor do
we expect a positive probability that sup{t ∈ (0,1) : G(t) ≥ t/q} � sup{t ∈ (0,1) : G(t) > t/q}, but we
do expect a positive probability that τ∗ = 0. Therefore, in the next theorem we describe the asymptotic
behavior of the BH procedure, conditional on W = w ∈ Rk when τ∗ = 0.

Theorem 3.3. For the model of Section 2.1, when conditioning on the latent factor W = w ∈ Rk ,
suppose that Conditions 1, 2, and 3 hold, that τ∗ = 0, and that Conditions 5, 7 hold when setting
[a,b] = [0,1]. Then

τBH,m |W = w
p
−→ 0 and

Vm
m

|W = w
p
−→ 0. (17)

Proof. See the supplemental material for a proof of this theorem.
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Remark 2. Theorem 3.3 will still hold if we loosen the mixing Condition 2 and simply require that
the error array {εmi : 1 ≤ i ≤ m <∞} has summable α-mixing coefficients. This is because the proof
of Proposition S.2.1 in the supplemental material (Kluger and Owen, 2024) does not require Condition
2 to hold and merely requires that the error array has summable α-mixing coefficients.

Remark 3. When τ∗ = 0 and τBH,m
p
−→ 0, it is not guaranteed that FDPm

p
−→ 0. For example, in

the scenario where Lmi = 0 for all m,i, the errors (εm1, . . . ,εmm) are independent and π(m)
1 = 1/m,

one can show that τ∗ = 0 and τBH,m
p
−→ 0, yet lim infm→∞ Pr(FDPm ≥ 0.5) > 0. As another example,

Gontscharuk and Finner (2013) provide a scenario where τBH,m
p
−→ 0, but asymptotically the false dis-

covery rate exceeds the FDR control parameter q, implying that FDPm cannot possibly converge to
zero in probability in their scenario.

In the above theorems, the limiting of behavior of BH depends on a latent factor which in practice is
unobserved. Estimation of the unobserved latent factor is out of scope for this paper but for estimators
of the latent factor and properties of these estimators we point the reader to Fan, Han and Gu (2012),
Azriel and Schwartzman (2015), Sun, Zhang and Owen (2012), Wang et al. (2017) and Fan et al. (2019).
In the next section we focus on results for the case where the correlations are short-range and there is
no factor model or latent factor to consider.

4. Corollaries when there is no factor model component

The simplest applications of Theorems 3.1 and 3.2 are to settings where there is no factor model compo-
nent. That is k = 0, or equivalently Lmi = 0 for 1 ≤ i ≤ m. Then the test statistics are Xmi = μAHmi+εmi

where (εm1, . . . ,εmm) ∼ N(0,Γ(m)) for a correlation matrix Γ(m) ∈ Rm×m. Next suppose, as is usual in
the two-group mixture model that π(m)

1 = π1 ∈ (0,1) for all m ≥ 1. Finally, we will assume that the errors
(εm1, . . . ,εmm) satisfy mixing Condition 2, which can hold, for example, if the errors are M-dependent
(see Remark 1 for other examples where Condition 2 is met).

Many of the 7 conditions in our theorems hold trivially in this setting. Most trivially, SL = 0 making
Condition 1 hold. The mixing Condition 2 holds by assumption. Also in this setting, because F0(t) =
Fm,0(t) = (1 − π1)t and F1(t) = Fm,1(t) = π1Φ̄(Φ̄−1(t) − μA) for each m, Conditions 3 and 7 on the
subdistributions can be seen to hold.

To check that Condition 4 ruling out pathologies about τ∗ holds note that G(t) = (1 − π1)t +
π1Φ̄(Φ̄−1(t) − μA). A simple calculation shows that G′(t) = (1 − π1) + exp(μAΦ̄−1(t) − μ2

A
/2) and

G′′(t) = −π1 exp(μAΦ̄−1(t) − μ2
A/2)/ϕ(Φ̄−1(t)),

implying that G is strictly concave on (0,1) and that G′(t) →∞ as t ↓ 0. By strict concavity of G, and
since both G and the Simes line intersect the origin, {t > 0 : G(t) = t/q} contains at most one point. It
remains to show existence of a point t > 0 with G(t) = t/q. Since G′(t) →∞ as t ↓ 0 and G(0) = 0, there
must be an ε > 0 such that G(ε) > ε/q. Also G(1) = 1 < 1/q, so the continuous function t �→G(t) − t/q
must cross 0 at some unique t∗ ∈ (0,1). By continuity of G and uniqueness this unique t∗ is the Simes
point τ∗ defined in (7) and further Condition 4 will be satisfied. Because τ∗ ∈ (0,1) and because F0 and
F1 are differentiable on (0,1), Condition 6 also holds.

The only remaining condition to check is Condition 5 on convergence of the covariance kernels.
Let (a,b) ⊂ (0,1) be any open interval containing τ∗ and q. Since for r ∈ {0,1}, γmir does not vary
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with i or m, the first limit in Condition 5 always holds. Since for each m,i, γmi0(t) = t and γmi1(t) =
Φ̄(Φ̄−1(t) − μA), Condition 5 holds whenever

�(t, s) ≡ lim
m→∞

1
m

∑
i�j

ρ̃(t, s,Γ(m)
i j ) (18)

exists for all s, t ∈
[
a,Φ̄(Φ̄−1(b) − μA)

]
with ρ̃ defined at (9). We summarize this along with an appli-

cation of Theorem 3.1 in Corollary 4.1.

Corollary 4.1. In the setting of Section 2.1, suppose further that:

i) the factor loadings Lmi are all zero and
ii) the probability π1 ∈ (0,1) of nonnull hypotheses does not depend on m.

Let τ∗ be the unique t ∈ (0,1) satisfying t/q = π0t + π1Φ̄(Φ̄−1(t) − μA) and let (a,b) ⊂ (0,1) be any open
interval containing both τ∗ and q. If the εmi are such that mixing Condition 2 holds and the correlations
among the εmi are such that �(t, s) defined at (18) exists for all t, s ∈

[
a,Φ̄(Φ̄−1(b) − μA)

]
, then

√
m
(
FDPm − π0q

) d−→N
(
0,
π2

0q
2

τ2
∗

( τ∗
π0

− τ2
∗ + �(τ∗, τ∗)

) )
(19)

where π0 ≡ 1 − π1.

Proof. As discussed before the statement of the corollary, Conditions 1–7 hold in this setting. Noting
that in this setting α = 0 and there is no dependency on the latent factor W , the result holds by Theorem
3.1.

We note that this corollary will hold even if q � (a,b) and the requirement that q ∈ (a,b) was included
for a cleaner proof of Theorem 3.1.

We also note that if the correlations between the test statistics are known, or even if only the first
few moments of the test statistic pairwise correlations are known, the quantity �(τ∗, τ∗) can be com-
puted efficiently using the first few terms in a Hermite polynomial expansion, as seen in Theorem 2
of Schwartzman and Lin (2011). Below, we specialize Corollary 4.1 to settings with block diagonal
correlations and with Toeplitz correlations. In these settings, Condition 2 will hold and �(τ∗, τ∗) will
have an easily-expressed formula.

Corollary 4.2 (Block diagonal correlations). In the setting of Corollary 4.1, suppose that (εm1, . . . ,
εmm) has a block diagonal correlation matrix with blocks of fixed size sB in which the off diagonal
correlations are ρB. Let τ∗ be the unique t ∈ (0,1) satisfying t/q = π0t + π1Φ̄(Φ̄−1(t) − μA). Then

√
m
(
FDPm − π0q

) d−→N
(
0,
π2

0q
2

τ2
∗

( τ∗
π0

− τ2
∗ + (sB − 1)ρ̃(τ∗, τ∗, ρB)

) )
(20)

where π0 ≡ 1 − π1 and ρ̃ is defined at (9).

Proof. This follows from a direct application of Corollary 4.1.

The corollary as written requires m to be a multiple of sB, but it extends easily to m→∞ through
an arbitrary sequence of m. One can let the “last” block be smaller than the others if necessary.

Another simple correlation structure we can consider has banded Toeplitz correlation matrices for
εm1, . . . ,εmm.
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Corollary 4.3 (Toeplitz correlation). In the setting of Corollary 4.1, suppose that (εm1, . . . ,εmm) has
a Toeplitz correlation matrix

Γ
(m)
i j = I{i = j} +

M∑
�=1

ρl I{|i − j | = l}

where ρ1, . . . , ρM ∈ (−1,1) are such that Γ(m) is positive semi-definite for all m > M. Let τ∗ be the
unique t ∈ (0,1) satisfying t/q = π0t + π1Φ̄(Φ̄−1(t) − μA). Then,

√
m
(
FDPm − π0q

) d−→N
(
0,
π2

0q
2

τ2
∗

( τ∗
π0

− τ2
∗ + 2

M∑
�=1

ρ̃(τ∗, τ∗, ρ�)
) )

(21)

where π0 ≡ 1 − π1 and ρ̃ is defined at (9).

Proof. This follows from a direct application of Corollary 4.1.

We check the CLTs provided by Corollaries 4.2 and 4.3 via simulation in Figure 3. We compare
the normal approximation given by these CLTs to the normal approximation given by Corollary 4.2 in
Delattre and Roquain (2016). We simulate block and banded correlation structures that do not satisfy
the sufficient conditions in their Corollary 4.2.

Figure 3. This figure compares the histograms of FDP to our normal approximation and an earlier one by Delattre
and Roquain (2016) that does not necessarily cover these cases. Each panel is based on 25,000 Monte Carlo
simulations as described in the text.
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For each correlation structure and each m ∈ {102,103,104,105}, we ran 25,000 Monte Carlo simula-
tions with μA = 2, π0 = 0.9, and q = 0.1. The block correlation matrices we considered had block size
sB = 20, and within block correlations ρB = 0.5. The banded Toeplitz correlation matrix had M = 2
with ρ = ρ1 = 0.65 above and below the diagonal and ρ = ρ2 = 0.3 two rows above and below the
diagonal. Our normal approximation fits very well for the larger values of m. For large m the normal
approximation from Delattre and Roquain (2016) appears to accurately estimate the mean but not the
variance of the FDP. From this we believe that something in their sufficient conditions must also have
been necessary.

5. Burstiness in a factor model
The results in the previous section are CLTs that do not require conditioning on the latent factor as they
assumed no long-range correlations modeled via a factor model. The CLTs are messier when factor
model components are introduced, so we present two examples for factor model settings where the
formulas for the asymptotic distribution of the FDP have some simplifications.

5.1. 1-factor model for long-range equicorrelated Gaussian noise

Suppose that for each m, Hm1, . . . ,Hmm
iid∼ Bern(π1) for a fixed π1 ∈ (0,1), but we now have a one

dimensional latent factor; that is W ∼ N(0,1). For simplicity, we consider the simplest factor model
structure: an equicorrelated Gaussian model. In particular, we let Lmi =

√
ρ1 where ρ1 ∈ [0,1) for all

m,i. We will also allow for errors with shorter range correlations to be added to the model by supposing
that (ε̃m1, . . . , ε̃mm) ∼ N(0,Γ(m)) where Γ(m) is a correlation matrix with blocks of size sB and off
diagonal within-block correlations of ρ2. We assume that the blocks are of equal size, except the last
one if m does not divide sB. In this model the test statistics are Xmi = μAHmi +

√
ρ1W +

√
1 − ρ1ε̃mi

and the correlation structure of the errors (not related to the indicators Hmi of whether the hypotheses
are true) follows a matrix ΣB2 where

(ΣB2 )i j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if i = j,
ρ1, if i and j are in different blocks,
ρ1 + (1 − ρ1)ρ2, if i � j and if i and j are in the same block.

In such a setting it is easy to show that all of our conditions, except possibly Condition 4 will hold.
Condition 4 ruling out pathologies involving τ∗ will hold depending on the value of W drawn from
N(0,1). Some w may give τ∗ = 0 though we do not expect a positive probability that τ∗ will be an
accumulation point of {t : G(t) = t/q}.

Corollary 5.1. In the multiple hypothesis testing setting of Section 5.1, condition on W = w ∈ R and
for t ∈ (0,1) let G(t) = (1 − π1)γ0(t) + π1γ1(t) with γr (t) = Φ̄

(
(Φ̄−1(t) − μAr −

√
ρ1w)/

√
1 − ρ1

)
for

r ∈ {0,1}. If w is such that G satisfies Condition 4 that the Simes point is positive with no pathologies,
then

√
m
(
FDPm − qπ0γ0(τ∗)

τ∗
|W = w

)
d−→N(0,σ2

L,2) as m→∞

where π0 ≡ 1 − π1 and

σ2
L,2 =

q2

τ2
∗

(
(1 + α)2c(0,0)(τ∗, τ∗) + α2c(1,1)(τ∗, τ∗) + 2α(1 + α)c(1,0)(τ∗, τ∗)

)
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where

α =
π0γ

′
0(τ∗) − π0γ0(τ∗)/τ∗

1/q −G′(τ∗)
and for r ∈ {0,1},

c(r ,r)(τ∗, τ∗) = πrγr (τ∗) − π2
rγr (τ∗)γr (τ∗) + π2

r (sB − 1)ρ̃(γr (τ∗),γr (τ∗), ρ2)

and

c(1,0)(τ∗, τ∗) = −π0π1γ0(τ∗)γ1(τ∗) + π0π1(sB − 1)ρ̃(γ0(τ∗),γ1(τ∗), ρ2)

where ρ̃ is defined in Equation (9).

Proof. As mentioned earlier in this section, Conditions 1, 2, 3, 5, 6, and 7 will hold for any value of
W drawn. Therefore the above result holds from applying Theorem 3.1 in the setting where Condition
4 also holds.

Remark 4. In the setting of Corollary 5.1, if m/sB is small, then perhaps the test statistic correlations
can be modeled with a factor model with a bit more than m/sB factors but asymptotically such an
approach would require adding infinitely many factors in the model. In our setup, the equicorrelations
ρ1 are long-range and persist as m→∞ and hence they are modeled with a factor model whereas the
additional noise with correlation blocks of size sB involves short-range correlations and are therefore
not modeled as a factor.

In this subsection, we have demonstrated that Theorems 3.1 and 3.2 can be used to provide further
insight into asymptotics of the BH procedure in the setting of Gaussian test statistics with constant pair-
wise correlation. In such a setting, Finner, Dickhaus and Roters (2007) find the limiting expected values
of both the FDP and the FPR as functions of a one-dimensional latent factor. We have extended their
results by deriving the limiting distribution of the FDP as a function of a one-dimensional latent factor
(the limiting distribution of the FPR can similarly be derived from Theorem 3.2). We also considered a
more general setting than the equicorrelated Gaussian model in order to exhibit that Theorems 3.1 and
3.2 can handle settings with both short and long-range correlations simultaneously.

5.2. Setting where number of nonnulls is op(
√
m)

Here we consider sparse nonnulls with π(m)
1 = o(1/

√
m). It can be shown with a Chernoff bound for

the binomial that in this case the number of nonnulls is op(
√
m). Also suppose that under the model

for test statistics of Section 2.1, Conditions 1–7 hold. Then it will follow that F1 = 0 and moreover
Wm,r =

√
m(F̂m,1 − Fm,1)

p
−→ 0. If this is the case, then we will have c(1,1) = 0, c(1,0) = 0, F0(τ∗) = τ∗/q

and α = −1.

Corollary 5.2. Suppose that we are in the multiple testing setting of Section 2.1 and that π(m)
1 =

o(1/
√
m). If, conditionally on a specific value of the latent factor W = w ∈ Rk , Conditions 1–7 hold,

then
√
m
(
FDPm − 1 |W = w

)
p
−→ 0
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and

√
m
(Vm
m

− τ∗
q
|W = w

)
d−→N(0,σ2

R,3) as m→∞

where

σ2
R,3 ≡ (1 − qG′(τ∗))−2c(0,0)(τ∗, τ∗).

Proof. Apply Theorems 3.1 and 3.2 noting that F0(τ∗) = τ∗/q, α = −1, c(1,1) = 0, c(1,0) = 0.

The corollary indicates that severe bursts can occur; Vm/m can converge to a positive number even
while the proportion of hypotheses that are nonnull converges to 0.

We check the result of Corollary 5.2 via simulation in Figure 4. We simulate from the 1-factor model
described in Section 5.1, except now the proportion of nonnulls π(m)

1 is not fixed in m. Instead we set

π
(m)
1 = 5m−2/3. For each m ∈ {102,103,104,105,106}, we conditioned on w = 2.5 and ran 25,000 Monte

Carlo simulations with μA = 2, π(m)
0 = 1− 5m−2/3, q = 0.1, ρ1 = 0.3, and ρ2 = 0.6. For these choices of

parameters, the conditions of Corollary 5.2 are met.

Figure 4. This figure compares the histograms of the FDP and the number of discoveries Vm to the asymptotic
estimates of their distributions given by Corollary 5.2. Each panel is based on 25,000 Monte Carlo simulations as
described in the text.
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6. Data driven factor model example

We fit a 3-factor model to the GDS 3027 Duchenne Muscular Dystrophy (DMD) data, which can be
found on the Gene Expression Omnibus. This data set was analyzed in Kotelnikova et al. (2012) and
Wang et al. (2022) and had m = 22,283 genes and n = 37 subjects. Of these subjects 23 had DMD
and 14 did not. We centered the data for each gene and stored it in a matrix Y ∈ R37×22,283. To fit a
homoskedastic factor model, we looked at the plot of the singular values ofY and chose to work with the
largest three of them for illustrative purposes. We then computed Y3, the singular value decomposition-
based rank 3 approximation to Y , and estimated the homoskedastic noise, σE as the standard deviation
of the entries in Y − Y3. We let L̃ ∈ Rm×3 be the matrix whose columns consist of the first 3 right
singular vectors of Y scaled by their corresponding singular values. We subsequently treat L̃ and σE
as fixed quantities and then assume the following factor model under the global null: YT = L̃F + σEE ,
where the entries of F ∈ R3×37 and E ∈ Rm×37 are IID standard Gaussians. Under the alternative we
suppose that for each nonnull gene, the values of Y for that gene are shifted by a fixed constant for
DMD subjects and a different fixed constant, maintaining centering of the columns of Y , for the control
subjects.

Since the dataset is from a case-control study, to compute the test statistics we condition on DMD
status and assume that the stochasticity in our observations Y comes from the random matrices E and
F. The unstandardized test statistics Xustd ∈ Rm are simply the difference-in-means between the DMD
group and the control group for each gene and this unstandardized test statistics vector has covariance
matrix proportional to σ2

E Im + L̃ L̃
T. The standardized test statistics X ∈ Rm are given by dividing each

entry of Xustd by the squareroot of the corresponding diagonal entry of σ2
E Im + L̃ L̃T. The vector of

test statistics then satisfy X = �μ + LW + ε where �μ is a vector of constant means (which are zero for
the null genes), L is a matrix of factor loadings similar to L̃ but with appropriately rescaled rows,
W ∼N(0, I3) and ε is heteroskedastic, independent, and centered Gaussian noise. Assuming that each
standardized nonnull test statistic has the same mean μA > 0, that we conduct one-sided testing, and
that the nonnulls are determined by IID Bern(π1) draws, using the test statistics X we are in the multiple
hypothesis testing setting of Section 2.1.

Figure 2 in Section 2 shows the asymptotic ECDF of the p-values for three specific realizations
of the latent factor w in the data-driven 3-factor model and multiple testing setting described above,
with μA = 2, π1 = 0.1, and q = 0.1. Figure 5 shows histograms of the FDP based on 25,000 Monte
Carlo simulations for the same data-driven 3-factor model, multiple testing setup, factor outcomes, and
parameters as Figure 2.

In the top panel of Figure 5, m = 22,283 as is the case in the original 3-factor model fit to the GDS
3027 dataset. In the bottom panel, to increase the number of tests and check asymptotic behavior, we
copy each row of factor loadings in the original factor model 25 times to get a distribution of the FDP
when m = 22,283× 25 tests are conducted. That is much larger than we would need for gene expression
and approaches the range we would encounter for SNPs. In case A, the CLT is reasonable for the larger
but not the smaller sample size. The CLT fits well for both sample sizes for case C. In case B, the
sufficient conditions for the conditional CLT do not hold and Theorem 3.3 holds instead.

This simulation shows some bursty behavior for BH as follows. Cases A and C are both covered by
the conditional CLT and there we see that even in cases covered by the conditional CLT, the FDP can
vary greatly, being nearly Gaussian with means varying by nearly 100-fold. When cases like case B
arise there is no conditional CLT, and by Theorem 3.3, the BH rejection threshold converges to 0 in
probability. In case B, we observe a very heavy tail to the FDP distribution, although fewer than 1 out
of every 5,000 Monte Carlo simulations yields a nonzero FDP, and no simulation yields more than 1
false discovery. In conclusion, the simulations are consistent with the results of Theorems 3.1 and 3.3.
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Figure 5. The histograms show 25,000 samples of the number of false discoveries in the two group model with
a data-driven three factor model for dependence. The 3-factor model has draws A, B and C as described in the
text. The top row has m = 22,283 hypotheses and the bottom has 25 times as many hypotheses. The nominal FDR
control threshold is q = 0.1. Draw C yields a higher FDP while draw A yields a lower one. In draw B, nearly
all of the 25,000 Monte Carlo simulations yielded an FDP = 0, and the small number of simulations for which
FDP � 0 are denoted by orange circles for visibility. The red curves for A and C are asymptotic Gaussians from
Theorem 3.1. Case B does not satisfy the sufficient conditions for the conditional CLT, but satisfies the conditions
for Theorem 3.3.

A large FDP tail is not necessarily indicative of alarming bursty behavior for BH, as the FDP can be
equal to 1 in scenarios where there is only one false discovery. Looking at the FDP simultaneously with
the number of false discoveries Vm gives a clearer sense of whether the bursty behavior is alarming.
In Figure 6, we run 25,000 Monte Carlo simulations using the previously described data-driven 3-
factor model. In contrast to Figure 5, we do not condition on specific realizations of the latent factor
w and we also plot the joint distribution of the FDP and the number of false discoveries rather than
the marginal distribution of the FDP. In the simulations, we set the FDR control parameter q = 0.1 and
repeat the simulations for the nonnull effect size μA ∈ {2,4,6} and for Bernoulli mixture null parameter
π0 ∈ {0.9,0.99,0.999}.

Remark 5. Controlling pFDR using Storey’s q-value is another popular multiple testing approach that
is heralded for avoiding floods of false positives (Storey and Tibshirani (2003)). Our simulations show
that when the nonnull effect sizes are small and the number of nonnulls is sparse the pFDR will be
high, implying that controlling the pFDR would mitigate the issue of burstiness in such cases. When
there are many nonnulls or when the nonnull effect sizes are large, the pFDR is nearly equal to the FDR
(due to few simulations with no discoveries), implying that controlling the pFDR would not mitigate
burstiness in such cases.
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Figure 6. The hexagonal-binned heatmaps each show the results of 25,000 Monte Carlo simulations for the data-
driven 3-factor model described in the text, using various nonnull effect sizes μA and proportions of nulls π0. In
each simulation, the BH method is applied at level q = 0.1 to m = 22,283 test statistics. For each plot, the mean
of the FDP is marked with a solid triangle and the mean amongst nonzero FDP values is marked with a hollow
diamond, which estimate the FDR and pFDR respectively. For the plots with μA ∈ {4,6}, the triangle and diamond
are close enough to overlap.

Remark 6. For the data-driven 3-factor model with m = 22,283, the distribution of FDPm is largely
driven by the realization of the latent factor w. This can be seen in the top panel of Figure 5, and we
further quantified this by running 1,000 Monte Carlo simulations from the model for each of 1,000 dif-
ferent randomly generated latent factor vectors. The variance of the FDP between groups with different
latent factors was approximately 325 times larger than the average variance within each latent factor
vector group.

7. Discussion

Here we discuss the conclusions that can be drawn from our theorems and simulations about when BH
exhibits alarming burstiness and when BH is safe from burstiness concerns. We end with a discussion
of the relevance and feasibility of factor model-based corrections for addressing burstiness concerns.

Burstiness occurs when there are many strong, long-range correlations between the test statistics.
When we model the long-range correlations via a factor model, this phenomenon can be explained by
Theorem 3.1. By Theorem 3.1, the asymptotic limit of FDPm |W is qF0(τ∗)/τ∗, a quantity that can vary
drastically for different realizations of W ∼ N(0, Ik ). The variation in qF0(τ∗)/τ∗ is greater when the
long-range correlations are stronger (or equivalently, when the factor model loading vectors Lmi have
larger magnitude). Therefore, the FDP has high variability when there are many strong, long-range
correlations between the test statistics. Meanwhile, by Theorem 3.2, there could be a flood of false
discoveries, making the bursts severe. Our simulations from the 3-factor model fit to the DMD dataset
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indicate a wide right tail of the FDP distribution as well as severe bursts (see the top-left panel of Figure
1 and Figure 6). Notably, we find that sparsity of the number of nonnulls exacerbates burstiness issues.
This can be explained by Corollary 5.2 and is observed in Figures 4 and 6.

Conversely, our theorems and simulations indicate that there are many settings where the test statis-
tics are correlated, but the BH procedure is free of burstiness concerns. When there are no long-range
correlations, no factor model is needed to model the correlations, so the variance of the FDP will
decrease rapidly as the number of tests increases, even when the short-range correlations are strong.
For example, in the setting of Corollary 4.1, FDPm converges to a quantity less than the desired FDR
control q and has variance of order 1/m, even with strong short-range correlations. The simulations in
the bottom of Figure 1 and all the panels of Figure 3 involve strong short-range correlations and still
demonstrate this desirable behavior (the desirable behavior is not seen in the panels of Figure 3 where
m is small because, in that case, the “short-range” correlations are actually long-range relative to the
number of tests). Even when there are long-range correlations but the long-range correlations are weak,
modeled by a factor model with loading vectors Lmi of small magnitude, the BH procedure will not
exhibit worrisome bursts. With loading vectors Lmi with small magnitude, the γmir terms will not be
sensitive to the realized value of W ∼N(0, Ik ), and in turn F0,F1, τ∗, and qF0(τ∗)/τ∗ will also not be so
sensitive to the realized value of W . Therefore, when the loading vectors Lmi have small magnitude,
the asymptotic limit of FDPm |W given in Theorem 3.1 will not oscillate much as W ∼N(0, Ik ) varies.
Indeed, in Figure 1, when the long-range correlations are all reduced by a factor of 10 (as we move
from the top-left panel to the top-right panel), alarming burstiness is no longer observed.

These results suggest that estimating the correlation structure with a factor model can be useful for
identifying whether or not burstiness is a concern in particular applications. The results further suggest
that methods which estimate and remove the factor model components from the test statistics prior to
applying BH (e.g. methods that estimate W and (Lmi)mi=1, subtract LT

miW from each test statistic, and
subsequently apply BH) can alleviate burstiness issues. A number of such approaches for estimating
and removing factor model components in multiple testing settings have been proposed and have shown
promise in simulations (Fan, Han and Gu, 2012, Fan et al., 2019, Friguet, Kloareg and Causeur, 2009,
Sun, Zhang and Owen, 2012, Wang et al., 2017).

While a full discussion of these recent methods is out of scope for this paper, we briefly note that
there are two major challenges with estimation and removal of factor model components in a multiple
testing setting. First, it is possible that removing the factor model components from the test statistics
might remove some of the important signal that one is trying to detect with hypothesis testing. For
example, this can happen if a large collection of genes is associated with one of the leading factors, yet
at the same time, that collection of genes is also associated with the outcome variable. To avoid such
issues, methods which remove the factor model components often rely upon an assumption that the
number of nonnulls is sparse. Second, estimating the underlying factor model for a dataset is statistically
challenging. It is difficult to estimate the latent factors W and the factor loadings (Lmi)mi=1 well without
a large number of samples, and even choosing the number of latent factors k is a difficult task. For a
comparison of methods for estimating the number of latent factors, see Owen and Wang (2016).
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References

Andrews, D.W.K. and Pollard, D. (1994). An introduction to functional central limit theorems for dependent
stochastic processes. Int. Stat. Rev. 62 119–132.

Azriel, D. and Schwartzman, A. (2015). The empirical distribution of a large number of correlated normal vari-
ables. J. Amer. Statist. Assoc. 110 1217–1228. MR3420696 https://doi.org/10.1080/01621459.2014.958156

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to
multiple testing. J. Roy. Statist. Soc. Ser. B 57 289–300. MR1325392

Benjamini, Y. and Hochberg, Y. (2000). On the adaptive control of the false discovery rate in multiple testing with
independent statistics. J. Educ. Behav. Stat. 25 60–83.

Benjamini, Y. and Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency.
Ann. Statist. 29 1165–1188. MR1869245 https://doi.org/10.1214/aos/1013699998

Chi, Z. (2007). On the performance of FDR control: Constraints and a partial solution. Ann. Statist. 35 1409–1431.
MR2351091 https://doi.org/10.1214/009053607000000037

Delattre, S. and Roquain, E. (2011). On the false discovery proportion convergence under Gaussian equi-
correlation. Statist. Probab. Lett. 81 111–115. MR2740072 https://doi.org/10.1016/j.spl.2010.09.025

Delattre, S. and Roquain, E. (2015). New procedures controlling the false discovery proportion via Romano-Wolf’s
heuristic. Ann. Statist. 43 1141–1177. MR3346700 https://doi.org/10.1214/14-AOS1302

Delattre, S. and Roquain, E. (2016). On empirical distribution function of high-dimensional Gaussian vector com-
ponents with an application to multiple testing. Bernoulli 22 302–324. MR3449784 https://doi.org/10.3150/14-
BEJ659

Efron, B. (2007). Correlation and large-scale simultaneous significance testing. J. Amer. Statist. Assoc. 102 93–103.
MR2293302 https://doi.org/10.1198/016214506000001211

Fan, J., Han, X. and Gu, W. (2012). Estimating false discovery proportion under arbitrary covariance dependence.
J. Amer. Statist. Assoc. 107 1019–1035. MR3010887 https://doi.org/10.1080/01621459.2012.720478

Fan, J., Ke, Y., Sun, Q. and Zhou, W.-X. (2019). FarmTest: Factor-adjusted robust multiple testing with approximate
false discovery control. J. Amer. Statist. Assoc. 114 1880–1893. MR4047307 https://doi.org/10.1080/01621459.
2018.1527700

Farcomeni, A. (2006). More powerful control of the false discovery rate under dependence. Stat. Methods Appl.
15 43–73. MR2281214 https://doi.org/10.1007/s10260-006-0002-z

Farcomeni, A. (2007). Some results on the control of the false discovery rate under dependence. Scand. J. Stat. 34
275–297. MR2346640 https://doi.org/10.1111/j.1467-9469.2006.00530.x

Finner, H., Dickhaus, T. and Roters, M. (2007). Dependency and false discovery rate: Asymptotics. Ann. Statist.
35 1432–1455. MR2351092 https://doi.org/10.1214/009053607000000046

https://doi.org/10.3150/23-BEJ1615SUPP
https://mathscinet.ams.org/mathscinet-getitem?mr=3420696
https://doi.org/10.1080/01621459.2014.958156
https://mathscinet.ams.org/mathscinet-getitem?mr=1325392
https://mathscinet.ams.org/mathscinet-getitem?mr=1869245
https://doi.org/10.1214/aos/1013699998
https://mathscinet.ams.org/mathscinet-getitem?mr=2351091
https://doi.org/10.1214/009053607000000037
https://mathscinet.ams.org/mathscinet-getitem?mr=2740072
https://doi.org/10.1016/j.spl.2010.09.025
https://mathscinet.ams.org/mathscinet-getitem?mr=3346700
https://doi.org/10.1214/14-AOS1302
https://mathscinet.ams.org/mathscinet-getitem?mr=3449784
https://doi.org/10.3150/14-BEJ659
https://doi.org/10.3150/14-BEJ659
https://mathscinet.ams.org/mathscinet-getitem?mr=2293302
https://doi.org/10.1198/016214506000001211
https://mathscinet.ams.org/mathscinet-getitem?mr=3010887
https://doi.org/10.1080/01621459.2012.720478
https://mathscinet.ams.org/mathscinet-getitem?mr=4047307
https://doi.org/10.1080/01621459.2018.1527700
https://doi.org/10.1080/01621459.2018.1527700
https://mathscinet.ams.org/mathscinet-getitem?mr=2281214
https://doi.org/10.1007/s10260-006-0002-z
https://mathscinet.ams.org/mathscinet-getitem?mr=2346640
https://doi.org/10.1111/j.1467-9469.2006.00530.x
https://mathscinet.ams.org/mathscinet-getitem?mr=2351092
https://doi.org/10.1214/009053607000000046


768 D.M. Kluger and A.B. Owen

Finner, H. and Roters, M. (2001). On the false discovery rate and expected type I errors. Biom. J. 43 985–1005.
MR1878272 https://doi.org/10.1002/1521-4036(200112)43:8<985::AID-BIMJ985>3.0.CO;2-4

Finner, H. and Roters, M. (2002). Multiple hypotheses testing and expected number of type I errors. Ann. Statist.
30 220–238. MR1892662 https://doi.org/10.1214/aos/1015362191

Fithian, W. and Lei, L. (2022). Conditional calibration for false discovery rate control under dependence. Ann.
Statist. 50 3091–3118. MR4524490 https://doi.org/10.1214/21-aos2137

Friguet, C., Kloareg, M. and Causeur, D. (2009). A factor model approach to multiple testing under dependence.
J. Amer. Statist. Assoc. 104 1406–1415. MR2750571 https://doi.org/10.1198/jasa.2009.tm08332

Genovese, C. and Wasserman, L. (2004). A stochastic process approach to false discovery control. Ann. Statist. 32
1035–1061. MR2065197 https://doi.org/10.1214/009053604000000283

Gerard, D. and Stephens, M. (2020). Empirical Bayes shrinkage and false discovery rate estimation, allowing for
unwanted variation. Biostatistics 21 15–32. MR4043843 https://doi.org/10.1093/biostatistics/kxy029

Gontscharuk, V. and Finner, H. (2013). Asymptotic FDR control under weak dependence: A counterexample.
Statist. Probab. Lett. 83 1888–1893. MR3069893 https://doi.org/10.1016/j.spl.2013.04.025

Izmirlian, G. (2020). Strong consistency and asymptotic normality for quantities related to the Benjamini-
Hochberg false discovery rate procedure. Statist. Probab. Lett. 160 108713, 10. MR4061847 https://doi.org/
10.1016/j.spl.2020.108713

Kim, K.I. and van de Wiel, M.A. (2008). Effects of dependence in high-dimensional multiple testing problems.
BMC Bioinform. 9 114. https://doi.org/10.1186/1471-2105-9-114

Kluger, D.M. and Owen, A.B. (2024). Supplement to “A central limit theorem for the Benjamini-Hochberg false
discovery proportion under a factor model.” https://doi.org/10.3150/23-BEJ1615SUPP

Korn, E.L., Troendle, J.F., McShane, L.M. and Simon, R. (2004). Controlling the number of false discoveries:
Application to high-dimensional genomic data. J. Statist. Plann. Inference 124 379–398. MR2080371 https://
doi.org/10.1016/S0378-3758(03)00211-8

Kotelnikova, E., Shkrob, M.A., Pyatnitskiy, M.A., Ferlini, A. and Daraselia, N. (2012). Novel approach to meta-
analysis of microarray datasets reveals muscle remodeling-related drug targets and biomarkers in Duchenne
muscular dystrophy. PLoS Comput. Biol. 8 1–10. https://doi.org/10.1371/journal.pcbi.1002365

Lindner, A.M. (2009). Stationarity, mixing, distributional properties and moments of GARCH(p, q)–processes. In
Handbook of Financial Time Series 43–69. Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.
1007/978-3-540-71297-8\protect \T1\textunderscore 2

Lucas, J.E., Kung, H.N. and Chi, J.T.A. (2010). Latent factor analysis to discover pathway-associated putative
segmental aneuploidies in human cancers. PLoS Comput. Biol. 6 e100920:1–15.

Mokkadem, A. (1988). Mixing properties of ARMA processes. Stochastic Process. Appl. 29 309–315. MR0958507
https://doi.org/10.1016/0304-4149(88)90045-2

Neumann, M.H. (2013). A central limit theorem for triangular arrays of weakly dependent random variables, with
applications in statistics. ESAIM Probab. Stat. 17 120–134. MR3021312 https://doi.org/10.1051/ps/2011144

Neuvial, P. (2008). Asymptotic properties of false discovery rate controlling procedures under independence. Elec-
tron. J. Stat. 2 1065–1110. MR2460858 https://doi.org/10.1214/08-EJS207

Owen, A.B. (2005). Variance of the number of false discoveries. J. R. Stat. Soc. Ser. B. Stat. Methodol. 67 411–426.
MR2155346 https://doi.org/10.1111/j.1467-9868.2005.00509.x

Owen, A.B. and Wang, J. (2016). Bi-cross-validation for factor analysis. Statist. Sci. 31 119–139. MR3458596
https://doi.org/10.1214/15-STS539

Paolella, M.S. (2019). Linear Models and Time-Series Analysis: Regression, ANOVA, ARMA and GARCH. Wiley
Series in Probability and Statistics. Hoboken, NJ: Wiley. MR3839332

Romano, J.P. and Shaikh, A.M. (2006). On stepdown control of the false discovery proportion. In Optimal-
ity. Institute of Mathematical Statistics Lecture Notes—Monograph Series 49 33–50. Beachwood, OH: IMS.
MR2337829 https://doi.org/10.1214/074921706000000383

Romano, J.P. and Wolf, M. (2007). Control of generalized error rates in multiple testing. Ann. Statist. 35
1378–1408. MR2351090 https://doi.org/10.1214/009053606000001622

Schwartzman, A. and Lin, X. (2011). The effect of correlation in false discovery rate estimation. Biometrika 98
199–214. MR2804220 https://doi.org/10.1093/biomet/asq075

https://mathscinet.ams.org/mathscinet-getitem?mr=1878272
https://doi.org/10.1002/1521-4036(200112)43:8<985::AID-BIMJ985>3.0.CO;2-4
https://mathscinet.ams.org/mathscinet-getitem?mr=1892662
https://doi.org/10.1214/aos/1015362191
https://mathscinet.ams.org/mathscinet-getitem?mr=4524490
https://doi.org/10.1214/21-aos2137
https://mathscinet.ams.org/mathscinet-getitem?mr=2750571
https://doi.org/10.1198/jasa.2009.tm08332
https://mathscinet.ams.org/mathscinet-getitem?mr=2065197
https://doi.org/10.1214/009053604000000283
https://mathscinet.ams.org/mathscinet-getitem?mr=4043843
https://doi.org/10.1093/biostatistics/kxy029
https://mathscinet.ams.org/mathscinet-getitem?mr=3069893
https://doi.org/10.1016/j.spl.2013.04.025
https://mathscinet.ams.org/mathscinet-getitem?mr=4061847
https://doi.org/10.1016/j.spl.2020.108713
https://doi.org/10.1016/j.spl.2020.108713
https://doi.org/10.1186/1471-2105-9-114
https://doi.org/10.3150/23-BEJ1615SUPP
https://mathscinet.ams.org/mathscinet-getitem?mr=2080371
https://doi.org/10.1016/S0378-3758(03)00211-8
https://doi.org/10.1016/S0378-3758(03)00211-8
https://doi.org/10.1371/journal.pcbi.1002365
https://doi.org/10.1007/978-3-540-71297-8\protect \T1\textunderscore 2
https://doi.org/10.1007/978-3-540-71297-8\protect \T1\textunderscore 2
https://mathscinet.ams.org/mathscinet-getitem?mr=0958507
https://doi.org/10.1016/0304-4149(88)90045-2
https://mathscinet.ams.org/mathscinet-getitem?mr=3021312
https://doi.org/10.1051/ps/2011144
https://mathscinet.ams.org/mathscinet-getitem?mr=2460858
https://doi.org/10.1214/08-EJS207
https://mathscinet.ams.org/mathscinet-getitem?mr=2155346
https://doi.org/10.1111/j.1467-9868.2005.00509.x
https://mathscinet.ams.org/mathscinet-getitem?mr=3458596
https://doi.org/10.1214/15-STS539
https://mathscinet.ams.org/mathscinet-getitem?mr=3839332
https://mathscinet.ams.org/mathscinet-getitem?mr=2337829
https://doi.org/10.1214/074921706000000383
https://mathscinet.ams.org/mathscinet-getitem?mr=2351090
https://doi.org/10.1214/009053606000001622
https://mathscinet.ams.org/mathscinet-getitem?mr=2804220
https://doi.org/10.1093/biomet/asq075


A CLT for BH FDP under a factor model 769

Storey, J.D., Taylor, J.E. and Siegmund, D. (2004). Strong control, conservative point estimation and simultaneous
conservative consistency of false discovery rates: A unified approach. J. R. Stat. Soc. Ser. B. Stat. Methodol. 66
187–205. MR2035766 https://doi.org/10.1111/j.1467-9868.2004.00439.x

Storey, J.D. and Tibshirani, R. (2003). Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. USA
100 9440–9445. MR1994856 https://doi.org/10.1073/pnas.1530509100

Sun, Y., Zhang, N.R. and Owen, A.B. (2012). Multiple hypothesis testing adjusted for latent variables, with an
application to the AGEMAP gene expression data. Ann. Appl. Stat. 6 1664–1688. MR3058679 https://doi.org/
10.1214/12-AOAS561

van der Vaart, A.W. (1998). Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics
3. Cambridge: Cambridge Univ. Press. MR1652247 https://doi.org/10.1017/CBO9780511802256

Wang, J., Zhao, Q., Hastie, T. and Owen, A.B. (2017). Confounder adjustment in multiple hypothesis testing. Ann.
Statist. 45 1863–1894. MR3718155 https://doi.org/10.1214/16-AOS1511

Wang, J., Gui, L., Su, W.J., Sabatti, C. and Owen, A.B. (2022). Detecting multiple replicating signals using adap-
tive filtering procedures. Ann. Statist. 50 1890–1909. MR4474476 https://doi.org/10.1214/21-aos2139

Zhang, C., Fan, J. and Yu, T. (2011). Multiple testing via FDRL for large-scale imaging data. Ann. Statist. 39
613–642. MR2797858 https://doi.org/10.1214/10-AOS848

Received April 2022 and revised December 2022

https://mathscinet.ams.org/mathscinet-getitem?mr=2035766
https://doi.org/10.1111/j.1467-9868.2004.00439.x
https://mathscinet.ams.org/mathscinet-getitem?mr=1994856
https://doi.org/10.1073/pnas.1530509100
https://mathscinet.ams.org/mathscinet-getitem?mr=3058679
https://doi.org/10.1214/12-AOAS561
https://doi.org/10.1214/12-AOAS561
https://mathscinet.ams.org/mathscinet-getitem?mr=1652247
https://doi.org/10.1017/CBO9780511802256
https://mathscinet.ams.org/mathscinet-getitem?mr=3718155
https://doi.org/10.1214/16-AOS1511
https://mathscinet.ams.org/mathscinet-getitem?mr=4474476
https://doi.org/10.1214/21-aos2139
https://mathscinet.ams.org/mathscinet-getitem?mr=2797858
https://doi.org/10.1214/10-AOS848

	Introduction
	Setup and definitions
	Two-group mixture model with factors
	The BH procedure
	Definitions and conditions
	Variance and mixing conditions on epsilon
	Definitions of some subdistributions of p-values and their condition
	Defining the asymptotic ECDF and the Simes point
	Defining a focal interval [a,b][0,1] for our processes
	Defining our stochastic process and its Gaussian process limit
	Regularity conditions on F0, F1, Fm,0 and Fm,1


	Statement of the theorems
	Corollaries when there is no factor model component
	Burstiness in a factor model
	1-factor model for long-range equicorrelated Gaussian noise
	Setting where number of nonnulls is op(sqrt(m))

	Data driven factor model example
	Discussion
	Acknowledgements
	Funding
	Supplementary Material
	References

