

1 Back action evasion in optical lever detection

2 SHAN HAO,¹ THOMAS P. PURDY,^{1,*}

3 ¹*Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA*

4 ^{*}tpp9@pitt.edu

5 **Abstract:** The optical lever is a centuries old and widely-used detection technique employed in
6 applications ranging from consumer products and industrial sensors to precision force microscopes
7 used in scientific research. However, despite the long history, its quantum limits have yet to
8 be explored. In general, any precision optical measurement is accompanied by optical force
9 induced disturbance to the measured object (termed as back action) leading to a standard quantum
10 limit (SQL). Here, we give a simple ray optics description of how such back action can be
11 evaded in optical lever detection. We perform a proof-of-principle experiment demonstrating the
12 mechanism of back action evasion in the classical regime, by developing a lens system that cancels
13 extra tilting of the reflected light off a silicon nitride membrane mechanical resonator caused
14 by laser-pointing-noise-induced optical torques. We achieve a readout noise floor two orders
15 of magnitude lower than the SQL, corresponding to an effective optomechanical cooperativity
16 of 100 without the need for an optical cavity. As the state-of-the-art ultra low dissipation
17 optomechanical systems relevant for quantum sensing are rapidly approaching the level where
18 quantum noise dominates, simple and widely applicable back action evading protocols will be
19 crucial for pushing beyond quantum limits.

20 1. Introduction

21 Optical lever detection, which measures the angular deviation of light reflecting from a tilting
22 surface, is among the oldest precision optical measurement techniques [1]. For multiple centuries,
23 the technique has been widely employed in numerous applications ranging from consumer
24 products [2, 3] and industrial sensors such as optical comparators to high precision scientific
25 instruments such as atomic force microscopy(AFM) and its various variants, torsional balances
26 for big-G measurement [4], and active mirror alignment for gravitational wave detectors [5, 6].
27 Although the optical lever is old and simple, contrary to general intuition, it is as sensitive
28 as optical interferometry [7, 8], which has been more associated with precision measurement.
29 However, the quantum limits of optical level detection have yet to be experimentally explored,
30 as systems to date have been limited by thermal or other classical noise sources. Advances in
31 nanomechanical resonators in the past few years [9–14] have pushed the device quality factor
32 to a new level, reducing thermal noise, making quantum noise caused by optical forces (i.e.,
33 measurement back action) a dominant limit to be overcome. Here, we show that the effects of
34 back action are evaded by modifying the optical lever beam path with a carefully designed lens
35 system.

36 In optical lever detection, quantum measurement back action presents as noisy torques from
37 random arriving photons (shot noise) recoiling off a device. The standard quantum limit (SQL)
38 is the minimum noise achieved by balancing shot noise and its back action induced disturbance.
39 Methods that sidestep this limit [15–17] are referred to as back action evasion. So far, the SQL
40 and protocols for beating it have been extensively studied in interferometric optomechanical
41 systems [18–20]. Surpassing the SQL will extend the scope and sensitivity of gravitational wave
42 detectors [21] and enhance searches for dark matter candidates [22, 23] and tests of the validity
43 of quantum mechanics at a macroscopic scale [24]. Most of the work done so far on back action
44 evasion utilizes optical cavities to enhance optomechanical interaction strength. On the other
45 hand, such cavities limit bandwidth, complicate the setup, and make systems prone to classical
46 laser noise. One notable exception is recent work in levitated nanoparticle systems that approach

47 the regime where back action can be evaded without using a cavity [25, 26].

48 The typical angular resolution for optical lever detection is on the order of $10 \text{ prad}/\sqrt{\text{Hz}}$
49 for applications such as AFMs [27, 28]. The technique has been pushed further with multiple
50 bounces [29], non-classical laser sources such as single or multimode squeezed light [30, 31],
51 and with cavity enhancement [32, 33]. However, these experiments are still far from the SQL.
52 A method to surpass SQL was theoretically proposed only a few years ago by Enomoto, et
53 al. [34]. Noise correlations introduced by the optomechanical interaction produce squeezing
54 (sometimes referred to as ponderomotive squeezing) and can be used to evade back action in an
55 optical lever detector, ultimately providing the resource for a quantum-enhanced measurement
56 scheme capable of surpassing the SQL. We present a simple ray optics picture of this process
57 and experimentally demonstrate this protocol for back action evasion at room temperature with
58 classically driven laser noise. We observe an optomechanical cooperativity, which characterizes
59 measurement strength relative to the SQL, up to 100. We also find that parameters needed for
60 evading quantum back-action are within experimental reach. This quantum-enhanced optical
61 lever detection protocol will be beneficial for ultra-high precision measurements such as AFM or
62 scanning force microscopy utilizing high Q mechanical resonators [35], optical-tweezers-based
63 sensors, and novel types of gravitational-wave detectors [36].

64 **2. Quantum noise in optical lever**

65 An optical lever, in itself, is very simple as shown in Fig. 1(a). In our system, a laser reflects off
66 the node of a suspended membrane mechanical resonator. With the laser beam waist (w_0) much
67 smaller than the mechanical wavelength (λ_m), the out-of-plane motion of the membrane at the
68 node can be approximated as a tilting mirror. The deflection of the laser is then measured by a split
69 photodetector, which takes the difference of the optical power on left and right sides. The precision
70 of optical lever detection is limited by quantum noise, as photons strike the split photodetector
71 randomly in time and with a spacial distribution following the beam intensity profile (represented
72 by finite beam width in Fig. 1(a) and spread rays in Fig. 1(b)). This shot-noise-limited readout
73 floor improves with laser power. Additionally, the random recoil of photons off the membrane
74 imposes an imbalanced force noise, which tilts the mirror and redistributes the reflected photons.
75 Such back action noise increases with laser power. The standard quantum limit resides where the
76 sum of the two noise sources is at a minimum.

77 A simple case of back action evasion in an optical lever can be visualized in a ray optics
78 picture as shown in Fig. 1(b). Uniformly distributed incoming rays reflect off a flat mirror and
79 are focused through an output lens to its Fourier plane, P1 (red rays). Tilting of the mirror (blue
80 line) by an external force displaces the focal point off the optical axis (blue rays). An incoming
81 photon's beam path is described by a random incoming red ray. Such a single ray off the axis,
82 produces a torque on the mirror proportional to the arm length. This torque causes a tilting of the
83 mirror that gets larger when the ray is further from the pivot point, and the ray is consequently
84 deflected further from the original reflection direction. Thus, the back-action-modified beam
85 path for a given ray is equivalent to reflecting off a convex parabolic mirror (yellow line). In other
86 words, the flat mirror effectively picks up a dynamical curvature due to optical back action forces.
87 The deflected photons (yellow rays) converge back to the optical axis at a certain distance beyond
88 P1. A split photodetector placed there sees no effects of back action, but retains sensitivity to the
89 tilting of the mirror from external forces.

90 **3. Gaussian optics picture**

91 To better quantify the quantum noise, we decompose the optical field in the basis of Hermite-
92 Gaussian (HG) modes, generalizing the treatment of [34]. In this section, we present the results
93 of our calculations, which are detailed in the Appendix. We provide an analysis including the
94 effect of higher order modes in Supplement 1. $U_{mn}(x, y, z)$ is the HG mode of order m in x



Fig. 1. (a) Optical lever detection of a membrane mechanical resonator. (b) Ray optics visualization of back action evasion in the low frequency limit. If the surface is fixed, the incoming red beams are reflected and focused by a lens to one point. If the mirror tilts due to external force, the rays will be focused to a different point (blue lines) on plane P1(Fourier plane). The yellow rays take account of the result of optical forces on the mirror. Rays impinging further from the pivot point give larger back action torques, and so the yellow rays appear to be reflected off a parabolic mirror and focused to plane P2, which we term back action evasion plane. The mirror curvature, and thus the location of P2, is frequency dependent following the mechanical response function. The maximum SNR sits between P1 and P2.

95 direction and n in y direction and propagating in z direction (see Supplement 1 Sec. S1.E for
96 details). A laser in a coherent state of the U_{00} mode reflecting from an undulating surface can
97 be thought of as scattering light into higher order HG modes. To first order, a small tilt of
98 this Gaussian laser beam can be characterized as the addition of a U_{10} component with a small
99 imaginary amplitude (in addition, small transverse displacements of the laser correspond to a real
100 amplitude U_{10} component). This limit is relevant for our case where $w_0 \ll \lambda_m$ and the amplitude
101 of motion of the membrane is small, and forms the basis of optical lever measurement.

102 In this case, the input field can be approximated as [37,38]

$$\hat{U}_{in} = \alpha U_{00}(x, y, z) + (d\hat{X}_1 + id\hat{X}_2)U_{10}(x, y, z), \quad (1)$$

where $\alpha \gg 1$ is the coherent amplitude (neglecting quantum fluctuations in the fundamental mode, which do not contribute to the back action or measured signal in our experiment). $d\hat{X}_1$ and $d\hat{X}_2$ are vacuum amplitude and phase fluctuations of U_{10} that give rise to quantum limited beam displacement and pointing noise of the laser, respectively. The latter is responsible for readout noise at the detector, whereas the former seeds the mechanical back action on the membrane. The reflected field \hat{U}_{out} can be associated with the input field \hat{U}_{in} as (up to a change of direction of propagation)

$$\hat{U}_{out}(z = 0) = e^{-i2k\hat{\Phi}(x, y, t)}\hat{U}_{in}(z = 0),$$

103 where k is the laser wave number and $\hat{\Phi}(x, y, t)$ is the out-of-plane motion of the resonator. For a
104 small beam waist, we can approximate $\hat{\Phi} \approx \hat{\beta}(t)x$, where $\hat{\beta}$ is the tilting angle of the surface of the
105 membrane. $\hat{\beta}(\omega) \approx k_m \hat{X}(\omega) = k_m \chi_m(\omega)(\delta\hat{F}(\omega) + \hat{R}(\omega))$ has 2 sources, one generated by the
106 thermal random force $\hat{R}(t)$ and the other generated by the optical force $\delta\hat{F}(t) \approx 2|\alpha|\hbar k k_m w_0 d\hat{X}_1$.
107 Here \hat{X} is the amplitude of motion and $\chi_m(\omega)$ is the mechanical response function. (See

108 Appendix for details.) The fluctuations on the output U_{10} mode are then given by:

$$d\hat{X}_1(\omega) \rightarrow d\hat{X}_1(\omega) \quad (2)$$

$$\begin{aligned} d\hat{X}_2(\omega) &\rightarrow d\hat{X}_2(\omega) - \alpha w_0 k \hat{\beta}(\omega) \\ &= d\hat{X}_2(\omega) + 2\hbar D \chi_m(\omega) \cdot d\hat{X}_1(\omega) + \sqrt{D} \chi_m(\omega) \hat{R}(\omega). \end{aligned} \quad (3)$$

109 Here $D = N|kk_m w_0|^2$. $N = |\alpha|^2$ is the photon flux, and $k_m = \frac{2\pi}{\lambda_m}$. In this process, the reflection
110 due to back action induced tilting imprints the amplitude noise of U_{10} onto its phase quadrature.
111 The generated correlation between amplitude and phase quadrature of the reflected beam is very
112 similar to ponderomotive squeezing in cavity optomechanics [39–41] but different in that another
113 spatial mode is put in a squeezed vacuum state as opposed to being bright squeezed.

114 The U_{00} mode does not contain information about the tilting of the membrane, but it acts
115 as a local oscillator when weighted by the split photodetector step weighting function (± 1 for
116 two halves), allowing us to extract information about the tilting angle from the U_{10} mode. As
117 the reflected beam propagates, the Gouy angle $\theta = \theta(z)$ generates a relative phase shift of θ
118 between U_{00} and U_{10} . Thus, the Gouy angle is equivalent to the measured quadrature of U_{10} .
119 (see Supplement 1 Sec. S1.G for details.) Picking a particular quadrature just requires putting
120 the split photodetector at a specific location along the beam path, or adding lenses to adjust the
121 Gouy phase.

122 Putting everything together, we can write down the expression for the power spectrum of the
123 measured membrane tilting angle as

$$S_\beta = S_\beta^{Ba} + S_\beta^{Imp} + S_\beta^{Ba,Imp} + S_\beta^{Th} + S_\beta^{Detc}, \quad (4)$$

124 where $S_\beta^{Ba} = N\hbar^2 k^2 w_0^2 k_m^4 |\chi_m|^2$ is the back action of the laser on the membrane, $S_\beta^{Imp} =$
125 $\frac{1}{4N w_0^2 k^2 \sin^2 \theta}$ is the imprecision readout noise from the laser shot noise, S_β^{Th} is the thermal and
126 zero point motion of the membrane, S_β^{Detc} counts for the loss of quantum efficiency in detection,
127 and $S_\beta^{Ba,Imp} = \hbar k_m^2 \cot(\theta) \operatorname{Re}\{\chi_m\}$ is the interference term from the optomechanically induced
128 correlation between the two quadratures described by Eq. (2) and Eq. (3) (see Supplement 1
129 Sec. S1.G for details). The minimum measurement noise (minimized over reflected power) that
130 we can achieve neglecting the last three terms of Eq. (4) occurs at $\theta = \pi/2$ and represents the
131 standard quantum limit for our system, $S_\beta^{SQL} = \hbar k_m^2 |\chi_m|$. Including the interference term, we
132 find $S_\beta \geq \hbar k_m^2 \operatorname{Im}\{\chi_m\}$ (for all θ and reflected laser powers), which sets the Heisenberg limit.
133 Over a particular range of Gouy phases the interference term can be made destructive and the
134 SQL can be beaten. Measuring at the (frequency dependent) optimal value of θ provides an
135 optimal detection basis of the superposition of the U_{00} and U_{10} modes.

136 4. Proof-of-principle experiment

137 At room temperature, thermal motion dominants over quantum back action for devices we
138 currently have. To demonstrate the principle of back action evasion, we intentionally add classical
139 laser displacement fluctuations Δx that are much larger than the quantum noise by modulating
140 the laser spot position. In this case Eq. (4) becomes (see Appendix)

$$S_\beta = \frac{S_{\Delta x}/w_0^2}{N w_0^2 k^2 \sin^2 \theta} |\cos \theta + 2\hbar D \chi_m \sin \theta|^2 + S_\beta^{th}. \quad (5)$$

141 where $S_{\Delta x}(\omega)$ is the spectrum of the classical laser position fluctuations, and we have neglected
142 the quantum noise. As shown in Fig. 2, a commercially available (Norcada Inc.) silicon nitride
143 (SiN) low stress (about 200 MPa) membrane (3.5 mm long, 1.5 mm wide and 100 nm thick) is

144 clamped inside a vacuum chamber (1.3e-7 Torr) and positioned at the focal plane of the objective
 145 lens ($f = 125$ mm). An Acousto-Optic Modulator(AOM) is located at the other focal plane of
 146 the objective lens and is frequency modulated(FM) so that angular deviation of the 1st order
 147 diffracted beam is turned into laser (1064 nm) spot position modulation at the membrane. The
 148 reflected laser is then steered through an output lens ($f = 125$ mm) to a split photodetector that
 149 can move along the beam path to measure at different quadrature angles. The output lens maps
 150 the far field onto its Fourier plane, generating additional accumulated Gouy phase [42](also see
 151 Supplement 1 Sec. S1.F for details) allowing us to access all quadratures with finite movement
 152 of the split photodetector. Near the Fourier plane, the split photodetector is insensitive to the
 153 injected noise, but sensitive to the vibrations of the membrane.

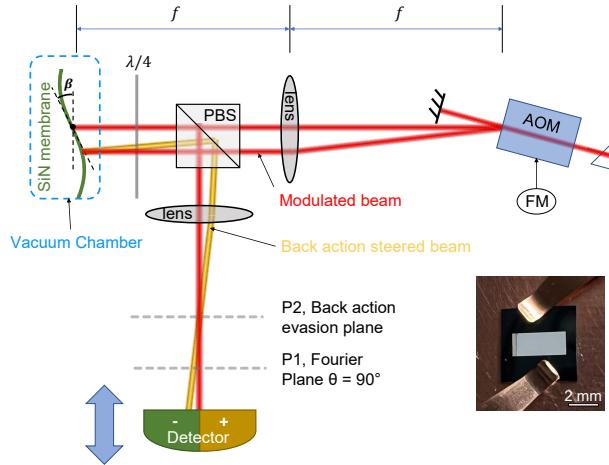


Fig. 2. An FM modulated AOM is placed at one focal plane of the input lens and the SiN membrane is at the other, so that the angular modulation of the first order diffracted beam turns into position modulation at the plane of the device. The modulated beam disturbs the motion of the membrane and deflects itself into a different direction (yellow). The illustrated case corresponds to a modulation frequency higher than the mechanical resonance frequency, so that the mechanical response lags 180° behind the modulated force, leading to the reflected beam being steered toward the undisplaced beam and putting the back action evasion plane P2 before P1. Inset: SiN membrane device.

154 We modulate the laser spot position by chirping (which plays the role of classical noise) the
 155 AOM FM frequency across the resonance of the mechanical mode of interest ($f_m \approx 371$ kHz).
 156 The resultant driven motion is much larger than the thermal motion. Then we measure the
 157 spectral response of the tilting angle at different quadrature angles($S_\beta(\theta)$) by translating the split
 158 photodetector along the beam path near the Fourier plane and averaging at each quadrature angle
 159 for longer than the decay time of the mode (see Supplement 1 Sec. S2.G for details).

160 A density plot of the measured spectra against quadrature angles is shown in Fig. 3(b). We
 161 calculate the corresponding theoretical density plot (Fig. 3(a)) from Eq. (5) based on independently
 162 measured experimental parameters. To visualize the spectra $S_\beta(\theta)$, we normalize to the measured
 163 background noise floor $S_\beta^{Cla}(\theta) = \frac{S_{\Delta x}/w_0^2}{N w_0^2 k^2} \cot^2 \theta$, i.e., the projection of the classical injected
 164 noise to the measured quadrature. Such normalization mimics that of the spectrum to laser
 165 shot noise in the case of quantum back action evasion, by considering our classical injected
 166 noise as artificially enlarged quantum amplitude fluctuations. In the case of pure quantum noise,
 167 the shot-noise-limited phase quadrature fluctuations would contribute a significant imprecision
 168 background to the overall signal, creating a quadrature-independent background level. The region

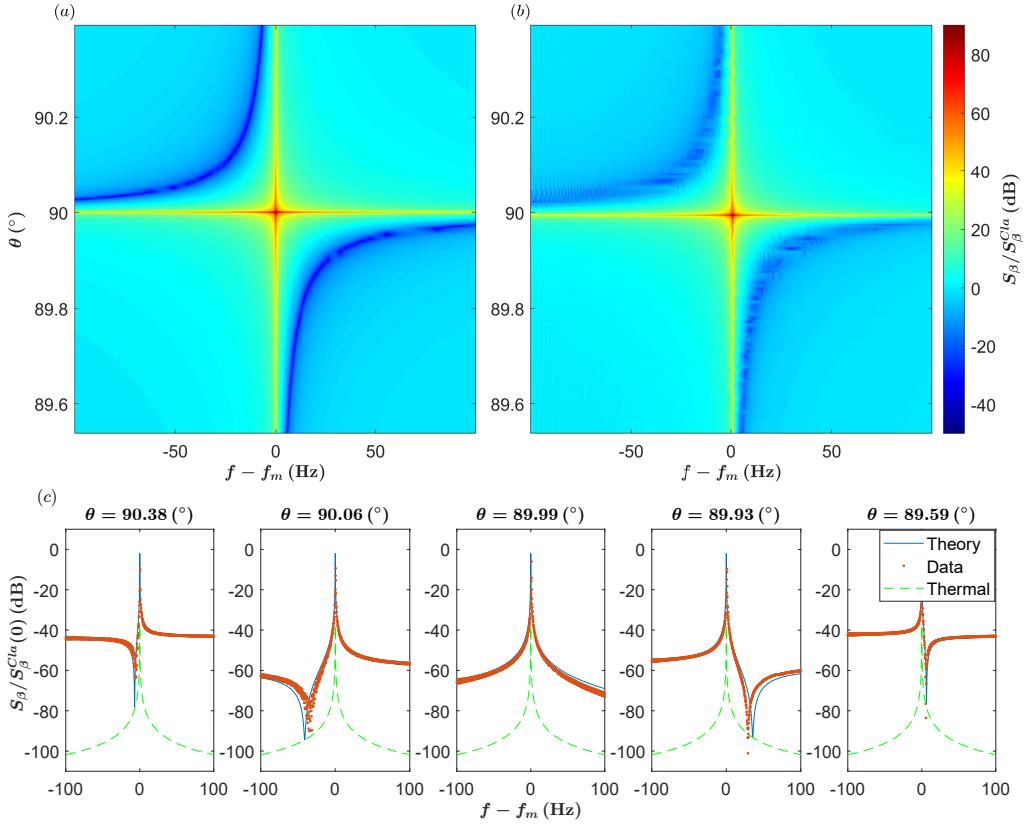


Fig. 3. (a) Zero free parameter theoretical expectation of S_β normalized to injected noise at corresponding quadrature angle $S_\beta^{Cla}(\theta)$ versus quadrature angles and frequencies.

(b) Corresponding experiment data. Mode frequency $f_m = 371$ kHz, $Q = 3.2 \times 10^6$, $m_{eff} = 4.06 \times 10^{-10}$ kg, $T = 297.5$ K and the laser power $P = 21$ mW. Observation of region with less than 0 dB demonstrates the interference mechanism of back action evasion in optical lever detection. (c) Expectation and experimental data of S_β at several representative quadrature angles θ normalized to input noise $S_\beta^{Cla}(\theta = 0)$.

The curves can be interpreted as the gain function at different quadrature angles. The green dashed curves mark the thermal motion level, which stops dips from going deeper and demonstrates our ability to resolve small motion on top of the large injected noise. Due to the sub-Hz resonance frequency random drift which is beyond our active control capability, the sharp peaks and dips are blurred by random resonance frequency drift.

169 below 0 dB is where the perceived motion spectrum is smaller than the artificially injected noise
 170 floor, a classical equivalent of ponderomotive squeezing.

171 Figure 3(c) are several spectra from the same data set at some representative quadrature angles.
 172 These spectra are normalized to the input noise $S_\beta^{Cla}(\theta = 0^\circ)$. The curves can thus be interpreted
 173 as the gain function of the system with the peak of the motion approaching 0 dB, corresponding
 174 to a measured cooperativity close to 1. Zero free parameter theoretical expectations are shown
 175 as solid blue lines to have excellent qualitative agreement with experiment data. At 90°, the
 176 curve is just the Lorentzian of the classical noise driven motion of the mechanical mode with no
 177 back action evasion, equivalent to what will be measured in the far field. At other quadrature
 178 angles, the destructive interference (the dips in the curves) of injected noise and its driven motion

179 emerges in a frequency and quadrature dependent fashion, demonstrating the mechanism of back
 180 action evasion in optical lever detection. Green dashed lines are the expected thermal motion
 181 spectrum, which stops the back action evasion dips from reaching deeper, and demonstrates our
 182 ability to resolve small motion on top of the large classical injected noise.

183 **5. Cooperativity in optical lever**

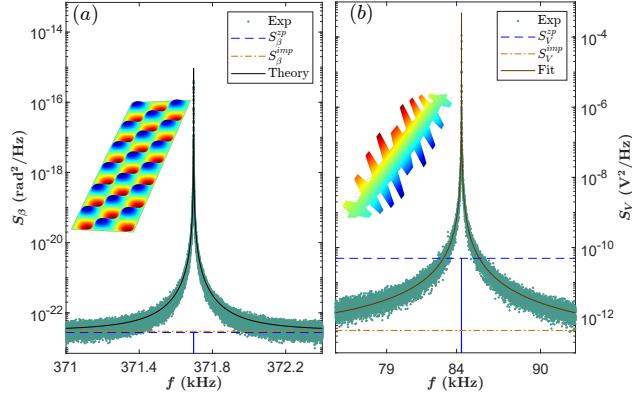


Fig. 4. (a) Room temperature thermal motion PSD of the membrane device inspected in back action experiment. The laser power is instead $P = 27.2$ mW. The green dots are experimental data averaged for over 30 minutes. Black is the zero free parameter calculation. The blue dashed line marks the peak of zero point motion of the device, which is $5.23 \text{ prad}/\sqrt{\text{Hz}}$. The orange dash-dotted line marks the measured imprecision noise level, which is $5.45 \text{ prad}/\sqrt{\text{Hz}}$, slightly above the zero point motion. (b) Thermal motion PSD (as signal V measured by a split photodetector) of a SiN phononic crystal string of $f_m \approx 84 \text{ kHz}$, $Q \approx 1.0 \times 10^5$ and $m_{eff} \approx 7.3 \times 10^{-13} \text{ kg}$ at $T = 20 \text{ K}$. A Lorentzian fit yield the cooperativity to be approximately $C \approx 100$. Insets show mode shapes from simulation.

184 Quantum back action evasion requires large optomechanical cooperativity, C . For an ideal
 185 measurement, a cooperativity of 1 indicates the ability to resolve signals at the scale of the zero
 186 point motion and the regime where the back action induced motion becomes comparable to the
 187 zero point motion. For $C > 1$, the signal from back action induced motion dominated over the
 188 shot noise floor. For $C > n_{th}$, (where n_{th} is the average thermal occupation of the mechanical
 189 resonator) the back action induced motion becomes larger than the thermal motion and limits
 190 measurement sensitivity. Calculated from the signal-to-noise ratio (SNR) of zero point motion to
 191 shot noise limited readout floor, the explicit form of the effective cooperativity for a mechanical
 192 membrane or string of sinusoidal mode shape and under small beam waist approximation can be
 193 written as

$$C = \frac{2PQ}{m_{eff}} \frac{k w_0^2 k_m^2}{c \omega_m^2}, \quad (6)$$

194 where P is the laser power reflected from the device, Q is the mode quality factor, m_{eff} is the
 195 effective mass of the mode, and ω_m is the mechanical mode angular frequency.

196 Figure 4(a) shows the measured thermal motion spectrum of the mode probed in the back action
 197 evasion experiment. The zero-point motion spectrum, S_β^{zP} , is at the same level as S_β^{imp} . From
 198 Eq. (6) and with the measured experiment parameters, we estimate the cooperativity to be $C \approx 2$.
 199 Given the estimated net quantum efficiency $\eta \approx 21\%$ (including geometrical factors [43–45] and

200 optical losses) (see Supplement 1 Sec. S2.B for details), our measured SNR of the thermal motion
201 spectrum (peak to noise floor) is consistent with the theoretical expectation ($\text{SNR} = 4\eta n_{th}C$).

202 The theory curves in Fig. 4 have already taken into account the quantum efficiency (also for
203 theory curves in Fig. 3), and agree very well with experiment data. To illustrate the achievability
204 of large cooperativity in an optical lever system and to push the experiment toward quantum back
205 action evasion, we measure the thermal motion power spectrum density (PSD) of a SiN phononic
206 crystal string [9] (about 2 mm long, 10 μm wide and 120 nm thick) fundamental torsional
207 mode with laser of power $P = 12.2$ mW focused to a beam waist $w_0 = 4 \mu\text{m}$ at $T = 20$ K (see
208 Supplement 1 Sec. S2.H for details)), as shown in Fig. 4(b). Using Q measured from ring down,
209 we fit the Lorentzian PSD and estimate the cooperativity to be around $C \approx 100$. Compared to the
210 membrane, the cooperativity of the string is much higher due to its smaller effective mass m_{eff} .
211 We also note a recent report [14] of higher SNR for torsional mode with wider strings of much
212 higher Q .

213 6. Outlook

214 We finally consider the experimental prospects for implementing the optical lever back action
215 evading protocol in the quantum regime, where it can be utilized to beat the SQL. To observe
216 quantum back action evasion, we will need the cooperativity to be larger than the thermal
217 occupation. This is possible with parameters available from state-of-the-art optomechanical string
218 devices. With phononic crystal shielding, soft clamping [46, 47], and dissipation dilution [9, 14],
219 quality factors can exceed $Q > 10^9$. Moreover, the effective masses m_{eff} of these string
220 devices are much smaller than those of membranes. Strained crystalline materials such as
221 Si [48] or SiC [10] can have still lower dissipation at cryogenic temperature. Soft-clamped,
222 2D membrane resonators have better laser power handling and have been demonstrated to have
223 comparable quality factors as that of strings [12, 49]. Such state-of-the-art mechanical resonators
224 can increase cooperativity by several orders of magnitude, potentially pushing it above the
225 thermal occupation. On the optical side, photonic crystal mirrors can be implemented in string
226 or membrane resonators to push reflectivity close to unity [50, 51] increasing the reflected laser
227 power and potentially incorporating multiple bounces [29] to further enhance the per-photon
228 interaction strength. Such high reflectivity resonators can also be incorporated as one mirror
229 in an optical cavity with a specially tailored transverse mode spectrum in order to resonantly
230 enhance the cooperativity [52] by another few orders, leaving considerable parameter space to
231 deal with experimental imperfections and laser heating. With these improvements, quantum back
232 action will be the dominant noise at cryogenic temperature, but can now be readily dealt with.

233 **Funding.** NSF foundation Award No.2047823 and Charles E. Kaufman foundation.

234 **Acknowledgments.** We thank Robinjeet Singh for fabricating our string mechanical resonator at the NIST
235 Center for Nanoscale Science and Technology.

236 **Disclosures.** The authors declare no conflicts of interest.

237 **Data availability.** Data underlying the results presented in this paper are not publicly available at this time
238 but may be obtained from the authors upon reasonable request.

239 **Supplemental document.** See Supplement 1 for supporting content.

240 References

- 241 1. R. V. Jones, “Some developments and applications of the optical lever,” *J. Sci. Instruments* **38**, 37–45 (1961).
- 242 2. C. C. Hsiao, C. Y. Peng, and T. S. Liu, “An optical lever approach to photodetector measurements of the pickup-head
243 flying height in an optical disk drive,” *Meas. Sci. Technol.* **17**, 2335–2342 (2006).
- 244 3. F. W. Cuomo, “Theory and applications of optical fiber lever sensors,” Nasa contractor report, cr-185344 (1989).
- 245 4. C. Rothleitner and S. Schlamminger, “Invited review article: Measurements of the newtonian constant of gravitation,
246 g,” *Rev. Sci. Instruments* **88**, 111101 (2017).

247 5. E. Hirose, K. Kawabe, D. Sigg, R. Adhikari, and P. R. Saulson, "Angular instability due to radiation pressure in the
248 ligo gravitational-wave detector," *Appl. Opt.* **49**, 3474–3484 (2010).

249 6. K. Kokeyama, J. G. Park, K. Cho, S. Kirii, T. Akutsu, M. Nakano, S. Kambara, K. Hasegawa, N. Ohishi, K. Doi, and
250 S. Kawamura, "Demonstration for a two-axis interferometric tilt sensor in kagra," *Phys. Lett. A* **382**, 1950–1955
251 (2018).

252 7. C. A. J. Putman, B. G. de Groot, N. F. van Hulst, and J. Greve, "A theoretical comparison between interferometric
253 and optical beam deflection technique for the measurement of cantilever displacement in afm," *Ultramicroscopy*
254 **42-44**, 1509–1513 (1992).

255 8. S. M. Barnett, C. Fabre, and A. Maitre, "Ultimate quantum limits for resolution of beam displacements," *The Eur.
256 Phys. J. D - At. Mol. Opt. Plasma Phys.* **22**, 513–519 (2003).

257 9. A. H. Ghadimi, S. A. Fedorov, N. J. Engelsen, M. J. Bereyhi, R. Schilling, D. J. Wilson, and T. J. Kippenberg, "Elastic
258 strain engineering for ultralow mechanical dissipation," *Science* **360**, 764–768 (2018).

259 10. E. Romero, V. M. Valenzuela, A. R. Kermany, L. Sementilli, F. Iacopi, and W. P. Bowen, "Engineering the dissipation
260 of crystalline micromechanical resonators," *Phys. Rev. Appl.* **13**, 044007 (2020).

261 11. M. J. Bereyhi, A. Beccari, R. Groth, S. A. Fedorov, A. Arabmoheghi, T. J. Kippenberg, and N. J. Engelsen,
262 "Hierarchical tensile structures with ultralow mechanical dissipation," *Nat. Commun.* **13**, 3097 (2022).

263 12. Y. Tsaturyan, A. Barg, E. S. Polzik, and A. Schliesser, "Ultracoherent nanomechanical resonators via soft clamping
264 and dissipation dilution," *Nat. Nanotechnol.* **12**, 776–783 (2017).

265 13. G. S. MacCabe, H. Ren, J. Luo, J. D. Cohen, H. Zhou, A. Sipahigil, M. Mirhosseini, and O. Painter, "Nano-acoustic
266 resonator with ultralong phonon lifetime," *Science* **370**, 840–843 (2020).

267 14. J. R. Pratt, A. R. Agrawal, C. A. Condos, C. M. Pluchar, S. Schlamminger, and D. J. Wilson, "Nanoscale torsional
268 dissipation dilution for quantum experiments and precision measurement," *Phys. Rev. X* **13**, 011018 (2023).

269 15. V. B. Braginsky, F. Y. Khalili, and K. S. Thorne, *Quantum Measurement* (Cambridge University Press, Cambridge,
270 1992).

271 16. H. J. Kimble, Y. Levin, A. B. Matsko, K. S. Thorne, and S. P. Vyatchanin, "Conversion of conventional gravitational-
272 wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics,"
273 *Phys. Rev. D* **65**, 022002 (2001).

274 17. A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf, "Introduction to quantum noise,
275 measurement, and amplification," *Rev. Mod. Phys.* **82**, 1155–1208 (2010).

276 18. J. Suh, A. J. Weinstein, C. U. Lei, E. E. Wollman, S. K. Steinke, P. Meystre, A. A. Clerk, and K. C. Schwab,
277 "Mechanically detecting and avoiding the quantum fluctuations of a microwave field," *Science* **344**, 1262–1265
278 (2014).

279 19. D. Mason, J. Chen, M. Rossi, Y. Tsaturyan, and A. Schliesser, "Continuous force and displacement measurement
280 below the standard quantum limit," *Nat. Phys.* **15**, 745–749 (2019).

281 20. H. Yu *et al.*, "Quantum correlations between light and the kilogram-mass mirrors of ligo," *Nature* **583**, 43–47 (2020).

282 21. B. P. Abbott *et al.*, "Observation of gravitational waves from a binary black hole merger," *Phys. Rev. Lett.* **116**,
283 061102 (2016).

284 22. D. Carney, S. Ghosh, G. Krnjaic, and J. M. Taylor, "Proposal for gravitational direct detection of dark matter," *Phys.
285 Rev. D* **102**, 072003 (2020).

286 23. D. Carney *et al.*, "Mechanical quantum sensing in the search for dark matter," *Quantum Sci. Technol.* **6**, 024002
287 (2021).

288 24. M. Carlesso, S. Donadi, L. Ferlaldi, M. Paternostro, H. Ulbricht, and A. Bassi, "Present status and future challenges
289 of non-interferometric tests of collapse models," *Nat. Phys.* **18**, 243–250 (2022).

290 25. A. Militaru, M. Rossi, F. Tebbenjohanns, O. Romero-Isart, M. Frimman, and L. Novotny, "Ponderomotive squeezing
291 of light by a levitated nanoparticle in free space," *Phys. Rev. Lett.* **129**, 053602 (2022).

292 26. L. Magrini, V. A. Camarena-Chávez, C. Bach, A. Johnson, and M. Aspelmeyer, "Squeezed light from a levitated
293 nanoparticle at room temperature," *Phys. Rev. Lett.* **129**, 053601 (2022).

294 27. S. Alexander, L. Hellemans, O. Marti, J. Schneir, V. Elings, P. K. Hansma, M. Longmire, and J. Gurley, "An
295 atomic-resolution atomic-force microscope implemented using an optical lever," *J. Appl. Phys.* **65**, 164–167 (1989).

296 28. G. Meyer and N. M. Amer, "Novel optical approach to atomic force microscopy," *Appl. Phys. Lett.* **53**, 1045–1047
297 (1988).

298 29. J. M. Hogan, J. Hammer, S. W. Chiow, S. Dickerson, D. M. S. Johnson, T. Kovachy, A. Sugarbaker, and M. A.
299 Kasevich, "Precision angle sensor using an optical lever inside a sagnac interferometer," *Opt. Lett.* **36**, 1698–1700
300 (2011).

301 30. N. Treps, N. Grosse, P. Bowen Warwick, C. Fabre, A. Bachor Hans, and K. Lam Ping, "A quantum laser pointer,"
302 *Science* **301**, 940–943 (2003).

303 31. R. C. Pooser and B. Lawrie, "Ultrasensitive measurement of microcantilever displacement below the shot-noise limit,"
304 *Optica* **2**, 393–399 (2015).

305 32. K. Komori, Y. Enomoto, C. P. Ooi, Y. Miyazaki, N. Matsumoto, V. Sudhir, Y. Michimura, and M. Ando, "Attonewtton-
306 meter torque sensing with a macroscopic optomechanical torsion pendulum," *Phys. Rev. A* **101**, 011802(R) (2020).

307 33. T. Shimoda, Y. Miyazaki, Y. Enomoto, K. Nagano, and M. Ando, "Coherent angular signal amplification using an
308 optical cavity," *Appl. Opt.* **61**, 3901–3911 (2022).

309 34. Y. Enomoto, K. Nagano, and S. Kawamura, "Standard quantum limit of angular motion of a suspended mirror and

310 homodyne detection of a ponderomotively squeezed vacuum field," Phys. Rev. A **94**, 012115 (2016).

311 35. D. Halg, T. Gisler, Y. Tsaturyan, L. Catalini, U. Grob, M.-D. Krass, M. Heritier, H. Mattiat, A.-K. Thamm, R. Schirhagl,
312 E. C. Langman, A. Schliesser, C. L. Degen, and A. Eichler, "Membrane-based scanning force microscopy," Phys.
313 Rev. Appl. **15**, L021001 (2021).

314 36. M. Ando, K. Ishidohiro, K. Yamamoto, K. Yagi, W. Kokuyama, K. Tsubono, and A. Takamori, "Torsion-bar antenna
315 for low-frequency gravitational-wave observations," Phys. Rev. Lett. **105**, 161101 (2010).

316 37. E. Morrison, B. J. Meers, D. I. Robertson, and H. Ward, "Automatic alignment of optical interferometers," Appl. Opt.
317 **33**, 5041–5049 (1994).

318 38. A. Wünsche, "Quantization of gauss–hermite and gauss–laguerre beams in free space," J. Opt. B: Quantum
319 Semiclassical Opt. **6**, S47–S59 (2004).

320 39. D. W. C. Brooks, T. Botter, S. Schreppler, T. P. Purdy, N. Brahms, and D. M. Stamper-Kurn, "Non-classical light
321 generated by quantum-noise-driven cavity optomechanics," Nature **488**, 476–480 (2012).

322 40. T. P. Purdy, P. L. Yu, R. W. Peterson, N. S. Kampel, and C. A. Regal, "Strong optomechanical squeezing of light,"
323 Phys. Rev. X **3**, 031012 (2013).

324 41. A. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, "Squeezed light from a silicon
325 micromechanical resonator," Nature **500**, 185–189 (2013).

326 42. M. F. Erden and H. M. Ozaktas, "Accumulated gouy phase shift in gaussian beam propagation through first-order
327 optical systems," J. Opt. Soc. Am. A **14**, 2190–2194 (1997).

328 43. N. Treps, U. Andersen, B. Buchler, P. K. Lam, A. Maitre, H. A. Bachor, and C. Fabre, "Surpassing the standard
329 quantum limit for optical imaging using nonclassical multimode light," Phys. Rev. Lett. **88**, 203601 (2002).

330 44. G. C. Knee and W. J. Munro, "Fisher information versus signal-to-noise ratio for a split detector," Phys. Rev. A **92**,
331 012130 (2015).

332 45. S. P. Walborn, G. H. Aguilar, P. L. Saldanha, L. Davidovich, and R. L. d. Filho, "Interferometric sensing of the tilt
333 angle of a gaussian beam," Phys. Rev. Res. **2**, 033191 (2020).

334 46. S. A. Fedorov, A. Beccari, N. J. Engelsen, and T. J. Kippenberg, "Fractal-like mechanical resonators with a
335 soft-clamped fundamental mode," Phys. Rev. Lett. **124**, 025502 (2020).

336 47. M. J. Bereyhi, A. Arabmoheghi, A. Beccari, S. A. Fedorov, G. Huang, T. J. Kippenberg, and N. J. Engelsen, "Perimeter
337 modes of nanomechanical resonators exhibit quality factors exceeding 10^9 at room temperature," Phys. Rev. X **12**,
338 021036 (2022).

339 48. A. Beccari, D. A. Visani, S. A. Fedorov, M. J. Bereyhi, V. Boureau, N. J. Engelsen, and T. J. Kippenberg, "Strained
340 crystalline nanomechanical resonators with quality factors above 10 billion," Nat. Phys. **18**, 436–441 (2022).

341 49. D. Shin, A. Cupertino, M. H. J. de Jong, P. G. Steeneken, M. A. Bessa, and R. A. Norte, "Spiderweb nanomechanical
342 resonators via bayesian optimization: Inspired by nature and guided by machine learning," Adv. Mater. **34**, 2106248
343 (2022).

344 50. U. Kemiktarak, M. Durand, M. Metcalfe, and J. Lawall, "Cavity optomechanics with sub-wavelength grating mirrors,"
345 New J. Phys. **14**, 125010 (2012).

346 51. R. A. Norte, J. P. Moura, and S. Groblacher, "Mechanical resonators for quantum optomechanics experiments at
347 room temperature," Phys. Rev. Lett. **116**, 147202 (2016).

348 52. T. Shimoda, Y. Miyazaki, Y. Enomoto, K. Nagano, and M. Ando, "Coherent angular signal amplification using an
349 optical cavity," Appl. Opt. **61**, 3901–3911 (2022).

350 53. A. E. Siegman, *Lasers* (University Science Books, 1986).

351 54. M. Pinard, Y. Hadjar, and A. Heidmann, "Effective mass in quantum effects of radiation pressure," The Eur. Phys. J.
352 D - At. Mol. Opt. Plasma Phys. **7**, 107–116 (1999).

353 **Appendix**

Here, we calculate the expected photodetection signal for our system under the small beam waist approximation. See the supplement for additional details and a discussion of the effects of a large beam waist. The input field of a typical laser of power P in the frame rotating at laser frequency ω_L can be written in the basis of Hermite-Gaussian(HG) modes as

$$\alpha U_{00} + \sum_{mn} \hat{\delta}_{mn} U_{mn}.$$

354 Here $U_{mn}(x, y, z)$ are m th order in x and n th order in y HG mode functions for modes propagating
355 along z and focused to waist w_0 at $z = 0$ where membrane is located (see the Supplement S1.D
356 for detailed definition of HG beam). $|\alpha|^2 = N = \frac{P}{\hbar\omega_L}$ and α is assumed to be real without loss
357 of generality, and $\hat{\delta}_{mn}$ represents the vacuum fluctuation in U_{mn} . $\hat{\delta}_{mn} = d\hat{X}_1^{mn} + id\hat{X}_2^{mn}$ are
358 quantum Langevin noise operators where $d\hat{X}_1^{mn}$ is the amplitude vacuum fluctuation, $d\hat{X}_2^{mn}$ is
359 the phase vacuum fluctuation and $\langle d\hat{X}_i^{mn}(\omega) (d\hat{X}_j^{pq}(\omega'))^\dagger \rangle = \frac{1}{4} \delta_{ij} \delta_{mp} \delta_{nq} \delta(\omega - \omega')$

The reflection of the laser field off the device can be calculated with Fourier optics. The reflected field \hat{U}_{out} can be associated with the input field \hat{U}_{in} as (up to a change of direction of propagation)

$$\hat{U}_{out}(z=0) = \hat{U}_{in} e^{-i2k\hat{\Phi}(x,y,t)},$$

where $k = \frac{\omega_L}{c}$, $\hat{\Phi}(x,y,t) = \hat{X}(t)\phi(x,y)$, where \hat{X} is the amplitude of motion and $\phi(x,y) = \sin(\frac{l\pi}{a}(x - \frac{a}{2}))\sin(\frac{p\pi}{b}(y - \frac{b}{2}))$ is the out-of-plane motion mode shape (origin put at the center of the membrane, a and b are membrane side lengths, and l and p are mechanical mode indices) and can be approximated to $\hat{\Phi}(x,y,t) \approx \hat{X}(t)k_{mx}$ as the laser beam waist is much smaller than the mechanical wave length ($w_0 \ll \frac{2\pi}{k_m}$, k_m is mechanical wave numbers) and centered to the anti-node in y direction and the node in the x direction (center of the membrane). $\hat{X}(t)$ satisfy the equation of motion,

$$m_{eff}\ddot{\hat{X}} + m_{eff}\Gamma\dot{\hat{X}} + m_{eff}\omega_m^2\hat{X} = \hat{F},$$

360 where \hat{F} is the force acting on the membrane and Γ is the damping rate. In the frequency space

$$\hat{X}(\omega) = \chi_m(\omega)\hat{F}(\omega), \quad (7)$$

361 where $\chi_m(\omega) = \frac{1}{m_{eff}} \frac{1}{(\omega_m^2 - \omega^2) + i\omega\Gamma}$.

362 With the approximation made above, we have

$$\begin{aligned} \hat{U}_{out}(z=0) &\approx \hat{U}_{in}(1 - i2k\hat{X}(t)k_{mx}) \\ &\approx (\alpha U_{00} + \sum_{mn} \hat{\delta}_{mn} U_{mn})(1 - i2k\hat{\beta}(t)x) \\ &\approx \alpha U_{00} + (d\hat{X}_1^{10} + i(d\hat{X}_2^{10} - \alpha w_0 k \hat{\beta}(t)))U_{10} \\ &\quad + \sum_{mn \neq 10} \hat{\delta}_{mn} U_{mn}, \end{aligned}$$

363 where we have used the fact that $\frac{2}{w_0}xU_{00} = U_{10}$ and $\hat{\beta}(t) \equiv \hat{X}(t)k_m$ is the tilting angle at the
364 node.

365 Propagating the reflected field out, we have the light field at distance as:

$$\begin{aligned} \hat{U}_{out}(z) &= \alpha U_{00}(x, y, z) \\ &\quad + (d\hat{X}_1^{10} + i(d\hat{X}_2^{10} - \alpha w_0 k \hat{\beta}(t)))U_{10}(x, y, z) \\ &\quad + \sum_{mn \neq 10} \hat{\delta}_{mn} U_{mn}(x, y, z), \end{aligned}$$

366 The signal $V(t)$ for the split photodetector at z is proportional to

$$\begin{aligned} \hat{V}(t) &\propto \int_{-\infty}^0 dx \int_{-\infty}^{\infty} dy |\hat{U}_{out}(x, y, z)|^2 \\ &\quad - \int_0^{\infty} dx \int_{-\infty}^{\infty} dy |\hat{U}_{out}(x, y, z)|^2. \end{aligned}$$

367 Taking into account that there is a relative phase shift among U_{mn} due to Gouy phase, we have
368 (the spectrum of $\hat{V}(t)$ is normalized to the shot noise floor, assuming $\alpha \gg 1$)

$$\begin{aligned} \hat{V}(t) &\approx 2F_{00,10}[d\hat{X}_1^{10} \cos \theta_a - (d\hat{X}_2^{10} - \alpha w_0 k \hat{\beta}) \sin \theta_a] \\ &\quad + 2 \sum_{mn \neq 10} (d\hat{X}_1^{mn} \cos \theta_a - d\hat{X}_2^{mn} \sin \theta_a) F_{00,mn}, \end{aligned}$$

369 where $F_{lm,pq} = \iint dx dy U_{lm}(z=0) U_{pq}^*(z=0) F_{weight}$ and F_{weight} for split detector is simply
 370 ± 1 for left and right half plane.

371 In actual experiment, the light goes through a lens system. The propagation can be done
 372 with the help of ABCD matrices [53]. However, Gouy angle calculated this way does not yield
 373 the correct phase differences between HG modes. Here, we have replaced Gouy angle θ with
 374 accumulated Gouy angle θ_a to correctly count for the phase differences between HG modes in
 375 lens system [42]. Under the thin lens approximation the beam curvature get modified but beam
 376 waist and phase remain the same which makes the Gouy phase fail to describe relative phase
 377 difference between HG modes. The accumulated Gouy phase is calculated by summing up the
 378 Gouy phase change during free space propagation between the lenses. In the main text, we just
 379 use symbol θ for simplicity.

The tilting angle $\hat{\beta}$ has 2 sources, one generated by the thermal random force $\hat{R}(t)$ and the
 other generated by the optical force $\delta\hat{F}(t)$. When the laser strikes the node of the membrane,
 because of the vacuum amplitude fluctuation $d\hat{X}_1^{10}$, the membrane experience a fluctuating
 force [54](assuming $\alpha \gg 1$)

$$\delta\hat{F}(t) \approx 2\hbar k \iint dx dy |\hat{U}_{in}|^2 \phi(x, y) = 4\hbar k |\alpha| C_{00,10} d\hat{X}_1^{10},$$

where $C_{lm,pq} \equiv \int U_{lm}(z=0) U_{pq}^*(z=0) \phi(x, y) dx dy$, which under small laser beam waist
 approximation is evaluated to $C_{00,10} = \frac{k_m w_0}{2}$. Then from Eq. (7),

$$\hat{X}(\omega) = \chi_m(\omega)(\delta\hat{F}(\omega) + \hat{R}(\omega)),$$

380 and the spectral density of the split photodetector can be calculated to be

$$S_V(f) = F_{00,10}^2 (\sin^2 \theta_a + |\cos \theta_a + 2\hbar D \chi_m \sin \theta_a|^2) + \sum_{mn \neq 10} F_{00,mn}^2 + F_{00,10}^2 |2\alpha w_0 k \sin \theta_a|^2 S_\beta^{th}(f)$$

381 where $S_\beta^{th}(f) = 2|k_m \chi_m|^2 m_{eff} \Gamma k_b T$ (assuming $k_b T \gg \hbar \omega_m$), $S_\beta^{zp}(f) = |k_m \chi_m|^2 m_{eff} \Gamma \hbar \omega_m$
 382 and $D = |k k_m w_0 \alpha|^2$. The tilt angle spectral density follows as

$$S_\beta(f) = \frac{1}{4N w_0^2 k^2 \sin^2 \theta_a} + N \hbar^2 k^2 w_0^2 k_m^4 |\chi_m|^2 + S_\beta^{th}(f) + \hbar k_m^2 \operatorname{Re}\{\chi_m\} \cot \theta_a + \frac{1}{4N w_0^2 k^2 \sin^2 \theta_a} \sum_{mn \neq 10} \frac{F_{00,mn}^2}{F_{00,10}^2}.$$

383 Assuming negligible thermal motion $S_\beta^{th}(f) \approx 0$ and perfect detection $\sum_{mn \neq 10} \frac{F_{00,mn}^2}{F_{00,10}^2} = 0$,
 384 without considering the correlation term $\hbar k_m^2 \operatorname{Re}\{\chi_m\} \cot \theta_a$, minimizing over N , we find that
 385 $S_\beta(f)_{min} = \hbar k_m^2 |\chi_m| (\theta = \pi/2)$. And taking account of the correlation term $S_\beta(f)_{min} =$
 386 $\hbar k_m^2 \operatorname{Im}\{\chi_m\}$ (θ not at $\pi/2$).

The cooperativity can be calculated as SNR of zero point motion to shot noise as

$$C = \frac{2PQ}{m_{eff}} \frac{k w_0^2 k_m^2}{c \omega_m^2}$$

387 The calculation for classic noise is similar to that of quantum noise. The input field is
 388 $\hat{U}_{in} = \alpha(U_{00} + \frac{\Delta x(t)}{w_0} U_{10})$ assuming large classical noise and $\Delta x(t)$ is the displacement of the

389 laser spot. Following the same procedures, we have

$$S_\beta(f) = \frac{S_{\Delta x}(f)/w_0^2}{N w_0^2 k^2 \sin^2 \theta_a} |\cos \theta_a + 2\hbar D \chi_m \sin \theta_a|^2$$
$$+ S_\beta^{th}(f),$$

390 and $S_\beta^{Cl a}(\theta_a) = \frac{S_{\Delta x}(f)/w_0^2}{N w_0^2 k^2} \cot^2 \theta_a.$