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Back action evasion in optical lever detection
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Abstract: The optical lever is a centuries old and widely-used detection technique employed in
applications ranging from consumer products and industrial sensors to precision force microscopes
used in scientific research. However, despite the long history, its quantum limits have yet to
be explored. In general, any precision optical measurement is accompanied by optical force
induced disturbance to the measured object (termed as back action) leading to a standard quantum
limit (SQL). Here, we give a simple ray optics description of how such back action can be
evaded in optical lever detection. We perform a proof-of-principle experiment demonstrating the
mechanism of back action evasion in the classical regime, by developing a lens system that cancels
extra tilting of the reflected light off a silicon nitride membrane mechanical resonator caused
by laser-pointing-noise-induced optical torques. We achieve a readout noise floor two orders
of magnitude lower than the SQL, corresponding to an effective optomechanical cooperativity
of 100 without the need for an optical cavity. As the state-of-the-art ultra low dissipation
optomechanical systems relevant for quantum sensing are rapidly approaching the level where
quantum noise dominates, simple and widely applicable back action evading protocols will be
crucial for pushing beyond quantum limits.

1. Introduction

Optical lever detection, which measures the angular deviation of light reflecting from a tilting
surface, is among the oldest precision optical measurement techniques [1]. For multiple centuries,
the technique has been widely employed in numerous applications ranging from consumer
products [2,3] and industrial sensors such as optical comparators to high precision scientific
instruments such as atomic force microscopy(AFM) and its various variants, torsional balances
for big-G measurement [4], and active mirror alignment for gravitational wave detectors [5, 6].
Although the optical lever is old and simple, contrary to general intuition, it is as sensitive
as optical interferometry [7, 8], which has been more associated with precision measurement.
However, the quantum limits of optical level detection have yet to be experimentally explored,
as systems to date have been limited by thermal or other classical noise sources. Advances in
nanomechanical resonators in the past few years [9-14] have pushed the device quality factor
to a new level, reducing thermal noise, making quantum noise caused by optical forces (i.e.,
measurement back action) a dominant limit to be overcome. Here, we show that the effects of
back action are evaded by modifying the optical lever beam path with a carefully designed lens
system.

In optical lever detection, quantum measurement back action presents as noisy torques from
random arriving photons (shot noise) recoiling off a device. The standard quantum limit (SQL)
is the minimum noise achieved by balancing shot noise and its back action induced disturbance.
Methods that sidestep this limit [15-17] are referred to as back action evasion. So far, the SQL
and protocols for beating it have been extensively studied in interferometric optomechanical
systems [18-20]. Surpassing the SQL will extend the scope and sensitivity of gravitational wave
detectors [21] and enhance searches for dark matter candidates [22,23] and tests of the validity
of quantum mechanics at a macroscopic scale [24]. Most of the work done so far on back action
evasion utilizes optical cavities to enhance optomechanical interaction strength. On the other
hand, such cavities limit bandwidth, complicate the setup, and make systems prone to classical
laser noise. One notable exception is recent work in levitated nanoparticle systems that approach
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the regime where back action can be evaded without using a cavity [25,26].

The typical angular resolution for optical lever detection is on the order of 10 prad/vHz
for applications such as AFMs [27,28]. The technique has been pushed further with multiple
bounces [29], non-classical laser sources such as single or multimode squeezed light [30,31],
and with cavity enhancement [32,33]. However, these experiments are still far from the SQL.
A method to surpass SQL was theoretically proposed only a few years ago by Enomoto, et
al. [34]. Noise correlations introduced by the optomechanical interaction produce squeezing
(sometimes referred to as ponderomotive squeezing) and can be used to evade back action in an
optical lever detector, ultimately providing the resource for a quantum-enhanced measurement
scheme capable of surpassing the SQL. We present a simple ray optics picture of this process
and experimentally demonstrate this protocol for back action evasion at room temperature with
classically driven laser noise. We observe an optomechanical cooperativity, which characterizes
measurement strength relative to the SQL, up to 100. We also find that parameters needed for
evading quantum back-action are within experimental reach. This quantum-enhanced optical
lever detection protocol will be beneficial for ultra-high precision measurements such as AFM or
scanning force microscopy utilizing high Q mechanical resonators [35], optical-tweezers-based
sensors, and novel types of gravitational-wave detectors [36].

2. Quantum noise in optical lever

An optical lever, in itself, is very simple as shown in Fig. 1(a). In our system, a laser reflects off
the node of a suspended membrane mechanical resonator. With the laser beam waist (wo) much
smaller than the mechanical wavelength (4,,), the out-of-plane motion of the membrane at the
node can be approximated as a tilting mirror. The deflection of the laser is then measured by a split
photodetector, which takes the difference of the optical power on left and right sides. The precision
of optical lever detection is limited by quantum noise, as photons strike the split photodetector
randomly in time and with a spacial distribution following the beam intensity profile (represented
by finite beam width in Fig. 1(a) and spread rays in Fig. 1(b)). This shot-noise-limited readout
floor improves with laser power. Additionally, the random recoil of photons off the membrane
imposes an imbalanced force noise, which tilts the mirror and redistributes the reflected photons.
Such back action noise increases with laser power. The standard quantum limit resides where the
sum of the two noise sources is at a minimum.

A simple case of back action evasion in an optical lever can be visualized in a ray optics
picture as shown in Fig. 1(b). Uniformly distributed incoming rays reflect off a flat mirror and
are focused through an output lens to its Fourier plane, P1 (red rays). Tilting of the mirror (blue
line) by an external force displaces the focal point off the optical axis (blue rays). An incoming
photon’s beam path is described by a random incoming red ray. Such a single ray off the axis,
produces a torque on the mirror proportional to the arm length. This torque causes a tilting of the
mirror that gets larger when the ray is further from the pivot point, and the ray is consequently
deflected further from the original reflection direction. Thus, the back-action-modified beam
path for a given ray is equivalent to reflecting off a convex parabolic mirror (yellow line). In other
words, the flat mirror effectively picks up a dynamical curvature due to optical back action forces.
The deflected photons (yellow rays) converge back to the optical axis at a certain distance beyond
P1. A split photodetector placed there sees no effects of back action, but retains sensitivity to the
tilting of the mirror from external forces.

3. Gaussian optics picture

To better quantify the quantum noise, we decompose the optical field in the basis of Hermite-
Gaussian (HG) modes, generalizing the treatment of [34]. In this section, we present the results
of our calculations, which are detailed in the Appendix. We provide an analysis including the
effect of higher order modes in Supplement 1. U, (x,y, z) is the HG mode of order m in x
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Fig. 1. (a) Optical lever detection of a membrane mechanical resonator. (b) Ray optics
visualization of back action evasion in the low frequency limit. If the surface is fixed,
the incoming red beams are reflected and focused by a lens to one point. If the mirror
tilts due to external force, the rays will be focused to a different point (blue lines) on
plane P1(Fourier plane). The yellow rays take account of the result of optical forces
on the mirror. Rays impinging further from the pivot point give larger back action
torques, and so the yellow rays appear to be reflected off a parabolic mirror and focused
to plane P2, which we term back action evasion plane. The mirror curvature, and thus
the location of P2, is frequency dependent following the mechanical response function.
The maximum SNR sits between P1 and P2.

direction and # in y direction and propagating in z direction (see Supplement 1 Sec. S1.E for
details). A laser in a coherent state of the Upp mode reflecting from an undulating surface can
be thought of as scattering light into higher order HG modes. To first order, a small tilt of
this Gaussian laser beam can be characterized as the addition of a Uy component with a small
imaginary amplitude (in addition, small transverse displacements of the laser correspond to a real
amplitude Ujo component). This limit is relevant for our case where wo < 4, and the amplitude
of motion of the membrane is small, and forms the basis of optical lever measurement.
In this case, the input field can be approximated as [37,38]

Uin = aUgo(x, y, 2) + (dX) +idX2)Uyo(x, y, 2), )]

where @ > 1 is the coherent amplitude (neglecting quantum fluctuations in the fundamental
mode, which do not contribute to the back action or measured signal in our experiment). dX; and
dX, are vacuum amplitude and phase fluctuations of Uy that give rise to quantum limited beam
displacement and pointing noise of the laser, respectively. The latter is responsible for readout
noise at the detector, whereas the former seeds the mechanical back action on the membrane.
The reflected field U,,,; can be associated with the input field U;,, as (up to a change of direction
of propagation) .
Uour (z = 0) = e 22200y, (2 = 0),

where k is the laser wave number and ®(x, y, £) is the out-of-plane motion of the resonator. For a
small beam waist, we can approximate ® ~ S(r)x, where 3 is the tilting angle of the surface of the
membrane. B(w) ~ kX (w) = kmym(w)(6F(w) + R(w)) has 2 sources, one generated by the
thermal random force R(¢) and the other generated by the optical force 6 F () ~ 2|a|hkkwodX;.
Here X is the amplitude of motion and y,,(w) is the mechanical response function. (See
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Appendix for details.) The fluctuations on the output U;o mode are then given by:

dXi(w) — dX|(w) (2
dX>(w) = dX>(w) — awokB(w)
= dX>(w) + 2D ym(w) - dX1 (w) + VD ym(w)R(w). (3)

Here D = N|kk,,wo|>. N = |a|?* is the photon flux, and k,, = /21—” In this process, the reflection
due to back action induced tilting imprints the amplitude noise of U 10 onto its phase quadrature.
The generated correlation between amplitude and phase quadrature of the reflected beam is very
similar to ponderomotive squeezing in cavity optomechanics [39—41] but different in that another
spatial mode is put in a squeezed vacuum state as opposed to being bright squeezed.

The Uy mode does not contain information about the tilting of the membrane, but it acts
as a local oscillator when weighted by the split photodetector step weighting function (+1 for
two halves), allowing us to extract information about the tilting angle from the Ujg mode. As
the reflected beam propagates, the Gouy angle 6 = 6(z) generates a relative phase shift of 6
between Ugg and Ujg. Thus, the Gouy angle is equivalent to the measured quadrature of Ujg.
(see Supplement 1 Sec. S1.G for details.) Picking a particular quadrature just requires putting
the split photodetector at a specific location along the beam path, or adding lenses to adjust the
Gouy phase.

Putting everything together, we can write down the expression for the power spectrum of the
measured membrane tilting angle as

Sp = Sge+ Sy + S 4 SE 4 gPere, (4)
where Sg“ = Ni*k*wlky,|xm|* is the back action of the laser on the membrane, Sllgmp =
1
4Nw2k? sin> 6
zero point motion of the membrane, S/? e’¢ counts for the loss of quantum efficiency in detection,

is the imprecision readout noise from the laser shot noise, Sgh is the thermal and

and Sg"’lmp = fik2, cot(6) Re{x,} is the interference term from the optomechanically induced
correlation between the two quadratures described by Eq. (2) and Eq. (3) (see Supplement 1
Sec. S1.G for details). The minimum measurement noise (minimized over reflected power) that
we can achieve neglecting the last three terms of Eq. (4) occurs at & = 7r/2 and represents the
standard quantum limit for our system, S;QL = 1ik2 | xm|. Including the interference term, we

find Sg > fik2 Im{ x,n, } (for all # and reflected laser powers), which sets the Heisenberg limit.
Over a particular range of Gouy phases the interference term can be made destructive and the
SQL can be beaten. Measuring at the (frequency dependent) optimal value of 8 provides an
optimal detection basis of the superposition of the Uyy and U}y modes.

4. Proof-of-principle experiment

At room temperature, thermal motion dominants over quantum back action for devices we
currently have. To demonstrate the principle of back action evasion, we intentionally add classical
laser displacement fluctuations Ax that are much larger than the quantum noise by modulating
the laser spot position. In this case Eq. (4) becomes (see Appendix)

SAx/W%

- m|cos0+2h0)(m sin 0> + S} (5)
0

Sp

where Say (w) is the spectrum of the classical laser position fluctuations, and we have neglected
the quantum noise. As shown in Fig. 2, a commercially available (Norcada Inc.) silicon nitride
(SiN) low stress (about 200 MPa) membrane (3.5 mm long, 1.5 mm wide and 100 nm thick) is
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clamped inside a vacuum chamber (1.3e-7 Torr) and positioned at the focal plane of the objective
lens (f = 125 mm). An Acousto-Optic Modulator(AOM) is located at the other focal plane of
the objective lens and is frequency modulated(FM) so that angular deviation of the 1st order
diffracted beam is turned into laser (1064 nm) spot position modulation at the membrane. The
reflected laser is then steered through an output lens (f = 125 mm) to a split photodetector that
can move along the beam path to measure at different quadrature angles. The output lens maps
the far field onto its Fourier plane, generating additional accumulated Gouy phase [42](also see
Supplement 1 Sec. S1.F for details) allowing us to access all quadratures with finite movement
of the split photodetector. Near the Fourier plane, the split photodetector is insensitive to the
injected noise, but sensitive to the vibrations of the membrane.

susr>

1
1
: PBS Ao,
L
1

Modulated beam
Vacuum Chamber [~

! SiN membrane

-

P2, Back action
evasion plane

P1, Fourier
Plane 6 = 90°

- +
Detector

Fig. 2. An FM modulated AOM is placed at one focal plane of the input lens and the
SiN membrane is at the other, so that the angular modulation of the first order diffracted
beam turns into position modulation at the plane of the device. The modulated beam
disturbs the motion of the membrane and deflects itself into a different direction (yellow).
The illustrated case corresponds to a modulation frequency higher than the mechanical
resonance frequency, so that the mechanical response lags 180° behind the modulated
force, leading to the reflected beam being steered toward the undisplaced beam and
putting the back action evasion plane P2 before P1. Inset: SiN membrane device.

We modulate the laser spot position by chirping (which plays the role of classical noise) the
AOM FM frequency across the resonance of the mechanical mode of interest (f;,, = 371kHz).
The resultant driven motion is much larger than the thermal motion. Then we measure the
spectral response of the tilting angle at different quadrature angles(Sg(6)) by translating the split
photodetector along the beam path near the Fourier plane and averaging at each quadrature angle
for longer than the decay time of the mode (see Supplement 1 Sec. S2.G for details).

A density plot of the measured spectra against quadrature angles is shown in Fig. 3(b). We
calculate the corresponding theoretical density plot (Fig. 3(a)) from Eq. (5) based on independently
measured experimental parameters. To visualize the spectra Sg(6), we normalize to the measured
Sax/ wg
Nwik?
noise to the measured quadrature. Such normalization mimics that of the spectrum to laser
shot noise in the case of quantum back action evasion, by considering our classical injected
noise as artificially enlarged quantum amplitude fluctuations. In the case of pure quantum noise,
the shot-noise-limited phase quadrature fluctuations would contribute a significant imprecision
background to the overall signal, creating a quadrature-independent background level. The region

background noise floor SE’“ 0) = cot’ 6, i.e., the projection of the classical injected
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Fig.3. (a) Zero free parameter theoretical expectation of S normalized to injected noise
at corresponding quadrature angle Sgl“ (0) versus quadrature angles and frequencies.

(b) Corresponding experiment data. Mode frequency f,;; = 371 kHz, Q = 3.2 X 100,
me g =4.06x 10710 kg, T = 297.5 K and the laser power P = 21 mW. Observation
of region with less than 0 dB demonstrates the interference mechanism of back action
evasion in optical lever detection. (c) Expectation and experimental data of Sg at
several representative quadrature angles 6 normalized to input noise Sgl‘l (6 =0). The
curves can be interpreted as the gain function at different quadrature angles. The green
dashed curves mark the thermal motion level, which stops dips from going deeper and
demonstrates our ability to resolve small motion on top of the large injected noise. Due
to the sub-Hz resonance frequency random drift which is beyond our active control
capability, the sharp peaks and dips are blurred by random resonance frequency drift.

below 0 dB is where the perceived motion spectrum is smaller than the artificially injected noise
floor, a classical equivalent of ponderomotive squeezing.

Figure 3(c) are several spectra from the same data set at some representative quadrature angles.
These spectra are normalized to the input noise Sgl“ (6 = 0°). The curves can thus be interpreted
as the gain function of the system with the peak of the motion approaching 0 dB, corresponding
to a measured cooperativity close to 1. Zero free parameter theoretical expectations are shown
as solid blue lines to have excellent qualitative agreement with experiment data. At 90°, the
curve is just the Lorentzian of the classical noise driven motion of the mechanical mode with no
back action evasion, equivalent to what will be measured in the far field. At other quadrature
angles, the destructive interference (the dips in the curves) of injected noise and its driven motion
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emerges in a frequency and quadrature dependent fashion, demonstrating the mechanism of back
action evasion in optical lever detection. Green dashed lines are the expected thermal motion
spectrum, which stops the back action evasion dips from reaching deeper, and demonstrates our
ability to resolve small motion on top of the large classical injected noise.

5. Cooperativity in optical lever
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Fig. 4. (a) Room temperature thermal motion PSD of the membrane device inspected
in back action experiment. The laser power is instead P = 27.2 mW. The green dots
are experimental data averaged for over 30 minutes. Black is the zero free parameter
calculation. The blue dashed line marks the peak of zero point motion of the device,
which is 5.23 prad/VHz. The orange dash-dotted line marks the measured imprecision
noise level, which is 5.45 prad/ VHz, slightly above the zero point motion. (b) Thermal
motion PSD (as signal V measured by a split photodetector) of a SiN phononic crystal
string of fp, ~ 84 kHz, Q ~ 1.0 x 103 and m, sy ~ 7.3 x 10" ¥ kgat T =20 K. A
Lorentzian fit yield the cooperativity to be approximately C ~ 100. Insets show mode
shapes from simulation.

Quantum back action evasion requires large optomechanical coopperativity, C. For an ideal
measurement, a cooperativity of 1 indicates the ability to resolve signals at the scale of the zero
point motion and the regime where the back action induced motion becomes comparable to the
zero point motion. For C > 1, the signal from back action induced motion dominated over the
shot noise floor. For C > n;j, (Where n,, is the average thermal occupation of the mechanical
resonator) the back action induced motion becomes larger than the thermal motion and limits
measurement sensitivity. Calculated from the signal-to-noise ratio (SNR) of zero point motion to
shot noise limited readout floor, the explicit form of the effective cooperativity for a mechanical
membrane or string of sinusoidal mode shape and under small beam waist approximation can be
written as

2P0 kw3k?
C = _Q 02’" , (6)
Meff cwiy,

where P is the laser power reflected from the device, Q is the mode quality factor, m, ¢ is the
effective mass of the mode, and w,, is the mechanical mode angular frequency.

Figure 4(a) shows the measured thermal motion spectrum of the mode probed in the back action
evasion experiment. The zero-point motion spectrum, SZ” , is at the same level as S, '”. From
Eq. (6) and with the measured experiment parameters, we estimate the cooperativity to be C = 2.
Given the estimated net quantum efficiency n =~ 21% (including geometrical factors [43—45] and
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optical losses) (see Supplement 1 Sec. S2.B for details), our measured SNR of the thermal motion
spectrum (peak to noise floor) is consistent with the theoretical expectation (SNR = 4nn,;, C).

The theory curves in Fig. 4 have already taken into account the quantum efficiency (also for
theory curves in Fig. 3), and agree very well with experiment data. To illustrate the achievability
of large cooperativity in an optical lever system and to push the experiment toward quantum back
action evasion, we measure the thermal motion power spectrum density (PSD) of a SiN phononic
crystal string [9] (about 2 mm long, 10 um wide and 120 nm thick) fundamental torsional
mode with laser of power P = 12.2 mW focused to a beam waist wo =4 um at 7T = 20 K (see
Supplement 1 Sec. S2.H for details)), as shown in Fig. 4(b). Using Q measured from ring down,
we fit the Lorentzian PSD and estimate the cooperativity to be around C ~ 100. Compared to the
membrane, the cooperativity of the string is much higher due to its smaller effective mass n. ¢ .
We also note a recent report [14] of higher SNR for torsional mode with wider strings of much
higher Q.

6. Outlook

We finally consider the experimental prospects for implementing the optical lever back action
evading protocol in the quantum regime, where it can be utilized to beat the SQL. To observe
quantum back action evasion, we will need the cooperativity to be larger than the thermal
occupation. This is possible with parameters available from state-of-the-art optomechanical string
devices. With phononic crystal shielding, soft clamping [46,47], and dissipation dilution [9, 14],
quality factors can exceed Q > 10°. Moreover, the effective masses m, rr of these string
devices are much smaller than those of membranes. Strained crystalline materials such as
Si [48] or SiC [10] can have still lower dissipation at cryogenic temperature. Soft-clamped,
2D membrane resonators have better laser power handling and have been demonstrated to have
comparable quality factors as that of strings [12,49]. Such state-of-the-art mechanical resonators
can increase cooperativity by several orders of magnitude, potentially pushing it above the
thermal occupation. On the optical side, photonic crystal mirrors can be implemented in string
or membrane resonators to push reflectivity close to unity [50,51] increasing the reflected laser
power and potentially incorporating multiple bounces [29] to further enhance the per-photon
interaction strength. Such high reflectivity resonators can also be incorporated as one mirror
in an optical cavity with a specially tailored transverse mode spectrum in order to resonantly
enhance the cooperativity [52] by another few orders, leaving considerable parameter space to
deal with experimental imperfections and laser heating. With these improvements, quantum back
action will be the dominant noise at cryogenic temperature, but can now be readily dealt with.
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Appendix

Here, we calculate the expected photodetection signal for our system under the small beam waist
approximation. See the supplement for additional details and a discussion of the effects of a large
beam waist. The input field of a typical laser of power P in the frame rotating at laser frequency
wy, can be written in the basis of Hermite-Gaussian(HG) modes as

aUy + Z Sanmn.

mn

Here U,y (x, y, z) are mth order in x and nth order in y HG mode functions for modes propagating
along z and focused to waist wg at z = 0 where membrane is located (see the Supplement S1.D
for detailed definition of HG beam). |a|?> = N = % and « is assumed to be real without loss
of generality, and 5mn represents the vacuum fluctuation in U,,,,. Sm,l = d)?f”" + id)?é”" are
quantum Langevin noise operators where d X" is the amplitude vacuum fluctuation, d X" is
the phase vacuum fluctuation and (df(lf'm(w)(df(;’q (W))T) = 16:/0mpOngd(w — ')
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The reflection of the laser field off the device can be calculated with Fourier optics. The
reflected field U,,,, can be associated with the input field U;,, as (up to a change of direction of
propagation) .

Uout(z =0) = Ul_ne—iZk(D(x,y,t)’

where k = <L, &(x,y,1) = X()¢(x,y), where X is the amplitude of motion and ¢(x, y) =
sin(%” (x = %)) sin % (y- %)) is the out-of-plane motion mode shape (origin put at the center
of the membrane, a and b are membrane side lengths, and / and p are mechanical mode indices)
and can be approximated to d(x, v, 1) = X (1)knx as the laser beam waist is much smaller than
the mechanical wave length (wg <« i—: k,, is mechanical wave numbers) and centered to the

anti-node in y direction and the node in the x direction (center of the membrane). X (7) satisfy
the equation of motion,

meff§+meffr)?+meffwfn)? = F,

where F is the force acting on the membrane and I" is the damping rate. In the frequency space

X (@) = xm(w)F (w), (M

1 1
Meff (Wi —w?)+iwl"
With the approximation made above, we have

where y,(w) =

Upit (z=0) = Up (1 = 2k X () k px)
=~ (QUOO + Z ganmn)(l - i2kB(t)x)
mn

~ aUy + (Xmlo + l'(d)?zlo - QWOk,é(t)))Ulo

+ Z 5mn Uinn,

mn#10

where we have used the fact that wloono = Uyo and B(1) = X(t)k,, is the tilting angle at the
node.
Propagating the reflected field out, we have the light field at distance as:

Uout () = aUgo(x, ,2)
+(@dX!° +i(dX,° — awokB(1))Uro(x,,2)
+ > SunUnmn(x,,2),

mn#10

The signal V (¢) for the split photodetector at z is proportional to
A O & A 2
s [ [ a0ty

—/ dX/ dylljauz(X,y’Z)|2~
0 —c0

Taking into account that there is a relative phase shift among U,,,, due to Gouy phase, we have
(the spectrum of V(#) is normalized to the shot noise floor, assuming a > 1)

V() ~ 2F00,10[d)?110 cosf, — (dX;O — awokp) sin 6,]

+2 Z (d)?f"" cosf, — d)?é"” sin 6,) Foo,mn>
mn#10
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where Fi pq = f/ dxdyUjm(z = 0)U,,(z = 0) Fyveighr and Fiyeign, for split detector is simply
+1 for left and right half plane.

In actual experiment, the light goes through a lens system. The propagation can be done
with the help of ABCD matrices [53]. However, Gouy angle calculated this way does not yield
the correct phase differences between HG modes. Here, we have replaced Gouy angle 6 with
accumulated Gouy angle 6, to correctly count for the phase differences between HG modes in
lens system [42]. Under the thin lens approximation the beam curvature get modified but beam
waist and phase remain the same which makes the Gouy phase fail to describe relative phase
difference between HG modes. The accumulated Gouy phase is calculated by summing up the
Gouy phase change during free space propagation between the lenses. In the main text, we just
use symbol 6 for simplicity.

The tilting angle 3 has 2 sources, one generated by the thermal random force R(7) and the
other generated by the optical force 6 (r). When the laser strikes the node of the membrane,
because of the vacuum amplitude fluctuation d)?llo, the membrane experience a fluctuating
force [54](assuming o > 1)

5 () ~ 2k [[ dxas|OnPo(x. ) = 4hklalCon, 0 X,

where Cim pg = / Uim(z = 0)U,,(z = 0)¢(x, y)dxdy, which under small laser beam waist

approximation is evaluated to Cop, 19 = kaWO. Then from Eq. (7),

X (w) = xm(0)(6F (w) + R(w)),
and the spectral density of the split photodetector can be calculated to be
Sy(f) = Fgo’lo(sin2 0,4 +|cosB, +2hD y,, sin 9a|2)

+ D Foyn * oo 10/20w0k sin 04 2S5 (f)
mn#10

where Sg’(f) = 2|k xm|*me rpTkpT (assuming kpT > hiwyy), S (f) = |k Xm|*Me £ TR
and D = |kk,,woar|>. The tilt angle spectral density follows as

Sp(f) = + NI kP wik xml” + S ()

4ANw2k? sin? 0,
2
FOO,mn

27,2 inl 2 :
4Nwgk? sin”6a =10 Foo 10

+ hk,ane{)(m} cotf, +

2

Assuming negligible thermal motion S’ﬁh (f) =~ 0 and perfect detection ;.10 % =0,

without considering the correlation term 7ik2,Re{ y, } cot 8, minimizing over N, we find that
Sg(fmin = hk,znl)(ml (0 = m/2). And taking account of the correlation term Sg(f)min =
k2 Im{x,n} (6 not at 7/2).

The cooperativity can be calculated as SNR of zero point motion to shot noise as

- 2PQ kwiks,

Meff cw?

The calculation for classic noise is similar to that of quantum noise. The input field is
Uin = a(Ug + Afv—g)U 10) assuming large classical noise and Ax(z) is the displacement of the



sss  laser spot. Following the same procedures, we have
SAx (f)/wé
Nw3k? sin® 4,

+ 85,

Sg(f) = | c0S 04 + 2hD yy sin 04|

Sax (f) /W

2
Nl cot“ 0.
0

390 and Sgla(ga) =



