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Abstract: The optical lever is a centuries old and widely-used detection technique employed in5

applications ranging from consumer products and industrial sensors to precision force microscopes6

used in scientific research. However, despite the long history, its quantum limits have yet to7

be explored. In general, any precision optical measurement is accompanied by optical force8

induced disturbance to the measured object (termed as back action) leading to a standard quantum9

limit (SQL). Here, we give a simple ray optics description of how such back action can be10

evaded in optical lever detection. We perform a proof-of-principle experiment demonstrating the11

mechanism of back action evasion in the classical regime, by developing a lens system that cancels12

extra tilting of the reflected light off a silicon nitride membrane mechanical resonator caused13

by laser-pointing-noise-induced optical torques. We achieve a readout noise floor two orders14

of magnitude lower than the SQL, corresponding to an effective optomechanical cooperativity15

of 100 without the need for an optical cavity. As the state-of-the-art ultra low dissipation16

optomechanical systems relevant for quantum sensing are rapidly approaching the level where17

quantum noise dominates, simple and widely applicable back action evading protocols will be18

crucial for pushing beyond quantum limits.19

1. Introduction20

Optical lever detection, which measures the angular deviation of light reflecting from a tilting21

surface, is among the oldest precision optical measurement techniques [1]. For multiple centuries,22

the technique has been widely employed in numerous applications ranging from consumer23

products [2, 3] and industrial sensors such as optical comparators to high precision scientific24

instruments such as atomic force microscopy(AFM) and its various variants, torsional balances25

for big-G measurement [4], and active mirror alignment for gravitational wave detectors [5, 6].26

Although the optical lever is old and simple, contrary to general intuition, it is as sensitive27

as optical interferometry [7, 8], which has been more associated with precision measurement.28

However, the quantum limits of optical level detection have yet to be experimentally explored,29

as systems to date have been limited by thermal or other classical noise sources. Advances in30

nanomechanical resonators in the past few years [9–14] have pushed the device quality factor31

to a new level, reducing thermal noise, making quantum noise caused by optical forces (i.e.,32

measurement back action) a dominant limit to be overcome. Here, we show that the effects of33

back action are evaded by modifying the optical lever beam path with a carefully designed lens34

system.35

In optical lever detection, quantum measurement back action presents as noisy torques from36

random arriving photons (shot noise) recoiling off a device. The standard quantum limit (SQL)37

is the minimum noise achieved by balancing shot noise and its back action induced disturbance.38

Methods that sidestep this limit [15–17] are referred to as back action evasion. So far, the SQL39

and protocols for beating it have been extensively studied in interferometric optomechanical40

systems [18–20]. Surpassing the SQL will extend the scope and sensitivity of gravitational wave41

detectors [21] and enhance searches for dark matter candidates [22, 23] and tests of the validity42

of quantum mechanics at a macroscopic scale [24]. Most of the work done so far on back action43

evasion utilizes optical cavities to enhance optomechanical interaction strength. On the other44

hand, such cavities limit bandwidth, complicate the setup, and make systems prone to classical45

laser noise. One notable exception is recent work in levitated nanoparticle systems that approach46



the regime where back action can be evaded without using a cavity [25, 26].47

The typical angular resolution for optical lever detection is on the order of 10 prad/
√

Hz48

for applications such as AFMs [27, 28]. The technique has been pushed further with multiple49

bounces [29], non-classical laser sources such as single or multimode squeezed light [30, 31],50

and with cavity enhancement [32, 33]. However, these experiments are still far from the SQL.51

A method to surpass SQL was theoretically proposed only a few years ago by Enomoto, et52

al. [34]. Noise correlations introduced by the optomechanical interaction produce squeezing53

(sometimes referred to as ponderomotive squeezing) and can be used to evade back action in an54

optical lever detector, ultimately providing the resource for a quantum-enhanced measurement55

scheme capable of surpassing the SQL. We present a simple ray optics picture of this process56

and experimentally demonstrate this protocol for back action evasion at room temperature with57

classically driven laser noise. We observe an optomechanical cooperativity, which characterizes58

measurement strength relative to the SQL, up to 100. We also find that parameters needed for59

evading quantum back-action are within experimental reach. This quantum-enhanced optical60

lever detection protocol will be beneficial for ultra-high precision measurements such as AFM or61

scanning force microscopy utilizing high Q mechanical resonators [35], optical-tweezers-based62

sensors, and novel types of gravitational-wave detectors [36].63

2. Quantum noise in optical lever64

An optical lever, in itself, is very simple as shown in Fig. 1(a). In our system, a laser reflects off65

the node of a suspended membrane mechanical resonator. With the laser beam waist (𝑤0) much66

smaller than the mechanical wavelength (𝜆𝑚), the out-of-plane motion of the membrane at the67

node can be approximated as a tilting mirror. The deflection of the laser is then measured by a split68

photodetector, which takes the difference of the optical power on left and right sides. The precision69

of optical lever detection is limited by quantum noise, as photons strike the split photodetector70

randomly in time and with a spacial distribution following the beam intensity profile (represented71

by finite beam width in Fig. 1(a) and spread rays in Fig. 1(b)). This shot-noise-limited readout72

floor improves with laser power. Additionally, the random recoil of photons off the membrane73

imposes an imbalanced force noise, which tilts the mirror and redistributes the reflected photons.74

Such back action noise increases with laser power. The standard quantum limit resides where the75

sum of the two noise sources is at a minimum.76

A simple case of back action evasion in an optical lever can be visualized in a ray optics77

picture as shown in Fig. 1(b). Uniformly distributed incoming rays reflect off a flat mirror and78

are focused through an output lens to its Fourier plane, P1 (red rays). Tilting of the mirror (blue79

line) by an external force displaces the focal point off the optical axis (blue rays). An incoming80

photon’s beam path is described by a random incoming red ray. Such a single ray off the axis,81

produces a torque on the mirror proportional to the arm length. This torque causes a tilting of the82

mirror that gets larger when the ray is further from the pivot point, and the ray is consequently83

deflected further from the original reflection direction. Thus, the back-action-modified beam84

path for a given ray is equivalent to reflecting off a convex parabolic mirror (yellow line). In other85

words, the flat mirror effectively picks up a dynamical curvature due to optical back action forces.86

The deflected photons (yellow rays) converge back to the optical axis at a certain distance beyond87

P1. A split photodetector placed there sees no effects of back action, but retains sensitivity to the88

tilting of the mirror from external forces.89

3. Gaussian optics picture90

To better quantify the quantum noise, we decompose the optical field in the basis of Hermite-91

Gaussian (HG) modes, generalizing the treatment of [34]. In this section, we present the results92

of our calculations, which are detailed in the Appendix. We provide an analysis including the93

effect of higher order modes in Supplement 1. 𝑈𝑚𝑛 (𝑥, 𝑦, 𝑧) is the HG mode of order 𝑚 in 𝑥94
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Fig. 1. (a) Optical lever detection of a membrane mechanical resonator. (b) Ray optics
visualization of back action evasion in the low frequency limit. If the surface is fixed,
the incoming red beams are reflected and focused by a lens to one point. If the mirror
tilts due to external force, the rays will be focused to a different point (blue lines) on
plane P1(Fourier plane). The yellow rays take account of the result of optical forces
on the mirror. Rays impinging further from the pivot point give larger back action
torques, and so the yellow rays appear to be reflected off a parabolic mirror and focused
to plane P2, which we term back action evasion plane. The mirror curvature, and thus
the location of P2, is frequency dependent following the mechanical response function.
The maximum SNR sits between P1 and P2.

direction and 𝑛 in 𝑦 direction and propagating in 𝑧 direction (see Supplement 1 Sec. S1.E for95

details). A laser in a coherent state of the 𝑈00 mode reflecting from an undulating surface can96

be thought of as scattering light into higher order HG modes. To first order, a small tilt of97

this Gaussian laser beam can be characterized as the addition of a 𝑈10 component with a small98

imaginary amplitude (in addition, small transverse displacements of the laser correspond to a real99

amplitude 𝑈10 component). This limit is relevant for our case where 𝑤0 ≪ 𝜆𝑚 and the amplitude100

of motion of the membrane is small, and forms the basis of optical lever measurement.101

In this case, the input field can be approximated as [37, 38]102

𝑈̂𝑖𝑛 = 𝛼𝑈00 (𝑥, 𝑦, 𝑧) + (𝑑𝑋̂1 + 𝑖𝑑 𝑋̂2)𝑈10 (𝑥, 𝑦, 𝑧), (1)

where 𝛼 ≫ 1 is the coherent amplitude (neglecting quantum fluctuations in the fundamental
mode, which do not contribute to the back action or measured signal in our experiment). 𝑑𝑋̂1 and
𝑑𝑋̂2 are vacuum amplitude and phase fluctuations of 𝑈10 that give rise to quantum limited beam
displacement and pointing noise of the laser, respectively. The latter is responsible for readout
noise at the detector, whereas the former seeds the mechanical back action on the membrane.
The reflected field 𝑈̂𝑜𝑢𝑡 can be associated with the input field 𝑈̂𝑖𝑛 as (up to a change of direction
of propagation)

𝑈̂𝑜𝑢𝑡 (𝑧 = 0) = 𝑒−𝑖2𝑘Φ̂(𝑥,𝑦,𝑡 )𝑈̂𝑖𝑛 (𝑧 = 0),

where 𝑘 is the laser wave number and Φ̂(𝑥, 𝑦, 𝑡) is the out-of-plane motion of the resonator. For a103

small beam waist, we can approximate Φ̂ ≈ 𝛽(𝑡)𝑥, where 𝛽 is the tilting angle of the surface of the104

membrane. 𝛽(𝜔) ≈ 𝑘𝑚 𝑋̂ (𝜔) = 𝑘𝑚𝜒𝑚 (𝜔) (𝛿𝐹̂ (𝜔) + 𝑅̂(𝜔)) has 2 sources, one generated by the105

thermal random force 𝑅̂(𝑡) and the other generated by the optical force 𝛿𝐹̂ (𝑡) ≈ 2|𝛼 |ℏ𝑘𝑘𝑚𝑤0𝑑𝑋̂1.106

Here 𝑋̂ is the amplitude of motion and 𝜒𝑚 (𝜔) is the mechanical response function. (See107



Appendix for details.) The fluctuations on the output 𝑈10 mode are then given by:108

𝑑𝑋̂1 (𝜔) → 𝑑𝑋̂1 (𝜔) (2)
𝑑𝑋̂2 (𝜔) → 𝑑𝑋̂2 (𝜔) − 𝛼𝑤0𝑘𝛽(𝜔)

= 𝑑𝑋̂2 (𝜔) + 2ℏ𝐷𝜒𝑚 (𝜔) · 𝑑𝑋̂1 (𝜔) +
√
𝐷𝜒𝑚 (𝜔) 𝑅̂(𝜔). (3)

Here 𝐷 = 𝑁 |𝑘𝑘𝑚𝑤0 |2. 𝑁 = |𝛼 |2 is the photon flux, and 𝑘𝑚 = 2𝜋
𝜆𝑚

. In this process, the reflection109

due to back action induced tilting imprints the amplitude noise of 𝑈10 onto its phase quadrature.110

The generated correlation between amplitude and phase quadrature of the reflected beam is very111

similar to ponderomotive squeezing in cavity optomechanics [39–41] but different in that another112

spatial mode is put in a squeezed vacuum state as opposed to being bright squeezed.113

The 𝑈00 mode does not contain information about the tilting of the membrane, but it acts114

as a local oscillator when weighted by the split photodetector step weighting function (±1 for115

two halves), allowing us to extract information about the tilting angle from the 𝑈10 mode. As116

the reflected beam propagates, the Gouy angle 𝜃 = 𝜃 (𝑧) generates a relative phase shift of 𝜃117

between 𝑈00 and 𝑈10. Thus, the Gouy angle is equivalent to the measured quadrature of 𝑈10.118

(see Supplement 1 Sec. S1.G for details.) Picking a particular quadrature just requires putting119

the split photodetector at a specific location along the beam path, or adding lenses to adjust the120

Gouy phase.121

Putting everything together, we can write down the expression for the power spectrum of the122

measured membrane tilting angle as123

𝑆𝛽 = 𝑆𝐵𝑎𝛽 + 𝑆
𝐼𝑚𝑝

𝛽
+ 𝑆

𝐵𝑎,𝐼𝑚𝑝

𝛽
+ 𝑆𝑇ℎ𝛽 + 𝑆𝐷𝑒𝑡𝑐

𝛽 , (4)

where 𝑆𝐵𝑎
𝛽

= 𝑁ℏ2𝑘2𝑤2
0𝑘

4
𝑚 |𝜒𝑚 |2 is the back action of the laser on the membrane, 𝑆

𝐼𝑚𝑝

𝛽
=124

1
4𝑁𝑤2

0 𝑘
2 sin2 𝜃

is the imprecision readout noise from the laser shot noise, 𝑆𝑇ℎ
𝛽

is the thermal and125

zero point motion of the membrane, 𝑆𝐷𝑒𝑡𝑐
𝛽

counts for the loss of quantum efficiency in detection,126

and 𝑆
𝐵𝑎,𝐼𝑚𝑝

𝛽
= ℏ𝑘2

𝑚 cot(𝜃) Re{𝜒𝑚} is the interference term from the optomechanically induced127

correlation between the two quadratures described by Eq. (2) and Eq. (3) (see Supplement 1128

Sec. S1.G for details). The minimum measurement noise (minimized over reflected power) that129

we can achieve neglecting the last three terms of Eq. (4) occurs at 𝜃 = 𝜋/2 and represents the130

standard quantum limit for our system, 𝑆𝑆𝑄𝐿

𝛽
= ℏ𝑘2

𝑚 |𝜒𝑚 |. Including the interference term, we131

find 𝑆𝛽 ≥ ℏ𝑘2
𝑚Im{𝜒𝑚} (for all 𝜃 and reflected laser powers), which sets the Heisenberg limit.132

Over a particular range of Gouy phases the interference term can be made destructive and the133

SQL can be beaten. Measuring at the (frequency dependent) optimal value of 𝜃 provides an134

optimal detection basis of the superposition of the 𝑈00 and 𝑈10 modes.135

4. Proof-of-principle experiment136

At room temperature, thermal motion dominants over quantum back action for devices we137

currently have. To demonstrate the principle of back action evasion, we intentionally add classical138

laser displacement fluctuations Δ𝑥 that are much larger than the quantum noise by modulating139

the laser spot position. In this case Eq. (4) becomes (see Appendix)140

𝑆𝛽 =
𝑆Δ𝑥/𝑤2

0

𝑁𝑤2
0𝑘

2 sin2 𝜃
| cos 𝜃 + 2ℏ𝐷𝜒𝑚 sin 𝜃 |2 + 𝑆𝑡ℎ𝛽 . (5)

where 𝑆Δ𝑥 (𝜔) is the spectrum of the classical laser position fluctuations, and we have neglected141

the quantum noise. As shown in Fig. 2, a commercially available (Norcada Inc.) silicon nitride142

(SiN) low stress (about 200 MPa) membrane (3.5 mm long, 1.5 mm wide and 100 nm thick) is143



clamped inside a vacuum chamber (1.3e-7 Torr) and positioned at the focal plane of the objective144

lens ( 𝑓 = 125 mm). An Acousto-Optic Modulator(AOM) is located at the other focal plane of145

the objective lens and is frequency modulated(FM) so that angular deviation of the 1st order146

diffracted beam is turned into laser (1064 nm) spot position modulation at the membrane. The147

reflected laser is then steered through an output lens ( 𝑓 = 125 mm) to a split photodetector that148

can move along the beam path to measure at different quadrature angles. The output lens maps149

the far field onto its Fourier plane, generating additional accumulated Gouy phase [42](also see150

Supplement 1 Sec. S1.F for details) allowing us to access all quadratures with finite movement151

of the split photodetector. Near the Fourier plane, the split photodetector is insensitive to the152

injected noise, but sensitive to the vibrations of the membrane.153
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Fig. 2. An FM modulated AOM is placed at one focal plane of the input lens and the
SiN membrane is at the other, so that the angular modulation of the first order diffracted
beam turns into position modulation at the plane of the device. The modulated beam
disturbs the motion of the membrane and deflects itself into a different direction (yellow).
The illustrated case corresponds to a modulation frequency higher than the mechanical
resonance frequency, so that the mechanical response lags 180◦ behind the modulated
force, leading to the reflected beam being steered toward the undisplaced beam and
putting the back action evasion plane P2 before P1. Inset: SiN membrane device.

We modulate the laser spot position by chirping (which plays the role of classical noise) the154

AOM FM frequency across the resonance of the mechanical mode of interest ( 𝑓𝑚 ≈ 371kHz).155

The resultant driven motion is much larger than the thermal motion. Then we measure the156

spectral response of the tilting angle at different quadrature angles(𝑆𝛽 (𝜃)) by translating the split157

photodetector along the beam path near the Fourier plane and averaging at each quadrature angle158

for longer than the decay time of the mode (see Supplement 1 Sec. S2.G for details).159

A density plot of the measured spectra against quadrature angles is shown in Fig. 3(b). We160

calculate the corresponding theoretical density plot (Fig. 3(a)) from Eq. (5) based on independently161

measured experimental parameters. To visualize the spectra 𝑆𝛽 (𝜃), we normalize to the measured162

background noise floor 𝑆𝐶𝑙𝑎
𝛽

(𝜃) =
𝑆Δ𝑥/𝑤2

0
𝑁𝑤2

0 𝑘
2 cot2 𝜃, i.e., the projection of the classical injected163

noise to the measured quadrature. Such normalization mimics that of the spectrum to laser164

shot noise in the case of quantum back action evasion, by considering our classical injected165

noise as artificially enlarged quantum amplitude fluctuations. In the case of pure quantum noise,166

the shot-noise-limited phase quadrature fluctuations would contribute a significant imprecision167

background to the overall signal, creating a quadrature-independent background level. The region168
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Fig. 3. (a) Zero free parameter theoretical expectation of 𝑆𝛽 normalized to injected noise
at corresponding quadrature angle 𝑆𝐶𝑙𝑎

𝛽
(𝜃) versus quadrature angles and frequencies.

(b) Corresponding experiment data. Mode frequency 𝑓𝑚 = 371 kHz, 𝑄 = 3.2 × 106,
𝑚𝑒 𝑓 𝑓 = 4.06 × 10−10 kg, 𝑇 = 297.5 K and the laser power 𝑃 = 21 mW. Observation
of region with less than 0 dB demonstrates the interference mechanism of back action
evasion in optical lever detection. (c) Expectation and experimental data of 𝑆𝛽 at
several representative quadrature angles 𝜃 normalized to input noise 𝑆𝐶𝑙𝑎

𝛽
(𝜃 = 0). The

curves can be interpreted as the gain function at different quadrature angles. The green
dashed curves mark the thermal motion level, which stops dips from going deeper and
demonstrates our ability to resolve small motion on top of the large injected noise. Due
to the sub-Hz resonance frequency random drift which is beyond our active control
capability, the sharp peaks and dips are blurred by random resonance frequency drift.

below 0 dB is where the perceived motion spectrum is smaller than the artificially injected noise169

floor, a classical equivalent of ponderomotive squeezing.170

Figure 3(c) are several spectra from the same data set at some representative quadrature angles.171

These spectra are normalized to the input noise 𝑆𝐶𝑙𝑎
𝛽

(𝜃 = 0◦). The curves can thus be interpreted172

as the gain function of the system with the peak of the motion approaching 0 dB, corresponding173

to a measured cooperativity close to 1. Zero free parameter theoretical expectations are shown174

as solid blue lines to have excellent qualitative agreement with experiment data. At 90◦, the175

curve is just the Lorentzian of the classical noise driven motion of the mechanical mode with no176

back action evasion, equivalent to what will be measured in the far field. At other quadrature177

angles, the destructive interference (the dips in the curves) of injected noise and its driven motion178



emerges in a frequency and quadrature dependent fashion, demonstrating the mechanism of back179

action evasion in optical lever detection. Green dashed lines are the expected thermal motion180

spectrum, which stops the back action evasion dips from reaching deeper, and demonstrates our181

ability to resolve small motion on top of the large classical injected noise.182

5. Cooperativity in optical lever183
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Fig. 4. (a) Room temperature thermal motion PSD of the membrane device inspected
in back action experiment. The laser power is instead 𝑃 = 27.2 mW. The green dots
are experimental data averaged for over 30 minutes. Black is the zero free parameter
calculation. The blue dashed line marks the peak of zero point motion of the device,
which is 5.23 prad/

√
Hz. The orange dash-dotted line marks the measured imprecision

noise level, which is 5.45 prad/
√

Hz, slightly above the zero point motion. (b) Thermal
motion PSD (as signal 𝑉 measured by a split photodetector) of a SiN phononic crystal
string of 𝑓𝑚 ≈ 84 kHz, 𝑄 ≈ 1.0 × 105 and 𝑚𝑒 𝑓 𝑓 ≈ 7.3 × 10−13 kg at 𝑇 = 20 K. A
Lorentzian fit yield the cooperativity to be approximately 𝐶 ≈ 100. Insets show mode
shapes from simulation.

Quantum back action evasion requires large optomechanical coopperativity, 𝐶. For an ideal184

measurement, a cooperativity of 1 indicates the ability to resolve signals at the scale of the zero185

point motion and the regime where the back action induced motion becomes comparable to the186

zero point motion. For 𝐶 > 1, the signal from back action induced motion dominated over the187

shot noise floor. For 𝐶 > 𝑛𝑡ℎ, (where 𝑛𝑡ℎ is the average thermal occupation of the mechanical188

resonator) the back action induced motion becomes larger than the thermal motion and limits189

measurement sensitivity. Calculated from the signal-to-noise ratio (SNR) of zero point motion to190

shot noise limited readout floor, the explicit form of the effective cooperativity for a mechanical191

membrane or string of sinusoidal mode shape and under small beam waist approximation can be192

written as193

𝐶 =
2𝑃𝑄
𝑚𝑒 𝑓 𝑓

𝑘𝑤2
0𝑘

2
𝑚

𝑐𝜔2
𝑚

, (6)

where 𝑃 is the laser power reflected from the device, 𝑄 is the mode quality factor, 𝑚𝑒 𝑓 𝑓 is the194

effective mass of the mode, and 𝜔𝑚 is the mechanical mode angular frequency.195

Figure 4(a) shows the measured thermal motion spectrum of the mode probed in the back action196

evasion experiment. The zero-point motion spectrum, 𝑆𝑧𝑝
𝛽

, is at the same level as 𝑆𝑖𝑚𝑝

𝛽
. From197

Eq. (6) and with the measured experiment parameters, we estimate the cooperativity to be 𝐶 ≈ 2.198

Given the estimated net quantum efficiency 𝜂 ≈ 21% (including geometrical factors [43–45] and199



optical losses) (see Supplement 1 Sec. S2.B for details), our measured SNR of the thermal motion200

spectrum (peak to noise floor) is consistent with the theoretical expectation (SNR = 4𝜂𝑛𝑡ℎ𝐶).201

The theory curves in Fig. 4 have already taken into account the quantum efficiency (also for202

theory curves in Fig. 3), and agree very well with experiment data. To illustrate the achievability203

of large cooperativity in an optical lever system and to push the experiment toward quantum back204

action evasion, we measure the thermal motion power spectrum density (PSD) of a SiN phononic205

crystal string [9] (about 2 mm long, 10 𝜇m wide and 120 nm thick) fundamental torsional206

mode with laser of power 𝑃 = 12.2 mW focused to a beam waist 𝑤0 = 4 𝜇m at 𝑇 = 20 K (see207

Supplement 1 Sec. S2.H for details)), as shown in Fig. 4(b). Using 𝑄 measured from ring down,208

we fit the Lorentzian PSD and estimate the cooperativity to be around 𝐶 ≈ 100. Compared to the209

membrane, the cooperativity of the string is much higher due to its smaller effective mass 𝑚𝑒 𝑓 𝑓 .210

We also note a recent report [14] of higher SNR for torsional mode with wider strings of much211

higher 𝑄.212

6. Outlook213

We finally consider the experimental prospects for implementing the optical lever back action214

evading protocol in the quantum regime, where it can be utilized to beat the SQL. To observe215

quantum back action evasion, we will need the cooperativity to be larger than the thermal216

occupation. This is possible with parameters available from state-of-the-art optomechanical string217

devices. With phononic crystal shielding, soft clamping [46, 47], and dissipation dilution [9, 14],218

quality factors can exceed 𝑄 > 109. Moreover, the effective masses 𝑚𝑒 𝑓 𝑓 of these string219

devices are much smaller than those of membranes. Strained crystalline materials such as220

Si [48] or SiC [10] can have still lower dissipation at cryogenic temperature. Soft-clamped,221

2D membrane resonators have better laser power handling and have been demonstrated to have222

comparable quality factors as that of strings [12,49]. Such state-of-the-art mechanical resonators223

can increase cooperativity by several orders of magnitude, potentially pushing it above the224

thermal occupation. On the optical side, photonic crystal mirrors can be implemented in string225

or membrane resonators to push reflectivity close to unity [50, 51] increasing the reflected laser226

power and potentially incorporating multiple bounces [29] to further enhance the per-photon227

interaction strength. Such high reflectivity resonators can also be incorporated as one mirror228

in an optical cavity with a specially tailored transverse mode spectrum in order to resonantly229

enhance the cooperativity [52] by another few orders, leaving considerable parameter space to230

deal with experimental imperfections and laser heating. With these improvements, quantum back231

action will be the dominant noise at cryogenic temperature, but can now be readily dealt with.232
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Appendix353

Here, we calculate the expected photodetection signal for our system under the small beam waist
approximation. See the supplement for additional details and a discussion of the effects of a large
beam waist. The input field of a typical laser of power 𝑃 in the frame rotating at laser frequency
𝜔𝐿 can be written in the basis of Hermite-Gaussian(HG) modes as

𝛼𝑈00 +
∑︁
𝑚𝑛

𝛿𝑚𝑛𝑈𝑚𝑛.

Here𝑈𝑚𝑛 (𝑥, 𝑦, 𝑧) are 𝑚th order in 𝑥 and 𝑛th order in 𝑦 HG mode functions for modes propagating354

along z and focused to waist 𝑤0 at 𝑧 = 0 where membrane is located (see the Supplement S1.D355

for detailed definition of HG beam). |𝛼 |2 = 𝑁 = 𝑃
ℏ𝜔𝐿

and 𝛼 is assumed to be real without loss356

of generality, and 𝛿𝑚𝑛 represents the vacuum fluctuation in 𝑈𝑚𝑛. 𝛿𝑚𝑛 = 𝑑𝑋̂𝑚𝑛
1 + 𝑖𝑑 𝑋̂𝑚𝑛

2 are357

quantum Langevin noise operators where 𝑑𝑋̂𝑚𝑛
1 is the amplitude vacuum fluctuation, 𝑑𝑋̂𝑚𝑛

2 is358

the phase vacuum fluctuation and ⟨𝑑𝑋̂𝑚𝑛
𝑖

(𝜔) (𝑑𝑋̂ 𝑝𝑞

𝑗
(𝜔′))†⟩ = 1

4𝛿𝑖 𝑗𝛿𝑚𝑝𝛿𝑛𝑞𝛿(𝜔 − 𝜔′)359



The reflection of the laser field off the device can be calculated with Fourier optics. The
reflected field 𝑈̂𝑜𝑢𝑡 can be associated with the input field 𝑈̂𝑖𝑛 as (up to a change of direction of
propagation)

𝑈̂𝑜𝑢𝑡 (𝑧 = 0) = 𝑈̂𝑖𝑛𝑒
−𝑖2𝑘Φ̂(𝑥,𝑦,𝑡 ) ,

where 𝑘 =
𝜔𝐿

𝑐
, Φ̂(𝑥, 𝑦, 𝑡) = 𝑋̂ (𝑡)𝜙(𝑥, 𝑦), where 𝑋̂ is the amplitude of motion and 𝜙(𝑥, 𝑦) =

sin( 𝑙 𝜋
𝑎
(𝑥 − 𝑎

2 )) sin( 𝑝𝜋
𝑏
(𝑦 − 𝑏

2 )) is the out-of-plane motion mode shape (origin put at the center
of the membrane, 𝑎 and 𝑏 are membrane side lengths, and 𝑙 and 𝑝 are mechanical mode indices)
and can be approximated to Φ̂(𝑥, 𝑦, 𝑡) ≈ 𝑋̂ (𝑡)𝑘𝑚𝑥 as the laser beam waist is much smaller than
the mechanical wave length (𝑤0 ≪ 2𝜋

𝑘𝑚
, 𝑘𝑚 is mechanical wave numbers) and centered to the

anti-node in y direction and the node in the x direction (center of the membrane). 𝑋̂ (𝑡) satisfy
the equation of motion,

𝑚𝑒 𝑓 𝑓
¥̂𝑋 + 𝑚𝑒 𝑓 𝑓 Γ

¤̂𝑋 + 𝑚𝑒 𝑓 𝑓𝜔
2
𝑚 𝑋̂ = 𝐹̂,

where 𝐹̂ is the force acting on the membrane and Γ is the damping rate. In the frequency space360

𝑋̂ (𝜔) = 𝜒𝑚 (𝜔)𝐹̂ (𝜔), (7)

where 𝜒𝑚 (𝜔) = 1
𝑚𝑒 𝑓 𝑓

1
(𝜔2

𝑚−𝜔2 )+𝑖𝜔Γ
.361

With the approximation made above, we have362

𝑈̂𝑜𝑢𝑡 (𝑧 = 0) ≈ 𝑈̂𝑖𝑛 (1 − 𝑖2𝑘 𝑋̂ (𝑡)𝑘𝑚𝑥)

≈ (𝛼𝑈00 +
∑︁
𝑚𝑛

𝛿𝑚𝑛𝑈𝑚𝑛) (1 − 𝑖2𝑘𝛽(𝑡)𝑥)

≈ 𝛼𝑈00 + (𝑑𝑋̂10
1 + 𝑖(𝑑𝑋̂10

2 − 𝛼𝑤0𝑘𝛽(𝑡)))𝑈10

+
∑︁

𝑚𝑛≠10
𝛿𝑚𝑛𝑈𝑚𝑛,

where we have used the fact that 2
𝑤0
𝑥𝑈00 = 𝑈10 and 𝛽(𝑡) ≡ 𝑋̂ (𝑡)𝑘𝑚 is the tilting angle at the363

node.364

Propagating the reflected field out, we have the light field at distance as:365

𝑈̂𝑜𝑢𝑡 (𝑧) = 𝛼𝑈00 (𝑥, 𝑦, 𝑧)
+ (𝑑𝑋̂10

1 + 𝑖(𝑑𝑋̂10
2 − 𝛼𝑤0𝑘𝛽(𝑡)))𝑈10 (𝑥, 𝑦, 𝑧)

+
∑︁

𝑚𝑛≠10
𝛿𝑚𝑛𝑈𝑚𝑛 (𝑥, 𝑦, 𝑧),

The signal 𝑉 (𝑡) for the split photodetector at 𝑧 is proportional to366

𝑉̂ (𝑡) ∝
∫ 0

−∞
𝑑𝑥

∫ ∞

−∞
𝑑𝑦 |𝑈̂𝑜𝑢𝑡 (𝑥, 𝑦, 𝑧) |2

−
∫ ∞

0
𝑑𝑥

∫ ∞

−∞
𝑑𝑦 |𝑈̂𝑜𝑢𝑡 (𝑥, 𝑦, 𝑧) |2.

Taking into account that there is a relative phase shift among 𝑈𝑚𝑛 due to Gouy phase, we have367

(the spectrum of 𝑉̂ (𝑡) is normalized to the shot noise floor, assuming 𝛼 ≫ 1)368

𝑉̂ (𝑡) ≈ 2𝐹00,10 [𝑑𝑋̂10
1 cos 𝜃𝑎 − (𝑑𝑋̂10

2 − 𝛼𝑤0𝑘𝛽) sin 𝜃𝑎]

+ 2
∑︁

𝑚𝑛≠10
(𝑑𝑋̂𝑚𝑛

1 cos 𝜃𝑎 − 𝑑𝑋̂𝑚𝑛
2 sin 𝜃𝑎)𝐹00,𝑚𝑛,



where 𝐹𝑙𝑚,𝑝𝑞 =
∬

𝑑𝑥𝑑𝑦𝑈𝑙𝑚 (𝑧 = 0)𝑈∗
𝑝𝑞 (𝑧 = 0)𝐹𝑤𝑒𝑖𝑔ℎ𝑡 and 𝐹𝑤𝑒𝑖𝑔ℎ𝑡 for split detector is simply369

±1 for left and right half plane.370

In actual experiment, the light goes through a lens system. The propagation can be done371

with the help of ABCD matrices [53]. However, Gouy angle calculated this way does not yield372

the correct phase differences between HG modes. Here, we have replaced Gouy angle 𝜃 with373

accumulated Gouy angle 𝜃𝑎 to correctly count for the phase differences between HG modes in374

lens system [42]. Under the thin lens approximation the beam curvature get modified but beam375

waist and phase remain the same which makes the Gouy phase fail to describe relative phase376

difference between HG modes. The accumulated Gouy phase is calculated by summing up the377

Gouy phase change during free space propagation between the lenses. In the main text, we just378

use symbol 𝜃 for simplicity.379

The tilting angle 𝛽 has 2 sources, one generated by the thermal random force 𝑅̂(𝑡) and the
other generated by the optical force 𝛿𝐹̂ (𝑡). When the laser strikes the node of the membrane,
because of the vacuum amplitude fluctuation 𝑑𝑋̂10

1 , the membrane experience a fluctuating
force [54](assuming 𝛼 ≫ 1)

𝛿𝐹̂ (𝑡) ≈ 2ℏ𝑘
∬

𝑑𝑥𝑑𝑦 |𝑈̂𝑖𝑛 |2𝜙(𝑥, 𝑦) = 4ℏ𝑘 |𝛼 |𝐶00,10𝑑𝑋̂
10
1 ,

where 𝐶𝑙𝑚,𝑝𝑞 ≡
∫
𝑈𝑙𝑚 (𝑧 = 0)𝑈∗

𝑝𝑞 (𝑧 = 0)𝜙(𝑥, 𝑦)𝑑𝑥𝑑𝑦, which under small laser beam waist
approximation is evaluated to 𝐶00,10 =

𝑘𝑚𝑤0
2 . Then from Eq. (7),

𝑋̂ (𝜔) = 𝜒𝑚 (𝜔) (𝛿𝐹̂ (𝜔) + 𝑅̂(𝜔)),

and the spectral density of the split photodetector can be calculated to be380

𝑆𝑉 ( 𝑓 ) = 𝐹2
00,10 (sin

2 𝜃𝑎 + | cos 𝜃𝑎 + 2ℏ𝐷𝜒𝑚 sin 𝜃𝑎 |2)

+
∑︁

𝑚𝑛≠10
𝐹2

00,𝑚𝑛 + 𝐹2
00,10 |2𝛼𝑤0𝑘 sin 𝜃𝑎 |2𝑆𝑡ℎ𝛽 ( 𝑓 )

where 𝑆𝑡ℎ
𝛽
( 𝑓 ) = 2|𝑘𝑚𝜒𝑚 |2𝑚𝑒 𝑓 𝑓 Γ𝑘𝑏𝑇 (assuming 𝑘𝑏𝑇 ≫ ℏ𝜔𝑚), 𝑆𝑧𝑝

𝛽
( 𝑓 ) = |𝑘𝑚𝜒𝑚 |2𝑚𝑒 𝑓 𝑓 Γℏ𝜔𝑚381

and 𝐷 = |𝑘𝑘𝑚𝑤0𝛼 |2. The tilt angle spectral density follows as382

𝑆𝛽 ( 𝑓 ) =
1

4𝑁𝑤2
0𝑘

2 sin2 𝜃𝑎
+ 𝑁ℏ2𝑘2𝑤2

0𝑘
4
𝑚 |𝜒𝑚 |2 + 𝑆𝑡ℎ𝛽 ( 𝑓 )

+ ℏ𝑘2
𝑚Re{𝜒𝑚} cot 𝜃𝑎 +

1
4𝑁𝑤2

0𝑘
2 sin2 𝜃𝑎

∑︁
𝑚𝑛≠10

𝐹2
00,𝑚𝑛

𝐹2
00,10

.

Assuming negligible thermal motion 𝑆𝑡ℎ
𝛽
( 𝑓 ) ≈ 0 and perfect detection

∑
𝑚𝑛≠10

𝐹2
00,𝑚𝑛

𝐹2
00,10

= 0,383

without considering the correlation term ℏ𝑘2
𝑚Re{𝜒𝑚} cot 𝜃𝑎, minimizing over 𝑁 , we find that384

𝑆𝛽 ( 𝑓 )𝑚𝑖𝑛 = ℏ𝑘2
𝑚 |𝜒𝑚 | (𝜃 = 𝜋/2). And taking account of the correlation term 𝑆𝛽 ( 𝑓 )𝑚𝑖𝑛 =385

ℏ𝑘2
𝑚Im{𝜒𝑚} (𝜃 not at 𝜋/2).386

The cooperativity can be calculated as SNR of zero point motion to shot noise as

𝐶 =
2𝑃𝑄
𝑚𝑒 𝑓 𝑓

𝑘𝑤2
0𝑘

2
𝑚

𝑐𝜔2
𝑚

The calculation for classic noise is similar to that of quantum noise. The input field is387

𝑈̂𝑖𝑛 = 𝛼(𝑈00 + Δ𝑥 (𝑡 )
𝑤0

𝑈10) assuming large classical noise and Δ𝑥(𝑡) is the displacement of the388



laser spot. Following the same procedures, we have389

𝑆𝛽 ( 𝑓 ) =
𝑆Δ𝑥 ( 𝑓 )/𝑤2

0

𝑁𝑤2
0𝑘

2 sin2 𝜃𝑎
| cos 𝜃𝑎 + 2ℏ𝐷𝜒𝑚 sin 𝜃𝑎 |2

+ 𝑆𝑡ℎ𝛽 ( 𝑓 ),

and 𝑆𝐶𝑙𝑎
𝛽

(𝜃𝑎) =
𝑆Δ𝑥 ( 𝑓 )/𝑤2

0
𝑁𝑤2

0 𝑘
2 cot2 𝜃𝑎.390


