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NUMERICAL HOMOTOPIES FROM KHOVANSKII BASES
M. BURR, F. SOTTILE, AND E. WALKER

ABSTRACT. We present numerical homotopy continuation algorithms for solving systems of
equations on a variety in the presence of a finite Khovanskii basis. These take advantage
of Anderson’s flat degeneration to a toric variety. When Anderson’s degeneration embeds
into projective space, our algorithm is a special case of a general toric two-step homotopy
algorithm. When Anderson’s degeneration is embedded in a weighted projective space, we
explain how to lift to a projective space and construct an appropriate modification of the
toric homotopy. Our algorithms are illustrated on several examples using Macaulay?2.

We consider the problem of computing the isolated solutions to the system

(1) fi(z) = fa(z) = -+ = fa(z) =0,

where f1,..., f; are general members of a finite-dimensional vector space V' of rational func-
tions on a complex algebraic variety X of dimension d. Kaveh-Khovanskii [18, 19] and
Lazarsfeld-Mustata [21] show that the number of solutions is the normalized volume of the
Newton-Okounkov body associated to V. The accompanying theory extends many uses of
Newton polytopes from toric varieties to general algebraic varieties. This theory lends itself
to algorithms when V' has a finite Khovanskii basis [20].

The evaluation of functions in V' induces the rational Kodaira map ¢: X --» P(V*). The
solutions to System (1) are the pull backs of the points of a linear section ¢(X) N L along
. When V has a finite Khovanskii basis, Anderson [2] shows that (the closure of) ¢(X) has
a flat degeneration to a toric variety associated to the Newton-Okounkov body of V. We
describe numerical algorithms for computing a linear section based on this toric degeneration
and the polyhedral homotopy algorithm [15, 28]. Solving System (1) then requires computing
the pull back of the linear section.

Our numerical algorithms for computing a linear section are based on homotopy continua-
tion [23]. This approach uses path tracking from numerical analysis to compute the solutions
to a target system F' given all solutions to a start system G along with a homotopy interpo-
lating the two systems. Anderson’s flat toric degeneration gives a homotopy where the start
system is a linear section of a toric variety and the target system is a linear section of ¢(X).
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Flatness guarantees that the number of solutions to the start and target systems are equal.
Thus the homotopy is optimal in the sense that no extraneous paths are tracked.

Our start system is a linear section of a toric variety, which may be solved using the optimal
polyhedral homotopy algorithm [15, 28]. Beyond those derived from a finite Khovanskii basis,
there are many instances in which a projective variety has a flat degeneration into a toric
variety. In Section 1, we describe an optimal toric two-step homotopy algorithm for solving
systems given a toric degeneration in an ambient projective space. We also present examples
of such flat degenerations into toric varieties.

When the Khovanskii basis is a subset of V', Anderson’s degeneration may be embedded
in the projective space P(V*). In Section 2, we present the Khovanskii homotopy algorithm,
which uses this embedding and the toric two-step homotopy to solve System (1). For a general
Khovanskii basis, Anderson’s degeneration may only be embedded in a weighted projective
space and System (1) is not a pull back of a general linear section. In Section 3, we describe
how to adapt the toric algorithm to this general case of a Khovanskii basis.

We end each section with a concrete example to illustrate our techniques and algorithms.
These examples are computed with Macaulay2 scripts [13], which are archived on GitHub:

https://github.com/EliseAWalker/KhovanskiiHomotopy/

We use the NumericalAlgebraicGeometry package [22] to call the packages Bertini [3] and
PHCpack [27] for user-defined homotopies and the polyhedral homotopy, respectively. We
discuss practical issues that arise from using these software packages in Section 4.

1. HOMOTOPY CONTINUATION AND TORIC DEGENERATIONS

Numerical homotopy continuation computes the solutions to a system F' of polynomial
equations given the solutions to a related system G. This method uses numerical path
tracking along a homotopy, which is a family of systems containing both F' and G. We
begin by reviewing homotopy continuation and then discuss how flat families are a source of
homotopies. When a flat family is a degeneration into a toric variety and the system G is a
linear section of that toric variety, we describe the toric two-step homotopy algorithm whose
first step is a polyhedral homotopy.

1.1. Numerical homotopy continuation. Numerical homotopy continuation is a method
for solving a system F'(x) = 0 of polynomial equations [23]. It uses a one-parameter family
H(xz;t) (in t € C;) of polynomial systems called a homotopy. Numerical homotopy continu-
ation mandates that the start system G(z) := H(x;0) has known solutions and the solutions
to the target system F'(x) are among those to H(x;1). We further require that H (z;t) defines
a curve C' in C} x C; (or P? x C;) with ¢t = 0 a regular value of the projection C' — C,.
These assumptions imply that there are enough solutions to the start system so that along
a general path in C;, the solutions to the start system H(x;0) deform to the solutions to the
system H (z;1). The homotopy is optimal if every solution to the start system deforms to a
distinct solution to the target system so that no extraneous paths are tracked.

Given a homotopy H, let v be a general arc in C; between 0 and 1. The restriction of H
to ~ is a family of smooth arcs. Standard numerical path tracking algorithms starting with
solutions to G can compute the set of all solutions to H(z;1), which includes all solutions


https://github.com/EliseAWalker/KhovanskiiHomotopy/

NUMERICAL HOMOTOPIES FROM KHOVANSKII BASES 3

to F'. When ¢t = 1 is also a regular value of the projection C'— C; and H(z;1) = F(x), the
homotopy is optimal.

Several software packages implement numerical homotopy continuation methods. These
include Bertini [3], NumericalAlgebraicGeometry [22|, HomotopyContinuation.jl [5],
HOM4PS [7], and PHCpack [27]. The first three implement user-defined homotopies, and our
computational examples use the user-defined homotopy method provided in Bertini. The
last three packages implement the polyhedral homotopy method [15, 28], and we use PHCpack
for solving systems of sparse polynomials coming from linear sections of toric varieties.

1.2. Homotopies from flat families. Suppose that X C P" is a subvariety of dimension
d. A linear section of X is a transverse intersection X N L where L C P" is a linear subspace
of codimension d so that X N L consists of deg X points.

Let X C P"xC be a variety with a surjective map 7: X — C. Then 7 realizes X as a family
of projective varieties over C where a point ¢t € C corresponds to the fiber X, := 7=1(t) C P™.
There is an open subset U C C such that X" is flat over U. Flatness is an algebraic property
which captures the geometric notion that the fibers AX; vary continuously with t € U [11,
Chapter 6]. For example, the fibers of a flat family all have the same dimension and degree.

Suppose that the fibers of a flat family X over U C C have dimension d and that 0,1 € U.
Let L C P™ be a general linear subspace of codimension d which meets both Ay and &)
transversally so that Xy N L and &X; N L are linear sections. Let H(z;t) be finitely many
polynomials defining X and d linear forms defining L. We call H(z;t) a linear section
homotopy.

Proposition 1 (Linear section homotopy). A linear section homotopy H(x;t) is an optimal
homotopy with start system Xo N L and target system X; N L.

Proof. Let C' be the union of components of X N L that contain both XyNL and A3 N L. Since
these intersections are zero-dimensional, C' is a curve. Furthermore, both ¢t = 0 and ¢t = 1
are regular values of the projection C' — C;. Thus, H is a homotopy. Flatness implies that
Xo N L and X} N L have the same number of points so that the homotopy H is optimal. [

A linear section is part of a witness set, which is a fundamental data structure in numerical
algebraic geometry [4]. Specifically, a witness set for a d-dimensional variety X C P" is a
triple (F, L, X N L) where F' is a set of homogeneous polynomials (forms) on P defining X,
L is a set of d general linear forms defining a linear subspace (which is also written L), and
X N L is the corresponding linear section.

In the linear section homotopy in Proposition 1, L is a fixed general linear space and the
variety &A; moves. Our algorithms sometimes require linear spaces which are not general. For
this, we use a homotopy where the variety is fixed, but the linear section moves, which is
described in the following basic algorithm for moving a witness set:

Algorithm 2 (Witness Set Homotopy).
Input: A witness set (G, L, X N L) for X and a codimension d linear subspace L’ such
that X N L' is finite.
Output: The points of X N L.
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Do:

(i) Let H := (G,tL' + (1 —t)L), a homotopy with start system X N L and target system
XnNnlL.
(ii) Use path tracking starting from the points of X N L to compute the points of X N L'.

1.3. Toric degenerations. A toric degeneration X C P" x C, is a flat family over C;
whose special fiber &j is a toric variety (see [8] for details on toric varieties). Given a toric
degeneration, the linear section homotopy leads to the toric two-step homotopy which we
describe in Algorithm 3.

A vector o = (ay,...,aq) € Z% is the exponent of a Laurent monomial 2 := z{* - - - 2%,
which is a function on the algebraic torus (C*)¢, where C* := C ~ {0}. Suppose that A
is a d x (n+1) integer matrix whose columns {ay, ..., a,} are a finite set of n+1 integer
vectors. The toric Kodaira map p4: (C*)? — P" is defined by ¢4(z) := [z%0,..., 2%"], and
the toric variety X 4 is the closure of its image. The homogeneous ideal of X 4 is spanned by
the following set of binomials [26, Chapter 4]:

{:L'“ —z¥: Zaiui = Zaivi and Zul = Zv,}

We describe a variant of this Kodaira map for translated toric varieties. The torus (C*)"*!
acts on P by independently scaling each coordinate. This action factors through the quotient
of (C*)™*1 by its diagonal, AC*. This quotient is the dense torus T of P*. For a point p € T,
let p. X 4 be the translation of the toric variety X 4 by p. We note that p € p.X4 and that
p. X4 =p . Xy for any p' € p. X4 NT. The ideal of p.X 4 is spanned by the following set of
binomials, which depend on p:

{pvﬁfu — pu.flfv : ZO&Z'UZ' = ZO&Z"UZ‘ and Zul = Z’UZ}

Since p.X 4 ~ X4, we also call p.X 4 a toric variety and the ideal of p.X 4 a toric ideal.
Writing p = [po, - - -, Pn), the corresponding toric Kodaira map for p.X 4 is

(2) ©pa(2) = [P0z, ..., pn2™].
A linear section p.X 4 N L of the toric variety p.X 4 pulls back along ¢, 4 to the following
system of sparse polynomials on (C*)¢ whose monomials have exponents in A:

(3) 91(2) = g2(2) = -+ = ga(z) = 0.
The polyhedral homotopy algorithm is an optimal homotopy for solving this system of poly-
nomials [15, 28].

Let X — C; be a toric degeneration with d-dimensional toric special fiber p. X, = Aj.
A general linear subspace L of codimension d gives linear sections p.X 4 N L and X7 N L.
We combine the linear section homotopy of Proposition 1 with the polyhedral homotopy to

obtain the toric two-step homotopy algorithm for computing the points of the linear section
X1 N L. Let G4 be System (3), which is given by the pull back of L along ¢, 4.

Algorithm 3 (Toric two-step homotopy algorithm).
Input: A toric degeneration X C P" x C; with &y = p.X 4 a toric variety and a general
linear space L C P" of codimension equal to the dimension of Aj.
Output: All points of the linear section X; N L.
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Do:

(i) Compute the system G4 by pulling L back along the Kodaira map ¢, 4.

(ii) Use the polyhedral homotopy to solve G 4.

(iii) Use ¢, 4 to obtain the points of the linear section p.X 4 N L.

(iv) Use the linear section homotopy (Proposition 1) beginning with the points of p. X 4N L
to obtain the points of the linear section A} N L.

The discussion preceding Algorithm 3 justifies the following theorem:
Theorem 4. Algorithm 3 is an optimal homotopy algorithm for computing X; N L.

Remark 5. Algorithm 3 can be applied to compute X; N L when the definition of a toric
degeneration is relaxed so that X} is a union of toric varieties (see Remark 8 for examples).
The points in a general linear section Xy N L in Algorithm 3 may be computed from systems
of sparse polynomials for each toric component of Aj. o

1.4. Examples of toric degenerations. We present three examples of toric degenerations.
Example 6 is the motivating example for this paper. Example 9 illustrates an alternate source
of toric degenerations. Example 10 is an explicit application of Algorithm 3.

Example 6. Weight degenerations induced by a C*-action on P" are a source of toric
degenerations. Anderson [2] constructs a toric weight degeneration given a Khovanskii basis.
The SAGBI homotopy [14] is also based on a toric weight degeneration.
We review the construction in [11, Section 15.8] of flat families from C*-actions. Let
w € Z"! be a weight and define an action of the torus C* on P" by
(x,t) €P" x C* =t i= [xgt™ ", ...,z t" "] € P,

The dual action on functions is ¢.f(z) := f(t~'.z), and it induces an action on polynomials.
For a polynomial f = c a2,

(4) t. (Z caxo‘) = Z Cart e,

where w - «v is the usual dot product. (To compare this to [11, Section 15.8], let w = —\.)
Let w(f) be the minimum value of w - « for ¢, # 0. We define

(5) fo= (T = futty,
where the initial form f, of f is the sum of its terms c,z®* where w - a = w(f), and g is a
polynomial in the variables ¢, xq, ..., x,.
Let X C P" be a projective variety with ideal I. Define X* C P" x C to be the Zariski
closure of the family of translates of X, thus
XY i={(z,t) ePr xC*:x et X} CP" xC,.

For ¢t # 0, we observe that X = ¢.X and has ideal (f; : f € I). The following result
establishes the flatness of this family:

Proposition 7 ([11, Theorem 15.17]). The family X* — C; is flat. The fiber at t = 0 is the
scheme with ideal

I, = (fu:f€I).
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The proof uses a Grobner basis G for I with respect to a weighted term order < with
weight —w so that f,, consists of the <-leading terms for f.!

Suppose that the family X has Grobner basis G, := {g; : ¢ € G}. Then a Grobner basis
for I, is obtained by setting t = 0 in G;. The scheme at ¢ = 0 may be neither reduced nor
irreducible. If this scheme is a toric variety, then the weight degeneration X — C,; is a toric
degeneration. o

Remark 8. Homotopy algorithms using weight degenerations appearing in the literature
include the homotopy for solving the Kuramoto equations [6] and the Grobner homotopy [14].
In these examples, I, is a square-free monomial ideal so that the special fiber is a union of
linear spaces. Such degenerations can be handled by Algorithm 3, see Remark 5. o

Example 9. Algebraic statistics gives examples of toric degenerations [17] which do not
come from a weight degeneration. Let G be a graph with vertex set [m] := {1,...,m} and
edge set F C ([’;}). For each i € [m], let a; be a parameter. For each {i,j} € E, let z;; = z;
and define p;; and p;; via the formula

Prs == xrs(l +a, — tas)-

These polynomials give a map p: C/¥l x C™ x C, — P?¥I=1 x C, whose image is the family
OS of quasi-symmetry models. This family contains two known quasi-symmetry models, the
Pearsonian quasi-symmetry model at ¢ = 1 and the toric quasi-symmetry model at ¢ = 0.
Polynomials associated to cycles in G generate the ideal of the family QS. In the proof of
this fact, one step is to show that this family is flat.

The family of quasi-symmetry models when G is a 3-cycle is the family of hypersurfaces
defined by the cubic

(6)  Pi=(1+41t+1t*)(pr2p2sps1 — P21psepis) +
t(p12p23p13 + P12PsaPs1 + P21P23Ps1 — P12P32P13 — P21P23P13 — PaiP32Psl)-
The fiber QS at t = 0 is the toric variety defined by the binomial p1oposps1 — p21psepis-
The family of quasi-symmetry models QS for a graph is typically not a weight degeneration.
In particular, the family defined in Equation (6) is not a weight degeneration. Indeed, in
each of the eight terms of P, exactly one of p;; or p;; occurs, so the terms correspond to the
vertices of a cube. For any weight w, P, consists of the sum of terms identified with some
face of the cube. Since the polynomial defining QS corresponds to a diagonal of the cube,
it is not of the form P,, for any w. o

Example 10. We present an example of a weight degeneration and use it to illustrate
Algorithm 3. Let X C P7 be the closure of the image of the map ¢: C* — P7 given by

e(z,y,2) = [La,y, 2 22,yz 0(v2 +y), y(zz + y)].
This subvariety has degree six and its ideal / has nine generators:
T1T3 — Tola, TaXz — ToTs, T1T2 — ToTe + T1T4, f% — ZoT7 + T3Te — IZ,

2
ToTe — T1T7, ToXs — T3T7 + TaTs, T1X5 — T3Te + Ti, Toly — T1T5, T5Te — T4T7.

'We use —w because the leading form in the weighted term order <, for w € Z"*! is the sum of terms
with highest w-weight, which is opposite our convention from valuations.
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Let w = (=2,—1,-1,—1,0,0,0,0). We use Equation 5 to compute the ideal of X". The
following thirteen polynomials form a Grébner basis G; for X* with respect to the weighted
term order <_,,:

T1T3 — ToTy, ToT3 — Toxs, T1To — ToTe + tT1T4, :5% — ZoX7 + tx3T6 — t%i ,

2
Toke — T1T7, X5 — T3X7 +1x4x5, X105 — X3Te + 11Xy, Toly — T1X5, TsTe — T4l7,

9301'(25 — l’%:lh — tr1T476 :zoxg — z§x7 + txsxyzs

ToT4Ts — Taxe + tw3x3 | T3x2 — T1T4T7 — LTATE.

The leading terms with respect to <_,, are underlined, and these binomials generate the ideal
I,. This ideal is the toric ideal of the image of the map p4(x,y, 2) = [1,z,y, 2, 12, yz, vy, y?|
given by the lowest order monomials in (. For the toric ideal statement, observe that if we set
(zo, 1, T2, 23) = (1, 2,9, 2), then the first four underlined binomials in G; express xzy, ..., x7
as the monomials in x,y, z appearing in 4. The exponent vectors of ¢ 4 are the columns of
the matrix A in Figure 1.

S

A

FIGURE 1. The weight vectors for the toric Kodaira map ¢4 are the columns
of matrix A. The Newton polytope is the convex hull of these vectors.
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Let L C P7 be the linear subspace of codimension three whose defining equations are
U; =" cijxj for i =1,2,3, where C' = (¢;;) is the 3 x 8 matrix

11 1 1 1 1 1 1
c =11 -23 -4 5 -6 7 =8
2 3 5 7 11 13 17 19

The subspace L meets both ¢(C3) = &) and ¢ 4((C*)3) = A} transversally in six points.
We follow the steps of Algorithm 3 to compute X; N L. We first compute the sparse system
G4 in Step (i) of Algorithm 3 to arrive at the system

l+z4+y+z+az+yz+ay+y =0
1—2x+43y—4z+5xz —6yz+ 7oy — 8y?> =0
2+ 32 + 5y + Tz + 1laz + 13yz + 172y + 19y* = 0.

In Step (ii) of Algorithm 3, we compute the six solutions of the system G 4, one of which is
¢ = (—1.33613,1.51406, —1.22871). The image p4(¢) in P is

[1, —1.33613, 1.51406, —1.22871, 1.64171, —1.86035, —2.02298, 2.29239].

In Step (iii) of Algorithm 3, we compute the images of these six solutions under ¢ 4, which
forms the points of Xy N L. Therefore, the images of these points are the solutions to the
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start system for the linear section homotopy given by H(z,t) = (G, L). In Step (iv), these
solutions are followed from ¢ = 0 to ¢ = 1, computing the six points of the linear section
X1 N L. One point of X1 N L is

[1, —0.689522, 0.928435, —1.35986, 0.937652, —1.26254, —1.28671, 1.73254]. o

2. KHOVANSKII BASES AND THE KHOVANSKII HOMOTOPY

Let X be a complex variety and V' C C(X) be a finite-dimensional complex vector space of
rational functions on X. The closure of the image of X under the Kodaira map ¢y : X --»
P(V*) has homogeneous coordinate ring R(V') generated by V. When this ring has a finite
Khovanskii basis contained in V', Anderson’s toric degeneration embeds in P(V*) as a weight
degeneration. We use this degeneration in the Khovanskii homotopy algorithm (Algorithm
14) to compute a linear section ¢y (X) N L.

We review the theory of Newton-Okounkov bodies and Khovanskii bases and then describe
how to produce an embedding of Anderson’s toric degeneration into P(V*) when the Kho-
vanskii basis is a subset of V. We also show how to compute a Kodaira map of the toric
special fiber. With the embedding and toric Kodaira map, Algorithm 3 becomes an effective
method to compute linear sections. In Section 3, we explain how to modify this method for
the general case when the Khovanskii basis is not a subset of V.

2.1. Valuations, Khovanskii bases, and Newton-Okounkov bodies. We recall the key
definitions and properties of Khovanskii bases from [20]. Suppose that X is a d-dimensional
complex variety with function field C(X). Let = be a total order on Z? so that Z? is
an ordered abelian group. A Z<-valuation on C(X) is a surjective group homomorphism
v: C(X)* s Z satisfying the property that for all f,g € C(X) and ¢ € C*,

v(f +9) = min{v(f),v(g)} and v(c) = 0.
By convention, v(0) = oo, 0o = «a, and a + co = oo for all a € Z%. Since dim X = d, v is
a surjection, and C is algebraically closed, it follows that if f, g € C(X)* with v(f) = v(g),
then there is a unique ¢ € C* with v(f—cg) > v(f).

Let V be a finite-dimensional complex vector subspace of C(X). We assume that the image
of V* under v generates Z? (see Remark 11). We write R(V) for the graded ring @,~, V*s",
where V¥ C C(X) is the subspace spanned by all k-fold products of elements in V and s
is a formal variable recording the grading. A nonzero element f € R(V)* is the sum of its
homogeneous components,

f=fes"+ o+ fis+ fo,
where f;, # 0 and f; € V* for all i. We extend the valuation v to R(V') by defining v(f) :=
(v(fr), k) € Z¢ ®N. We also extend = to Z? @ N, where (a, k) = (3,1) if k < [ or else
k =1 and a = B in the order on Z%. The direction of the inequality in k£ < [ is chosen to be
consistent with v(f) = (v(fx), k) defining a valuation.

We write S(V, v) for the image {v(f) : f € R(V)*} of R(V)* under v. This is a submonoid
of Z¢@® N. The closure of the convex hull of S(V,v) in R? x R is the cone cone(V). Its base
NOy := cone(V) N (R4 x {1}) is the Newton-Okounkov body of V. The Newton-Okounkov
body carries a considerable amount of information about R(V'), see [19, 21]. For example,
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the number of solutions to System (1) where fi,..., fq € V are general (in this case, we say
that System (1) is drawn from V') is the normalized volume of NOy, .

A Khovanskii basis [20] for V' is a linearly independent set B C R(V') whose image under
v generates S(V,v). We assume that the elements of B are homogeneous so that for b € B
with v(b) = (a, k), b € V¥s*. Necessarily, B generates R(V) and BN Vs is a basis for Vs.
We observe that S(V,v) is finitely generated if and only if V has a finite Khovanskii basis.
When V has a finite Khovanskii basis, Anderson [2] shows that NOy is a rational polytope
and that there exists a flat degeneration X — C; of X} ~ Proj(R(V)) to the toric variety
Xy ~ Proj(C[S(V,v)]).

The valuation v on R(V) induces a filtration on R(V') by finite-dimensional subspaces
indexed by elements («a, k) € S(V,v). We let

B(V)ar = {feRV):v(f) = (o, k)}, and
R(V) i = {f€RV):v(f) = (o)}

Since (a, k) € S(V,v), these subspaces satisfy R(V)(a,k)/R(V)ak) ~ C. Anderson’s flat
degeneration comes from the degeneration of the filtered algebra R(V') to its associated
graded algebra

o RV)i= P  RV)@r/RV)iy = CIS(V,v).

(a,k)eS(Vyw)

The toric fiber Xy of Anderson’s degeneration is Proj(gr R(V')), and the isomorphism X ~
Proj(gr R(V')) uses the isomorphism gr R(V) ~ C[S(V,v)].

Kaveh and Manon give a method to compute a finite Khovanskii basis for V' with respect
to a valuation v [20, Algorithm 2.18]. We take a finite Khovanskii basis as an input to our
algorithms.

2.2. The Kodaira map and embedding the degeneration. To use Anderson’s toric
degeneration X in Algorithm 3, X must be embedded in a projective space. Suppose that
we are given a finite Khovanskii basis B for V' such that B C V's. Therefore, B is a basis for
Vs, by definition.

Let X° C X be the open subset of points of X where no function from V' has a pole, and
some function in V is nonzero. Evaluation of functions from V at a point z € X° gives a
nonzero linear map ev.(f) := f(z) on V. Therefore, ev, is a point in the projective space
P(V*), where V* is the space of linear functions V' — C. Thus the map z +— ev, induces
a map X° — P(V*), which is called the rational Kodaira map @y : X --» P(V*). If we
write B = {bgs,...,b,s}, then a Kodaira map can be explicitly written as ¢p: z € X° —
[bo(2), ..., by(2)] € P~ P(V*).

Remark 11. Our algorithms compute the points of ¢p(X°) N L. Given these points, the
solutions to System (1) on X° are their pull backs along ¢5. When the Kodaira map is
not injective, we follow Améndola and Rodriguez [1] and note that these pull backs may be
computed from the linear section and the points in a single general fiber of the Kodaira map.

Consequently, we assume that the Kodaira map is an injection and replace X by its
birational copy Proj(R(V')), which is the closure of ¢p(X°) in P™. In this case, X = X°, V
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generates the function field C(X) of X, and the image of V* under v generates Z?. Thus
the assumption that X = Proj(R(V)) implies that the image of V* under v generates Z%. ¢

We recall the embedding of Anderson’s toric degeneration X into P(V*) [20, Section 2.2].
We let A := v(B) be the (d+1) x (n + 1) matrix whose i*" column is v(b;_;s) for the
Khovanskii basis B = {bgys,...,b,s} C Vs. We note that the last row of A is (1,...,1). We
define a partial order > 4 on Z"*! where 8 >4 « if Aa = AB in Z4*!. The initial form in4(f)
of a polynomial f with respect to >4 is the sum of all terms ¢,z which minimize Aca.

The ideal Iz of X = pp(X) is the kernel of the map Clzo, ..., x,] = R(V) which takes
x; to b;s. We define iny(/3) to be the ideal generated by iny(f) for f € Iz. Anderson [2,
Lemma 8] shows that there exists w € 74" such that if <_,, 4 is the weighted term order on
Clxo, ..., z,) induced by —w.A, then the leading term ideal 1t _, 4(/5) of Ip equals iny(I5).
Let w be such a weight vector and G denote a Grobner basis for Iz with respect to a total
order induced from the term order <_, 4. The leading forms of elements of G with respect
to <_,4 generate iny(Ig).

Let g = >, cax® be a polynomial in G, and define w(g) := min{wA« : ¢, # 0}. Using
Formula (5) (with w.A in place of w), we construct

(7) gy = Z cax“tw“““_w(g).

Let G, :={g:: g € G}. At t =0, Gy generates iny(Ip) and at t = 1, G; = G generates Ig.
Finally, we define /4 to be the kernel of the map C|xy,...,z,] — gr R(V) which takes

z; to bs € R(V)(y(bi)J)/R(V)z’;(bi)’l). We note that 4 is a toric ideal, and by [20, Theorem

2.17], I4 = in4(Ip). Thus the toric weight degeneration can be embedded into P* ~ P(V*).

Proposition 12 ([2, Theorem 1]). Let X be a variety and V C C(X) a finite-dimensional
space of functions which has a finite Khovanskii basis B C V's. Then the family X — C,
defined by G, is flat and embeds into P™ as the weight degeneration of Xy = Proj(R(V)) =
ep(X) induced by wA. In particular, Xy ~ Proj(C[S(V,v)]) and X is a toric degeneration.

We now discuss the relationship between I4 and Igz. For u € N**! we write B“ for the
product [[(b;s)" of elements in the Khovanskii basis. Since v(B*) = Au, when Au = Av for
some u,v € N"*1 y(B*) = p(B") and there is a unique ¢ € C* such that

Au=Av <v(B* —cB’) and B"—cB’ € R(V)},.

Since the last row of A is (1,...,1), both B* and cB° € V*s* for some k and their difference
is homogeneous.

The subduction algorithm [20, Algorithm 2.11] rewrites this difference as a homogeneous
polynomial of degree k in the elements of the Khovanskii basis,

BY —cBY = h(bys,bys, ..., b,s).

In particular, g := 2% — cx¥ — h(xo,...,x,) € Iz with initial form z* — cz” € I4. Applying
Formula (7), we have that
gr = ¥ — ez’ — trht,

where 7 = w(h) —w(g) > 0.
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Remark 13. We recall that the torus T = (C*)"*'/AC* ~ (C*)" is the set of points in
P with nonzero coordinates. A Kodaira map for the toric fiber &j has the form ¢, 4, as in
Formula (2), for any p € T N A,. We provide a construction of such a point.

Let z* — ca” € I4. Then Au = Av, so that u — v € ker(A). Restricting this binomial to
Xo N'T results in the equation ¢ = *~¥. The constant ¢ depends upon v — v € ker(A), and
we write ¢,_, for ¢. Thus a point p € Ay N T satisfies equations of the form

U

Cy =P
for u € ker(A). While every u € ker(A) gives such an equation, an independent set of
equations is given by a basis uy, . .., u,_q4 for ker(A). The corresponding equations, ¢,, = p*“

fori=1,...,n—d, define Xy N'T as a subvariety of T.

To obtain a point of Ay N'T, we construct d additional equations to these n—d equations,
as follows: Since 1 :=(1,...,1) is a row of A, ker(A) C ker(1), which is a rank n sublattice
of Z". Let vy, ..., vq € ker(1) be vectors such that uy, ..., u,_q,v1,...,vq are independent.
Choose nonzero constants c,,, ..., ¢,, € C* and consider the system of binomials

vj

Cu, =P =0=¢,;, —p% for i=1,...,n—d and j=1,...,d.

This system defines a finite set of points p € Xy N'T. An algorithm for solving such a system
of binomials is given in [15, Lemma 3.2], which involves computing the Smith normal form

of the matrix whose columns are uy,...,u,_q,v1,...,0q. We observe that only one solution
is needed to obtain a Kodaira map. o

2.3. Khovanskii homotopy. The procedure described in Section 2.2, combined with the
toric two-step homotopy algorithm, Algorithm 3, forms the Khovanskii homotopy algorithm
for computing the points of a linear section v (X) N L.

Algorithm 14 (Khovanskii homotopy algorithm).
Input: A finite-dimensional subspace V' C C(X) for a variety X = Proj(R(V)) of
dimension d, a finite Khovanskii basis B C Vs for V', and a general linear
subspace L C P" of codimension d.
Output: All points in the linear section ¢y (X)NL C P(V*).
Do:
(i) Compute I = ker(Clxy, ..., z,] = R(V)) where x; — b;s.
(ii) Compute a weight vector w using [2, Lemma 2] so that 1t_,4(Ig) = in4(I), where
A is the matrix of valuations of B.
(iii) Compute a Grobner basis G for Iz using the weight —w.A.
(iv) Construct the homotopy G, using Formula (7).
(v) Construct the Kodaira map ¢, 4 for &y by following Remark 13.
(vi) Return the output ¢y (X) N L of Algorithm 3 with input G; and L.

Theorem 15. Algorithm 1/ is an optimal homotopy algorithm for computing all points of
ev(X)N L.

The correctness of Algorithm 14 follows from the discussion in Section 2.2.

Remark 16. In many cases, Algorithm 14 is applied to systems of functions where a finite
Khovanskii basis is explicitly known from the theory (see Example 17). In this case, we not
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only have the data for the finite Khovanskii basis B, but also some or all of the data for Steps
(1), (ii), and (iii) of Algorithm 14. o

Example 17. We illustrate Algorithm 14 and Remark 16 on a continuation of Example 10.
In [2, Section 6.4], Anderson considers a particular three-dimensional Bott-Samelson variety
X for GL(3,C) and an ample line bundle £ on X. In local coordinates (z,y, z) for X, the
vector space V' of global sections of £ has basis {1,x,y, z,zz,yz,z(xz +y),y(zz+y)}.
Anderson uses a valuation v induced by the monomial valuation on Clz,y, 2] defined by
v(f) = (a,b, c), where x%°2¢ is the monomial of f that is minimal in the degree lexicographic
order with = > y > 2. The image B = {1s,zs,ys, zs,xzs,yzs, x(xz + y)s,y(xz + y)s} of this
basis in Vs forms a Khovanskii basis for V. The corresponding matrix of valuations is

010010710
001007112
A=vB)=1g 0011100/
11111111

which is the matrix of Figure 1 after appending the row 1 for the exponents of s. The
Newton-Okounkov body of V' is also displayed in Figure 1.

Anderson provides the Khovanskii basis B for Algorithm 14, and Example 10 gives the
general linear section L. For Step (i), generators of Iz are the generators of I in Ex-
ample 10. The weight vector w = (1,1,1,—2) suffices for Step (ii). The vector wA =
(=2,—1,—1,-1,0,0,0,0) appears as the weight in Example 10. The computations in Steps
(iii) and (iv) are supplied by the elements in G; in Example 10. Finally, for Step (v), the
toric Kodaira map ¢4 is also given in Example 10. o

3. THE KHOVANSKII HOMOTOPY FOR WEIGHTED PROJECTIVE SPACE

When a Khovanskii basis B for V' contains elements of degree greater than 1, Anderson’s
toric degeneration naturally embeds into a weighted projective space [2]. We explain how to
lift the degeneration to a toric degeneration in ordinary projective space and use the toric
two-step homotopy (Algorithm 3) to compute a linear section ¢y (X) N L of the image of X
under the Kodaira map ¢y : X --» P(V*).

3.1. Weighted projective spaces. We recall the construction and some basic properties of
weighted projective space, see [9]. Suppose that a = (ao, . . ., @y4m) is a vector of mutually rel-
atively prime positive integers. The weighted projective space P is Proj(Clzo, . . ., Tnim))s
where the grading on Clxy, ..., Zp+m] is induced by setting the degree of z; to a;. Equiv-
alently, P?™™ is the quotient of C"™™*1 \ {0} by the C*-action where t.(zq,. .., Tpim) =
(t"zg, ..., t*tmx, ), for t € C*. We may also construct P?™™ as a quotient of P"*™. To
see this, let AC* C (C*)"*™F! be the diagonal embedding of C* and let (7, be the image

of the following product of groups of roots of unity in the dense torus (C*)"™+1/A(C*) of
prtm.

Hom (H Z/0,Z. CX) = [ Hom (2/a,2.C*) € (€)™,
J j
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Thus G, acts faithfully on P"*™. As the a; are mutually relatively prime, G, is isomorphic
to this product of groups of roots of unity. Let 7: P"™™ — P he the quotient map by
this G,-action, which is a finite map of degree |G,| =[] a;.

The weighted projective spaces that appear in the Khovanskii homotopy have the following
special form: Let W = @, , Wi be a finite-dimensional positively-graded vector space with
dim W, = n+1 > 1. Let t € C* act on W}, as multiplication by ¢t=*, which gives a C*-action
on W. Identifying the dual space W* with €, W, in the dual action, t € C* acts on W' as
multiplication by #*. Then the quotient of W* . {0} by C* is a weighted projective space.

We explicitly describe this weighted projective space. Suppose that dim W = n+m+1, and
let a = (ag,...,an+m) be a vector in which each & € N occurs dim W, times. Then (W* ~
{0})/C* is isomorphic to P and we write P,(1/*) for this quotient. The isomorphism
depends upon the choice of an ordered basis for W* which is a union of bases for each
nontrivial summand W} such that a; = k when the jth basis element lies in W}}. This choice
of basis identifies W* with C*™™*! and allows us to define an action of G, on the projective
space P"t™ with quotient map m: P*"*™ — P,(W*) as in the first paragraph above. We
remark that there is no natural identification of P(WW*) with P"*™ that is compatible with
the map 7, unless dim Wy, < 1 for all £ > 1.

Let us write V for W;. Under the C*-action given by the weight a, the composition
V «— W — V of the inclusion with the projection onto V' is the identity and each map is C*-
equivariant. Taking linear duals gives the equivariant composition V* <— W* — V* and this
induces the composition P(V*) < P,(W*) --» P(V*). We obtain ordinary projective space
P(V*) because t € C* acts as multiplication by ¢t on V*. We write pr, for the projection map
P,(W*) --» P(V*), which is undefined on the image of the annihilator of V' in P,(W*). In
addition, we write pr for the composition pr, om. We summarize these maps in the following
commutative diagram:

G, n Prrm N

™ N opr

Prtm o~ P (W) --22s P(V*) ~ PP

Let X ¢ P(V*) and Z C P,(W*) be varieties such that pr, is an isomorphism between Z
and X. In this case, a linear section X N L pulls back along pr, to Z Npr;1(L). We remark
that the subvariety pr;!(L), which is given by d forms that are linear in o, ..., ,, is not
general. For example, pr;!(L) includes V(xy, ..., x,), which contains the singular locus of
P,(W*). Welet U C P,(W*) be the open subset over which 7 is a covering space. For u € U,
G, acts freely on the fiber 771(2). The following lemma relates Z Npr;*(L) to X N L:

Lemma 18. Let Z C P, (W*) be a subvariety of dimension d such that Z NU is dense in
Z and pr, is an isomorphism between Z and X = pro(Z). Let Y := n=(Z) C P"™™ be its
inverse image. Suppose that L C P(V*) is a general linear subspace of codimension d. Then,
(i) ZNnpr;Y(L) is transverse and pro: Z Npry* (L) — X N L is a bijection.
(i) YNpr=Y(L) is transverse and =: Y Npr=Y(L) — ZNpr;Y(L) is a |G| to 1 surjection.
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(iii) For any componentY' of Y, m: Y' Npr=Y(L) — Z Npr;*(L) is a | Stabg, (Y")| to 1
surjection.

We note that Y = 771(Z) may not be irreducible. Each irreducible component, however,
maps surjectively onto Z.

Proof. We address transversality after establishing the set-theoretic assertions. For x € XNL,
let z be the unique point of Z with pr,(z) = x. Since z € pr; (L), this completes the proof
of the first statement.

Let z € ZNpr;'(L). By our assumptions, Z Npr; (L) C U, so z € U. Then 771(2) C
Y Nrtpr; (L) = Y Npr~!(L). The second statement follows as 7: Y — Z is |G,| to 1 over
points of U.

For the third statement, we observe that pr~'(L) is invariant under the G,-action. There-
fore, for all g € G,, g.(Y' N pr='(L)) = (¢.Y') N pr='(L). The claim follows from the second
statement and a counting argument.

For transversality, let x € X N L. As L is general, this intersection is transverse and the
forms defining L generate the maximal ideal in the local ring of X at x. Transversality in the
first statement follows since the map pr, is an isomorphism between Z and X and pr;'(L)
is defined by the same forms as L. Transversality in the second statement also follows, since
the maximal ideal of Y at y is generated by the pull back of the maximal ideal of Z at m(y)
and pr;t(z) € U. O

While pr~1(L) is a linear subspace, it is not general. We need a result similar to Lemma 18
for a general linear subspace A C P"™™. We note that since A is general, 7! (7(A)) consists
of a union of |G,| linear subspaces.

Lemma 19. Let Z C P, (W*) be a subvariety of dimension d such that Z NU dense in Z.
LetY = n=Y(Z) C P"™™ be its inverse image, and suppose that A C P"™™ is a general linear
subspace of codimension d. Then, m: Y N A — ZNx(A) is a bijection.

Proof. Since A is general, Z Nw(A) C U. Suppose that ¢,q" € Y N A are in the same fiber of
7, and let g € G, be defined by ¢’ = g.q. Since Y is G,-invariant, we have ¢ € Y N (g.A).
Since A is general, Y N AN (g.A) is empty unless g is the identity. Therefore, ¢ = ¢/, and we
conclude that 7 is injective on Y N A.

This map is also surjective. If p € Z N 7w(A), then there is a point ¢ € 77 1(p) N A. As
Y =771(Z), it contains 71(p) and thus ¢ € Y N A and 7(q) = p. O

3.2. Khovanskii bases and the degeneration. Let X be a d-dimensional complex variety
and V' C C(X) a finite-dimensional complex vector subspace. Suppose that the image
of VX under v generates Z? and V has a finite Khovanskii basis B such that B ¢ Vs.
For each k € N, let W;s* := Span(B N V*s*) C Vks* be the span of the elements of B
of homogeneous degree k. We define W := @,., W, where V' = W; and construct the
corresponding weighted projective space as in Section 3.1. Anderson’s toric degeneration [2]
naturally embeds into P,(1W*). The weighted projective space P,(1W*) is needed (rather than
P(V*)) to accommodate the generators of gr R(V') ~ C[S(V,v)] which are not in V| as these
are needed for embedding the toric fiber.
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We introduce coordinates by ordering the elements of B = {bys®, ..., byims®+m} where
ap = -+ = a, = 1, and for n < j < n+m, a; > 1. Necessarily, {bo,...,b,} C V, since
Vs generates R(V'). Then, for each n < j < n+m, there is a homogeneous polynomial
h; € Clz, ..., z,) of degree a; such that b; = h;(bo, ..., b,).

Using the Khovanskii basis B, the Kodaira map to P,(W*) from X = Proj(R(V)) is
wp: 2+ [bo(2), ..., bupm(2)]. Since, for n < j < n+m, b; = h;(bo,...,b,), the image of pp
is a graph over the the image of ¢y in P(V*) C P, (W*).

The constructions of Iz, A, w, ing(Iz), and G; from Section 2.2 all carry over to this
general case since all of these ideals are a-homogeneous. Collectively, they embed Anderson’s
toric degeneration into the weighted projective space P,(W*). The special fiber A} is a toric
variety with ideal Gy and toric Kodaira map ¢, 4, where p € &, N'T, (as before, the torus
T, C P,(W*) consists of those points with nonzero coordinates).

We pull back the embedded toric degeneration X C P,(W*) x C,; along 7 to obtain a flat
family ) € P"t™ x C, that is a toric degeneration in the sense of Remarks 5 and 8 as ) or ),
may not be irreducible. We explain how the equations defining the family ) may be obtained.
Let Clyo, - - -, Yntm) be the homogeneous coordinate ring of the projective space P"*™. The
map m: P" — P (W*) corresponds to the map 7*: Clxo, ..., ZTpnim] — Clyo,- -, Ynim]
induced by z; — yi*. Let

(8) Fii=A{7"(9:) : 9: € Gt}

be the pull back of the equations G; for the embedded degeneration X — C;. Then Y =
V(F;) € P™ x C;. This lifted family ) — C; is the fiberwise pull back of Anderson’s toric
degeneration X — C, along the finite map 7, where G, acts on ) fiberwise.

3.3. Weighted Khovanskii homotopy. We explain how to use the embedded degeneration
X in P,(W*) to compute the linear section ¢y (X) N L. Since X; = ¢g(X), it is natural to
propose to compute X; N pr; (L) using an adaptation of the linear section homotopy to
weighted projective space by following points of Xy Npr; (L) along Anderson’s degeneration.
Unfortunately, pr;'(L) is not sufficiently general for the toric special fiber in Anderson’s
degeneration.

To avoid this problem, we pull back the toric degeneration X along 7 to ) and use a linear
section homotopy to compute the linear section Yy Npr~'(L). Since pr~'(L) is not a general
linear subspace, we instead choose a general linear subspace A C P"™™ of codimension d.
Next, we use Algorithm 3 to compute )} N A, which is a witness set for );. Then, we use
the witness set homotopy (Algorithm 2) to compute Y; N pr~!(L). Finally, oy (X) N L is
computed as pr(Y; Npr~*(L)).

Algorithm 20 (Weighted Khovanskii homotopy algorithm).
Input: A finite-dimensional subspace V' C C(X) for a variety X = Proj(R(V')) of
dimension d, finite Khovanskii basis B ¢ Vs for V', and a general linear
subspace L C P(V*) of codimension d.
Output: Points in the linear section py(X) N L in the projective space P(V*).
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Do:

(i) Follow Steps (i) through (v) of Algorithm 14, mutatis mutandis: The ideal I is the

kernel of the map Clzo, ..., Tpim] = R(V) where z; — b;s%.

(ii) Pull back the family X along 7 to compute the family ) defined by F;, see Defini-
tion (8).

(iii) Compute Kodaira maps for each irreducible component of Y.

(iv) Let A C P™*™ be a general linear subspace of codimension d and use Algorithm 3 to
compute V; NA.

(v) Use Algorithm 2 to compute Yy Npr=*(L).

(vi) Return oy (X) N L= pr(Y; Npr-1(L)).

Remark 21. We discuss Step (iii) of Algorithm 20. As )y may consist of several components
and )y = 7 1(Xp), the group G, acts transitively on these components. Moreover, each
component is a projective toric variety X, ¢ for a point ¢ € o NT and all have the same set
of exponents, which are the columns of matrix C. We explain how to compute both ¢ and C.

From Step (v) of Algorithm 14, we have a toric Kodaira map ¢, 4: (C*)¢ — P*™ such
that Xy = X, 4. The image includes the point p € Xy N'T,. Points ¢ € 7 !(p) are obtained
by taking all a;-th roots of the coordinate p; of p, for all 7,

' (p) = {g € P i g =p; for j=0,...,n+m+1}.

It remains to determine the exponents C for 771(X 4). As in Remark 13, we have a basis

Uty .oy Upgm—g € Z"T™L for ker(A). These vectors give equations z% = 1 for X4 N T,.
Applying 7 substitutes y;-lj for x; and gives equations for 71 (X4) N'T,
(9) y'i =1 i=1,...,n+m—d,

where v; is obtained from w; by multiplying its jth coordinate by a;.
The System (9) for 771(X 4) NT leads to equations for ¥ := 77!(X 4), which form a lattice
ideal [12, Section 2] for the lattice K spanned by {vy, ..., Vpim_a}. Thatis, Y = V({y* —y” |

a—pfeK).
Let (71,...,74, 1) be a basis for the annihilator of K in Z"*™*!  Suppose that C is the
d X (n+m-+1) matrix whose rows are 71, ...,74. Then X¢ is the component of Y containing

the identity 1 € T. We remark that C may be computed from vy, ..., v, 1m_q using the
Hermite normal form. All Kodaira maps needed in Step (iii) of Algorithm 20 can then be
computed by translations. o

Remark 22. The number of components of ) or of ), impacts the number of Kodaira
maps needed in Step (iii) of Algorithm 20. Reductions in the number of Kodaira maps may
significantly improve the efficiency of the algorithm.

When Y is known to be reducible, this structure may be exploited, as Statement (iii) of
Lemma 18 implies that it is enough to apply Algorithm 20 to a single component of ). In
particular, the map 7 sends the curves in a linear section of one component onto X Npr~—1(L).

When ), has fewer than |G,| components, then there are redundant Kodaira maps con-
structed in Remark 21. More precisely, the number of redundant maps is the number of
points of 77!(p) in a component of )y. We provide details on computing non-redundant
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Kodaira maps, assuming, as in Remark 21, that 1 € ). The general case is obtained by
translation. Let

sat(K) == {w € Z""* . rw € K for some 0 # r € Z}

be the saturation of K and M = ker(1) C Z"™™*!. We note that sat(K) C M. We identify
T with Hom(M,C*) so that Yy N T = Hom(M/K,C*), as these are the points satisfying
System (9). The component of Yy N'T containing the identity 1 € T is Hom(M/sat(K), C*),
and the group of components of Yy N T is Hom(sat(K)/K,C*). Hence, the elements of
Hom(sat(K)/K,C*) generate Kodaira maps to distinct components of ). o

Proof of correctness of Algorithm 20. We need only show that the tracked paths provide
enough points to compute ¢y (X) N L. By Statement (iii) of Lemma 18, for each t, the
map 7: Yy N A — X, Nw(A) is a bijection.

The polyhedral homotopy correctly computes the points of Vy N A. By Theorem 4, Algo-
rithm 3 correctly computes the points of )y N A. Since the solution paths of the homotopy
X N7w(A) are disjoint, the solution paths of Y N A lie above paths of X N 7(A). In fact, by
Statement (iii) of Lemma 18, 7 is a bijection between these sets of paths. Therefore, there is
a bijection between the ends of the homotopy paths of ) N A and points in X3 N7 (A). The
correctness of the final computation then follows from the correctness of Algorithm 2. O

Example 23. Let V' be the space of cubic polynomials in C[x, y] which vanish at the points
(4,4),(=3,—-1),(—1,—-1) and (3,3). (This example is related to the example of [10, Sec-
tion 5.1], which considers quartics vanishing at these points.) Then V is six-dimensional
with a basis:

{bo,....bs} ={ay -y’ +o—y, 2° —y* + 4o — 4y, y* — 6y° + 5y + 12,
zy® — 6y° — x + 6y + 12, 2’y — 6y” — 4o + 9y + 12, 2° — 6y — 13z + 18y + 12}.

We compute a general linear section of X = Proj(R(V)) in P(V*) = P° with Algorithm 20.
Let = be the order on Z? where (a,b) = (c¢,d) if a+b < c+d or else a+b = ¢+ d and
a < c. Define a valuation v on C(X) = C(z,y) as follows: for f € Clz,y], v(f) = (a,b)
where (a,b) is the >-minimal exponent of a term of f. This order and valuation v are
compatible with the grevlex order < on Clz,y| with > y in that (a,b) = (c¢,d) if and
only if 2% < z°y?. Using the subduction algorithm, as implemented in the unreleased
Macaulay?2 package SubalgebraBases [25] applied to {bgs,...,bss}, we obtain a Khovanskii

basis B = {bgs, . .., bss, bss?, bys®} with two additional generators, where
b = ay® —y'+ 102°y — 26zy” + 16y° + 102 — 152y + 5y° + 122 — 12y, and
b, = 10x'y — 4923y 4 892%y — Tlxy® + 219° + 102" — 1823y — 1827y

+50xy® — 24y* + 312° — 832y + T3xy* — 21y° + 242* — 48xy + 24y°.

The corresponding matrix of valuations is

A=v(B)=

— =
= O N
== W O
—_ N =
— = N
_— o W
DN W
W =
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The Newton-Okounkov body, as displayed in Figure 2, is obtained by intersecting the cone
generated by the columns of A with the hyperplane where the third coordinate is 1. The
vertices (1/2,3/2) and (4/3,1/3) come from the initial (underlined) terms of bg and b;.
While they are not integers, the Newton-Okounkov body has normalized volume 5, which is
the degree of X. We may interpret this volume as follows: Two cubics drawn from V meet
in 5 = 3? — 4 points outside the base locus V(V) = {(4,4), (-3, -1),(-1,-1),(3,3)}.

(0,3)

(3,0)

F1cURE 2. Newton Okounkov body for the space of cubic polynomials van-
ishing at (4,4), (=3, —1),(—1,—1) and (3, 3).

The weight w = (—6,—5,0) is compatible with the grevlex order < on B in that for
b € B, the <-leading term has lowest w-weight, so that lt< b = b,,. Choosing a term order on
Clxo, ..., z7] that is compatible with w.A, we use Macaulay2 to compute a Grobner basis G
for Iz. This basis consists of 17 polynomials which are a := (1,1,1,1, 1, 1, 2, 3)-homogeneous.
Let C* act on a-homogeneous polynomials using w.A4 in place of w in Formula (4). Then we
compute G; := {g; : g € G} as in Formula (5), which defines a flat family X C P7 x C, with
toric special fiber X,. This family pulls back along 7: P” — P7 to a family Y C P7 x C;. The
pull back )y of Xy under 7 is a toric variety as it is irreducible. From Remarks 13 and 21, a
Kodaira map for ) is

Pp,A: (C*)z — ]P)7
p— 2528 2123 28, 21 2201, 213, V10 2823).

The polyhedral homotopy finds 30 points in Yy N A. An application of the toric two-step
algorithm (Algorithm 3) tracks these points to Yy N A with no paths diverging. Then, the
witness set homotopy algorithm (Algorithm 2) moves A to pr~!(L) and finds the points of
Yy Npr~Y(L). These 30 points project under 7: P” — P7 to five points in X; N pr=*(L).
Finally, applying the map pr: P" — P% = P(V*) gives all five points in ¢y (X) N L. o

4. PRACTICAL CONSIDERATIONS

We discuss how to compute a finite Khovanskii basis as well as options for tracking overde-
termined homotopy systems.

4.1. Computing a Khovanskii basis. Whether or not a given vector space V' of functions
has a finite Khovanskii basis is generally not known and depends on the choice of valuation.
Given V and a valuation v, the subduction algorithm [20, Algorithm 2.18] terminates and
returns a finite Khovanskii basis, when one exists. We only know of implementations when
V is a space of polynomials and v is induced by a term order [13, 25]. These also compute a
SAGBI basis [16, 24].
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4.2. Homotopy continuation for overdetermined systems. Algorithms 14 and 20 gen-
erate a homotopy (G;, L) from a Grobner basis G defining X'. This is not typically square in
that it has more equations than variables. As most implementations of homotopy continu-
ation, including the user-defined homotopy in Bertini, require square systems, we need to
choose a square subsystem for tracking from ¢t =0 to t = 1.

Typically, a square subsystem is obtained by taking linear combinations of elements in a
given system. There is an alternative for equations G, from a toric degeneration. Let A be the
matrix of exponents defining the Kodaira map for the toric special fiber, X,. The intersection
XoNT with the dense torus of P" is the complete intersection defined by binomials 2" — ¢;x"
fori =1,...,n—d such that {u; —v; : i =1,...,n—d} form a basis for ker(.4). The points
of &y N L are smooth isolated solutions to the square system given by these binomials and
the linear forms defining L. If we choose F; C G; to consist of n—d elements whose leading
binomials are % — ¢;z, then (F;, L) is a square subsystem of (G;, L) which defines curves
containing Xy N L and, therefore, is sufficient for homotopy continuation.

REFERENCES

1. C. Améndola and J. I. Rodriguez, Solving parameterized polynomial systems with decomposable projec-
tions, 2016, arXiv:1612.08807.

2. D. Anderson, Okounkov bodies and toric degenerations, Mathematische Annalen 356 (2013), no. 3, 1183~
1202.

3. D. J. Bates, J. D. Hauenstein, A. J. Sommese, and C. W. Wampler, Bertini: Software for numerical
algebraic geometry, Available at http://bertini.nd.edu.

, Numerically solving polynomial systems with Bertini, Software, Environments, and Tools, vol. 25,
Society for Industrial and Applied Mathematics (STAM), Philadelphia, PA, 2013.

5. P. Breiding and S. Timme, HomotopyContinuation.jl: A Package for Homotopy Continuation in Julia,
Mathematical Software — ICMS 2018 (J. Davenport, M. Kauers, G. Labahn, and J. Urban, eds.), Lecture
Notes in Computer Science, vol. 10931, Springer, Cham., 2018, pp. 458—465.

6. T. Chen and R. Davis, A toric deformation method for solving Kuramoto equations,
arXiV.org/1810.05690, 2018.

7. T. Chen, T.-L. Lee, and T.-Y. Li, Hom4PS-3: a parallel numerical solver for systems of polynomial equa-
tions based on polyhedral homotopy continuation methods, Mathematical software—ICMS 2014, Lecture
Notes in Comput. Sci., vol. 8592, Springer, Heidelberg, 2014, pp. 183-190.

8. D. A. Cox, J. B. Little, and H. K. Schenck, Toric varieties, Graduate Studies in Mathematics, vol. 124,
American Mathematical Society, 2011.

9. I. Dolgachev, Weighted projective varieties, Group actions and vector fields (Vancouver, B.C., 1981),
Lecture Notes in Math., vol. 956, Springer, Berlin, 1982, pp. 34-71.

10. T. Duff, N. Hein, and F. Sottile, Certification for polynomial systems via square subsystems, Journal of
Symbolic Computation (2020), In press.

11. D. Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York,
1995, With a view toward algebraic geometry.

12. D. Eisenbud and B. Sturmfels, Binomial ideals, Duke Math. J. 84 (1996), no. 1, 1-45.

13. D. R. Grayson and M. E. Stillman, Macaulay2, a software system for research in algebraic geometry,
Available at http://www.math.uiuc.edu/Macaulay?2/.

14. B. Huber, F. Sottile, and B. Sturmfels, Numerical Schubert calculus, Journal of Symbolic Computation
26 (1998), no. 6, 767-788.

15. B. Huber and B. Sturmfels, A polyhedral method for solving sparse polynomial systems, Mathematics of
Computation 64 (1995), no. 212, 1541-1555.



http://bertini.nd.edu
http://www.math.uiuc.edu/Macaulay2/

20

16

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

M. BURR, F. SOTTILE, AND E. WALKER

. D. Kapur and K. Madlener, A completion procedure for computing a canonical basis for a k-subalgebra,
Computers and mathematics (Cambridge, MA, 1989), Springer, New York, 1989, pp. 1-11.

M. Kateri, F. Mohammadi, and B. Sturmfels, A family of quasisymmetry models, Journal of Algebraic
Statistics 6 (2015), no. 1, 1-16.

K. Kaveh and A. G. Khovanskii, Mized volume and an extension of intersection theory of divisors, Moscow
Mathematical Journal 10 (2010), no. 2, 343-375, 479.

, Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory,
Annals of Mathematics. Second Series 176 (2012), no. 2, 925-978.

K. Kaveh and C. Manon, Khovanskii bases, higher rank valuations and tropical geometry, SIAM J. Appl.
Algebra Geometry 3 (2019), no. 2, 292-336.

R. Lazarsfeld and M. Mustata, Convex bodies associated to linear series, Annales Scientifiques de I’Ecole
Normale Supérieure. Quatrieme Série 42 (2009), no. 5, 783-835.

A. Leykin, Numerical Algebraic Geometry, The Journal of Software for Algebra and Geometry 3 (2011),
5-10, Available at https://msp.org/jsag/2011/3-1/.

A. Morgan, Solving polynomial systems using continuation for engineering and scientific problems, Clas-
sics in Applied Mathematics, vol. 57, Society for Industrial and Applied Mathematics (STAM), Philadel-
phia, PA, 2009.

L. Robbiano and M. Sweedler, Subalgebra bases, Commutative algebra (Salvador, 1988), Lecture Notes
in Math., vol. 1430, Springer, Berlin, 1990, pp. 61-87.

M. Stillman and H. Tsai, SubalgebraBases, Macaulay 2  package,  Available at
https://github.com/Macaulay2/M2/tree/master/M2/Macaulay2/packages/undistributed-packages/SubalgebraE
1997.

B. Sturmfels, Grébner bases and convex polytopes, American Mathematical Society, Providence, RI, 1996.
J. Verschelde, Algorithm 795: PHCpack: A general-purpose solver for polynomial systems by homotopy
continuation, ACM Transactions on Mathematical Software 25 (1999), no. 2, 251-276.

J. Verschelde, P. Verlinden, and R. Cools, Homotopies exploiting Newton polytopes for solving sparse
polynomial systems, STAM Journal on Numerical Analysis 31 (1994), no. 3, 915-930.

MICHAEL BURR, SCHOOL OF MATHEMATICAL AND STATISTICAL SCIENCES, CLEMSON UNIVERSITY, 220

PARKWAY DRIVE, CLEMSON, SC 29634-0975, USA

E-mail address: burr2@clemson.edu
URL: https://cecas.clemson.edu/ burr2/

FRANK SOTTILE, DEPARTMENT OF MATHEMATICS, TEXAS A&M UNIVERSITY, COLLEGE STATION,

TEXAS 77843, USA

E-mail address: sottile@math.tamu.edu
URL: http://www.math.tamu.edu/"sottile

ELISE WALKER, DEPARTMENT OF MATHEMATICS, TEXAS A&M UNIVERSITY, COLLEGE STATION,

TEXAS 77843, USA

E-mail address: walkere@math.tamu.edu
URL: http://www.math.tamu.edu/ "walkere


https://msp.org/jsag/2011/3-1/
https://github.com/Macaulay2/M2/tree/master/M2/Macaulay2/packages/undistributed-packages/SubalgebraBases

	1. Homotopy continuation and toric degenerations
	1.1. Numerical homotopy continuation
	1.2. Homotopies from flat families
	1.3. Toric degenerations
	1.4. Examples of toric degenerations

	2. Khovanskii bases and the Khovanskii homotopy
	2.1. Valuations, Khovanskii bases, and Newton-Okounkov bodies
	2.2. The Kodaira map and embedding the degeneration
	2.3. Khovanskii homotopy

	3. The Khovanskii homotopy for weighted projective space
	3.1. Weighted projective spaces
	3.2. Khovanskii bases and the degeneration
	3.3. Weighted Khovanskii homotopy

	4. Practical Considerations 
	4.1. Computing a Khovanskii basis.
	4.2. Homotopy continuation for overdetermined systems.

	References

