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SPARSE TRACE TESTS

TAYLOR BRYSIEWICZ AND MICHAEL BURR

Abstract. We establish how the coefficients of a sparse polynomial system influence the sum
(or the trace) of its zeros. As an application, we develop numerical tests for verifying whether a
set of solutions to a sparse system is complete. These algorithms extend the classical trace test
in numerical algebraic geometry. Our results rely on both the analysis of the structure of sparse
resultants as well as an extension of Esterov’s results on monodromy groups of sparse systems.

1. Introduction

The coordinate-wise sum of a finite set of points S ⊆ Cn is called its trace. When S is a subset
of a general linear section of an irreducible variety, the behavior of its trace as the section moves
determines whether S comprises the whole section. The following lemma makes this precise.

Lemma 1 ([15, Theorem 3.6]). Fix an irreducible variety X ⊆ Cn and a generic pencil of affine
linear spaces Lt of complementary dimension. The trace of X ∩ Lt moves affine linearly in t.
Conversely, the trace of any nonempty proper subset of X ∩ Lt moves nonlinearly in t.

The (classical) trace test [10, 12, 15] is a fundamental algorithm in numerical algebraic geometry
[16, 17] which is used to verify the affine linear behavior of the trace in Lemma 1. Our main
result is a sparse analogue to Lemma 1. More precisely, we identify a subset of the coefficients
of a sparse polynomial system such that the trace is an affine linear function of this collection
of coefficients. Conversely, we show that under simple conditions on the support, the traces of
nonempty incomplete solution sets are nonlinear functions of this collection of coefficients. We use
our results to produce what we call sparse trace tests.

Figure 1. The centroids (gray) of the intersection points (white) of the quartic
curve with three parallel lines. These averages move in a line (dashed). We use
averages instead of sums in this figure to keep the image small.
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The proof of the forward direction of Lemma 1 rests upon the following elementary result dating
back to Newton. The trace of the zeros of f = c0+ c1x+ c2x

2+ · · ·+ cd−1x
d−1+ cdx

d ∈ C[x] equals
−cd−1/cd, whenever cd 6= 0 and zeros are counted with multiplicity. In particular, the trace of the
zeros of a polynomial in one variable is an affine linear function of the coefficient cd−1 and does not
depend on the coefficients of lower-degree monomials, see Figure 2.

c0 c1 c2 cd−2 cd−1 cd

Figure 2. The support of a univariate polynomial f . Identifying each point in the
figure with the corresponding coefficient of f , the figure displays those which do not
affect the trace (white), those which affect the trace affine linearly (cross-hatched),
and those which influence the trace nonlinearly (filled).

We generalize Newton’s result. Given a tuple A = (A1, . . . , An) of monomial supports Ai ⊆ Zn,
we consider sparse polynomial systems F = (f1, . . . , fn) ∈ (C[x1, . . . , xn])

n supported on A. Any
such polynomial system is identified with its coefficients in CA := C|A|. The polyhedral geometry
of A controls many aspects of the solutions to F = 0 in the algebraic torus (C×)n (see [3]), and
we study the trace of this solution set. As in the univariate case, the trace of these solutions is
a rational function of the coefficients of F . Using a simple discrete geometric construction, we
identify a large collection of monomials of A for which the trace is an affine linear function of the
corresponding collection of coefficients. We illustrate an example in Figure 3 where the similarity
to Figure 2 is immediate.

Support of f1 Support of f2

Figure 3. The support of F = (f1, f2). Identifying each point in the figure with
the corresponding coefficient in F , our results determine a collection of those which
do not affect the trace (white), a collection of those which may affect the trace
affine linearly (cross-hatched), and a collection of those which may influence the
trace nonlinearly (filled).

The backward direction of Lemma 1 is more sophisticated. The proof in [12] relies on the fact
that the monodromy group of the branched cover π : {(x, t) ∈ Cn

x × Ct | x ∈ X ∩ Lt} → Ct is the
full symmetric group. In the sparse setting, the relevant branched cover is the map

πA : {(x,F) ∈ (C×)n × CA | F(x) = 0} → CA,

restricted to those sparse systems where some subset of the coefficients are generic and fixed, and
the rest vary. Given a set A of supports, we provide a simple condition on the varying coefficients
which guarantees that the monodromy group of this restriction is the full symmetric group.

The classical and sparse trace tests are instances of what we call completeness tests, which may
be used to decide if a nonempty subset of a zero-dimensional variety is proper. When implemented
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using numerical computations, such tests return the correct answer almost surely, and we call them
numerical completeness tests. For the classical trace test, the zero-dimensional polynomial system
is the pair consisting of the equations for an irreducible variety and a generic linear system of
complementary dimension. We expect completeness tests to be developed beyond the sparse case;
for example, to generalizations of witness sets in numerical algebraic geometry [10, 18].

Our results, although motivated by applications in numerical algebraic geometry, have conse-
quences in symbolic algebra. For example, our results show how to reduce a polynomial system
while preserving its trace. This reduction leads to smaller systems which improves the efficiency of
both numerical and symbolic computations.

1.1. Overview. Since our main results can be stated, understood, and applied without proof,
we present them in Section 2 along with the relevant ideas and notation. There, we present two
algorithms, which we call sparse trace tests. The detailed background and proofs reside in Sections
3 and 4. In particular, we use sparse resultants in Section 3 to determine coefficients of a sparse
system which do not appear in a formula for the trace. In Section 4 we investigate the monodromy
groups of restrictions of sparse polynomial systems to establish when traces of incomplete solution
sets move nonlinearly. Section 4 also addresses exceptional cases for which the sparse trace tests
cannot be applied. In Section 5, we present a gallery of examples showcasing applications of our
theory and algorithms.

2. Notation, background, and main results

We introduce the required background and notation pertaining to sparse polynomial systems
and state our main results. We present two sparse trace tests (Algorithms 1 and 2), and outline a
proof of correctness for these algorithms, relying upon results from Sections 3 and 4.

2.1. Sparse polynomial systems. Let ej denote the j-th standard coordinate vector of the inte-
ger lattice Zn and 0 the origin of Zn. For a finite subset A ⊆ Zn, we consider (Laurent) polynomials
of the form

f (x ) = f(x1, . . . , xn) =
∑

α∈A

cαx
α1

1 · · · xαn
n =

∑

α∈A

cαx
α ∈ C[x±1] := C[x1, . . . , xn, x

−1
1 , . . . , x−1

n ],

where cα ∈ C. We say that f is supported on A and its support is supp(f ) = {α ∈ A | cα 6= 0}.
Identifying f with its coefficients {cα}α∈A, we write f ∈ CA := C|A|. We define L[A] to be the
lattice generated by all differences of points in A. Given any sublattice L of Zn, its rank is rk (L),
and we define rk(A) := rk(L[A]). When L is full rank, we write [Zn : L] for the index of L in Zn.

For a fixed collection A = (A1, . . . , AN ), a tuple F = (f1, . . . , fN ) of Laurent polynomials in
C[x±1] is called a sparse polynomial system supported on A whenever each fi is supported on
Ai. In this case, we write fi =

∑
α∈Ai

ci,αx
α. As with a single polynomial, we identify F with

its coefficients in CA := CA1 × · · · × CAN . We apply set operations to collections of supports
coordinate-wise. For example, given B = (B1, . . . , BN ) and C = (C1, . . . , CN ), we write B ∪ C for
(B1 ∪ C1, . . . , BN ∪ CN ). When A = B ⊔ C, we may decompose F = FB + FC ∈ CB ×CC = CA in
order to refer to the coefficients of F indexed by B and C individually. We define L[A] to be the
lattice generated by

⋃n
i=1 L[Ai]. When each Ai has full rank, we say that A is abundant.

The set of zeros in Cn of a polynomial system is denoted by V(F). In the sparse setting, we
consider zeros of F ∈ CA in the algebraic torus (C×)n := {x ∈ Cn | xi 6= 0 for i = 1, . . . , n}, and so
we decorate the notation V as V×(F) := {x ∈ (C×)n | fi(x) = 0 for i = 1, . . . , n}.

To refer to the entire family of sparse polynomial systems supported on A, we replace the
coefficients ci,α with parameters ui ,α and write F(u) ∈ C[ui,α][x

±1]. This system is called the
universal polynomial system over A. The following incidence variety encodes the structure of the
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family of polynomial systems CA and their zeros:

XA := {(x,F) | x ∈ V×(F),F ∈ CA} ⊆ (C×)n × CA.

In other words, XA is the zero set of F(u) in (C×)n × CA. Any particular solution set V×(F) is
naturally identified with the fibre over F with respect to the projection πA on the second factor.
The fibre over a point x ∈ (C×)n with respect to the projection πV on the first factor is identified
with all sparse systems having x as a solution.

We say that A is a square set of supports when N = n. Similarly, systems supported on square
sets of supports are called square systems. When A is square, its mixed volume MV(A) is defined
to be the mixed volume of the convex hulls {conv(Ai)}

n
i=1. Unless otherwise stated, A refers to a

square set of supports with MV(A) > 0. We repeat these assumptions in all results for completeness.
The discrete geometry of A controls much of the complex geometry of XA. In particular, for

square systems, the following theorem relates the mixed volume of A to the cardinality of a generic
fibre of πA.

Theorem 2 (BKK [1, 11]). Let A be a square set of supports with MV(A) > 0. The cardinality
of V×(F) is MV(A) for all F outside of a Zariski closed subset of CA.

Geometrically, Theorem 2 states that when MV(A) > 0, the map πA is a branched cover of degree
MV(A). The Zariski closed subset of CA for which the fibres do not have cardinality MV(A) is
called the branch locus of πA. We call a system F ∈ CA Bernstein-generic whenever it is not
in this branch locus. Bernstein-generic systems have exactly MV(A)-many isolated zeros, each of
multiplicity one, in the algebraic torus. More generally, systems which are not Bernstein-generic
have at most MV(A)-many isolated zeros in the algebraic torus, counted with multiplicity.

Restricted to the complement of the branch locus, the map πA is topologically a MV(A)-to-one
covering space. Consequently, a loop γ : [0, 1] → CA based at F ∈ CA which avoids the branch
locus may be uniquely lifted to MV(A)-many paths in XA. These paths connect points in π−1

A (F),
inducing a permutation on the fibre. The collection of all such permutations form a subgroup
G(πA) of the symmetric group on π−1

A (F). The group G(πA) encodes global information about the
symmetries of the branched cover and is called the monodromy group of πA. It does not depend on
the base point F and is well-defined up to relabeling the points of π−1

A (F).

2.2. Traces. Given a subset S ⊆ Cn, its coordinate-wise sum Σ (S ) := (Σ1(S), . . . ,Σn(S)) is called
its trace. In the numerical algebraic geometry literature (see, for example, [15]), the coordinate-wise

average µ(S ) := (µ1 (S ), . . . , µn(S )) =
Σ(S)
|S| of S has been traditionally called its trace. To avoid

ambiguity, we call µ(S) the centroid of S.
Without loss of generality, we focus on the first coordinate Σ1(V

×(F)). Analogous statements
about the other coordinates of Σ(V×(F)) may be gleaned from our results by the interested reader.

The authors of [5] show that Σ1(V
×(F(u))) is a rational function of the coefficients of F(u),

expressed in terms of sparse resultants (see Section 3 for additional details). We assume that this
fraction has been reduced so that the numerator and denominator do not share any nontrivial
factors. This formula involves some, but not all, of the coefficients of F(u). We distinguish
monomials in A depending on how they appear in the formula for Σ1(V

×(F(u))).

Definition 3. Given a square set of supports A with MV(A) > 0, we define the following:

• The unnecessary support U ⊆ A consists of those monomials whose coefficients do not
appear in the formula for Σ1(V

×(F(u))). The complement N = A\U of U is the necessary
support.

• The affine linear support AL ⊆ N ⊆ A consists of those monomials in the necessary support
whose coefficients only appear in the numerator, and do so to degree one.

• The nonlinear support NL ⊆ N ⊆ A, consists of all other necessary monomials, that is,
NL = N\AL.
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These sets partition A as A = U ⊔ N = U ⊔ (AL ⊔ NL). Given two sparse systems F ,G ∈ CA

and a subset C ⊆ A, we write F ≈C G when FC = GC , that is, the coefficients of F and G agree
over the support C.

Definition 4. A subset B ⊆ A is called trace-affine-linear (TAL) if the trace Σ1(V
×(F)) is an

affine linear function of the coefficients indexed by B.

Remark 5. Any singleton consisting of an element of U ∪AL is TAL. Moreover, by definition, any
TAL subset must be contained in U∪AL. However, the converse is not true: if two coefficients cα, cβ
appear to degree one in the same monomial in the numerator of the formula for Σ1(V

×(F(u))),
then the set {α, β} is not TAL despite being contained in U ∪AL.

The following lemma provides the analogue of the forward direction of Lemma 1. It is a direct
consequence of Definitions 3 and 4.

Lemma 6. Suppose A is a square set of supports with MV(A) > 0 and B ⊆ A is a TAL subset of
A. Fix Bernstein-generic F ,G ∈ CA such that F ≈A\B G (respectively, F ≈N G). Then the trace

Σ1 of V×(tF + (1 − t)G) is an affine linear (respectively, constant) function of t, restricted to the
set of t’s where tF + (1− t)G is Bernstein-generic.

Example 7. Let

(1) F =

{
f1 : 3x2y4 + 2x2y3 − xy4 + x3y + 5x2y2 + xy3 + 2x2 + 4y2 + 9x
f2 : 4x

2y3 + x2y2 + 8xy3 − 4x2y − 2xy2 + 3y3 + 4x2 + 5xy + 4x− y − 9

}
,

and

(2) G =

{
g1 : 3x

2y4 + 2x2y3 − 3xy4 + x3y + 3x2y2 − 2xy3 − 3xy2 + 2x2 + xy + y2 + 4x− 5
g2 : 4x2y3 + x2y2 + 3xy3 − 4x2y − 4xy2 + 5y3 + 4x2 + 3xy − 4y2 − x− 2y − 5

}
.

These systems are supported on the monomials depicted in Figure 3.
The polynomials f1 and g1 agree on the coefficients of {x2y4, x2y3, x3y, x2}, as do f2 and g2 with

respect to the coefficients of {x2y3, x2y2, x2y, x2}. We show in Example 9 that the complement
of this collection of coefficients is TAL with respect to x. In Table 1, we calculate Σ1 and Σ2 for
tF + (1 − t)G for several values of t. Through direct inspection, we see that Σ1 appears to be
an affine linear function of t, whereas Σ2 is not. Therefore, by Lemma 6, we conclude that the
complement of this set of coefficients is not TAL with respect to y.

t 0 1 2 3 4 5
Σ1 3.922 -0.578 -5.078 -9.578 -14.078 -18.578
Σ2 -0.200 -0.523 -8.135 5.772 1.974 1.236

Table 1. The traces for V×(tF + (1− t)G) where F and G are Systems (1) and (2) in Example 7.

2.3. Sparse trace tests. We first recall the classical trace test [12] since it serves as a model for
the sparse trace test. The input to the algorithm is an irreducible variety X, a general family of
parallel linear spaces Lt of complementary dimension, and a subset S ⊆ X ∩ L0. The algorithm
uses homotopy continuation to construct an analytic continuation St ⊆ X∩Lt of S = S0 as t varies.
This process tracks the points of S to points of X ∩ Lt for generic t ∈ C. The values of Σ(S0),
Σ(S1/2), and Σ(S1) are compared, and, after appealing to Lemma 1, these three traces are collinear
if and only if S = X ∩ L0.

A completeness test is an algorithm whose input is a zero-dimensional polynomial system F and
a nonempty subset S of its zeros. It returns the output pass if S is complete, that is, if S = V(F).
It returns fail if S 6= V(F). The main application of the classical trace test is to decide whether
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Algorithm 1: Sparse trace test

Input: • A collection of supports A in Zn with MV(A) > 0 and L[A] = Zn

• A Bernstein-generic polynomial system F ∈ CA

• ∅ 6= S ⊆ V×(F)
• A collection B ⊆ A which is TAL and abundant.

Output: If S = V×(F), then pass, else fail.
1 Construct G ∈ CB ×FA\B by choosing generic GB ∈ CB.

2 Use homotopy continuation to follow the analytic continuation St ⊆ V×(tF + (1− t)G) of
S = S1 to t = 1/2 and t = 0.

3 Compute Σ1(S0), Σ1(S1/2), and Σ1(S1).

4 if (0,Σ1(S0)), (1/2,Σ1(S1/2)) and (1,Σ1(S1)) are collinear then

5 return pass

6 else

7 return fail

a nonempty subset S of a general linear section X ∩L of an irreducible variety is complete. In this
sense, the classical trace test is a completeness test for irreducible varieties.

Following the approach of the classical trace test, we introduce a sparse trace test in Algorithm 1.
Using the stronger conditions of Lemma 6, we describe a second sparse trace test, Algorithm 2,
which we call the constant sparse trace test. We refer to these algorithms as the sparse trace tests.

By Lemma 6, the sparse trace tests return pass when S = V×(F), even when B is not abundant
or L[A] 6= Zn. Thus, they return fail only when S 6= V×(F). However, from a practical point of
view, even this one-sided usage requires a priori knowledge of some subset B ⊆ A which is either
TAL or contained in the unnecessary support. In Section 2.4, we give simple discrete geometric
descriptions of sets satisfying these relationships. The conditions that B is abundant and L[A] = Zn

make the algorithm two-sided and are easy to check. In Section 2.5 we justify the inclusion of these
additional conditions on B.

2.4. Approximating the support. The use of either sparse trace test requires valid A and B as
input. It is straightforward to check the conditions that B is abundant and L[A] = Zn, but finding
a candidate for B is, a priori, not obvious. We provide easy-to-compute subsets of A which are
TAL or contained in U , which may be used for B.

Algorithm 2: Constant sparse trace test

Input: • A collection of supports A in Zn with MV(A) > 0 and L[A] = Zn

• A Bernstein-generic polynomial system F ∈ CA

• ∅ 6= S ⊆ V×(F)
• A collection B ⊆ U which is abundant.

Output: If S = V×(F), then pass, else fail.
1 Construct G ∈ CB ×FA\B by choosing generic GB ∈ CB.

2 Construct |S|-many solutions S′ ⊆ V×(G).
3 if Σ1(S) = Σ1(S

′) then
4 return pass

5 else

6 return fail
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Let A ⊆ Zn be finite. The set of k-offset points of A in the first coordinate is defined to be

offset(A, k) = {α ∈ A | α+ (k + ε)e1 6∈ conv(A) for all ε > 0}.

These sets are increasing, that is, if k < k′, then offset(A, k) ⊆ offset(A, k′). We note that
offset(A, 0) consists of the points of A which maximize a linear functional x 7→ 〈x, ω〉 for some
ω ∈ Rn with ω1 > 0. For a collection A, we define offset(A, k) coordinate-wise.

(a) (b)

Figure 4. The sets offset(A, .5) and offset(A, 1) in the (a) first and (b) second
coordinates along with the convex hull of A. The points of offset(A, .5) are filled,
the points of offset(A, 1)\ offset(A, 0.5) are cross-hatched, and the remaining points
are white. The shifted polytope illustrates the behavior for multiple points at once.

The following specialization of Theorem 22 provides discrete geometric constructions of subsets
of A which are either TAL or contained in U .

Lemma 8. Let A = (A1, . . . , An) be a collection of supports in Zn such that MV(A) > 0. Then,

• A\ offset(A, 0.5) is TAL and
• A\ offset(A, 1) ⊆ U .

Example 9. We continue the discussion of Systems (1) and (2) from Example 7. Since the
coefficients of F and G which agree contain offset(A, 0.5) with respect to the first coordinate,
Lemmas 6 and 8 imply that the trace Σ1(V

×(tF + (1 − t)G)) is an affine linear function in the
remaining coefficients. On the other hand, since the coefficients of f1 and g1 corresponding to the
monomials {y2, xy4, x2y4} disagree, Lemma 8 does not apply with respect to the second coordinate.
Table 1 shows the linearity of the trace in the first coordinate and nonlinearity of the trace in the
second coordinate.

2.5. Incomplete solution sets. We explain how the conditions B is abundant and L[A] = Zn,
on A and B, guarantee that the output pass from the sparse trace tests implies the equality
S = V×(F). Our argument relies on results about the monodromy group G(πA) detailed in Section
4, and is structured as follows: Suppose that F is Bernstein-generic, and G in CB×FA\B is generic.
When the monodromy group of πA restricted to the preimage of the line containing F and G
is the full symmetric group, there is a loop which induces the transposition swapping s ∈ S and
s′ ∈ V×(F)\S. When the points in V×(F) have distinct first coordinates, Σ1(S) 6= Σ1(S∪{s

′}\{s}).
In these cases, since the trace of the analytic continuation of S 6= V×(F) is continuous along the
corresponding monodromy loop, the traces along this loop cannot lie on a line.

Theorem 10. Let (A,F , S,B) be the input to Algorithm 1 or 2. Then the algorithm returns pass
if and only if S = V×(F).
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Proof. If B is TAL (respectively, B ⊆ U), then Lemma 6 implies that Algorithm 1 (respectively,
Algorithm 2) returns pass when S = V×(F) is given as input. It remains to be shown that the
algorithms return fail, almost surely, when S 6= V×(F).

The conditions on the input to Algorithms 1 or 2 imply that the monodromy group πA restricted
to CB×FA\B is the full symmetric group by Theorem 41. Zariski showed that the further restriction
to tF+(1−t)G preserves the monodromy group [22]. Theorem 42 implies that the first coordinates of
points in V×(F) are distinct. By the argument above the statement of the theorem, the algorithms
return fail. �

Remark 11. The condition that B is abundant simplifies the proofs in Section 4. Certainly, less
restrictive conditions also suffice, as illustrated by the the classical trace test. Finding precise
conditions is left for future research.

Section 4.1 details why the condition L[A] = Zn is necessary. The following example illustrates
one type of issue that arises when L[A] 6= Zn.

Example 12. Suppose that F = (f1, f2) is a Bernstein-generic system supported on the support
A = (A,A) where A = {(0, 0), (2, 0), (4, 0), (3, 1), (0, 2), (2, 2)}, as depicted in Figure 5. We note
that the index of L[A] in Z2 is 2. For any solution (s1, s2) ∈ V×(F), the point (−s1,−s2) is also a
solution. Hence, if S ⊆ V×(F) consists of pairs of the form (s1, s2) and (−s1,−s2), then the trace
of S is zero. In particular, the trace is constant under a perturbation of any of the coefficients and
the sparse trace tests cannot recognize that S might not be complete.

A

Figure 5. Support A such that the sparse trace tests cannot be applied on a
polynomial system supported on (A,A).

3. Sparse resultants

The efficient application of the sparse trace tests requires finding valid supports B for input.
Lemma 8 provides simple candidates. It is a specialization of Theorem 22, proven here using the
theory of sparse resultants.

3.1. Supports and sparse resultants. Let A = (A1, . . . , AN ) be a collection of finite subsets
Ai ⊆ Zn. Note that n and N are not required to be equal. For I ⊆ [N ] := {1, 2, . . . , N}, we write
AI for the subset {Ai}i∈I . The defect of a subset AI ⊆ A is def(AI ) := rk(AI)−|I|. When n = N ,
the following theorem of Minkowski characterizes when the mixed volume of A is nonzero.

Lemma 13. The mixed volume of A = (A1, . . . , An) is nonzero if and only if def(AI) ≥ 0 for all
I ⊆ [n].

We use the following generalization of Minkowski’s result in Lemma 39 of Section 4.2.

Lemma 14. For supports A = (A1, . . . , Ak), Ai ⊆ Zn, and generic F ∈ CA, the dimension of
V×(F) is n− k when def(AI) ≥ 0 for all I ⊆ [k]. Otherwise, V×(F) = ∅.
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A collection A is essential if its defect is −1 and every proper subset has nonnegative defect.
Let Q = {0, e1} ⊆ Zn. When n = N and MV(A) > 0, there is a unique subset A′ ⊆ A such that
{Q} ∪ A′ is essential [5, 21].

For a square polynomial system F = {f1, . . . , fN} supported on A, we define Z (A) to be the
set of polynomial systems in CA which have a solution in (C×)n. When A has a unique essential
subset, the Zariski closure of Z(A) is a hypersurface in CA defined by an irreducible polynomial
in Z[ui,α], see [21]. In particular, this polynomial is unique, up to a nonzero constant. Following
the terminology in [4], we call this polynomial the A-eliminant or sparse eliminant and denote it
by ElimA. If A does not have a unique essential subset, then we define ElimA = 1.

Historically, the sparse eliminant has been referred to as the sparse resultant. We use the following
redefinition of the sparse resultant (as in [13]) which produces more uniform statements [4]. When
ElimA 6= 1, the restriction of πA to π−1

A (Z(A)) is generically dA-to-one. We define the A-resultant
or sparse resultant to be

ResA = ElimdA
A .

For the universal polynomial system F(u) over A, the sparse resultant ResA(F(u)) is a polyno-
mial in Z[ui,α]. Therefore, it can be evaluated at specific coefficients F ∈ CA. We write this in any
of the following ways:

ResA(F) = ResA(f0, . . . , fn) = ResA({ci,α}).

3.2. Approximation of the necessary support. LetA be a square set of supports with MV(A) >
0. In the hidden variable technique, we view F(u) in the ring C[x1][x2, . . . , xn] by treating x1 as
a coefficient. This turns F(u) into a system of n equations in n − 1 variables, supported on the
collection of projections π(A) = (π(A1), . . . , π(An)) under the forgetful map π : Zn → Zn−1 which
forgets the first coordinate. We let G(v) be the universal system over the support π(A).

Lemma 15. If A is a square set of supports and MV(A) > 0, then π(A) contains a unique essential
subset.

Proof. Since MV(A) > 0, the defect of any subset of A is at least zero by Lemma 13. On the other
hand, since |A| = n, the defect of A is at most zero and so rk(A) = n. Since rk(A) = n, we must
have that rk(π(A)) = n − 1 implying that π(A) has defect −1. Thus, π(A) contains at least one
essential subset.

To see that this subset must be unique, suppose that π(AI) and π(AJ) are two distinct essential
subsets of π(A). The defect of π(AI) is one less than the defect AI when e1 is contained in the
affine span of AI and equal to the defect of AI otherwise. Since MV(A) > 0, we conclude that
def(AI) = def(AJ) = 0 and e1 is in the affine span of both AI and AJ . This implies that

rk(AI∪J) ≤ rk(AI) + rk(AJ)− 1 = |I|+ |J | − 1 < |I|+ |J |.

But then AI∪J has negative defect, contradicting the hypothesis that MV(A) > 0. �

Lemma 15 shows that Resπ(A) ∈ Z[vi,β] is not 1. Writing the polynomials fi of F(u) as polyno-
mials supported on π(A) gives

fi =
∑

β∈π(Ai)

hi ,β(x1 )x
β ∈ C[x1][x2, . . . , xn].

Thus, evaluating Resπ(A) at the system F(u) amounts to substituting hi,β(x1) for vi,β, that is,

(3) Resπ(A)(G(v))
∣∣
vi,β=hi,β(x1)

= Resπ(A)(F(u)) ∈ Z[ui,α][x1].

This polynomial vanishes at all points a1 such that the system F(a1, x2, . . . , xn) has a solution in
(C×)n−1. The fact that a1 may be zero is reflected in a power of x1 appearing as a factor of this
polynomial, as exhibited in the following lemma.
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Lemma 16 ([4, Proposition 4.7 and Theorem 1.4]). Let A be square with MV(A) > 0. Then there
exists d ∈ Z such that, up to a constant,

Resπ(A)(F(u)) = xd1 ResQ,A1,...,An(z − x1, f1, . . . , fn)|z=x1
.

Moreover, for generic F ∈ CA,

Resπ(A)(F) = xd1
∏

s∈V×(F)

(x1 − s1).

Lemma 17 ([14, Theorems 4 and 5]). As a polynomial in x1, the degree of Resπ(A)(F(u)) is the
mixed volume of the convex hulls of Ai ∪ ({0} × π(Ai)).

The convex hull of A∪ ({0}×π(A)) is often called the shadow of the convex hull of A. We define

Res
(1 )
Q ,A(F(u)) to be the polynomial ResQ,A1,...,An(z − x1, f1, . . . , fn)|z=x1

in Z[u][x1].

Corollary 18. As a polynomial in x1, the degree of Res
(1)
Q,A(F(u)) is MV(A).

Lemma 19. Let A = (A1, . . . , An) be a square collection of supports with MV(A) > 0. Let F(u)

be the universal polynomial system over A. We write the resultant Res
(1)
Q,A(F(u)) as

Res
(1)
Q,A(F(u)) = qMV(A)(u)x

MV(A)
1 + qMV(A)−1(u)x

MV(A)−1
1 + · · ·+ q1(u)x1 + q0(u).

Then

Σ1(V
×(F(u))) = −

qMV(A)−1(u)

qMV(A)(u)
.

Proof. By Lemma 16 and Corollary 18, we have that Res
(1)
Q,A(F) =

∏
s∈V×(F)(x1 − s1) for generic

F = F(c) ∈ CA, up to a constant. Since F is generic, qMV(A)(c) 6= 0 and so the sum of the x1
coordinates of points in V×(F) is

Σ1(V
×(F)) = −

qMV(A)−1(c)

qMV(A)(c)
.

Since this equality holds for all generic F ∈ CA, the equality also holds for the universal polynomial
system. �

Remark 20. D’Andrea and Jeronimo make the quotient in Lemma 19 explicit. For a square
collection of supports A with positive mixed volume, a specialization of formula [5, Theorem 2.3]
gives

Σ1(V
×(F(u))) = dQ,A1,...,An

∂ ElimQ,A1,...,An

∂u0,e1
(1, f1, . . . , fn)

ElimQ,A1,...,An(1, f1, . . . , fn)
=

∂ ResQ,A1,...,An

∂u0,e1
(1, f1, . . . , fn)

ResQ,A1,...,An(1, f1, . . . , fn)

where F(u) = (f0, . . . , fn) is the universal polynomial system over (Q,A1, . . . , An).

To prove the main result of this section, we first state an elementary result on the coefficients in
the composition of a monomial with a collection of polynomials. Let [x k ]f (x ) denote the coefficient
of xk in f(x).

Lemma 21. Define gi(x) =
∑di

j=0 ci,jx
j ∈ C[c][x] and fix γ = (γ1, . . . , γn) ∈ Zn. The polynomial

gγ(x) := g1(x)
γ1 · · · gn(x)

γn

has degree d = d1γ1 + · · ·+ dnγn, and if
∏

cik ,jkx
d−δ is a term of gγ(x), then

∑
dik − jk = δ.

Consequently, if di − j > δ, then ci,j does not appear in [xd−δ]gγ(x) and each term
∏

cik ,jkx
d−δ

can have at most one ci,j with the property that di − j > δ/2.
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A1

A2

Â1

Â2

ε1,(2) = 0, m1,(2) = 1

ε1,(1) = 1/2,m1,(1) = 0

ε1,(0) = 0, m1,(0) = 0

ε2,(3) = 0, m2,(3) = 1

ε2,(2) = 2/3,m2,(2) = 0

ε2,(0) = 0, m2,(0) = 0

Figure 6. Support A = (A1, A2) and Â along with a depiction of εi,β and mi,β for A.

Before stating the main result of this section, we establish some notation. Fix a square collection
of supports A in Zn. For β ∈ π(Ai), we let (mi ,β , β) be the integer point in the Newton polytope
of Ai with maximal first coordinate and εi ,β ∈ [0, 1) be the distance in the direction of e1 from
(mi ,β , β) to the boundary of Ai. Note that there are finitely many εi,β, all of which are rational. We
define λ to be the least common multiple of their denominators. Using ⊙ to denote coordinate-wise

multiplication, we define Â := Zn ∩ conv(λe1 ⊙A) ∩ π−1(π(A)), so that λe1 ⊙A is A scaled by λ

in the direction of e1. Note that π(A) = π(Â) and all ε̂i,β for Â are zero, see Figure 6.

Theorem 22. Let A = (A1, . . . , An) be a collection of supports in Zn such that MV(A) > 0. The
support of qMV(A)−δ(u) is contained in offset(A, δ). Moreover, the function u 7→ qMV(A)−δ(u) is an
affine linear function of the coefficients indexed by points in A\ offset(A, δ/2).

Proof. We characterize which monomials in {ui,α}α∈Ai
may appear in the support of the coefficient

qMV(A)−δ(u) of x
MV(A)−δ
1 in Res

(1)
Q,A(F(u)) ∈ Z[u][x1]. Let R(x1 ) = Resπ(A)(G(h(x1))) be the

polynomial in Z[u][x1] resulting from the substitution vi,β 7→ hi,β(x1) in Equation (3). Let d be
the degree of R(x1) in x1.

Consider Â as defined prior to the statement of this lemma. We let ĥi ,β(x1 ), and R̂(x1 ) be the

analogues of hi,β(x1) and R(x1) for Â, and d̂ the degree of R̂(x1). We note that Resπ(A)(G(v)) =

Res
π(Â)

(G(v)). Since S(Â) = λe1 ⊙S(A) where S denotes the corresponding shadow polytope, we

have that d̂ = λd.
Writing hi,β(x1) =

∑mi,β

j=0 ci,(j,β)x
j
1, we observe that ci,(j,β) appears in [xd−δ

1 ]R(x1) only if ĉi,(λj,β)

appears in [x
λ(d−δ)
1 ]R̂(x1). Moreover, [x

λ(d−δ)
1 ]R̂(x1) is the sum of [x

λ(d−δ)
1 ]

∏
(ĥi,β(x1))

γi,β over

all γ indexing monomials vγ =
∏

v
γi,β
i,β in Resπ(A)(G(v)). Since degx1

(ĥi,β(x1)) = λ(mi,β + εi,β),

Lemma 21 implies that ĉi,(λj,β) appears in [x
λ(d−δ)
1 ] only if

λ(mi,β + εi,β)− λj ≤ d̂− λ(d− δ) = λδ.

Dividing through by λ gives the necessary condition that

mi,β + εi,β − j ≤ δ.

We observe that mi,β + εi,β − j is the distance in the first coordinate from the point (j, β) to the

boundary of the Newton polytope of Ai. Hence, [xd−δ
1 ]R(x1) may only involve coefficients ui,α

where the distance (in the direction of the first coordinate) from α to the boundary of the Newton
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polytope of Ai is at most δ, that is, offset(A, δ). Since R(x1) = xk1 Res
(1)
Q,A(F(u)), we have that

[xd−δ
1 ]R(x1) = [x

MV(A)−δ
1 ] Res

(1)
Q,A(F(u)) = qMV(A)−δ(u).

Moreover, each term of [xd−δ
1 ]R(x1)] can involve at most one coefficient ui,α having this distance

to the boundary greater than δ/2. Hence, the function u 7→ [xd−δ
1 ]R(x1) is an affine linear function

of the coefficients indexed by A\ offset(A, δ/2), completing the proof. �

4. Sparse monodromy

There has been recent progress in the study of monodromy groups of sparse polynomial systems
[6, 7, 19]. Esterov showed that there are (essentially) two properties of A which can cause G(πA) to
fail to be the full symmetric group. These properties explain the need for restrictions on the input
to the sparse trace tests, as we detail in Section 4.1. In Section 4.2, we extend Esterov’s result to
restrictions of the branched cover πA, which completes the proof of correctness for the sparse trace
tests.

4.1. Lacunary and triangular supports. Throughout this section, we assume A is a square set
of supports in Zn. The following example illustrates why the condition L[A] = Zn is necessary for
the sparse trace tests.

Example 23. Let F(x1, x2) be any Bernstein-generic sparse polynomial system supported on A,
where A1 = {(0, 0), (1, 0), (1, 2)} and A2 = {(0, 0), (1, 0), (0, 2), (1, 2)}, see Figure 7. Since every
power of x2 is even, F may be written in the coordinates (y1, y2) = (x1, x

2
2) for some system

G(y1, y2). Thus, the zeros of F in the torus have the following form:

V×(F) = {(a1, b1), (a1,−b1), (a2, b2), (a2,−b2)}.

The map (x1, x2)
φ
7→ (x1, x

2
2) is a two-to-one map from V×(F) to V×(G).

There are two types of proper nontrivial subsets S of V×(F) for which the sparse trace tests
erroneously succeed. When S consists of a single fibre of φ, the trace Σ2(S) is zero. When S
consists of a single point in each fibre of φ the trace Σ1(S) is half of Σ1(V

×(F)). In both cases, if
Σi(V

×(F)) moves affine linearly during the sparse trace test, then so does Σi(S).

A1 A2 B1 B2

Figure 7. Lacunary support A = (A1, A2) and a lacunary reduction B = (B1, B2)
of A.

We now discuss the general case of the structure exhibited in Example 23.

Definition 24. We say a collection of supports A is lacunary if [Zn : L[A]] > 1. Similarly, any F
supported on lacunary support is called a lacunary system.

For any lacunary support A in Zn, there exists a Z-linear map Φ : Zn → Zn and nonlacunary
support B such that Φ(B) = A. We call such a B a lacunary reduction of A. Additionally, the
sparse polynomial system G in CB with the same coefficient vector as F ∈ CA is called a lacunary
reduction of F with respect to Φ. The lacunary reduction has the property that

G(y1, . . . , yn) = G(φ(x)) = F(x)



SPARSE TRACE TESTS 13

where φ : (C×)n → (C×)n is the monomial map φ(xi ) = xΦ(ei) := x
Φ(ei)1
1 · · · x

Φ(ei)n
n . The branched

cover πA : XA → CA decomposes as πA = πB ◦ (φ× id), where id(F) = G ∈ CB. The fibre of φ× id
over a point (y,G) ∈ XB is

(φ× id)−1(y,G) = {(x,F) | φ(x) = y, F = G}.

This fibre has cardinality det(Φ) = [Zn : L[A]] and is identified with the solutions to the binomial
system φ(x) = y.

Theorem 25. Suppose A is lacunary.

• If e1 /∈ L[A], then Σ1(V
×(F)) = 0.

• If e1 ∈ L[A], then Σ1(V
×(F)) = [Zn : L[A]]Σ1(V

×(G)) where Φ(B) = A is a lacunary
reduction of A satisfying Φ(e1) = e1 and G ∈ CB is the corresponding lacunary reduction
of F .

Proof. If e1 6∈ L[A], then there exists a linear map Φ and lacunary reduction B such that Φ(e1) =
ke1 for some k > 1. Hence, if (s1, . . . , sn) is a solution to some generic F ∈ CA, then so is
(ωk · s1, s2, . . . , sn) for any k-th root of unity ωk. Thus, the sum of the first coordinates of the
solutions to F is zero.

If e1 ∈ L[A], then Φ may be chosen so that Φ(e1) = e1. Then the fibre over Φ of the point (y,G)
consists of [Zn : L[A]] points with identical first coordinate y1, and the result follows. �

The following corollary highlights how the application of our sparse trace tests on (invalid)
lacunary support is one-sided by identifying nonempty proper subsets S ( V×(F) on which these
algorithms return pass.

Corollary 26. Suppose A is lacunary and F is supported on A.

• If e1 /∈ L[A], then the trace Σ1 of a union of fibres over φ× id is zero.
• If e1 ∈ L[A], then the trace Σ1 of a union of k points in each fibre is k

[Zn:L[A]]Σ1(V
×(F)).

We now illustrate a second property of A which prevents the use of our sparse trace tests. This
property never occurs for abundant A.

Example 27. Let F(x1, x2) = (f1, f2) be any Bernstein-generic sparse polynomial system sup-
ported on A, where A1 = {(0, 0), (1, 0), (2, 0)} and A2 = {(0, 0), (1, 0), (0, 1), (2, 1), (1, 1), (0, 2)}, see
Figure 8. Since the first coordinate of any point in V×(F) must be a solution to the square system
F1(x1), the zeros of V×(F) in the torus have the following form:

V×(F) = {(a1, b1), (a1, c1), (a2, b2), (a2, c2)}.

The map (x1, x2)
ψ
7→ (x1) is a two-to-one map from V×(F) to V×(F1).

If S consists of a single point in each fibre of ψ, then Σ1(S) is half of Σ1(V
×(F)). As in the

lacunary example, the trace Σ1(S) moves affine linearly whenever Σ1(V
×(F)) does.

Figure 8. Triangular support A = (A1, A2).

Definition 28. We say a collection of supportsA is triangular if there exists a proper subset I ( [n]
such that rk(AI) = |I|. Similarly, any F supported on triangular support is called triangular.
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We note that the condition that B is abundant in our sparse trace tests implies that A is not
triangular. When A is triangular, witnessed by I ( [n], the mixed volume of AI is defined to be
its mixed volume within its affine span. When 1 < MV(AI) < MV(A), we say that A is strictly
triangular.

Suppose that F ′ is supported on the triangular support A′, witnessed by the subsystem A′
I . We

consider the map Φ′ : Z|I| → Zn which sends ej1 , . . . , ej|I| to generators of the saturated lattice

span(L[A′
I ]) ∩ Zn, thus identifying L[A′

I ] with a sublattice of Z|I|. By choosing a complement of
L[A′

I ] in Zn, we extend the map Φ′ to an invertible change of coordinates Φ : Zn → Zn and define
φ : (C×)n → (C×)n to be the corresponding invertible monomial map.

We define A := Φ−1(A′) and have the following isomorphism of incidence varieties:

XA′
φ×Φ−1

−−−−→ XA.

We note that the system FI = F ′
I(φ(x)) is a polynomial system in the variables xj1 , . . . , xj|I| .

When A is triangular, the map πA : XA → CA decomposes as

XA → XAI
× CAIc → CA,

where Ic is the complement of I in [n]. The first map takes (x,F) 7→ ((xI ,FI),FIc), and the second
map takes ((xI ,FI),FIc) 7→ F .

Theorem 29. Suppose A is triangular, witnessed by I ( [n]. If e1 ∈ L[AI ] then

MV(A)

MV(AI)
Σ1(V

×(FI)) = Σ1(V
×(F)),

where the mixed volume of AI is taken in L[AI ].

Proof. If e1 ∈ L[AI ] then there exists an invertible Z-linear map Φ : Zn → Zn fixing e1 such that
L[Φ−1(AI)] ⊆ 〈e1, . . . , e|I|〉. Since this map fixes e1, the corresponding monomial map fixes the first

coordinates of points in (C×)n. Moreover, since Φ is invertible, it preserves mixed volumes. Hence,
without loss of generality, we assume that L[AI ] ⊆ 〈e1, . . . , e|I|〉. Any fibre of XA → XAI

× CAIc

consists of MV(A)
MV(AI )

-many points {(si,F)} where each si has the same first coordinate. Therefore,

the trace Σ1(V
×(F)) is MV(A)

MV(AI )
times the trace Σ1(V

×(FI)). �

Corollary 30. Suppose A is triangular with e1 ∈ L[A] and F is supported on A. Then the trace

of a union of k points in each fibre of XA → XAI
× CAIc is k·MV(AI )

MV(A) Σ1(V
×(F)). Thus, if S is a

union of k points in each fibre, then the trace is an affine linear function of the coefficients of F ,
even if S is not complete.

Remark 31. Theorem 29 and Corollary 30 may be thought of as partial triangular analogues to
Theorem 25 and Corollary 26 for lacunary supports. As depicted in Example 27, triangularity
guarantees only one type of proper subset of V×(F) which causes the sparse trace tests to erro-
neously succeed (compare to Example 23). Understanding whether additional problematic subsets
of V×(F) always exist in the triangular setting is left to further research.

Although the sparse trace tests may not be applied to lacunary or triangular supports, there are
settings in which these properties are advantageous. In Section 5 we use these properties to more
efficiently compute traces. In [2], the authors give a recursive algorithm for solving such polynomial
systems. The only polynomial systems which need to be directly solved, in their method, are those
which are neither lacunary nor triangular. Therefore, one may pair their work with our sparse trace
tests to establish a method for verifying the completeness of solution sets to sparse systems, even
when they are lacunary or triangular.
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4.2. The restricted monodromy problem. The following result by Esterov shows that lacunary
and triangular supports, are not only problematic for the sparse trace tests, but also restrict the
monodromy group G(πA). The goal of this section is to extend that result to restrictions of πA.

Proposition 32. [6, Theorem 1.5] For a square set of supports A, the monodromy group G(πA)
is the full symmetric group if and only if either of the following are true:

• A is neither lacunary nor strictly triangular.
• MV(A) = 2 and [Zn : L[A]] = 2

Remark 33. The monodromy group associated to the family u1,0 + u1,2x
2 of sparse polynomial

systems is the full symmetric group, despite the support {0, 2} being lacunary. This example shows
the necessity of the second condition above.

Throughout this section, we assume that A = (A1, . . . , An) is a collection of supports in Zn with
MV(A) > 0. We fix B ⊆ A, C = A\B, and set N =

∑n
i=1 |Bi|. We take F ∈ CA to be generic and

write F = FB + FC ∈ CB × CC . We are interested in the monodromy action induced by varying
the coefficients indexed by the points in B.

We consider restricted polynomial systems Fu := F(uB,FC) = FB(u) + FC = (f1,u, . . . , fn,u),
where

fi,u(x) =
∑

β∈Bi

ui,βx
β

︸ ︷︷ ︸
gi,u(x)

+
∑

γ∈Ci

ci,γx
γ

︸ ︷︷ ︸
hi(x)

,

and the corresponding restricted branched cover

XB,FC
= {(x, b) | Fb(x) = 0}

πB,FC
��

CB ∼= CB ×FC ⊆ CA.

The linear space CB ×FC in CA is not generic, and so, care must be taken in computing the mon-
odromy group. Following the approach of Harris [9], we establish conditions under which the
monodromy group G(πB,FC

) is the full symmetric group by showing that

(1) G(πB,FC
) contains a simple transposition.

(2) G(πB,FC
) is 2-transitive.

Note that when B = A, the branched cover πA,∅ is the same as πA, so Proposition 32 applies.

Theorem 34. If A is a square set of supports which is neither lacunary nor triangular and N > 0,
then the monodromy group G(πB,FC

) contains a simple transposition.

Proof. By Proposition 32, πA contains a simple transposition whenever A is neither lacunary nor
triangular. In this setting, the transposition is witnessed by any complex line in CA which crosses
the A-discriminant transversally. A monodromy loop, within this complex line, around its isolated
point of intersection with the A-discriminant induces the transposition. Thus, it is enough to show
that there exists such a line in CB ×FC which also crosses the discriminant transversally.

There are only two ways that a generic line in CB×FC fails to cross the discriminant transversally:
the discriminant does not involve the coefficients indexed by B or its intersection with CB ×FC is
singular everywhere.

Since A is neither lacunary nor triangular, Proposition 32 implies G(πA) contains a simple
transposition and so theA-discriminant is not singular everywhere. Since

⋃
GC∈CC CB×GC = CA, the

intersection of the discriminant with CB ×FC for generic FC is not singular everywhere. Moreover,
by [6, Lemma 1.20] and [6, Lemma 3.9], the defining equation of the discriminant has positive
degree in cα for each α ∈ A. In particular, this equation involves the coefficients indexed by B. �
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Finding conditions which imply that G(πB,FC
) is 2-transitive is more involved, and we follow the

approach of [9]. We consider the following incidence correspondence of the fibre-square of πB,FC
,

Y = {(x, y, b) | Fb(x) = Fb(y) = 0}

π

**❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚

p

uu❥❥
❥❥
❥❥
❥❥
❥❥
❥❥
❥❥
❥❥
❥❥
❥

S CB

equipped with projections to the sets S = ((C×)n)2 and CB. To show πB,FC
is 2-transitive, we rely

on the following elementary result.

Proposition 35. The monodromy group πB,FC
is 2-transitive if and only if Y has two components

of top dimension.

The structure of the argument is as follows: When B is abundant, we stratify the image p(Y )
of Y into subvarieties of S. We compute the dimension of each stratum and show that the fibre
dimension is constant over each. We show that there are only two preimages of strata which have
top dimension and these come from irreducible strata. Since Y is the union of these preimages, we
conclude that Y has at most two components of top dimension.

Suppose B is abundant and the support A has been shifted so 0 ∈ Bi for each i ∈ [n]. For all
I ⊆ [n], we define

VI = {(x, y) ∈ S | xα = yα for all α ∈ L[BI ]}

UI = VI\
⋃

J⊇I

VJ WI = UI ∩ p(Y ).

Since B is abundant, rk(L[BI ]) = n for any I 6= ∅. Thus, after an invertible monomial change
of coordinates, L[BI ] = k1Z ⊕ · · · ⊕ knZ, where k1, . . . , kn are the invariant factors of L[BI ].
With respect to this lattice, the variety VI decomposes into components VI (ω), one for each tuple
ω = (ω1, . . . , ωn) where ωi is a ki-th root of unity. Each component VI(ω) is an n-dimensional
irreducible variety defined via the explicit parametrization

ϕω : (C×)n → S

(x1, . . . , xn) 7→ (x1, . . . , xn, ω1x1, . . . , ωnxn).

Note that if VJ(ω) ∩ VI(ω
′) 6= ∅, then they are equal. Hence, the irreducible components of UI are

components of VI . That is, when I 6= ∅, the components of UI are of the form VI(ω) for some (but
not all) tuples of roots of unity ω. Hence, we refer to the components of UI as UI (ω). The only
exception is U∅ = S\

⋃
∅6=I VI

Lemma 36. For any s ∈ WI , the dimension of p−1(s) is N − 2n+ |I|.

Proof. The fibre of p over s = (x, y) is the solution set to the 2n-many affine linear equations

g1,u(x) = −hi(x), g2,u(x) = −hi(x), . . . , gn,u(x) = −hn(x)(4)

g1,u(y) = −hi(y), g2,u(y) = −hi(y), . . . , gn,u(y) = −hn(y)

in the variables {ui,β | β ∈ Bi}. Since s ∈ WI ⊆ p(Y ), the fibre over s is nonempty, and the dimen-
sion of the fibre is given by the dimension of the kernel of the linear map u 7→ (gi,u(x), gi,u(y))

n
i=1.

Since each condition (gi,u(x) = 0 or gi,u(y) = 0) defining this kernel only involves the variables
{ui,β}β∈Bi

, the only linear dependencies amongst System (4) are between gi,u(x) = 0 and gi,u(y) = 0
for some i. Since the ui,β are indeterminants, this linear dependency occurs exactly when the vec-

tors {xβ}β∈Bi
and {yβ}β∈Bi

are linearly dependent. Equivalently, since 0 ∈ Bi is a coordinate of
each vector, they must be equal. Hence, the codimension of p−1(s) is 2n− |I|, and its dimension is
N − 2n+ |I|. �
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Corollary 37. The variety WI is UI ∩V({hi(x)−hi(y)}i∈I). In particular, W∅ = U∅ has dimension
2n and p is dominant.

Proof. A point s = (x, y) ∈ UI fails to be in WI whenever p−1(s) is empty, or equivalently, Sys-
tem (4) is inconsistent. This occurs if and only if gi,u(x) = −hi(x) and gi,u(y) = −hi(y) describe
parallel hyperplanes in the variables {ui,β}β∈Bi

. This happens when i ∈ I and hi(x) 6= hi(y). �

We now introduce several definitions in preparation for establishing the dimensions of the WI(ω)
when I 6= ∅. We assume that an invertible monomial change of coordinates has been applied so
that L[BI ] = k1Z ⊕ · · · ⊕ knZ. Since we are only interested in computing the dimension, we may
perform this change of coordinates individually for each I. For a tuple of roots of unity ω indexing
a component of UI , we define the lattice

Lω = {α ∈ Zn | ωα = 1}

and the supports
Cω = (Cω

1 , . . . ,C
ω
n ) = (C1\Lω, . . . , Cn\Lω)

We define δI (ω) to be the number of supports in Cω
I which are nonempty, that is the number of

i ∈ I such that Cω
i 6= ∅.

Example 38. Let B1 = {(0, 0), (1, 0), (0, 2)}, B2 = {(0, 0), (2, 0), (0, 2)}, C1 = {(0, 1), (1, 1), (2, 0)},
C2 = {(1, 1)}, and A = B ∪ C as depicted in Figure 9. We observe that (0, 0), (1, 1), and (2, 0) are

all contained in L(−1,−1) and so C(−1,−1) = ({(0, 1)}, ∅). Hence, δ2(−1,−1) = 0. On the other hand,

we have C(1,−1) = ({(0, 1), (1, 1)}, {(1, 1)}) and δ12(1,−1) = 2. The subset C
(1,−1)
2 has negative

defect.

A1 A2

Figure 9. Support A = (A1, A2) where the points in B are white and the points
in C are filled.

Lemma 39. For ∅ 6= I ⊆ [n] and component UI(ω), the variety WI(ω) = UI(ω)∩ p(Y ) is empty if
the defect of any subset of Cω

I is negative. Otherwise, WI(ω) is the union of irreducible varieties of
dimension n− δI(ω).

Proof. By Corollary 37, WI(ω) may be identified with the zero set

V({hi(x1, . . . , xn)− hi(ω1x1, . . . , ωnxn)}i∈I),

its preimage under the parametrization of UI(ω). Explicitly, these polynomials are

(5)
∑

γ∈Ci

ci,γx
γ −

∑

γ∈Ci

ci,γ(ω1x1)
γ1 · · · (ωnxn)

γn for i ∈ I.

After collecting terms, this is the sparse polynomial system

(6)
∑

γ∈Cω
I

ci,γ(1− ωγ)xγ for i ∈ I.

System (5) is supported on Ci, however, any term indexed by γ ∈ Ci ∩ Lω does not appear after
collecting terms to obtain System (6) because (1−ωγ) = 0. Hence, System (6) is supported on Cω

I .
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The key observation is that System (6) is generic with respect to Cω
I : the nonzero constant 1− ωγ

may be absorbed into the coefficient ci,γ by a reparametrization. By Lemma 14, the dimension of
WI is n− δI(ω) when the defect of every subset of Cω

I is nonnegative and empty otherwise. �

Theorem 40. Suppose A is a square set of supports with MV(A) > 0. If B ⊆ A is abundant, then
the monodromy group G(πB,FC

) is 2-transitive if and only if A is not lacunary.

Proof. The backwards direction follows from Proposition 32: If A is lacunary, then G(πA) is not
2-transitive, so the restriction G(πB,FC

) is not either.
For the forward direction, we compute the dimension of the preimage p−1(W ) of a component W

of WI(ω) for I 6= ∅. The dimension of W is n−δI(ω) by Lemma 39. The dimension of the fibre over
a point in W is N − 2n+ |I| by Lemma 36. Hence, the dimension of p−1(W ) is N −n+ |I| − δI(ω)
which only obtains the value of N when |I| = n and δI(ω) = 0.

Suppose there exists WI(ω) such that I = [n], δI(ω) = 0, and ω 6= (1, . . . , 1). Since δI(ω) = 0,
each Ci is contained in the lattice Lω, a proper sublattice of Zn since ω 6= (1, . . . , 1). Note that Lω

also contains B since L[B] = k1Z ⊕ · · · ⊕ knZ and the ωi are ki-th roots of unity. Thus, C and B
are both contained in Lω and so A = B ∪ C must also be contained in Lω. This is a contradiction
since A is not lacunary. Hence, the only W[n](ω) containing an irreducible component W for which

dim(p−1(W )) = N is the variety W[n](1, . . . , 1) = {(x, y) ∈ S | x = y}. Its preimage is the diagonal
of Y and is irreducible of dimension N .

The only other variety in the stratification of p(Y ) is W∅. This is an irreducible variety of
dimension 2n, and the dimension of a fibre of a point in W∅ is N − 2n. Hence, p−1(W∅) is
irreducible of dimension N . Thus, the only two components of Y of dimension N are p−1(W∅) and
p−1(W[n](1, . . . , 1)). �

Putting Theorem 34 and Theorem 40 together, we arrive at our main result.

Theorem 41. Let A be a nonlacunary square set of supports with MV(A) > 0. Suppose B ⊆ A
is abundant. Then the monodromy group G(πB,FC

) is the full symmetric group.

Finally, using the machinery developed in this section, we provide a simple proof that the first
coordinates of the solution set V×(F) are distinct whenever A is neither lacunary nor triangular.

Lemma 42. If A is a square set of supports which is neither lacunary nor triangular and F ∈ CA

is generic, then the first coordinates of V×(F) are distinct.

Proof. We let B = ∅ so that Y is the fibre-square of πA. Since G(πA) is 2-transitive by Proposi-
tion 32, Y has two components of top dimension N . Independent of the argument in this section re-
quiring C to be abundant, these components are still p−1(W∅) and the diagonal p−1(W[n](1, . . . , 1)).

Any other component of Y cannot surject onto CA via π for dimension reasons. Hence, if s = (x, y,F)
is a point in a generic fibre over π with x1 = y1, we must have that s ∈ p−1(W[n](1, . . . , 1)). �

Example 43. Consider the supportsA and B in Example 38. The inclusion lattice corresponding to
the sets {VI}I⊆[2] and {UI}I⊆[2] are displayed in Figure 10. Hence, the set S = ((C×)2)2 is stratified
by U12(1, 1), U12(1,−1), U2(−1,−1), U2(−1, 1), and U∅. By Lemma 39, W12(1,−1) and W2(−1, 1)

are both empty since both B
(1,−1)
{2} and B

(−1,1)
{1} have negative defects. Hence, the only nonempty

components of p(Y ) are W12(1, 1),W2(−1,−1), and W∅. Since δ12(1, 1) = 0 and δ2(−1,−1) = 0,
we have that WI(ω) = UI(ω). The dimension counts for p−1(W12(1, 1)), p

−1(W2(−1,−1)), and
p−1(W∅) appear in Table 2. We remark that p−1(W2(−1,−1)) is actually a subvariety of p−1(W∅),
and not its own component.

5. Examples and extensions

We collect a gallery of examples that illustrate and extend our theorems.
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V12

V1 V2

V∅

Z⊕ 2Z

Z⊕ 2Z 2Z⊕ 2Z

0

Figure 10. The inclusion poset of {VI}I⊆{1,2} and the inclusion poset of the cor-
responding lattices {L[BI ]}I⊆{1,2}.

Stratum dim(UI(ω)) dim(WI(ω)) Fibre dimension dim(p−1(WI(ω))
U12(1, 1) 2 2 4 6
U12(1,−1) 2 −1 −1 −1
U2(−1, 1) 2 −1 −1 −1
U2(−1,−1) 2 2 3 5
U∅ 4 4 2 6

Table 2. Summary of dimension counts for various strata of S.

5.1. Computing the trace by reducing to the necessary support. Fix A to be a square
collection of supports with positive mixed volume, and F ∈ CA to be Bernstein-generic. Then
Σ1(V

×(F)) is equal to Σ1(V
×(FN )) since, by definition, this trace depends only on the coefficients

of F in the necessary support N ⊆ A. The advantage of reducing to FN is that MV(N ) is
often significantly smaller than MV(A). Numerically, one may perform a direct computation of
Σ1(V

×(F)) by solving a system of much smaller degree. Algebraically, resultant computations on
FN are likely to be much easier than resultant computations on F .

Example 44. Consider a polynomial system F = (f1, . . . , fn) in n variables, where deg(fi) = di
for i = 1, . . . , n. Then F is a Bernstein-generic sparse polynomial system supported on

∆ = (d1∆n, d2∆n, . . . , dn∆n),

where ∆n consists of the n+1 vertices of the standard n-dimensional simplex and d∆n consists of
all lattice points in the d-th dilate of ∆n.

A naive numerical computation of Σ1(V
×(F)) involves computing

∏n
i=1 d = MV(∆)-many solu-

tions, by Bézout’s theorem. However, by Lemma 8, this trace only depends on the terms of each
fi of degree di and di− 1. The mixed volume of N is equal to

∏n
i=1 di −

∏n
i=1(di − 1), considerably

smaller than that of A. A root of V(F) ⊆ Cn at the origin of multiplicity
∏n

i=1(di − 1) accounts
for the difference.

For example, two generic bivariate polynomials {f1, f2} of degree 5 have 25 common roots in
the torus, whereas the system {g1, g2} obtained by ignoring all terms of degree 3 or less has only
9 = 25−16 common solutions in the torus (see Figure 11). The remaining 16 solutions are supported
at the origin of (C×)2.

Example 45. Continuing Example 44, we compare timings of computing the traces of {f1, f2}
and {g1, g2} by sampling random integers uniformly between −10 and 10 for coefficients. Since the
solutions to {g1, g2} which are not in the torus are at the origin, they do not influence the trace,
even though they affect the resultant. We use the implementation in the Resultants package [20]
in the Macaulay2 computer algebra system [8]. The experiments were carried out on Clemson’s
Palmetto server on an Intel Xeon E5-2680 v3 CPU at 2.50GHz with 126 GB of ram and running
CentOS linux.
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(a) (b)

Figure 11. (a) Support 5∆2. (b) Support 5∆2\3∆2.

Degree 5 10 15 20 25
{f1, f2} 0.0301 0.931 13.7 98.5 494
{g1, g2} 0.0203 0.201 1.33 5.15 17.4

Table 3. Timings (in seconds) for computing the trace of two polynomial systems
using the hidden variable resultant. One is a generic system {f1, f2} of bivariate
quintics. The other, {g1, g2}, is obtained from {f1, f2} by ignoring terms of degree
less than four.

Rather than restricting the total degrees of each polynomial in a sparse polynomial system (as
in Example 44), one can restrict the multidegrees of each polynomial. We illustrate our approach
on such systems in the bivariate setting.

Example 46. Consider a Bernstein-generic bivariate system {f1, f2} supported on

⊏⊐ = (⊏⊐k1,ℓ1 ,⊏⊐k2,ℓ2)

where ⊏⊐k ,ℓ = ([0, k] × [0, ℓ]) ∩ Z2 (see Figure 12). The mixed volume of ⊏⊐ is k1ℓ2 + k2ℓ1. The
restricted polynomial system {g1, g2}, obtained by setting the coefficients of unnecessary monomials
equal to zero, has support (⊏⊐1,ℓ1 ,⊏⊐1,ℓ2) after translation. This support has mixed volume ℓ1 + ℓ2.

The translation of the supports corresponds to dividing each gi by xk−1
1 to eliminate a component

of V(g1, g2) ⊆ C2 of multiplicity (k− 1)ℓ2 + (k2 − 1)ℓ1 supported on x1 = 0. Note that, generically,
Σ2(V

×(f1, f2)) 6= Σ2(V
×(g1, g2)).

(a) (b) (c) (d)

Figure 12. Supports of f1, f2, g1, and g2 as in Example 46.

Even though the sparse trace tests cannot be directly applied to lacunary or triangular supports,
one may use this special structure to compute traces more quickly (see Theorems 25 and 29).
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A′

A P1

Figure 13. The Newton polytopes of F ′ in the variables (x1, x2, x3) along with the
Newton polytopes of F in the variables (x1, x2, x2x3) = (y1, y2, y3) (after multiplying
f1 by y3 to clear denominators). After solving the subsystem {f2, f3} in (y1, y2),
back-substitution into f1 involves solving a univariate cubic in y3 supported on P1.

Example 47. Consider a Bernstein-generic sparse polynomial system F ′ = (f ′
1, f

′
2, f

′
3) supported on

A′ = (A′
1, A

′
2, A

′
3) consisting of all of the lattice points contained in the Newton polytopes displayed

in Figure 13. The system F ′ is triangular, witnessed by the subset {2, 3}. Let A be the preimage of
A′ under the linear map Φ(α1, α2, α3) = (α1, α2 + α3, α3). If F = (f1, f2, f3) is the corresponding
polynomial system supported on A, then F(y1, y2, y3) = F(x1, x2x3, x3) = F ′(x1, x2, x3). The
system F is obviously triangular since {f2, f3} is a square system in y1 and y2.

Since e1 ∈ L[A{2,3}] and Φ was chosen to fix e1, the proof of Theorem 29 implies that Σ1(V
×(F))

is a multiple of Σ1

(
V×

(
F{2,3}

))
. Namely, Σ1(V

×(F)) is three times the trace of the subsystem since

each solution (s1, s2) ∈ V×
(
F{2,3}

)
extends to three solutions to V×(F) (f1(s1, s2, y3) is a univariate

polynomial of degree three). Geometrically, this is illustrated in Figure 13: as the projection P1

of A1 onto L
[
A{2,3}

]⊥
is a line segment of length three. Therefore, the trace of V×(F ′) can be

calculated directly from the trace of V×(f2, f3) by computing the length of the projection of A′
1

onto a complement of L
[
A′

{2,3}

]
.

5.2. Applications to nongeneric systems. Suppose F ∈ CA is not a Bernstein-generic system,
but has d < MV(A) isolated solutions in the torus. The trace Σ1(V

×(F)) is still a ratio of coefficients

of Res
(1)
Q,A(F). Since each qk(F) = [xk1 ] Res

(1)
Q,A(F) is an affine linear function of the set of coefficients

given in Theorem 22, this trace may be computed just as in the previous section. However, the set
of unnecessary coefficients may be smaller in these Bernstein-deficient cases.

Example 48. Suppose that F = (f1, f2) consists of a pair of dense bivariate polynomials of degree
5 which have 24 solutions in C2, all of which are in the torus. Consequently, F is not Bernstein-
generic: there is one solution at infinity. Using the notation in Theorem 22, the trace Σ1(V

×(F))

is −q23(F)
q24(F) . By Theorem 22, this is an affine linear function of the coefficients in A\ offset(A, 1),

expressed in Figure 14 by the white and cross-hatched points in Z2.
As in Example 44, setting the unnecessary coefficients equal to zero produces a sparse polynomial

system G with Σ1(V
×(F)) = Σ1(V

×(G)), even though |V×(G)| = 15 < 24 = |V×(F)|. Each
polynomial in G is supported on the second set of monomials in Figure 14.

5.3. Computing other traces. Rather than computing the trace
∑

x∈V×(F) x1 = Σ1(V
×(F)),

one may be interested in computing the sum of a different monomial xγ over the solutions V×(F).
Such a function is also called a trace [5]. The trace of xγ may be computed by applying an invertible
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(a) (b)

Figure 14. (a) Support of f1 and f2 in Example 48. These polynomials are two
bivariate quintics with one common solution at infinity and 24 common solutions
in (C×)2. (b) Support of the polynomials f1 and f2 after truncating the terms of
degree less than 3.

monomial change of coordinates (C×
x )

2 → (C×
y )

2 which identifies xγ with y1. In the coordinates y,
our results apply to the resulting polynomial system G(y). As the support A changes under this
monomial change of coordinates, so do the sets offset(A, δ). Consequently, we can find subsets of
coefficients for which the function F 7→

∑
x∈V×(F) x

γ is affine linear.

(a)

(b)

Figure 15. (a) Support for the pair of dense polynomials of degree 5 in Example
49 after a change of coordinates. (b) The support for this pair of dense polynomials
of degree 5 shifted back to the original coordinates.

Example 49. Consider the trace of x1x
2
2 over the solutions V×(F) of a Bernstein-generic poly-

nomial system F = (f1, f2) supported on A = (5∆2, 5∆2). This trace may be computed by
applying the monomial substitution F(x1, x2) 7→ F(y1y

−2
2 , y2) = G(y1, y2), which induces a map

V×(F) → V×(G) on varieties which identifies the trace of x1x
2
2 over V×(F) with the trace of y1
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over V×(G). The support of G is displayed in Figure 15, where our results imply that the white and
cross-hatched coefficients influence Σ1(V

×(G)) affine linearly. Consequently, the same coefficients
influence the trace of x1x

2
2 over V×(G) affine linearly. In particular, the white points in Figure 15

correspond to coefficients which do not influence
∑

x∈V×(F) x1x
2
2.
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