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CERTIFIED SIMULTANEOUS ISOTOPIC APPROXIMATION OF PAIRS OF CURVES
VIA SUBDIVISION

MICHAEL BURR AND MICHAEL BYRD

ABSTRACT. We present a certified algorithm based on subdivision for computing an isotopic approximation
to a pair of curves in the plane. Our algorithm is based on the certified curve approximation algorithm of
Plantinga and Vegter. The main challenge in this computation is to correctly and efficiently compute the
intersections of the curves. To address this issue, we introduce a new, but simple test that guarantees the
global correctness of our output.

1. INTRODUCTION

In [10, 11], Plantinga and Vegter introduced an algorithm to construct topologically correct piecewise-
linear approximations to smooth and bounded real hypersurfaces in two and three dimensions. Their algo-
rithm is particularly interesting as it is a symbolic-numeric algorithm based on subdivision whose predicates
are simple and easy to implement. On singular input, however, the Plantinga and Vegter algorithm does not
terminate as both of their predicates fail on regions containing singular points. The current paper presents
an algorithm in the spirit of the original Plantinga and Vegter algorithm for correctly approximating the
union of two smooth curves in the plane with simple transverse crossings.

Main question. Suppose that f,g € Z[z,y] define two smooth curves in the real plane and their corre-
sponding varieties V(f) and V(g) intersect transversely in simple crossings. Our goal is to construct a pair
of approzimations A(f) and A(g) to V(f) and V(g), respectively, such that A(f) U A(g) is a topologically
correct piecewise-linear approzimation to V(f)UV(g), see Figure 1(b).

In our setting, topologically correct means that there is an ambient isotopy that deforms space while
taking both A(f) to V(f) and A(g) to V(g9). In particular, the crossings of the approximations form a
topologically correct approximation to the intersection points of V(f) and V(g). The approximation and the
varieties can also be made as close as desired in Hausdorff distance by further subdivision.

The main challenge is that while the Plantinga and Vegter algorithm computes the individual approxi-
mations A(f) and A(g), the algorithm only guarantees the existence of two ambient isotopies. One of the
ambient isotopies takes A(f) to V(f) and the other takes A(g) to V(g), but there is no guarantee that
these isotopies are compatible in any sense, see Figure 1(a). This can cause A(f) N .A(g) to fail to include
intersections between V(f) and V(g) as well as for A(f) N .A(g) to include extraneous intersections, which
do correspond to intersections between V(f) and V(g).

An extension of the Plantinga and Vegter algorithm was introduced in [1] to handle unbounded and
singular input. This approach can solve the current problem by computing an approximation to the variety
V(fg), but this approach relies on separation bounds between singular points. These separation bounds are
typically so pessimistic that it is questionable whether this algorithm is practical. On the other hand, the
algorithm introduced in [6] also studies the problem considered here, but their algorithm uses more restrictive
tests than what we propose, and they may require a significant number of subdivisions to characterize the
local behavior of curves within a region. For instance, their algorithm has more topological requirements on
boxes that contain intersections of curves than our approach. This makes our correctness statement a little
bit weaker than the correctness statement in Lien et al., but they are still quite strong and more in line with
the statement appearing in the original work of Plantinga and Vegter.

Our main contribution is the design and correctness for Algorithm 2. This algorithm is a certified symbolic-
numeric subdivision-based algorithm for solving the Main question, with the following correctness statement:

Theorem 1. Suppose that f,g € Zlx,y] and R = [a,b] x [c,d] is a rectangular subset of R? such that
a,b,c,d € Z. In addition, suppose that V(f) and V(g) define smooth curves in R which intersect simply and
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FIGURE 1. Two approximations (drawn with thick lines) of a pair of curves (drawn with thin
lines). The approximation and the curve are paired by color. A naive approach (a) misses
a pair of intersections due to excursions while our approach (b) correctly approximates the
curves simultaneously.

transversely. Moreover, suppose that V(f) and V(g) do not intersect on the boundary of R. Let A(f) and
A(g) be the output of Algorithm 2. There exists a neighborhood U of R and an ambient isotopy defined on
U that simultaneously takes A(f) to V(f) and A(g) to V(g), respectively.

Outline. In Section 2, we recall the details of the Plantinga and Vegter algorithm for curve approximation.
In Section 3, we provide the details of the subdivision step of our algorithm. Finally, in Section 4, we describe
how the curve approximations are constructed.

2. BACKGROUND

The Plantinga and Vegter algorithm for curve approximation is an adaptive subdivision-based algorithm
based on the marching cube algorithm [8]. The input to the algorithm is a bivariate polynomial f € Z[z, y]
and an input region R = [a,b] x [c,d] in R? such that a,b,c,d € Z. The output is a piecewise linear
approximation A(f) which is guaranteed to be ambient isotopic to the real variety V(f). The algorithm
consists of three steps: (1) the subdivision step, (2) the balancing step, and (3) the approximation step.

In the subdivision step, square regions are considered by the algorithm and either accepted and further
processed or rejected and split into four equal-sized subboxes for further consideration. The acceptance and
rejection is based on two predicates called Cy and Cy. These predicates take, as input, a square region B C R
and produce TRUE or FALSE. A square is accepted when either of the predicates is TRUE and is rejected
if both predicates return FALSE. The predicates have the following properties: When Cy(B) = TRUE, we
conclude that V(f) does not intersect B. On the other hand, when C;(B) = TRUE, there do not exist any
pair of points (z1,y1), (z2,y2) € B such that Vf(z1,y1) and Vf(x2,y2) are perpendicular.

In the balancing step, additional subdivisions are performed until the side length of neighboring boxes
differ in length by at most a factor of two. Finally, in the approximation step, for every box which satisfies
C1(B) but not Cy(B), f is evaluated on each vertex. For each edge in the subdivision where f changes signs,
the algorithm adds a vertex on this edge. Finally, in each box, the vertices are connected in a way so that
the edges do not intersect, and, if there are four vertices on the sides of a box, the two vertices on the same
side of the box are not connected.

2.1. Correctness and complexity. In the original presentation, [10, 11], the correctness of the curve
approximation algorithm was only proved for smooth and bounded curves. In [1], by slightly weakening the
correctness statement, the algorithm was extended to unbounded curves. In addition, in [1], the algorithm
and correctness statement were extended to nonsingular curves, but the practicality of this approach remains
in question. In [7], the authors extend the algorithm to non-square regions within the subdivision.

In each of these algorithms, an important feature of their correctness statements is that they guarantee
global correctness, not local correctness. For instance, the correctness statement does not guarantee that
the approximation and the variety are isotopic when restricted to a box, only that they are isotopic in the
input region R (or an open set containing the input region). The main difference between the variety and
its approximations are ezcursions An excursion occurs when the variety briefly enters a neighboring box,
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but this behavior does not appear in the approximation, see Figure 1 and Definition 2. Instead, the ambient
isotopy stretches space so that the approximation is moved into the neighboring box.

This global correctness without local correctness is a key feature of this family of algorithms. In many
cases, it leads to many fewer boxes created since these algorithms do not need to resolve the behavior of small
excursions. This key feature makes the problem of approximating a pair of curves given by f,g € Z|x,y]
more challenging since an excursion may involve an intersection between the varieties V(f) and V(g), but
the ambient isotopies separate the curves and remove the intersection from the approximations A(f) and
A(g).

The complexity of the Plantinga and Vegter algorithm was first studied in [2] using continuous amorti-
zation, see, e.g., [4, 3], there, the authors found both adaptive and worst-case complexity bounds for the
number of regions formed by subdivision as well as the bit-complexity of the algorithm. In addition, the
authors found examples which were guaranteed to exhibit the worst-case exponential complexity bounds.
In [5], a smoothed-analysis based approach was used to show that the average complexity of the algorithm
is polynomial. In [12], a condition number-based approach also showed that the average complexity of the
algorithm is polynomial, but for a larger class of random polynomials including some sparse families.

2.2. Predicate details. The two predicates in the Plantinga and Vegter algorithm are typically imple-
mented using interval arithmetic, see, e.g., [9] for more details. Interval arithmetic extends the standard
arithmetic operations to intervals. For instance,

la,b] + [¢,d] = [a+ ¢, b+ d],
[a,b] — [¢,d] = [a—d,b— ], and
[a, b][c,d] = [min{ac, ad, be, bd}, max{ac, ad, be, bd}].

These interval operations can be extended to the evaluation of functions, and we use the symbol O to
denote any such extension. In particular, for a polynomial f € Z[z,y] and a region B, Of(B) is an interval
containing the image f(B). The interval (f(B) is often larger than f(B), but significantly easier to compute.

The Cj test is implemented as Cy(B) = TRUE if and only if 0 ¢ Of(B). Since Of(B) is an over-
approximation to f(B), if 0 ¢ Of(B), then 0 € f(B), so the variety V(f) cannot intersect B. The C; test
is slightly more complicated, as C;(B) = TRUE if and only if 0 ¢ C(V f, Vf)(B x B). In this formulation,
each of the factors of B x B is the argument to one Vf. If 0 ¢ O(V f, V f)(B x B), then there cannot be a
pair of points (x1,41), (z2,y2) € B such that (Vf(z1,y1), Vf(x2,92)) = 0, i.e., the gradient vectors cannot
be perpendicular.

We call this family of algorithms symbolic-numeric algorithms for two reasons: The predicates perform
exact computations using the coefficients of f, i.e., not merely treating f as a function. The computations
themselves are performed using arbitrary-precision floating point computations on dyadic points. In other
words, the evaluations are exact, but leverage the speed of floating point calculations.

2.3. Topological details. We collect some key facts from [10, 11] and provide a description of the ambient
isotopy in the Plantinga and Vegter algorithm. These facts are used throughout our correctness proofs.
Given a subdivision of R into boxes, we use the word side to denote one of the four sides of a box in the
subdivision. We define an edge of that subdivision to be a side of a box that is not composed of a union of
sides of smaller neighboring boxes. In particular, if B is a box of the final subdivision, then the edges of B
are either the sides of B or a half-side of B when B’s neighbor in that direction is smaller than B.

Definition 2. Let B be a box of a subdivision and f € Z[z,y]. An excursion of V(f) is a component of
V(f) N B whose two endpoints are on the same edge of the subdivision, see Figure 1(a).

We note that excursions do not appear in the piecewise-linear approximation A(f) as they are deformed
into neighboring boxes.

In [10, 11], the authors use several topological lemmas to show that the predicates Cy and Cy exert control
over the behavior of V(f) within a box.

Lemma 3 ([10, 11]). Suppose that B is a box of the subdivision, and suppose that there are two segments
s1 and s in B such that

(1) the lines formed from extending s1 and sy are perpendicular,
(2) the value of f on both endpoints of s1 is the same, and
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(8) the value of f on both endpoints of sa is the same.
Then, C1(B) = FALSE.

This lemma follows from applying the intermediate value theorem on segments s; and sy to show that
each segment contains a point such that the gradient at that point is perpendicular to the segment. This
lemma leads to several corollaries, three of which we list here:

Corollary 4 ([10, 11]). Suppose that B is a box of a subdivision such that C1(B) = TRUE. In addition, let
¢ be a component of V(f) N B which is an excursion on edge e of B. Then, ¢ is entirely contained within
the semicircle in B whose diameter is e.

Corollary 5 ([10, 11]). Suppose that B is a box of a subdivision. If V(f) intersects two adjacent sides of B
twice on each of these sides, then C1(B) = FALSE.

Corollary 6 ([10, 11]). Suppose that B is a box of a subdivision such that C1(B) = TRUE. There is at most
one component of V(f) N B that extends from the northern to southern edges of B.

Finally, we briefly describe how the ambient isotopy deforms the variety V(f) to A(f) as a two-step
procedure. The first step of the ambient isotopy is to remove all excursions by deforming space so that the
excursions are moved into neighboring boxes. Briefly, we let )7( f) be the result of applying the first step of
the ambient isotopy to V(f). For every box B of the subdivision, V(f)NB and A(f)NB are ambient isotopic
within B. In particular, this means that they have the same number of components within B. The second
step of the ambient isotopy simultaneously deforms lN)( f)N B to A(f) N B within each box B by sliding the
points on the boundary of B to their appropriate places and straightening the curves within each box B.
By carefully considering these steps, we observe that the ambient isotopies derived from the Plantinga and
Vegter algorithm move points at most one box away as the only points that move between boxes are those
near excursions, but by Corollary 4, these points are never further than one box away.

Definition 7. Let S be a union of bozes from a subdivision and vy : [0,1] = V(f)NS a curve in the variety
of f. The extension of v, without excursions is denoted 7; and is component of V(f) NS containing ;.
The extension of vy with excursions is the curve ¢ which is formed by following ~v¢ forward and backwards
until either (1) the curve becomes a closed loop or (2) the curve reaches the first and last intersections of the
curve with the boundary of S before passing through a box not in S.

The extension can be constructed by iteratively adding excursions and curve components at the ends of
the path until the curve leaves S and passes through other boxes of the subdivision.

Lemma 8. Let S be a union of boxes from a subdivision and vy : [0,1] = V(f) NS a curve in the variety
of f. Suppose that vy deforms to ay C A(f) within S. Let 7y be the extension of this path with excursions.
Let @y be the component of A(f)NS containing oy Either Y5 and @y are topological circles within S or the
endpoints of Y5 and &y are on the same edges of the subdivision.

3. SUBDIVISION STEP

Given f, g € Z[x,y], a first attempt to solve the main question may be to simultaneously run the standard
Plantinga and Vegter algorithm on f and g, but to use a common refinement of the region R. This approach
leads to three different types of potential errors in the approximations, see Figures 1, 2, and 3, respectively:

(1) Missing intersections: intersections of V(f) and V(g) which do not correspond to intersections of
A(f) and A(g).

(2) Extra intersections: intersections of A(f) and .A(g) which do not correspond to intersections of V(f)
and V(g).

(3) Shared edges: some of the edges of the approximations A(f) and A(g) may be shared between the
two approximations.

Our main tool to avoid all three of these errors is a new predicate, called C*. On a square B, if
C{(B) = TRUE, then there do not exist any pair of points (z1,41), (z2,y2) € B such that Vf(z1,y1) and
Vg(z1,z2) are parallel. In the plane, we may implement this test using the cross product, i.e., C{*(B) = TRUE
ifand only if 0 ¢ O(V f xVg)(Bx B), where each of the factors of B x B is an argument to one of the gradients.
As an initial illustration of the utility of this new C}* predicate, we provide the following motivating result:
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FIGURE 2. Approximations from the standard Plantinga and Vegter algorithm which inter-
sect at a point even though the curves do not.

Lemma 9. Let B be a rectangle and s line segment in B. Suppose that f attains the same value twice on s
and g also attains the same value twice on s. Then C{(B) = FALSE.

Proof. Suppose that (z1,y1), (z2,y2) € s such that f(z1,y1) = f(z2,y2). By applying Rolle’s theorem to
ftzr + (1 —t)za, tyr + (1 — t)y2), there is some t5 € (0, 1) such that

d
Ef(txl + (1 =t)wa, tyr + (1 — t)y2) =0.

7tf
This, however, can be rewritten as the following dot product:

Ve + (1 —tp)ra, tyyr + (1 —t5)y2) - (22 — 21,92 — y1) = 0.

In other words, there is some point in B where V f is perpendicular to s. Repeating the argument for g also
gives that there is some point in B where Vg is perpendicular to s. Therefore, the gradients of f and g are
parallel for some pair of points in the box B and C[*(B) = FALSE. O

This leads to the following special case:

Corollary 10. Let B be a rectangle and assume that V(f) and V(g) intersect more than once in B. Then
Cy(B) = FALSE.

We now present the algorithm for the subdivision step of the pairwise curve approximation algorithm.
For simplicity, we focus on the case where the input region R is a square and leave the details for the general
rectangular case to Section 4. Since there are two polynomials f, g € Z[z,y], we write Cg and C-lf for the
standard tests from the Plantinga and Vegter algorithm for the function f. Similarly, we define C§ and CY
for g. In addition, we need the notion of a neighborhood of a box:

Definition 11. Let R = [a,b] X [¢,d] be a square region and S a partition of R into squares. For any square
B € 8, the neighborhood of B in S is denoted by N (B) and consists of B along with all of the other squares
in S that have a positive-length intersection with B, i.e., squares that only meet B at its corners are not in
N (B). More generally, we define N1(B) := N(B) and N;(B) to be the union of all the neighborhoods of
bozes in N;—1(B).

In other words, N;(B) consists of all the boxes which are at most 7 boxes away from B. We write
C{ (NVi(B)) = TRUE to denote that C]* holds in the smallest rectangle containing N;(B).
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FI1GURE 3. The approximations from the standard Plantinga and Vegter algorithm which
intersect tangentially even though the curves do not.
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Algorithm 1 Subdivision step

Input: polynomials f, g € Z[z,y] and a square region R with integral corners
Output: a partition of R for further processing

1: initialize queue @ to contain R

2: while @ is not empty do

3: pop square B from @

4: accept B if any of the following holds:

5: e C/(B) = CY(B) = TRUE

6: e CJ(B) = CY(B) = TRUE

7: e C/(B) = CY(B) = TRUE

8: e C/(B) = CY(B) = C (N2(B)) = TRUE

9: reject B if none of the previous hold:

10: subdivide B into four equal-sized boxes By, ..., By
11: push Bi,..., By into @

12: end while
13: return accepted boxes

5N
¥

Bw ( Br

Vg

I
|

FIGURE 4. The neighborhood of the box B with two crossing components.

Suppose that after this new subdivision step, the balancing and approximation steps of the standard
Plantinga and Vegter algorithm are performed, resulting in approximations A(f) and A(g). We now consider
the crossing properties of these approximations.

3.1. Transversal crossing of approximations. For the approximations A(f) and A(g), we call a crossing
transversal if the approximations cross within the interior of a box. This only happens when one approxi-
mation has an edge from the north side of a box to the south side, while the other approximation extends
from the east side of the box to the west side. We show that every transversal crossing of A(f) and A(g)
corresponds to a unique crossing of the varieties V(f) and V(g) as follows:

Proposition 12. Suppose that B is a box such that C{(B) = CY(B) = C;*(N(B)) = TRUE. If A(f) and
A(g) intersect transversely in B, then V(f) and V(g) intersect exactly once and transversely in N'(B).

Proof. By Corollary 10, the number of intersections of V(f) and V(g) is at most one in N'(B). Moreover, any
such intersection must be transversal, since otherwise the gradients agree at the intersection and C}*(N(B))
would be FALSE.

Without loss of generality, we assume that A(f) extends from the northern to the southern edges of B
and A(g) extends from the eastern to the western edges of B. Moreover, since the Plantinga and Vegter
algorithm implies the existence of two homotopies which do not deform space further than one box away,
there are unique components, which we call crossing components of V(f) N N (B) and V(g) N N'(B) which
cross B from its north side to its south side and from its east side to its west side. Let v; and 4, denote
these two crossing components of V(f) NN (B) and V(g) N N (B). We note that these components are not
required to stay within B as there may be excursions to the neighboring boxes. See Figure 4 for additional
details.
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While there is considerable flexibility in the local shapes of v¢ and ~g, their larger structures are well-
constrained. We restrict our attention to 7 since the behavior of 7, is analogous. The endpoints of ~s
must be on the boundary of N (B) since, otherwise, N'(B) would contain a closed loop. This is not possible
because inside any closed loop, there is an extremal point where V f vanishes, but this point would force
C{ (N(B)) to fail.

Moreover, we let By, Bg, Bg, and By denote the unions of the boxes of N'(B) lying to the north, east,
south, and west of B, respectively. We note that there may be at most two boxes in any cardinal direction
due to the balancing step in the Plantinga and Vegter algorithm. In addition, we show that the endpoints of
s are on the external boundaries of By and Bg, i.e., the boundaries of By and Bg that are also boundaries
of N(B). In particular, suppose that there is no endpoint of v; in the external boundary of By. By
construction, ¢ crosses from the northern edge of B to its southern edge, so it intersects the northern and
southern edges of B at least once. Moreover, since 7y does not have an endpoint on the external boundary
of By, it must cross the northern edge of B a second time. Therefore, 7y must cross at least one of eastern,
southern, or western edges of B an additional time.

First, we show that ~, cannot cross the eastern or western edges of B. Without loss of generality, we
assume that v crosses the eastern edge of B. Since there is no vertex of A(f) placed on the eastern edge
of B, it must be that there are an even number of crossing of the eastern edge of B. Since we have assumed
that there is at least one crossing, there must be at least two crossings. Then Corollary 5 shows that this
configuration would violate le (B) = TRUE.

Therefore, the only remaining possibility is for v¢ to have both of its endpoints in the boundary of Bg.
This, however, is also impossible as it would imply the existence of two crossing components of V(f) from
the north to the south of B. This is also impossible by Corollary 6 as it would violate C{ (B) = TRUE.

Finally, since v extends from the external boundary of By to the external boundary of Bg, it separates
the external boundary of Bg from the external boundary of By,. On the other hand, since 7, extends from
the external boundary of Bg to the external boundary of By, and does not intersect the boundary of A'(B)
except at its endpoints, v, must intersect vy, which implies the desired existence of a crossing in N'(B). O

By investigating the proof of Proposition 12 in more detail, we find that each intersection of A(f) and
A(g) corresponds to an intersection between ~; and v, within N'(B). Therefore, no two crossings of A(f)
and A(g) can correspond to the same intersection of V(f) and V(g) because at least one of v and ~, change

when considering a different crossing. Therefore, there is an injective map between transversal intersections
of A(f) and A(g) and transversal intersections of V(f) and V(g).

3.2. Missing intersections. We begin by noting that excursions are the only reason that the approxi-
mations A(f) and A(g) can miss an intersection of V(f) and V(g). In particular, we have the following
result:

Lemma 13. Suppose that B is a box such that C{ (B) = CY(B) = C}(B) = TRUE. Suppose, in addition,
that there are no excursions either entering or exiting B. If the approzimations A(f) and A(g) do not
intersect in B, including on the boundary of B, then V(f) and V(g) do not intersect in B.

Proof. By the properties of the first step of the Plantinga and Vegter algorithm, see Section 2.3, since there
are no excursions, in each box B, the approximations A(f) N B and A(g) N B are each ambient isotopic
to V(f) N B and V(g) N B within the box B, respectively. We recall, however, that these isotopies are not
necessarily the same. In particular, this implies that the number of components of A(f) and V(f) agree
within B, and, similarly for A(g) and V(g).

Suppose that V(f) and V(g) intersect in B. Let v, be a component of V(f) N B that intersects V(g) N B.
Let a¢ be the corresponding component of A(f) to which ¢ deforms under the ambient isotopy. Let e; and
ez be the edges of the subdivision that contain the endpoints of a¢y. By Lemma 8, v¢ must also begin and
end on these edges. On the other hand, since A(g) does not have vertices on these edges, it follows that on
each edge e;, the value of g is the same at both endpoints of e;. Since there are no excursions, it follows
that V(g) does not intersect this edge as V(g) would need to intersect this edge twice to maintain the sign
properties of the endpoints and this would be an excursion.

Since A(f) and A(g) do not intersect, the signs of g at both endpoints of a;y must be the same. Since
we showed that the sign of ¢ is constant on the edges containing the endpoints of f, the signs of g on both
endpoints of vy must be the same. This implies V(g) must intersect vy an even number of times as each
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intersection changes the sign of the restriction g|,,. Since V(g) and ~; intersect once, they must intersect at
least twice, but this is impossible by Corollary 10. O

Lemma 13 implies that missing intersections must involve at least one excursion. Our plan is to show
that any missing intersection must induce a pair of intersections in the neighborhood N>(B), which is not
possible since C(N2(B)) = TRUE.

Proposition 14. Suppose that B is a box such that C{ (B) = C9(B) = C(N2(B)) = TRUE. Suppose that
A(f) and A(g) do not intersect in N (B), including on the boundary of N(B), then V(f) and V(g) do not

intersect in B.

Proof. Suppose that V(f) and V(g) intersect in B. Let v be the component of V(f) in V(f) N B that
includes this intersection. Let 7 be the extension of v into A (B) including all excursions into Na(B).

Let oy be the component of A(f) NN (B) to which vy is deformed to under the ambient isotopy. We note
that oy is in M(B) since the Plantinga and Vegter algorithm does not deform the curve further than one
box away. Let e; and ez be the edges of the subdivision that contain the endpoints of ay. By Lemma 8, the
endpoints of 7¢ are also on the edges e; and ey. Let p; be the endpoint of 4 on ey and ps be the endpoint
of ¥¢ on es.

Consider the restriction g|;f. The signs of this function at the two endpoints must be opposite because
each intersection between V(g) and 7y changes the sign of g|5,. Since there is one intersection, having the
same sign at both endpoints would require two intersections for the two sign changes, but this is impossible
by Corollary 10 and that C]*(N2(B)) = TRUE.

Now, we prove that the sign of g at p; agrees with its signs at the endpoints of e;. Since A(g) does not
intersect A(f) and A(f) has a vertex on ey, this implies that the signs of g on the endpoints of e; are the
same. Hence, any intersection of V(g) with e; must be an excursion. Suppose, for contradiction, that the
sign of g at p; does not match the sign of g at the endpoints of e;. Then, there are an odd number of
intersections from V(g) N ey on either side of p;. Therefore, there is at least one pair of points of V(g) N ey
on either side of p; which are connected by an excursion.

We show that this excursion implies that V(f) and V(g) intersect once more in N3(B), but such an
intersection is not possible since C7(N3(B)) = TRUE and Corollary 10. See Figure 5 for reference in this
argument. Suppose first that this excursion is internal to A (B). By Corollary 9, since V(g) has an excursion
on e, V(f) does not have an excursion on this edge. By Corollary 4, this excursion is contained within a
semicircle along the edge e;. The curve ¥¢, however, cannot stay within this semicircle. More precisely, let
Y4 be an excursion of g in N'(B) with endpoints on either side of p; on e;. Then, 77 is within the region
bounded by 7, and e, but it must leave this region to reach the intersection in B and it can only intersect
e1 once. Therefore, 7y and 7, must intersect in a box other than B.

The argument in the case where the excursion is external to NV (B) is similar. In this case, 7, is the
excursion of g with endpoints on either side of p1, but is outside N (B). Then, 75 must pass through a box
in NV3(B) \ N(B), so 75 cannot remain within the region bounded by the excursion 7, and eq, but it must
leave this region and it can only intersect e; once. Therefore, 74 and 7, must intersect in a box other than
B.

Now, we have shown that the sign of g at p; agrees with the sign of g at the endpoints of e;. Similarly,
the sign of ps agrees with the sign of g at the endpoints of ea. Moreover, since the signs of g at p; and po
differ, the sign of g at the endpoints of e; differ from the sign of g at the endpoints of e5. We also observe
that removing edges e; and ey from the boundary ON(B) results in two components. Since the signs of g
are different at the endpoints of the two components, there must be an odd number of vertices of A(g) on
each of these two components. However, since A(g) forms a perfect matching on its vertices in N (B), one
of the edges of A(g) must intersect a ¢, but this is not possible. O

Therefore, by Proposition 12, every transversal intersection of the approximations A(f) and A(g) corre-
sponds to a unique intersection of the varieties V(f) and V(g). On the other hand, Proposition 14 implies
that every intersection of the varieties V(f) and V(g) corresponds to an intersection of the approximations
A(f) and A(g). However, this intersection does not need to be transversal, see Figure 6 which is the one
remaining case.
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FIGURE 5. Accompanying diagram for the proof of Proposition 14. It illustrates all the
impossible features whose nonexistence forces a crossing of the approximations.

N
HAN va

Dd A
1

A4

FIGURE 6. Approximations from the standard Plantinga algorithm which share a segment
while the curves intersect in two places.

3.3. Shared edges in approximations. For the approximations A(f) and A(g), we call an intersection
nontransversal if the approximations meet on the boundary of a box or the approximations coincide along
shared segments.

Definition 15. A contiguous sequence of bozes with shared segments of A(f) and A(g) is called a snake, see
Figure 7. The boxes where the approximations separate are called the heads of the snake. A neighborhood
N(S) of a snake is the union of all the neighborhoods of boxes in the snake along with the neighborhoods of
the heads of the snake. The neighborhood N;(S) is defined similarly.

1 ) 1
P1 e — - D2

,,,,,,,,,,

FI1GURE 7. Example of a snake where the approximations share segments.
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Proposition 16. Suppose that S is a snake and for every box B € S, C;*(N(B)) holds. There is at most
one crossing in N(S) corresponding to the snake.

Proof. Let ay and ag be the two components of the approximation in S which share vertices or edges. Let
v¢ and 7,4 be the components of V(f) NN (S) and V(g) N N(S), respectively, that ay and «, deform to,
respectively, under the ambient isotopies. Let ¥, and 7, be the extensions of v; and g, respectively, in
N3 (S), but without including excursions. We consider 7 ¢ as a path and we choose an orientation to this path
so that f is positive in a tubular neighborhood of the left of the path and negative in a tubular neighborhood
to the right of the path. Since gradients point in the direction of greatest increase, V f(7,) points to the left
of %/

Suppose that 7, and 7, intersect multiple times in '(S). We show that this violates C}* (N (B)) for some
B € S. See Figure 8 for reference in this argument. Let r1 and rg be two intersection points of 7, and 7, in
N(S). In addition, we assume that r; occurs before 79 along the path 7. We restrict our attention to the
portion of 7, between r; and r2. We choose the orientation on 7, so that rq comes before r2 along this path.
As above, the gradient Vg(wq) is perpendicular to vq, but, since the orientation of 7, is fixed, it points to
one side of 7 79, i.e., the gradient points to either the right or the left of the tangent vector.

Since 7 d1v1des N(S) into two pieces, every time 74 crosses ¥y, it crosses from the negative side to the
positive side or from the positive side to the negative side. Moreover, since 7, stays within N(S), these
types of crossings alternate. Since 7, and %, intersect at least twice, there is at least one of each type of
crossing.

Since the positive side of f is to the left of 7}'7 a crossing from the positive side to the negative side of 7,
corresponds to a clockwise turn from 7} to i’g. Similarly, a crossing from the negative side to the positive
side of 7, corresponds to a counter-clockwise turn from 7/7‘ to 7;. By redefining ro, if necessary, we may
assume that Vf(r1) x Vg(r1) and Vf(r2) x Vg(rs) correspond to two different turn directions, so they are
different signs.

Finally, we apply the function Vf x Vg to the path 7,. In other words, we look at Vf(¥7,) x Vg(7,). We
know that the value of this continuous function has d1fferent signs at r; and ry. Hence, by the intermediate
value theorem, there is some point on this curve where the gradients of f and g are parallel, but this is not
possible as it would contradict CJ (N (B)) = TRUE for all B € S. O

| | s |
I I \V4 A I
1 \ +R/ Yo RN ‘

| / = ‘
'LJ_%»//’Y IN] e | P2
: T L ‘

FIGURE 8. Accompanying diagram for the proof of Proposition 16. It illustrates how at
two consecutive intersections, the turn directions of the gradients differ.

We have shown that every snake corresponds to at most one intersection of V(f) and V(g). It remains
to discuss how to decide if a snake corresponds to an intersection. We begin by defining the orientation of
points with respect to the snake. Let S be a snake and let B be a head of the snake. Suppose that p and
q are two points on the external boundary of N (B), i.e., boundaries of N'(B) that are also boundaries of
N(S). The external boundary of N'(B) is, therefore, a piecewise-linear path around N (B). We say that ¢ is
clockwise from p with respect to the snake if walking around ON(B) \ S in a clockwise direction starting at
the snake reaches p before ¢. In this case, p is counterclockwise from g with respect to the snake, see Figures
7 and 8.

Lemma 17. Let S be a snake and let ay and ag be the two components of A(f) NN (S) and A(g) NN(S),
respectively, that include the shared edges of the snake. Let By and Bg be the two heads of S. Let p1 and qi
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be the ends of ay and oy, respectively, in By, and define pa and qo similarly. The snake corresponds to an
intersection if and only if the orientations from p1 to q1 and ps to qo are the same.

Proof. Let ¢ and v, be the two components of V(f) and V(g), respectively, in N'(S) to which oy and ay
deform. Let 7, and 7, be the extensions without excursions of vy and ~,, respectively. Similarly, let 7y and
v be the extens1ons wzth excursions of 7y and -4, respectively. By the definition of the heads of a snake, the
paths 77 and 7, pass into different neighbors of By, since, otherwise, the snake would be longer. Moreover,
the endpoints of ¥ and 7 must be in the same neighbors of By, even though the endpoints might be on
different sides of those boxes. This is because differences between the endpoints of 7, and 7, are due to
excursions which, with Corollaries 5 and 6, prevent 7; from re-entering B. Corresponding statements hold
for g as well as for Bs.

Thus, the endpoints of ay and a4 have the same clockwise or counterclockwise relationship as the endpoints
of 7y and 7, as well as the endpoints of 7, and 7. Therefore, we study the relationship between the endpoints
of 7, and 7. Topologically, the boundary ON(S) is a circle and 7 7 and 7, form cords of this circle. The paths
7 and 7, intersect if and only if their endpoints interweave along the boundary of the circle. Interweaving
is equivalent to having the same clockwise or counterclockwise order around the circle. O

4. SIMULTANEOUS APPROXIMATION

We now prove Theorem 1 and provide the main algorithm of the paper. Suppose that f,g € Z|x,y],
R = [a,b] x [¢,d] C R? a rectangle such that a, b, c,d € Z. Suppose also that V(f) and V(g) are nonsingular
within R, do not have a common intersection on the boundary of R, and intersect transversely within
R. Through a rescaling, we reduce to the case where R is a square. Second, we use the techniques for
unbounded curves from [1] for the boundary boxes as long as in each boundary box, either C’g (B) = TRUE
or C§(B) = TRUE. Therefore, we focus on the topological correctness.

By Proposition 14, every intersection between V(f) and V(g) corresponds to either a transversal crossing
of A(f) and A(g) or a snake. By investigating the proofs of Propositions 12 and 16, we see that the these
two features correspond to different types of crossings and cannot identify the same crossing twice. Thus,
by Lemma 17, we can identify exactly when a crossing occurs. This gives a bijection between crossings in
the approximation and crossings in the varieties. Once the intersections are identified, the remaining isotopy
steps, such as removing excursions, of the Plantinga and Vegter algorithm can be applied to both V(f) and
V(g) simultaneously, by Lemma 13, giving topologically correct approximations.

Algorithm 2 Simultaneous approximation algorithm

Input: polynomials f, g € Z[z,y| and a square region R with integral corners
Output: approximations A(f) and A(g) such that A(f) N .A(g) approximates V(f) N V(g).
: Subdivide R using Algorithm 1.
Further subdivide boxes until the side lengths of neighboring boxes differ by at most a factor of two.
Compute the Plantinga and Vegter curve approximation.
For any snakes, apply Lemma 17.
if there is no crossing then
slightly separate the edges of the snake so that the common edges do not overlap.
else
slightly separate the ends of the snake so that the approximations don’t overlap at the ends of the
snake, then add an explicit crossing in the middle of the snake.
9: end if
10: return the approximations

We note that a small Hausdorff distance can also be achieved by making sure that the boxes containing
the approximations are sufficiently small and that any snakes are also small. We end with corrected examples
of images that appeared earlier in the text, see Figure 9.
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FIGURE 9. Topologically correct versions of (a) Figure 2 and (b) Figure 3 using our algorithm.
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