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Abstract
During International Ocean Discovery Program Expedition 397, we recovered a total of 6176.7 m 
of core (104.2% recovery) at four sites (U1586, U1587, U1385, and U1588) from the Promontório 
dos Príncipes de Avis, a plateau located on the Portuguese continental slope that is elevated above 
the Tagus Abyssal Plain and isolated from the influence of turbidites. The drill sites are arranged 
along a bathymetric transect (4692, 3479, 2591, and 1339 meters below sea level [mbsl], respec-
tively) to intersect each of the major subsurface water masses of the eastern North Atlantic. Mul-
tiple holes were drilled at each site to ensure complete spliced composite sections, which will be 
further refined postcruise by a campaign of X-ray fluorescence core scanning.

At Site U1586 (4692 mbsl), the deepest and farthest from shore, a 350 m sequence was recovered 
in four holes that extend as far back as the middle Miocene (14 Ma), which is nearly twice as old as 
initially predicted from seismic stratigraphy. Sedimentation rates are lower (averaging 5 cm/ky in 
the Quaternary) at Site U1586 than other Expedition 397 sites, and a few slumped intervals were 
encountered in the stratigraphic sequence. Despite these limitations, Site U1586 anchors the deep 
end-member of the bathymetric transect and provides an important reference section to study 
deepwater circulation, ventilation and carbon storage in the deep eastern North Atlantic.

At Site U1587 (3479 mbsl), the second deepest site along the depth transect, we recovered a 567 m 
sequence of late Miocene to Holocene sediments that accumulated at rates between 6.5 and 11 
cm/ky. The high sedimentation rates and long continuous record at this site will permit climate 
reconstruction at high temporal resolution (e.g., millennial) for the past 7.8 My. The Messinian 
Stage (7.25–5.33 Ma) was recovered, which provides a valuable opportunity to study the Messin-
ian Salinity Crisis in an open marine setting adjacent to the Mediterranean.

Site U1385 (Shackleton site) was a reoccupation of a position previously drilled during Integrated 
Ocean Drilling Program Expedition 339. Expedition 339 Site U1385 has yielded a remarkable 
record of millennial-scale climate change for the past 1.45 My (Marine Isotope Stage 47). During 
Expedition 397, we deepened the site from 156 to 400 meters below seafloor, extending the record 
to near the base of the Pliocene (5.3 Ma). Sedimentation rates remained high, averaging between 9 
and 11 cm/ky throughout the sequence. The newly recovered cores at Expedition 397 Site U1385 
will permit the study of millennial climate variability through the entire Quaternary and Pliocene, 
prior to the intensification of Northern Hemisphere glaciation.

Site U1588 is the shallowest, closest to shore, and youngest site drilled during Expedition 397 and 
is also the one with the highest sedimentation rate (20 cm/ky). The base of the 412.5 m sequence 
is 2.2 Ma, providing an expanded Pleistocene sequence of sediment deposited under the influence 
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of the lower core of the Mediterranean Outflow Water (MOW). Together with other Expedition 
339 sites, Site U1588 will be important for determining how the depth and intensity of the MOW 
has varied on orbital and millennial timescales. In addition, it also provides a marine reference 
section for studying Quaternary climate variability at very high temporal resolution (millennial to 
submillennial).

A highlight of the expedition is that sediment at all sites shows very strong cyclicity in bulk sedi-
ment properties (color, magnetic susceptibility, and natural gamma radiation). Particularly 
remarkable are the precession cycles of the Pliocene that can be correlated peak-for-peak among 
sites. These cyclic variations will be used to derive an orbitally tuned timescale for Expedition 397 
sites and correlate them into classic Mediterranean cyclostratigraphy.

The cores recovered during Expedition 397 will form the basis of collaborative postcruise research 
to produce benchmark paleoclimate records for the late Miocene through Quaternary using the 
widest range of proxy measurements. It will take many years to complete these analyses, but the 
records will lead to major advances in our understanding of millennial and orbital climate changes 
and their underlying causes and evolving contextuality.

Outreach during Expedition 397 was highly productive, reaching a record number of students and 
the general public across the world through several diverse platforms, including live ship-to-shore 
events, webinars, social media, videos, radio pieces, blog posts, and in-person activities.

Plain language summary
From 11 October to 11 December 2022, International Ocean Discovery Program Expedition 397 
took place off the coast of Portugal southwest of Lisbon. The main objective was to recover the 
exceptional sedimentary archive preserved beneath the seafloor on the Iberian margin to study 
past climate change at high temporal resolution. During the expedition, which carried 26 interna-
tional scientists, four sites were drilled, recovering 6.2 km of marine sediments that accumulated 
rapidly, thereby providing a high-fidelity record of past climate change on timescales of hundreds 
to thousands of years and extending back millions of years ago. Climate signals contained in these 
marine sediment cores will be correlated precisely to polar ice cores from both hemispheres and 
with European pollen records, providing a rare opportunity to link oceanic, atmospheric, and ter-
restrial climate and environmental changes. The four drill sites are located at different water 
depths (1339, 2591, 3479, and 4692 m below sea level), permitting scientists to study how deep-
ocean circulation and chemistry changed in the past, including its role in deep-sea carbon storage 
and atmospheric CO2 changes. The sediment cores recovered during Expedition 397 will provide 
benchmark records of North Atlantic climate change at high temporal resolution from the late 
Miocene (about 8 million years ago) to present. This period includes the last 3 million years when 
changes in the Earth’s orbit resulted in the growth and decay of large ice sheets in the Northern 
Hemisphere and a warmer world before this time when atmospheric CO2 was similar to today. All 
cores recovered show strong changes in physical properties (such as color) that represent a 
response to known cyclic changes in Earth’s orbit, which will aid in accurately dating the sediment. 
Many years of research will be needed to extract the detailed climatic signals from the kilometers 
of core recovered during Expedition 397, but the records to be produced will be vital for testing 
numerical climate models and understanding how the climate system evolved in the past and how 
it might change in the future.

1. Introduction
The southwestern Iberian margin is a well-known source of rapidly accumulating sediment that 
contains high-fidelity records of millennial climate variability (MCV) for the late Pleistocene (Fig-
ures F1, F2), as expressed in proxy records of oxygen isotopes and sea-surface temperature 
(Shackleton et al., 2000, 2004; Bard et al., 2000; Pailler and Bard, 2002; Martrat et al., 2007). Previ-
ous studies have demonstrated that surface and deepwater climate signals from the region can be 
correlated precisely to the polar ice cores in both hemispheres. Shackleton et al. (2000) demon-
strated that surface oxygen isotope and sea-surface temperature records mirror those of Green-
https://doi.org/10.14379/iodp.proc.397.101.2024 publications.iodp.org · 2
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land ice core records, whereas the deepwater signal follows the Antarctic ice core climate signal, 
thereby preserving a history of both polar ice cores in a single sedimentary archive (Figure F3).
The relative timing of surface (Greenland) and deepwater (Antarctic) signals in the same core pro-
vides a means to assess interhemispheric phasing of climate change (e.g., bipolar seesaw), which 
has been independently verified by methane synchronization of ice cores for the last glacial period 
(Blunier and Brook, 2001; WAIS Divide Project Members, 2015). Moreover, the narrow continen-
tal shelf off Portugal results in the rapid delivery of terrestrial material to the deep-sea environ-
ment, thereby permitting correlation of marine, ice core, and European terrestrial records 
(Margari et al., 2010, 2014; Naughton et al., 2019; Oliveira et al., 2016, 2017, 2018, 2020; Sánchez 
Goñi et al., 1999, 2000; Shackleton et al., 2003; Tzedakis et al., 2004, 2009).

The continuity, high sedimentation rates, and fidelity of the climate signals preserved in Iberian 
margin sediments make it a prime target for ocean drilling. A proof-of-concept, Site U1385 was 
drilled during Integrated Ocean Drilling Program Expedition 339 (Mediterranean Outflow) in late 
2011 at a water depth of 2582 meters below sea level (mbsl) (Hodell et al., 2013b; Expedition 339 
Scientists, 2013a). Five holes were cored using the advanced piston corer (APC) system to a maxi-
mum depth of ~155.9 meters below seafloor (mbsf ). Immediately after the expedition, cores from 
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Figure F1. Bathymetry of the Promontório dos Príncipes de Avis (PPA) showing the locations of the four sites (U1586, 
U1587, U1385, and U1588) drilled during Expedition 397, Marion Dufrense (MD) piston cores, and IODP Site U1391. Site 
U1385 was occupied previously during Expedition 339, as was Site U1391. The map is modified from Hodell et al. (2015) and 
was made with GeoMapApp (http://www.geomapapp.org) using the bathymetry of Zitellini et al. (2009).

U1586

U1587

U1385

U1588 U1391

38°24'N 38°12' 38°0' 37°48' 37°36' 37°24' 37°12'

0

-2000

-4000

0

-2000

-4000

Figure F2. Depth distribution of Expedition 397 drill sites on the Promontório dos Príncipes de Avis (PPA) looking onshore 
to the east. The sites are located on a bathymetric transect that intersects each of the major subsurface water masses of the 
North Atlantic. Depths range from 1339 mbsl (Site U1588) to 4692 mbsl (Site U1586). Expedition 339 Site U1391 is also 
shown. (Figure made by Helder Pereira using Mirone and iVew4D software.)
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all holes were analyzed by core scanning X-ray fluorescence (XRF) at 1 cm spatial resolution 
(Hodell et al., 2015). Ca/Ti data were used to accurately correlate hole-to-hole and construct a 
composite spliced section containing no gaps or disturbed intervals to 166.5 meters composite 
depth (mcd). A high-resolution oxygen isotope record confirms that Site U1385 contains a contin-
uous record of MCV from the Holocene to 1.45 Ma (Marine Isotope Stage [MIS] 47) (Hodell et al., 
2023) with sedimentation rates of ~10–20 cm/ky (Figure F4). Strong precession cycles in color and 
elemental XRF signals from Site U1385 were used to develop an orbitally tuned reference time-
scale that is independent of LR04 (Hodell et al., 2015). Although results are still emerging, Site 
U1385 demonstrates the great potential of the western Iberian margin to yield long, undisturbed 
records of millennial-scale climate change and land-sea comparisons.

Building on the success of Site U1385 and given the seminal importance of the Iberian margin for 
paleoclimatology and marine-ice-land correlations, International Ocean Discovery Program 
(IODP) Expedition 397 was designed to accomplish the following:

• Extend the record beyond the base of Site U1385 (1.45 Ma) and recover the high-fidelity 
Iberian margin sedimentary archive for study of climate variability from the Quaternary 
through the late Miocene and

• Recover a bathymetric transect of sites from 1339 to 4692 mbsl that spans the range of the 
major subsurface water masses of the eastern North Atlantic (Figure F5).

The depth transect is designed to complement those sites drilled during Expedition 339 where 
sediment was recovered at intermediate water depths (560–1073 mbsl) under the influence of 
Mediterranean Outflow Water (MOW). Together, the Expedition 339 and 397 sites will constitute 
a complete depth transect from 560 to 4692 mbsl with which to study past variability of all the 
major subsurface water masses of the eastern North Atlantic.

Figure F3. Correlation of δ18O record of Greenland ice core (GRIP; red) to δ18O of Globigerina bulloides (black) in Core MD95-
2042 (Shackleton et al., 2000). Selected Dansgaard-Oeschger events are labeled in GRIP record and Antarctic isotope max-
ima (A1–A5) are labeled in Vostok. Timescale is SFCP2004 published by Shackleton et al. (2004). V-SMOW = Vienna standard 
mean ocean water, V-PDB = Vienna Peedee belemnite. From Hodell et al. (2013b).
https://doi.org/10.14379/iodp.proc.397.101.2024 publications.iodp.org · 4
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2. Preliminary scientific assessment
Expedition 397 accomplished almost all of its primary objectives and was a great success overall. 
We recovered 6176.7 m of sediment (104.2% recovery) at four primary sites (U1586, U1587, 
U1385, and U1588) (Table T1). Multiple holes were drilled at each site, and complete composite 
sections were constructed. Sites U1586 and U1385 were drilled to the planned depths of 350 and 
400 mbsf, respectively (Figure F6).We recovered much older sediment (14 Ma) than anticipated at 

Figure F4. Oxygen isotope record of (A) Globigerina bulloides and (B) mixed benthic foraminifer species mostly consisting of 
Cibicidoides wuellerstorfi, spanning the last 1.45 My (to MIS 47) at Expedition 339 Site U1385. Marine isotope stages are 
numbered: interglacial in (A) and glacial in (B). Figure from Hodell et al. (2023). VPDB = Vienna Peedee belemnite.
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Figure F5. Salinity and silicate profiles on WOCE Line A03 (36°N) showing proposed site locations on the Iberian margin 
(Schlitzer, 2000). Tongue of high salinity water between 600 and 1200 m is MOW. High Si (>35 μmol/kg) below 3000 m 
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Site U1586 (Figure F7), which extended the expedition objectives into the middle Miocene (Figure 
F8). At Site U1587, we sought and were granted permission from the Environmental Protection 
and Safety Panel (EPSP) to deepen the hole from 400 to 450 mbsf to ensure complete recovery of 
the Messinian Stage (7.25–5.33 Ma). Site U1588 could only be drilled to 412.5 mbsf out of the 
planned 500 mbsf because severe gas expansion of the sediment forced us to alter our strategy and 
drill half advances (4.8 m) with the extended core barrel (XCB) system, which significantly slowed 
the recovery rate.

The decision to use a polycrystalline diamond compact (PDC) bit and cutting shoe with the XCB 
system proved pivotal to the expedition’s success, resulting in very high recovery and good quality 
XCB cores (Figure F9). The exceptional percent recovery (104%) was aided by half advances of the 

Table T1. Hole summary, Expedition 397.  Download table in CSV format.

Hole Latitude Longitude

Water 
depth

(m)

Total 
penetration

(m)

Cored 
interval

(m)

Recovered
length

(m)
Recovery

(%)

Drilled
interval

(m)

Total 
cores

(N)

APC 
cores

(N)

HLAPC 
cores

(N)

XCB 
cores

(N)

XCB 
half-cores

(N)

U1586A 37°37.3108′N 10°42.5987′W 4691.1 350.0 350.0 339.6 97 42 19 7 16 0
U1586B 37°37.3478′N 10°42.5506′W 4690.5 350.0 350.0 335.1 96 40 16 0 24 0
U1586C 37°37.2911′N 10°42.6216′W 4692.4 349.1 349.1 334.4 96 38 13 0 25 0
U1586D 37°37.2835′N 10°42.6289′W 4693.6 350.0 350.0 337.8 97 38 12 0 26 0

Site U1586 totals: 1399.1 1399.1 1346.9 96 158 60 7 91 0

U1587A 37°34.8602′N 10°21.5400′W 3480.5 500.0 500.0 478.1 96 53 15 0 38 0
U1587B 37°34.8650′N 10°21.5314′W 3478.0 547.8 547.8 534.3 98 59 11 0 48 0
U1587C 37°34.8750′N 10°21.5205′W 3479.0 567.9 567.9 553.3 97 61 12 0 49 0

Site U1587 totals: 1615.7 1615.7 1565.7 97 173 38 0 135 0

U1385F 37°33.9999′N 10°7.6587′W 2589.1 400.0 303.1 290.8 96 96.9 32 0 0 32 0
U1385G 37°34.0108′N 10°7.6656′W 2592.4 397.3 397.3 396.3 100 42 12 0 30 0
U1385H 37°34.0223′N 10°7.6641′W 2592.4 399.2 284.6 285.0 100 114.6 31 0 0 31 0
U1385I 37°34.0205′N 10°7.6505′W 2589.1 152.5 152.5 145.4 95 16 11 0 5 0
U1385J 37°34.0103′N 10°7.6513′W 2593.1 400.0 400.0 397.8 99 43 11 0 32 0

Site U1385 totals: 1749.0 1537.5 1515.2 99 211.5 164 34 130 0

U1588A 37°57.6044′N 9°30.9961′W 1339.3 353.0 353.0 378.4 107 49 17 0 9 23
U1588B 37°57.6149′N 9°30.9956′W 1339.3 350.0 350.0 456.1 130 64 9 0 0 55
U1588C 37°57.6160′N 9°30.9814′W 1339.3 353.6 261.6 345.0 132 92.0 53 0 0 0 53
U1588D 37°57 60.23′N 9°30.9820′W 1338.5 412.5 412.5 569.4 138 76 11 0 0 65

Site U1588 totals: 1469.1 1377.1 1748.9 127 92.0 242 37 0 9 196
Expedition 397 totals: 6232.9 5929.4 6176.7 104 303.5 737 169 7 365 196

Hole 

Date 
started
(2022)

Start 
time 

UTC (h)

Date 
finished
(2022)

End 
time 

UTC (h)

Time on 
hole
(h)

Time on 
hole
(d)

U1586A 16 Oct 1730 20 Oct 0830 87.12 3.63
U1586B 21 Oct 0900 25 Oct 1220 99.36 4.14
U1586C 25 Oct 1220 28 Oct 0345 63.36 2.64
U1586D 28 Oct 0345 1 Nov 0710 99.36 4.14

U1587A 1 Nov 1130 5 Nov 0250 87.36 3.64
U1587B 5 Nov 0250 10 Nov 1530 132.72 5.53
U1587C 10 Nov 1530 15 Nov 1000 114.48 4.77

U1385F 16 Nov 0120 19 Nov 2235 93.36 3.89
U1385G 19 Nov 2235 22 Nov 0200 51.36 2.14
U1385H 22 Nov 0200 23 Nov 2315 45.36 1.89
U1385I 26 Nov 0800 27 Nov 0215 18.24 0.76
U1385J 27 Nov 0215 30 Nov 0140 71.52 2.98

U1588A 30 Nov 0600 2 Dec 0145 43.68 1.82
U1588B 2 Dec 0145 3 Dec 2145 43.92 1.83
U1588C 3 Dec 2145 5 Dec 1550 42.00 1.75
U1588D 5 Dec 1550 8 Dec 0038 56.88 2.37
https://doi.org/10.14379/iodp.proc.397.101.2024 publications.iodp.org · 6
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XCB system at Site U1588 that recovered a greater length of core than that drilled because of gas 
expansion.

A primary objective of Expedition 397 was to recover marine sequences that could be compared 
with existing and future polar ice core records. If the Beyond EPICA-Oldest Ice (BE-OI) Project 
and/or Center for Oldest Ice Exploration (COLDEX) are successful, the Antarctic ice core record 
will span the last 1.5 My (Fischer et al., 2013). Figure F10 shows the natural gamma radiation 
(NGR) records of all Expedition 397 sites along the bathymetric transect for the last ~1.5 My. With 
few exceptions, such as the slump at Site U1586, the records correlate peak-for-peak among the 
sites despite a nearly four-fold difference in sedimentation rates. These sites will serve as marine 
reference sections of Pleistocene climate variability (Alley, 2003) and are important for linking to 
the polar ice cores (Wolff et al., 2022) and European terrestrial sequences.

Sediments at all sites show strong cyclic variations in physical properties (color, magnetic suscep-
tibility (MS), and NGR) that are related to changes in Earth’s orbital cycles. Particularly notable are 

Figure F6. Core recovery for each hole drilled during Expedition 397. Holes U1385F, U1385H, and U1588C were washed 
down without recovery before XCB coring. HAXCB = half advance extended core barrel. Gray bar alongside Holes U1586D 
and U1587C = portion of the hole logged using the triple combo tool string.
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the precession cycles of the Pliocene that can be correlated peak-for-peak among sites (Figure 
F11) and the exceptional late Miocene cycles at Site U1587. These cyclic variations will be invalu-
able for deriving orbitally tuned timescales for Expedition 397 sites and correlating them with 
classic Mediterranean cyclostratigraphy. The cycles are also evident in the downhole logging 
NGR data of Site U1587, which will be important for core-log integration.

Although Expedition 397 was overall highly successful, no expedition is without its compromises, 
and Expedition 397 is no exception. We had planned to produce two complete stratigraphic splices 
at each site for sampling purposes, but this was impossible because of time lost to waiting on 
weather, which totaled 8 days (192 h or 14.5% of operating days). Logging was successful at only 
two of the four sites because of problems with the tools becoming lodged in the drill pipe. Some 
slumps were encountered at Site U1586 that disturbed the continuity of the stratigraphic section. 
Site U1588 could only be drilled to 412.5 mbsf out of the planned 500 mbsf because of severe gas 
expansion of the sediment. The basal age of the cored section at Site U1588 is considerably 
younger (2.2 Ma) than the original objective of reaching the Pliocene. These shortcomings do not 
detract from the invaluable >6 km sediment archive recovered from the Iberian margin that will 
provide raw material (mud) for paleoclimate studies for generations to come.

Figure F8. D–G. NGR data for each Expedition 397 site relative to (C) the global carbon and oxygen stable isotope curves 
(Westerhold et al., 2020) showing (A, B) the depth transect of sites and relative age of the sequences. VPDB = Vienna Peedee 
belemnite, cps = counts per second.
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Figure F9. Comparison of XCB and APC cores, Site U1586. Archive halves are shown. 397-U1586A-19H-5, 0–150 cm, spans 
173.88–175.38 m CSF-A. 397-U1586B-21X-3, 28–150 cm, spans 173.88–175.1 m CSF-A. 397-U1586B-21X-4, 0–28 cm, spans 
175.1–175.38 m CSF-A. 397-U1586A-19H-5 (APC) exhibits slight up-arching between 0 and 75 cm and basal flow-in 
between 75 and 150 cm. 397-U1586B-21X-3 and 21X-4 (XCB) exhibit slight biscuiting.
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Figure F10. NGR data for each Expedition 397 site showing the approximate location of selected marine oxygen isotope stages. cps = counts per second. NGR data 
have been cleaned for outliers and spurious data at section ends.
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3. Background

3.1. Geological setting
The Expedition 397 drill sites are located on a plateau, Promontório dos Príncipes de Avis (PPA), 
on the southwestern Iberian margin (Figure F1). The PPA protrudes from the continental shelf 
and slope and extends seaward toward the Tagus Abyssal Plain (Vanney and Mougenot, 1981). 
The PPA is approximately 100 km long by 50 km wide with a bathymetric relief of 4 km above the 
abyssal plain (Figure F2). It is topographically isolated from the turbidites that are funneled to the 
Tagus Abyssal Plain via the bordering submarine canyons to the north and south.

Sites were selected for Expedition 397 by examining available seismic data. Geophysical coverage 
of the PPA is good with a dense network of multichannel seismic lines. Furthermore, a dedicated 
site survey cruise aboard the RSS James Cook, conducted in 2013, provided high-resolution seis-
mic lines at each of the proposed site locations (Hodell et al., 2014). Piston cores, recovered during 
the same cruise, supplied evidence for hemipelagic sediments consisting of nannofossil muds and 
clays with varying proportions of biogenic carbonate and terrigenous components on the entire 
PPA (Abrantes et al., 1998; Baas et al., 1997; Expedition 339 Scientists, 2013a). High sedimentation 
rates, ranging 10–20 cm/ky (Figure F7), occur during both glacial and interglacial periods and are 
attributed to the copious pelagic sediment supply and lateral transport of sediment by bottom and 
contour currents. Enhanced lateral transport and deposition of finer sediments (i.e., clay and silt) 
on the Iberian margin are affected by an enhanced nepheloid layer associated with the MOW 
(Ambar et al., 2002; Abrantes, 2000; Magill et al., 2018). Detrital input from the Tagus and Sado 
Rivers are mainly channeled by turbidity currents through submarine canyon systems to the abys-
sal plains (Lebreiro et al., 1997, 2009) and have relatively little effect on open slope deposition.

3.2. Surface hydrography
The western Iberian margin is at the northern limit of the Canary Current/Northwest African 
eastern boundary upwelling system (Figure F12). Coastal upwelling driven by northerly winds 
occurs predominantly from late May/early June to late September/early October (Fiúza et al., 
1998; Haynes et al., 1993). As a result, the current flow direction is equatorward with the offshore 
presence of the perennial Portugal Current (PC), the eastern boundary recirculation from the 
North Atlantic Drift, and the nearshore seasonal Portugal Coastal Current (PCC). The PC is cen-
tered at 10°W and slowly advects surface and subsurface waters equatorward (Pérez et al., 2001), 
whereas the PCC is a jet-like slope current transporting the upwelled waters southward (Fiúza, 
1984).

Figure F12. Gulf Stream and its relation to the Azores Current and Azores Front system and Portugal and Canary Currents. 
Also shown are the MOW, Iberian Winter Front, and the river plumes' flow direction (small arrows). Lower inset: more detail 
of the changing surface circulation on the western Iberian margin in summer (Portugal Coastal Current; blue arrows) and 
winter (Iberian Poleward Current; red arrows).
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Eastern North Atlantic Central Water (ENACW) is the PC’s subsurface component and forms by 
winter cooling in the eastern North Atlantic (Brambilla et al., 2008). The second major perennial 
current influencing the margin, especially the southwestern regions, is the Azores Current (AC). 
The AC, whose northern boundary is associated with the subtropical front, diverges from the Gulf 
Stream and flows as a jet with large meanders between 35 and 37°N across the North Atlantic. 
Although most of the AC recirculates southward, its eastern branch flows into the Gulf of Cádiz 
(Peliz et al., 2005). During the winter months, a northward bending of this subtropical front 
deflects it toward the SW Portuguese margin and feeds the Iberian Poleward Current (IPC) (Peliz 
et al., 2005). As the PC, the IPC’s subsurface or undercurrent component also transports ENACW 
of subtropical origin. This subtropical ENACW flows poleward year round and is formed by 
strong evaporation and winter cooling along the Azores front (Ríos et al., 1992); it is poorly venti-
lated and warmer and saltier than the PC’s subpolar counterpart.

The oceanographic conditions along the western Iberian Peninsula have important implications 
for primary production, biodiversity and biogeochemical cycles in the region. Moreover, the 
upwelling fronts are not simple continuous features, but rather punctuated by mesoscale struc-
tures (filaments) that can extend 200 km offshore, generating a transition zone between the oligo-
trophic offshore water and the highly productive coastal region, where particle accumulation leads 
to biogeochemical and productivity hotspots (Woodson and Litvin, 2015). This upwelling process 
leaves a clear imprint in the sediments deposited on the seafloor in the area, including physical 
properties, geochemistry, and diatom and planktonic foraminifer assemblages (Abrantes, 1988; 
Abrantes and Moita, 1999; Salgueiro et al., 2008).

3.3. Subsurface hydrography
The flanks of the PPA intersect each of the major subsurface water masses of the North Atlantic 
and are ideal for the placement of a depth transect of sites (Figure F2). During Cruise JC089, 13 
conductivity-temperature-depth (CTD) casts were made and subsurface water masses were rec-
ognized by their temperature-salinity characteristics (Figure F13). ENACW occupies the depth 
interval below the thermocline between ~50 and 500 m (van Aken, 2000). Between 500 and 1500 
m, warm, salty water derived from the Mediterranean (MOW) dominates. MOW flows over the 
Strait of Gibraltar into the Gulf of Cádiz and splits into two core branches centered at ~800 and 
1200 mbsl (Ambar and Howe, 1979), flowing north along the western Iberian margin. Below 2000 
mbsl, recirculated Northeast Atlantic Deep Water (NEADW) prevails, representing a mixture of 
Labrador Sea Water, Iceland Scotland Overflow Water, Denmark Strait Overflow Water, and to a 
lesser extent MOW and Lower Deep Water (LDW) (van Aken, 2000). The deepest water mass is 
southern-sourced LDW, which is modified Antarctic Bottom Water (AABW) that enters the east-
ern Atlantic Basin through the Vema Fracture Zone at 11°N (Saunders, 1987).
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Figure F13. Temperature vs. salinity of CTD casts made during Cruise JC089 to the Iberian margin showing major subsur-
face water masses (Hodell et al., 2014). Color bar = percent oxygen saturation, contours = potential density.
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Jenkins et al. (2015) performed an optimum multiparameter analysis (OMPA) for the stations 
along the GEOTRACES North Atlantic transect. OMPA assesses the relative contributions of end-
member water masses by a least-square optimization using input values for conservative proper-
ties. We used this analysis to identify the optimal site locations based on the relative contribution 
of end-member water masses at each of the proposed drill sites.

3.4. Paleo-conductivity-temperature-depth strategy
We employed a paleo-conductivity-temperature-depth (paleo-CTD) approach whereby the sea-
bed was sampled beneath each of the major subsurface water masses (Foreman, 2017; Lund et al., 
2011). The PPA provides the bathymetric relief that in a limited area intersects all the principal 
water masses involved in the Atlantic thermohaline circulation (Figure F5). Water depths at 
the  sites range 1339–4692 mbsl, permitting the sampling of paleowater mass properties of 
intermediate-water (Mediterranean Overflow) and deepwater masses (NEADW and LDW). The 
water depth range also complements those sites drilled during Expedition 339, which focused on 
the variability of MOW at five sites (U1386–U1390) in the Gulf of Cádiz at 566–980 mbsl and Site 
U1391 on the southwest Iberian margin at 1074 mbsl (Figures F1, F2). Together with Expedition 
339, the proposed sites constitute a complete depth transect from 566 to 4686 mbsl on the eastern 
margin of the North Atlantic Basin. Because the depth ranges of water masses differed in the past, 
it is important to sample the sediment column under a wide range of bathymetric and hydro-
graphic conditions. The paleo-CTD approach permits a comprehensive reconstruction of past 
water mass variability in the North Atlantic, much of which appears to be related to spatial redis-
tributions on both glacial–interglacial and millennial timescales (Adkins, 2013). Understanding 
the role of the deep ocean in climate change and carbon storage is necessary to identify the under-
lying mechanisms of glacial–interglacial cycles and millennial-scale climate variation.

4. Scientific objectives
The overall objective of the Expedition 397 drilling proposal is to recover the late Miocene–
Pleistocene sediment archive located offshore Portugal in a range of water depths to document 
past changes in vertical water mass structure and its relation to global climate change (Figures 
F1,  F2). By producing multiproxy time series at each site and placing them on an integrated 
stratigraphy, these sediments provide the information needed to study MCV over the Pliocene–
Pleistocene and understand its underlying causes and evolving contextuality.

Some of the specific scientific objectives include the following:

• Document the occurrence of MCV for older glacial cycles beyond the limit of Site U1385 (1.45 
Ma) and how MCV evolved as glacial boundary conditions changed with the progressive 
intensification of Northern Hemisphere glaciation (NHG) since the late Pliocene.

• Derive a marine sediment proxy record for Greenland and Antarctic ice cores to examine the 
amplitude and pacing of MCV during the Quaternary.

• Determine interhemispheric phase relationships (leads/lags) by comparing the timing of proxy 
variables that monitor surface (Greenland) and deepwater (Antarctic) components of the 
climate system.

• Study how changes in orbital forcing and glacial boundary conditions affect the character of 
MCV and, in turn, how MCV interacts with orbital geometry to produce the observed glacial-
to-interglacial patterns of climate change.

• Reconstruct the history of changing local dominance of northern-sourced versus southern-
sourced deep water using the depth transect of Expedition 397 and 339 sites on orbital and 
suborbital timescales during the Quaternary.

• Develop orbitally tuned timescales for each of the sites and correlate them into the classic 
Mediterranean cyclostratigraphy.

• Document changes in the coastal upwelling system from the Miocene to the present, including 
its impact on primary production, carbon export, and biogeochemical cycling.

• Reconstruct the evolution of continental vegetation and hydroclimate using pollen and 
terrestrial biomarkers that are delivered to the deep-sea environment of the Iberian margin.
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• Link terrestrial, marine, and ice core records by comparing proxy signals of different 
components of the Earth system that are coregistered in a single sediment archive.

A more comprehensive explanation of the scientific objectives follows.

4.1. Integrated global stratigraphy
Precise stratigraphy is the main limitation to our ability to determine phase relationships 
(leads/lags) among various variables in the ocean-atmosphere system, which is essential for testing 
causal mechanisms of global climate change. A great strength of the Iberian margin sediment 
record is that it contains proxies of marine, atmospheric (ice core), and terrestrial signals coregis-
tered in a single archive. It is thus possible to determine the relative phasing of changes in proxy 
variables that monitor different components of the ocean climate system in the same core (Shack-
leton et al., 2000, 2004). For example, temporal comparisons between marine stable isotope and 
pollen records in the same core have allowed the evaluation of phase relationships between global 
climate and European terrestrial change during the last 420 ky (Sánchez Goñi et al., 1999, 2000, 
2016; Margari et al., 2010, 2014; Oliveira et al., 2020; Roucoux et al., 2001; Shackleton et al., 2000, 
2003, 2002; Tzedakis et al., 2004). A similar strategy can be applied to the entire sequence recov-
ered by Expedition 397, circumventing many problems associated with core-to-core correlation 
and developing age models on millennial timescales (Blaauw, 2012).

At Expedition 339 Site U1385, variations in sediment color contain an eccentricity-modulated 
precession signal over the past 1.45 My (Hodell et al., 2013a, 2013b, 2023), and shipboard data 
indicates this cyclicity continues for older time periods. The modulation of precession by eccen-
tricity provides a powerful tool for developing orbitally tuned age models (Shackleton et al., 1995). 
An astronomically tuned timescale will be developed at each of the Expedition 397 sites by cor-
relating variations in shipboard physical properties and postcruise XRF results to orbital target 
curves (e.g., Hodell et al., 2015). This also will allow the sites to be correlated to the classic Medi-
terranean cyclostratigraphy (Hilgen, 1991; Konijnendijk et al., 2015). In addition, the correlation of 
Iberian margin proxy records with European speleothems will provide a novel opportunity to tie 
marine records into a radiometrically dated chronology using U-Th and U-Pb isotopes (e.g., 
Tzedakis et al., 2018; Bajo et al., 2020).

4.2. Marine sediment analog to the polar ice cores
Ice cores offer the most detailed records available for reconstructing changes in climate and green-
house gases in the latest Pleistocene. However, many of the mechanisms that control atmospheric 
composition and climate are rooted in the oceans. The answers to Pleistocene climate questions 
require a coupled ocean-atmosphere approach where ice core data are integrated with marine sed-
iment cores. In this regard, Iberian margin sediments are important for comparison to existing 
and future ice core records from Greenland and Antarctica (Nehrbass-Ahles et al., 2020; Wolff et 
al., 2022). Given that the Greenland ice core is limited to the last glacial cycle and the oldest ice 
core in Antarctica (EPICA Dome C) is limited to the last 800 ky, we must rely on marine sediment 
records to provide the longer term history of changes in polar climate.

If we assume the correlation between rapid temperature changes on the Iberian margin and over 
Greenland has held for older glacial periods, then sediment recovered during Expedition 397 can 
serve as a marine sediment proxy record for the Greenland ice core beyond the age of the oldest 
undisturbed ice (~122 ka). Comparing surface water signals from the Iberian margin with the syn-
thetic Greenland reconstruction (Barker et al., 2011) demonstrated a strong similarity for the last 
400 ky (Hodell et al., 2013a). Millennial-scale variability in benthic δ18O from the Iberian margin is 
similar to EPICA δD for the last 800 ky (Hodell et al., 2023). Beyond the last three glacial cycles, 
the temporal resolution of the EPICA Dome C record diminishes because of compression and dif-
fusion, which hinders clear detection of millennial to submillennial events for older glacial periods 
depending on sampling resolution (Jouzel et al., 2007; Pol et al., 2010). Problems of diffusion and 
compression will undoubtedly be more severe in older ice to be recovered by the BE-OI Project 
(Fischer et al., 2013; Bereiter et al., 2014; Wolff et al., 2022) and COLDEX (COLDEX, 2022). Com-
parison of the ice core record from BE-OI and proxies measured in Expedition 397 sediment will 
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allow an assessment of whether there has been significant loss of climate information at higher 
frequencies due to diffusion and migration in the ice core record.

4.3. Millennial-scale climate variability during the Pliocene–
Pleistocene
Much progress has been made toward understanding the orbital effects on climate, but a complete 
theory of the ice ages remains elusive (Raymo and Huybers, 2008). Understanding how climate 
changes on shorter (i.e., suborbital) timescales interact with the effects of orbital forcing to pro-
duce the observed patterns of glacial–interglacial cycles through the Pleistocene may be an 
important piece of the puzzle. For example, MCV may play an important role in longer term cli-
mate transitions, such as glacial terminations (Cheng et al., 2009; Denton et al., 2010; Wolff et al., 
2009; Barker and Knorr, 2021). Studying the coevolution of orbital and suborbital variability 
requires a new caliber of sediment archives with a high level of chronological precision. With few 
exceptions, deep-sea sedimentary records generally lack the resolution needed to delineate such 
variability; however, exceptions do exist, such as those from the Iberian margin. MCV has been 
well documented for the last glacial cycle in the North Atlantic, but relatively little is known about 
similar variability during older glacial periods of the Pleistocene (de Abreu et al., 2003; Margari et 
al., 2010; Martrat et al., 2007; Rodrigues et al., 2011). Some marine records of MCV exist beyond 
the last glacial cycle (Alonso-Garcia et al., 2011; Barker et al., 2015, 2011; Hodell et al., 2008; Jouzel 
et al., 2007; Kawamura et al., 2007; Dome Fuji Ice Core Project Members, 2017; Margari et al., 
2010; Martrat et al., 2007; McManus et al., 1999; Oppo et al., 1998), but only a few extend beyond 
800 ka into the early Pleistocene (Barker et al., 2021; Billups and Scheinwald, 2014; Birner et al., 
2016; Hodell and Channell, 2016; Hodell et al., 2008, 2023; Mc Intyre et al., 2001; Raymo et al., 
1998; Rodrigues et al., 2017) and none for the Pliocene.

MCV is thought to be a pervasive feature of Quaternary climate change (Jouzel et al., 2007; 
Weirauch et al., 2008; Hodell et al., 2015, 2023; Sun et al., 2021), but its pacing and amplitude are 
likely to be influenced by changing orbital and ice sheet boundary conditions (Zhang et al., 2021). 
MCV can exert an upscale influence on orbital timescales through its effect on ice sheet dynamics 
(Verbitsky et al., 2018) or atmospheric CO2 by changing carbon storage in the deep sea. MCV is 
also a source of high-frequency variability (noise) on glacial–interglacial timescales that may affect 
the resonance of internal climate change with external orbital forcing. Sediments recovered during 
Expedition 397 will be important for documenting how orbital and millennial variability co-
evolved through the Quaternary and Pliocene (Hodell et al., 2023).

4.4. Testing the thermal bipolar seesaw hypothesis
Millennial-scale variations in Greenland temperature have a counterpart variation in Antarctic ice 
cores, which are smaller in magnitude and have a different shape than the signals found in 
Greenland (Blunier and Brook, 2001; EPICA Community Members, 2006; WAIS Divide Project 
Members, 2015). The phasing between Greenland and Antarctic temperature is often explained by 
changes in interhemispheric heat transport caused by changes in the strength of Atlantic Meridio-
nal Overturning Circulation (AMOC), referred to as the thermal bipolar seesaw (Stocker, 1998). 
Temperature records from the Iberian margin, when used as inputs to a thermal bipolar seesaw 
model, produce synthetic Southern Hemisphere temperature records that greatly resemble Ant-
arctic temperature records (Davtian and Bard, 2023).

Determining phase relationships of MCV in glacial periods beyond the last climate cycle is chal-
lenging because absolute dating of marine cores is too imprecise to correlate and resolve small 
differences in the timing of paleoclimate signals (Blaauw, 2012; Andrews et al., 1999; Wunsch, 
2006). An alternative approach is to determine the relative phasing of changes in proxy variables in 
the same core that monitor different components of the ocean climate system. A great strength of 
the Iberian margin sediment record is the fact that it contains signals of both Greenland and Ant-
arctic ice cores in a single archive and it is possible to determine the relative phasing of polar cli-
mate by comparing proxy signals in the same core (Figure F1). Expedition 397 sediments provide 
an opportunity to test whether similar phasing patterns existed in older glacial periods, consistent 
with the operation of a bipolar seesaw (e.g., Margari et al., 2010; Hodell et al., 2023).
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4.5. North Atlantic thermohaline circulation
Northern Component Water is thought to have extended deeper in the water column during the 
warmer, longer Greenland interstadials (e.g., IS 8, 12, and 14) and shoaled during Greenland stadi-
als, especially during Heinrich events (Hodell et al., 2010; Kissel et al., 2008; Piotrowski et al., 2008; 
Henry et al., 2016). Previous work using sediments from the Iberian margin has confirmed (with 
particularly firm chronostratigraphic constraints) the link between past interhemispheric climate 
change and perturbations to the deep Atlantic hydrography. Thus, changes in deepwater radiocar-
bon concentration (Skinner and Shackleton, 2004; Skinner et al., 2021), oxygenation (Martrat et 
al., 2007; Skinner et al., 2003; Thomas et al., 2022), temperature (Skinner et al., 2003, 2007; Davtian 
and Bard, 2023), remineralized nutrient content (Shackleton et al., 2000; Skinner et al., 2007; Wil-
lamowski and Zahn, 2000), and lateral export rates (Gherardi et al., 2005) have all been linked to 
abrupt climatic changes that occurred in the recent geological past.

Indeed, it is precisely the tight connection between deepwater circulation on the Iberian margin 
and the bipolar seesaw that lies at the heart of Shackleton’s initial observation of northern and 
southern signals recorded simultaneously in Core MD95-2042 (Shackleton et al., 2000).

Expedition 397 sites permit the types of reconstructions noted above, such as benthic δ13C as a 
proxy for deepwater sourcing and ventilation (Thomas et al., 2022), to be extended beyond the 
1.45 Ma of Site U1385. Furthermore, the range of water depths of the Expedition 397 sites (1339–
4692 mbsl) allow the study of past changes in vertical water mass structure of the North Atlantic 
with especially strong stratigraphic constraints.

The cores recovered during Expedition 397, together with those drilled during Expedition 339, 
provide the basis for marine reference sections of temporal water column variability in the north-
east Atlantic. Postcruise studies of this material will prove invaluable for assessing the expression 
and impacts of abrupt ocean circulation change in the past, especially as this relates to interhemi-
spheric climate phasing and glacial–interglacial climate evolution.

4.6. Continental vegetation and hydroclimate changes
Marine archives recovered adjacent to the continents have the potential to link continental and 
marine climate records because they are influenced directly by continental inputs, such as from 
rivers and winds. The western Iberian margin has emerged as a critical area for studying 
continent-ocean connections because of the combined effects of major river systems and a narrow 
continental shelf that lead to the rapid delivery of terrestrial material (e.g., pollen and organic bio-
markers) to the deep-sea environment (Margari et al., 2014, 2020; Oliveira et al., 2016, 2017, 2018, 
2020; Rodrigues et al., 2017; Sánchez Goñi et al., 2016; Tzedakis et al., 2015). In the southern Por-
tuguese margin, pollen enters the ocean mainly as particulate suspended matter through the Tagus 
and Sado rivers and upwelling filaments (Naughton et al., 2007). A comparison of modern marine 
and terrestrial samples along western Iberia has shown that the marine pollen assemblages pro-
vide an integrated picture of the regional vegetation on the adjacent continent. Moreover, modern 
biogeographical differences in the distribution of Atlantic and Mediterranean plant communities 
are reflected in the pollen signal of northern and southern marine pollen spectra, respectively 
(Naughton et al., 2007). Thus, the Portuguese margin provides a rare opportunity to (1) enhance 
the study of ocean-continent linkages by analyzing proxies for continental hydrology and vegeta-
tion (e.g., pollen, elemental ratio data in bulk sediments, and molecular and isotopic composition 
of leaf waxes) in marine sediment cores that can be precisely correlated to polar ice cores and 
(2) construct the longest continuous record of late Miocene–Pleistocene vegetation changes avail-
able anywhere to date. A detailed pollen record from the Portuguese margin linked to the marine 
isotopic stratigraphy and record of millennial-scale variability will be an invaluable resource that 
can be used to place vegetation changes in the context of global and North Atlantic climate 
changes. Comparisons with terrestrial pollen reference sequences, such as Tenaghi Philippon, 
Greece (Tzedakis et al., 2006), and with International Continental Scientific Drilling Program 
(ICDP) sites from Lake Ohrid (Albania/Macedonia) (Donders et al., 2021) and Lake Van (Turkey) 
(Litt et al., 2014), will assess patterns of geographical variation. Furthermore, it will also allow us to 
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investigate major vegetation changes throughout the Pliocene–Pleistocene with shifts in climatic 
regimes (e.g., intensification of NHG, mid-Pleistocene transition, etc.).

4.7. History of upwelling on the Portuguese margin
The Iberian margin is a coastal upwelling region where primary production increases in response 
to seasonal (May–September) wind intensity and direction, which in turn results in the upward 
flow of nutrient-rich subsurface waters, such as ENACW. Although upwelling centers are mainly 
coastal, upwelled water spreads seaward through filaments extending up to 200 km offshore 
depending on northerly wind intensity (Fiúza, 1984; Relvas et al., 2009). These nutrient-rich 
waters generate a transition zone between the oligotrophic water offshore and the highly produc-
tive area near the coast.

The upwelling process leaves a clear imprint in the sediments deposited on the seafloor in the 
area, including physical properties, geochemistry, diatom and planktonic foraminifer assemblages, 
and their geographic distribution (Abrantes, 1988; Abrantes and Moita, 1999; Salgueiro et al., 
2008). The past geological variability of the upwelling has been studied both at orbital and millen-
nial timescales. At the glacial–interglacial scale, an increase in diatom accumulation rates, which 
is in good agreement with other independent productivity proxies, has been interpreted to repre-
sent an order of magnitude increase in productivity during the previous glacial and deglaciation 
periods, not only on the Portuguese margin but in both hemispheres of the eastern Atlantic 
(Abrantes, 1991, 2000). For millennial timescales, Abrantes et al. (1998) suggested increased 
primary production associated with Heinrich events off the Portuguese coast, whereas the high-
resolution planktonic foraminifer study of three sites along the Iberian margin indicates a more 
complex north–south pattern (Salgueiro et al., 2010). Primary production decreased markedly 
during stadials and Heinrich events on the northern margin but increased off Sines in the region 
of influence of the Cabo da Roca filament and near the Expedition 397 sites.

Expedition 339 Sites U1391 and U1385 are located in the area influenced by the Cape Sines and 
Cape St. Vicente filaments (Sousa and Bricaud, 1992) and constitute a transect across a productiv-
ity gradient, allowing for the investigation of the impact of climate variations on marine produc-
tion. Site 339-U1385 is mostly barren of biogenic silica, whereas Site U1391 has diatom abundance 
peaks during some deglaciation–early interglacial periods, such as MIS 2/MIS 1, MIS 10/MIS 9, 
and the mid-Pleistocene transition (MIS 22/MIS 21 to MIS 32/MIS 31) (Abrantes et al., 2017).

Increased values of upwelling-related diatom species at the shallower and coastal location of Site 
U1391 support a coastal upwelling-related increase in primary production in accordance with the 
Si/Al record of Ocean Drilling Program (ODP) Site 658 off Northwest Africa (Meckler et al., 2013). 
Its co-occurrence with deep waters of southern origin at Site U1385 may suggest that intermediate 
and upwelled source waters were also of southern origin (Thomas et al., 2022). Furthermore, 
equally high diatom abundances found at the North Atlantic Site U1334 point to a widespread 
pattern rather than a regional one (Hernández-Almeida et al., 2013). Large oligotrophic warm-
water species at the base of MIS 25 at Site U1391 (Abrantes et al., 2017) and the nearby Site U1387 
(Ventura et al., 2017) point to significantly different surface ocean circulation dynamics at the 
southern Portuguese coast during early MIS 25.

Expedition 397 sites will provide information about the regional coastal upwelling system and the 
biotic response to global climate change from the Miocene to the Quaternary. The new core mate-
rial will also elucidate how the upwelling system evolved through changing boundary conditions 
such as warmer temperatures and equal or higher atmospheric CO2 concentrations at present.

4.8. Connections to the 2050 Scientific Framework
IODP Expedition 397 is highly relevant to many of the strategic objectives and initiatives proposed 
by the IODP 2050 Scientific Framework, including Themes 3 (Earth’s Climate System), 4 (Feed-
back in the Earth System), and 5 (Tipping Points in Earth History). The sediment cores recovered 
during Expedition 397 and those of Expedition 339 from the same region constitute an invaluable 
sedimentary archive with which to study past climate variability at high temporal resolution. The 
Iberian margin sedimentary archive will be used to document orbital and suborbital variability in 
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climate and AMOC and its relation to carbon storage in the deep ocean and atmospheric CO2
changes, as recorded in Antarctic ice cores. The long continuity, high resolution, and precise 
chronology offered by Iberian margin cores will enhance our understanding of how Earth’s climate 
system operates and responds to various forcing and feedback processes across a wide array of 
background states, including those warmer than today and with atmospheric CO2 concentrations 
equal to or greater than at present. By comparing marine and ice core records with their European 
terrestrial counterparts, Expedition 397 research will document the response of European hydro-
climate and vegetation to regional and global climate change. These outcomes will advance the 
IODP 2050 scientific framework’s objective of obtaining the data necessary to calibrate and 
improve numerical models to project future climate impacts and inform mitigation strategies.

5. Site summaries

5.1. Site U1586

5.1.1. Background and objectives
Site U1586 is the deepest (4692 mbsl) and farthest from shore of all the Expedition 397 sites. It is 
located at the toe of the PPA in a slightly elevated region protected from bottom currents and 
turbidite deposition (Figure F14). As the deepest site in the bathymetric transect, it is bathed by 
LDW that consists of AABW (Figure F5), which has been modified by mixing during its transit 
from the South Atlantic.

Because of relatively lower sedimentation rates at Site U1586 compared to other sites (Figure F7), 
drilling at this site represents our best opportunity to obtain the oldest sediment (Miocene) to be 
recovered during Expedition 397. The main drilling objective was to recover a high-resolution 
record of the late Miocene–Pleistocene with which to study the evolution of the surface and deep-
est water masses of the northeast Atlantic. Of specific interest are the time periods associated with 
(1) the water exchange between the Mediterranean and the Atlantic before, during, and following 
the Messinian Salinity Crisis (latest Miocene to the base of the Pliocene); (2) the mid-Pliocene 
warm period characterized by atmospheric CO2 concentrations similar to present values (400 
ppm); (3) the late Pliocene intensification of the NHG (~2.9 Ma); and (4) the Pleistocene (last 2.6 
Ma) when MCV was superimposed upon glacial–interglacial cycles.

Site U1586 is positioned at Common Midpoint 1330 on Seismic Line 2 of Cruise JC089 in a region 
with good continuity of reflectors (Figure F15). The objective was to drill to the package of high-
amplitude reflectors represented by the pink and green reflectors in Figure F15. A target drilling 
depth of 350 mbsf was approved by the EPSP.

5.1.2. Operations
Expedition 397 began on 11 October 2022 at 1045 h (UTC +1 h) upon the arrival of the R/V JOI-
DES Resolution at Rocha Pier in Lisbon, Portugal, at the end of Expedition 397T. On 16 October, 
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Figure F14. Location of Site U1586 at the toe of the Promontório dos Príncipes de Avis (PPA) at a water depth of 4692 mbsl. 
See Figure F2 for broader bathymetric context. (Figure made by Helder Pereira using Mirone and iVew4D software.)
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JOIDES Resolution left port by 0830 h Portuguese time, reaching Site U1586 at 1834 h. A water 
depth reading with the ship’s precision depth recorder (PDR) was taken as the vessel arrived on 
site, giving a seafloor depth of 4702.4 meters below rig floor (mbrf )/4691.4 mbsl.

The plan for Site U1586 was to core five holes. Holes U1586A–U1586C were to be cored with the 
APC and half-length APC (HLAPC) systems to refusal (estimated at approximately 250 m core 
depth below seafloor, Method A [CSF-A]), and then cored to a maximum depth of 350 mbsf using 
the XCB system. Holes U1586C and U1586D were to be cored to APC/HLAPC refusal. Formation 
temperature measurements were planned for Hole U1586A and downhole wireline logging mea-
surements were planned for Hole U1586C.

Once on site, weather conditions and high seas caused a ~48 h delay over the planned 14.8 days of 
operations, and the coring strategy was adjusted. High core quality obtained using the XCB system 
fitted with a PDC bit and cutting shoe in Hole U1586A allowed for it to be deployed earlier than 
normal in Holes U1586B–U1586D, eliminating the need to use the HLAPC system. Therefore, a 
revised plan was executed, using the APC system until the first partial stroke and then extending 
the holes to total depth using the XCB system. Site U1586 consisted of four holes to 350 mbsf 
(Figure F6). Formation temperature was measured at 34.9, 63.4, 82.4, and 120.4 mbsf in Hole 
U1586A with the advanced piston corer temperature (APCT-3) tool, and Hole U1586D was logged 
using the triple combination (triple combo) tool string. All APC and HLAPC cores used nonmag-
netic core barrels, and APC cores were oriented using the Icefield orientation tool. In total, 1399.1 

Figure F15. Original and interpreted seismic profile (JC89-2) showing the location of Site U1586 with penetration to 350 
mbsf. The ages of the reflectors have been revised during the expedition to reflect the ages of the recovered sediment. 
TWT  = two-way traveltime, CMP = common midpoint.
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m were cored using the three coring systems with an overall recovery rate of 96% across all holes. 
Operations at Site U1586 took 349.5 h (14.6 days) to complete.

5.1.3. Principal results
Site U1586 yielded several significant findings and observations, some of which were unexpected:

• Operationally, the quality of the cores recovered using the XCB system was surprisingly good 
with high recovery and relatively minor disturbance (biscuiting), which is attributed to the use 
of a PDC bit and cutting shoe.

• A ~350 m middle Miocene–Holocene spliced sedimentary sequence (14 Ma) was recovered 
(Figure F16), nearly twice the age (7 Ma; late Miocene) predicted from the interpretation of the 
seismic profiles.
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• The occurrence of convoluted banded sediment interpreted as slumps was found in all the 
holes at the same stratigraphic position, indicating slope instability associated with possible sea 
level fluctuations or tectonic activity. Slumped intervals were carefully noted by sedimentolo-
gists and can be recognized by the low-amplitude signal of physical properties measurements. 
Although the occurrence of slumps interrupts the stratigraphic section, many continuous 
intervals, suitable for paleoclimate studies, are identified (Figure F16).

• The Pliocene sequence at Site U1586 is remarkably complete and unaffected by slumping. 
Sediments are marked by very strong cyclic variations in color, MS, and NGR, which are 
dominated by an apparent precession signal and offer much promise for developing an 
orbitally tuned age model and correlating to Mediterranean sequences (Figure F17).

• A serendipitous finding was an exceptionally high peak in MS that was detected at the same 
stratigraphic interval in all the holes. The sediments were found to contain abundant metallic 
particles, some of which are spherical and interpreted to be of cosmic origin. The estimated 
age of the layer is 3.6 Ma by correlation of the color reflectance signal to precession and the 
identification of the Gilbert-Gauss polarity reversal boundary.

Figure F17. Core composite downhole trends of physical properties data, Site U1586. B-L = Burdigalian–Langhian. MSP = 
section-half point MS, NGR = whole-round NGR, cps = counts per second, NGR-logging = NGR data from the triple combo 
logging tool. WMSF = wireline log matched depth below seafloor. MSP and L* panels: a smoothed curve (black line; 20-
point moving average) is shown over the original data (gray line). NGR panels: only the original data is shown.
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At Site U1586, four holes (U1586A–U1586D) were drilled to 350 mbsf and a total of 1346.85 m of 
sediment was recovered. The primary lithology consisted of various proportions of nannofossil 
ooze and clay/silt. Very fine to coarse calcareous sands were found near the base of the holes below 
310 mbsf (Figure F16) and may have resulted from sediment gravity flows (turbidites). Different 
types and intensities of drilling disturbance were observed in the cores, with the most common 
being up-arching, flow-in, soupy, and slurry in the APC cores and biscuiting and fall-in for the 
XCB cores. Bioturbation varied from absent to complete disturbance of sedimentary layers. Pyrite 
nodules filling burrows are commonly observed in X-ray images.

A well-constrained biostratigraphic age model was developed for Site U1586 based on analyses of 
calcareous nannofossils and planktonic foraminifers (Figure F18A). Overall, 51 calcareous nanno-
fossil and planktonic foraminifer bioevents were identified. The integrated biostratigraphy sug-
gests a reasonably complete sequence from middle Miocene to Holocene.

Magnetostratigraphy of Site U1586 was established based on the natural remanent magnetization 
(NRM) (after 20 mT demagnetization) inclination and (orientation-corrected) declination data 
from archive-half core sections and stepwise NRM demagnetization data from discrete cube sam-
ples. The following polarity reversals and subchrons were generally well identified in APC cores 
from Holes U1586A–U1586C: the Brunhes/Matuyama (B/M) boundary (0.773 Ma), the Jaramillo 
Subchron (0.99–1.07 Ma), and the Matuyama/Gauss (M/G) boundary (2.595 Ma). APC cores from 
Hole U1586A also recorded the Mammoth Subchron (3.207–3.33 Ma) and the Gauss/Gilbert 
(G/G) boundary (3.596 Ma). The Cobb Mountain (1.18–1.215 Ma), Olduvai (1.775–1.934 Ma), 

Figure F18. Preliminary age model based on calcareous nannofossils (Nanno) and planktonic foraminifer (Foram) biostrati-
graphic events and magnetostratigraphic (Pmag) transitions for Sites (A) U1586, (B) U1587, (C) U1385, and (D) U1588.
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Feni (2.116–2.14 Ma), Cochiti (4.187–4.3 Ma), and Thvera (4.997–5.235 Ma) Subchrons (or part of 
these subchrons) were recorded in one or more holes at the site. Magnetostratigraphy is poorly 
resolved for XCB cores from all four holes at the site due to strong drilling overprint and for APC 
cores from Hole U1586D because of strong coring disturbance in cores from near the polarity 
boundaries.

Whole round samples (5–10 cm thick) were taken for interstitial water (IW) analysis from the base 
of every section for the uppermost 34 m and then from the penultimate section recovered from 
every core from Hole U1586A. IW analysis shows relatively constant salinity, sodium, and chloride 
throughout Hole U1586A, with values close to seawater, whereas potassium declines downhole 
with a relatively constant slope. Decreasing sulfate concentration is indicative of organic matter 
respiration via sulfate reduction; however, unlike other sites, sulfate at Site U1588 never reaches 
zero and methane concentration never exceeds 15 ppmv (Figure F19). A decrease in calcium and 
magnesium in the upper 50 m reflects authigenic carbonate precipitation driven by high pore 
water alkalinity and associated sulfate reduction. Peaks in redox-sensitive elements, such as iron 
and manganese, are similarly indicative of microbially mediated respiration reactions within the 
sediments. Below 200 mbsf, Ca, Sr, and Si concentrations increase while Mg decreases. Although 
dolomitization may explain the Mg, Ca and Sr profiles, by liberating Ca and Sr and using Mg, the 
high silicon concentration near the bottom of the hole indicates important Si dissolution within 
the silty clay layers of Lithostratigraphic Unit III. Mean CaCO3 in Hole U1586A is 37.4 wt%, and 
values increase steadily but nonlinearly with depth. Total organic carbon values in Hole U1586A 
are generally low (mean = 0.48 ± 0.32 wt%), ranging 0–2.02 wt%; they are highest in the upper 50 
m (0.57 ± 0.21 wt%) and steadily decline with depth (0.33 ± 0.27 wt% in the bottom 50 m). Meth-
ane is the only detectable gas, and its concentration ranges 0–14.10 ppmv with a peak between 100 
and 150 mbsf (Figure F19).

Inductively coupled plasma–atomic emission spectroscopy (ICP-AES) data from bulk sediment 
analysis show strong correlations between SiO2, K2O, Fe2O3, MgO, and TiO2 with Al2O3, indicating 
the dominance of local detritus. Barium is weakly correlated with Al or Ca, likely due to barite in 
sediments. Elemental ratios of Si/Al, K/Al, Si/Al, Sr/Ca, and estimated biogenic Ba are highlighted 
as potential proxies for provenance, weathering, and productivity.

Sediment physical properties data acquired from whole-round measurements for Site U1586 are 
generally in good agreement with those from split core measurements for gamma ray attenuation 
(GRA) and moisture and density (MAD) bulk densities, P-wave logger (PWL) and P-wave caliper 
(PWC) velocities, and MS loop and point count measurements. The cyclic variations in MS, NGR 
and L* color reflectance values are particularly distinct throughout all holes (Figure F17), showing 
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lower MS and NGR values in carbonate-rich sediments with higher L* values, whereas higher MS 
and NGR values occur in clay-rich sediments with lower L* values. The gradual increasing trend of 
bulk densities, thermal conductivity, and P-wave velocities and decreasing trend of porosity are 
attributed to compaction of sediments with depth. Downhole changes in physical properties over-
all are coherent with the defined lithofacies based on sedimentological observations. MS gradually 
declines over the upper ~100 m, coinciding with a decrease in pore water sulfate. This reflects the 
reaction of fine-grained magnetite with hydrogen sulfide, produced by sulfate reduction, to form 
iron sulfides (e.g., pyrite).

Downhole logging was conducted in Hole U1586D with the triple combo tool string between 84.6 
(bottom of the pipe) and 255.3 mbsf. Comparison of the processed logging and core physical prop-
erties data reveal a good correlation in the NGR (Figure F17) and less so for density and MS. Four 
downhole formation temperature measurements were made in Hole U1586A. The calculated in 
situ sediment temperatures resulted in a geothermal gradient of 26.9°C/km and a heat flow of 32.0 
m W/m2, which are slightly lower than the published value for the region.

Stratigraphic correlation among holes at Site U1586 was accomplished using Correlator software. 
Tie points were established using L* color reflectance, MS, and the blue channel extracted from 
the color images (RGB-blue). A splice was constructed from 0 to 320 m core composite depth 
below seafloor, Method A (CCSF-A) using four holes (U1586A–U1586D). The splice is complete 
except for one potential small gap in the Upper Pliocene where overlap is equivocal. Slump inter-
vals noted by the sedimentologists were correlatable among all holes and have disturbed/removed 
variable amounts of intact stratigraphy. These include four in the Middle to Upper Pleistocene 
sequence and two in the Upper Miocene. Gaps in core recovery were evident when offset holes 
were compared and appear to correlate with sea state.

In summary, the preliminary age model based on biostratigraphy and magnetostratigraphy sug-
gests that the sedimentary sequence recovered at Site U1586 spans the last 14 My. The combina-
tion of nearly continuous recovery, moderate sedimentation rates, clear cyclic variations in 
physical properties and sediment color, and a rich array of well-preserved calcareous microfossils 
suggest Site U1586 will provide an important record of North Atlantic surface and deepwater vari-
ability for the Middle Miocene to Pleistocene.

5.2. Site U1587

5.2.1. Background and objectives
Site U1587 is positioned at 3479 mbsl (Figure F20) and bathed today by a mixture of 75% North 
Atlantic Deep Water (NADW) and 25% LDW sourced from the Southern Ocean (Jenkins et al., 
2015) (Figure F5). The mixing ratio of these water masses has changed in the past, as well as their 
vertical position in the water column, which has implications for ventilation and carbon storage in 
the deep Atlantic. Site U1587 is the second deepest site along the Expedition 397 bathymetric 
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Figure F20. Location of Site U1587 on the Promontório dos Príncipes de Avis (PPA) at a water depth of 3479 mbsl. See 
Figure F2 for broader bathymetric context. (Figure made by Helder Pereira using Mirone and iVew4D software.)
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transect (paleo-CTD) and will be important for reconstructing changes in the physical and chem-
ical properties of the deep eastern North Atlantic on both long and short timescales.

The Upper Miocene to Quaternary sequence is expanded at Site U1587 and more than 500 m 
thick (Figure F21). Sedimentation rates are estimated to average ~10 cm/ky (Figure F7). We 
received permission from the EPSP to drill to 500 mbsf at this site but requested and were granted 
permission to drill an additional 50 m to extend the record well into the late Miocene.

Site U1587 was designed to recover an expanded sequence of late Miocene to Quaternary sedi-
ments with which to address several expedition objectives related to the history of MCV, orbital 
forcing of glacial–interglacial cycles, cyclostratigraphy, warm Pliocene climate, and the Messinian 
salinity crisis. The high sedimentation rates and long continuous record at Site U1587 will permit 
paleoceanographic reconstruction at millennial resolution as the climate system evolved from the 
warm Pliocene, through the intensification of NHG in the late Pliocene, the obliquity-dominated 
“41-kyr world,” the middle Pleistocene transition, and the Great Ice Ages of the “100-kyr world.”

5.2.2. Operations
We arrived at Site U1587 at 1121 h on 1 November 2022 after completing the 16.9 nmi transit 
from Site U1586 with the thrusters down and the vessel heading controlled by dynamic position-
ing (DP). The drill crew made up an APC/XCB bottom-hole assembly (BHA) using the same 
APC/XCB PDC bit used at Site U1586.

Figure F21. Original and interpreted seismic profile (JC89-6) showing the location of Site U1587 with penetration to 500 
mbsf. The age of the reflectors have been revised to reflect the age of the recovered sediment. TWT = two-way traveltime, 
CMP = common midpoint.
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The plan for Site U1587 was to core four holes with the APC and HLAPC systems to refusal (~250 
mbsf ) and then core to a maximum depth of 500 mbsf using the XCB system. Formation tempera-
ture measurements (APCT-3) were planned for the first hole and downhole logging (triple combo 
tool string) was planned for Hole U1587D.

Once on site, weather conditions and high seas caused some delays and the coring strategy was 
adjusted by removing the fourth hole from the plan after all site objectives had been met. Permis-
sion to deepen the site was requested from and approved by the EPSP while coring in Hole 
U1587B. Finally, the site consisted of three holes. Hole U1587A was cored to 500 mbsf, Hole 
U1587B was cored to 547.8 mbsf, and Hole U1587C was cored to 567.9 mbsf. As at Site U1586, the 
drilling strategy consisted of APC coring until the first partial stroke and then XCB coring to 
extend the hole to total depth. Hole U1587C was successfully logged with the triple combo tool 
string to 558 mbsf, roughly 10 m above the total depth of the hole. The drill string was raised, 
clearing the seafloor at 0850 h on 15 November and ending Hole U1587C and the site. The bit was 
raised to 2484 mbrf, and at 1115 h, we started moving to Site U1385 under DP navigation mode.

All APC cores used nonmagnetic core barrels and were oriented with the Icefield orientation tool. 
In total, 1615.7 m were cored at Site U1587 using the APC and XCB systems with a recovery rate 
of 97%. The site took 335.5 h (14.0 days) to complete.

5.2.3. Principal results
Principal results for Site U1587 are as follows:

• Recovery of a 567 m sequence ranging in age from the late Miocene (Tortonian; ~7.8 Ma) to 
Quaternary with sedimentation rates from 6.5 to 11 cm/ky (Figures F18B, F22).

• Continuous deposition and high sedimentation rates for the last 1.5 My are ideal for studying 
MCV and correlating Site U1587 to the polar ice core records.

• Pliocene sediments contain very strong precession-scale cycles in color and other physical 
properties (MS, density, and NGR) (Figures F11, F23). Amplitude modulation of these 
presumed precession cycles by eccentricity provides a powerful tool for developing an orbitally 
tuned timescale for Site U1587.

• Recovery of an apparently complete Messinian Stage (7.246–5.333 Ma) of the late Miocene 
with strong Milankovitch cyclicity consisting of alternating dark clay-rich sediments and 
lighter nannofossil ooze. This sequence will permit the study of the Messinian Salinity Crisis in 
an open ocean setting adjacent to the Mediterranean.

• Complete logging run from 81 to 558 mbsf showing cyclic variations in NGR that will be used 
for core-log integration (Figure F23).

• Expanded late Pliocene section documenting the intensification of NHG between 3.3 (MIS 
M2) and 2.6 Ma (MIS 100), including the mid-Pliocene warm period (3.3–3 Ma).

Coring in Holes U1587A, U1587B, and U1587C recovered a total of 1566 m of sediment. The 
dominant lithologies are nannofossil ooze and clay in varying proportions (Figure F22), which 
manifest as light and dark sediment layers reflected by changes in sediment physical properties. 
Pyrite nodules and infilled pyrite burrows are common throughout the sedimentary sequence. 
Bioturbation varies from light to heavy. Drilling disturbance in a few APC cores include 
soupy/slurry sediments, mostly in the top of Section 1 of many cores, and slight up-arching toward 
the bottom of the APC interval. XCB cores are generally undisturbed, but biscuiting occurs mainly 
below 204 mbsf.

Nannofossils are extraordinarily abundant, and foraminifers and ostracods are also common and 
generally well preserved. Planktonic foraminifer preservation decreases with depth, and Miocene 
specimens are very small in size, recrystallized, and challenging to identify. A total of 51 biostrati-
graphic markers (37 nannofossils and 14 planktonic foraminifers) were recognized and suggest a 
continuous sequence from the late Miocene (Tortonian; 7.8 Ma) to Holocene. Nannofossil and 
planktonic foraminifer stratigraphic events are in good agreement with magnetostratigraphy (Fig-
ure F18B). Sedimentation rate varies between 11 and 6.5 cm/ky (Figure F7).

Remarkably abundant ichthyoliths, accompanied by a high diversity of benthic foraminifers and a 
monospecific ostracod assemblage consisting only of the genus Xylocythere, were found in Sample 
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397-U1587A-22X-CC (201.6 m CSF-A) from the early Pleistocene. Xylocythere is known from che-
mosynthetic environments, such as hydrothermal vents, cold seeps, and fish and whale carcasses 
(Karanovic and Brandão, 2015; Tanaka et al., 2019), as well as oligotrophic, deep-sea sediments 
(Steineck et al., 1990).

Magnetostratigraphy of Site U1587 was established based on the NRM (after 20 mT demagnetiza-
tion) inclination and (orientation-corrected) declination data from archive-half core sections and 
stepwise NRM demagnetization data from discrete cube samples. The following polarity reversals 
and subchrons were identified in all three holes: the B/M boundary (0.773 Ma), the M/G boundary 
(2.595 Ma), and the C3An.1n (6.023–6.272 Ma) and the C3An.2n (6.386–6.727 Ma) Subchrons. 
The Jaramillo (0.99–1.07 Ma) and possibly the Cobb Mountain (1.18–1.215 Ma) Subchrons were 
identified in APC cores from Hole U1587A. The C3Bn Chron (7.104–7.214 Ma) could be recorded 

Figure F22. Lithologic summary, Site U1587. Left: summary lithostratigraphic logs of Holes U1587A–U1587C, ordered left 
to right from southwest to northeast (upslope to downslope). Blue dashed line = divisions of lithostratigraphic units, blue 
dotted line = division of subunits (not slump related). Right: lithologic unit names and preliminary interpretations of depo-
sitional processes. Colors are based on visual description as well as color (L*a*b*) values. Unit and subunit boundaries are 
primarily based on sedimentary structures as well as changes in color and banding thickness. Color is independent of lithol-
ogy and is related to relative amounts of minor constituents such as pyrite and glauconite. Inset: cropped section of Seismic 
Line JC89 Line 7 showing location along transect and depth of the holes at the site. TWT = two-way traveltime, CMP = 
common midpoint, SB = seabed, MPle = Middle Pleistocene, BPle = base Pleistocene, BPli = base Pliocene, MM = Middle 
Miocene.
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in Holes U1587B and U1587C, and the bottom ~20 m of sediments in Hole U1587C possibly 
records part of the C4n Chron (7.537–8.125 Ma).

IW samples show an increase in alkalinity, ammonium, and phosphate in the upper 50 m, whereas 
sulfate correspondingly decreases rapidly in the upper 30 m, indicating sulfate reduction and 
organic matter respiration (Figure F19). As sulfate reaches zero the concentration of methane 
begins to increase reaching about 40,000 ppmv at 125 mbsf. The decrease in calcium and magne-
sium in the upper 35 m reflects authigenic carbonate precipitation driven by high pore water alka-
linity associated with sulfate reduction.

Sediment CaCO3 content varies between 2.9 and 78.1 wt% with an average of 37.4 wt%. Total 
organic carbon (TOC), total nitrogen (TN), and total sulfur (TS) values are generally low, ranging 
within 0–2.02 wt% (mean = 0.48 wt%), 0–0.13 wt% (mean = 0.05 wt%), and 0–0.37 wt% (mean = 
0.03 wt%), respectively. Organic carbon/nitrogen ratios (0–86.7; mean = 20.0) suggest that organic 
matter has marine and terrestrial sources.
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Figure F23. Core composite downhole trends of physical properties data, Site U1587. MSP = section-half point MS, NGR = 
whole-round NGR, cps = counts per second, NGR-logging = NGR data from the triple combo logging tool. WMSF = wireline 
log matched depth below seafloor. Inset MSP data (red and blue) are the same as the original signal but with an expanded 
scale to highlight the variability. MSP and L*: smoothed curve (black line; 50-point moving average) is shown over original 
data (gray line). NGR: only original data is shown.
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ICP-AES data from the bulk sediment indicates elemental oxides of SiO2, K2O, and TiO2 are 
strongly and positively correlated to Al2O3, reflecting the dominance of terrigenous detritus. The 
manganese and carbonate association in bulk sediment reinforces the IW indication of microbial 
mediated respiration reactions. Furthermore, elemental ratios of Ca/Ti, K/Al, Si/Al, Sr/Ca, and 
estimated biogenic Ba are potential proxies for provenance, weathering, and productivity.

Physical properties data acquired from whole-round measurements follow those from split core 
measurements. Physical properties data show strong cyclic variations in MS, NGR, and color 
throughout the sedimentary succession retrieved at Site U1587, reflecting variations in relative 
proportion of carbonate and clay (Figure F23). MS and NGR show lower values in lighter carbon-
ate-rich sediments, whereas MS and NGR values are higher in darker clay-rich sediments. MS 
decreases in the upper ~80 m as sulfate reduction produces H2S that reacts with magnetite to form 
iron sulfide minerals (e.g., pyrite). The X-ray images reveal the presence of pyrite nodules and 
burrow fill, diagenesis, and drilling disturbances. The gradual increasing trend of bulk densities, 
thermal conductivity, P-wave velocities, and the decreasing trend in porosity are attributed to the 
compaction of sediments with depth.

Following the completion of drilling Hole U1587C, the bit was raised to 80.1 mbsf for downhole 
logging. The triple combo tool string was deployed into the hole to 558 mbsf. We conducted an 
upward pass with the caliper open at a pace of 274 m/h over the entire hole to achieve the maxi-
mum possible data resolution from the Hostile Environment Natural Gamma Ray Sonde (HNGS) 
of the triple combo tool string. Initial evaluation of the HNGS log from Hole U1587C looks prom-
ising for correlating many of the cyclic features seen in NGR measurements on cores (Figure F23). 
Overall downhole trends of wireline logging densities, which show a gradual increase with depth, 
are consistent with GRA bulk densities measured on cores, although fine-scale variations are less 
well matched. Four downhole formation temperature measurements were made in Hole U1587A. 
The calculated in situ sediment temperatures yields a geothermal gradient of 43.4°C/km and a heat 
flow of 49.6 mW/m2, which are comparable with those of published data from the Iberian margin.

A composite splice was constructed from 0 to 593 m CCSF-A using all three holes (U1587A–
U1587C). A disturbed interval occurs from ~198 to 210 m CCSF-A, interrupting the sequence 
that is otherwise easy to correlate to late Pliocene and Pleistocene oxygen isotope stages. The dis-
turbed interval appears to be in a similar stratigraphic position as the one identified at Site U1586 
but removes much less section: the gap is equivalent to MIS 64–MIS 76. The late Miocene–
Pliocene sequence is without apparent stratigraphic gaps, and the Pliocene sequence correlates 
cycle-for-cycle to Site U1586. An interval of expanded sedimentation with cycles ~1.5 m thick 
occupies the late Messinian. The cyclicity in sediment physical properties is remarkably strong at 
Site U1587 with a strong precession signal expressed throughout the late Miocene and Pliocene, 
which will be valuable for developing an astronomically tuned timescale.

5.3. Site U1385

5.3.1. Background and objectives
As a proof of concept for demonstrating the potential of the Iberian margin for providing long, 
continuous records of MCV, Site U1385 was first drilled during Expedition 339 in November 2011. 
As expected, a 1.45 My sequence with continuously high sedimentation rates was recovered at Site 
U1385 (Hodell et al., 2023). Postcruise studies demonstrated the great potential of the site to yield 
detailed records of MCV (Figure F4). On the basis of the success of Site U1385, Expedition 397 
sought to extend the length of this remarkable sediment archive to 400 mbsf, spanning the entire 
Quaternary and Pliocene.

Expedition 397 Site U1385 is located ~1 km southwest of Expedition 339 Site U1385 (Figure F1) at 
2591 mbsl, in the core of lower NEADW (Figure F5). It is the second shallowest site along the 
Expedition 397 bathymetric transect (paleo-CTD) (Figure F24), and it is positioned on Seismic 
Line JC089-9 (Figure F25). The site was designed to provide a marine reference section from the 
core of NEADW. During glacial periods, Site U1385 was influenced by a relatively greater propor-
tion of deep water sourced from the Southern Ocean.
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The overall objective of Expedition 397 Site U1385 is to recover a Pliocene–Pleistocene sediment 
sequence that can serve as a marine reference section for reconstructing the long-term history of 
orbital- and millennial-scale climate variability. Isotope and XRF records from Expedition 339 Site 
U1385 have demonstrated that MCV was a persistent feature of glacial climates over the past 1.45 
My (Hodell et al., 2023). But does similar MCV persist during glacial periods beyond 1.5 Ma 

Figure F24. Location of Site U1385 on the Promontório dos Príncipes de Avis (PPA) at a water depth of 2591 mbsl. See 
Figure F2 for broader bathymetric context. (Figure made by Helder Pereira using Mirone and iVew4D software.)
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throughout the entire Quaternary? How does the nature (intensity, duration, and pacing) of MCV 
change with orbital configuration and climate background state throughout the Quaternary? How 
did MCV change with the intensification of NHG during the late Pliocene? Was MCV suppressed 
during the warm Pliocene prior to the intensification of NHG as it was during most interglacial 
stages of the Pleistocene? How did millennial climate change interact with the effects of orbital 
forcing to produce the observed patterns of glacial–interglacial cycles through the Pliocene–
Pleistocene? How did the relative importance of obliquity and precession evolve in the Pliocene–
Pleistocene? What was responsible for the strong precession cycle observed in sediment color 
throughout the record? These are some of the questions that will be addressed by collaborative 
postcruise investigations among Expedition 397 scientists.

5.3.2. Operations
The vessel made the transit to Site U1385 with the thrusters deployed in DP mode between 15 and 
16 November 2022 over 12.75 h and arrived on site at 0220 h. Site U1385 was previously occupied 
during Expedition 339 when five holes were cored (25–29 November 2011). Expedition 397 began 
operations in Hole U1385F. The plan for the reoccupation of Site U1385 was to core four new 
holes with the APC system to refusal (estimated at ~135 mbsf ) and then core to 400 mbsf using the 
XCB system. Downhole measurements with the triple combo tool string were planned for Hole 
U1385I.

Once on site, weather conditions and high seas led to changes to the coring strategy, which was 
adjusted to take full advantage of all operational time to achieve the best possible core quality. Five 
holes were eventually cored. Two holes were drilled ahead without coring (Hole U1385F to 96.9 
mbsf and Hole U1385H to 114.6 mbsf ) to allow for XCB coring in the lower section of the holes to 
the total depth (400 mbsf ). In the other three holes, the APC system was deployed from the sea-
floor until the first partial stroke was registered and then the holes were extended to 400 mbsf 
using the XCB system. Logging was attempted in Hole U1385J using the triple combo tool string, 
but a portion of a bow spring centralizer on the tool broke and wedged in the lockable float valve, 
trapping the tool string inside the pipe, and logging was abandoned.

All APC cores used nonmagnetic core barrels and were oriented using the Icefield MI-5 core ori-
entation tool. In total, 1537.5 m was cored using both the APC and XCB systems with an overall 
core recovery of 99%. Site U1385 took 336.0 h (14.0 days) to complete, including 101.0 h (4.2 days) 
waiting on weather.

5.3.3. Principal results
Principal results for Site U1385 are as follows:

• Drilling at Site U1385 recovered a continuous 5.3 My record of hemipelagic sediments to the 
base of the Pliocene with an average sedimentation rate between 11 and 9 cm/ky (Figures 
F18C, F26).

• A complete spliced section was constructed to 453 m core composite depth below seafloor 
(CCSF) using five holes (U1385F–U1385J).

• We reproduced the upper 158 mbsf of the sequence recovered previously at Expedition 339 
Site U1385, which provides additional sediment for sampling of these high-demand cores. We 
also recovered a more complete record of MIS 11 than was previously recovered at the site, 
which was partially missing in a hiatus at Expedition 339 Site U1385 (Hodell et al., 2015).

• Extension of the Site U1385 record beyond the last 1.45 My (MIS 47) permits the study of 
MCV for the earlier part of the Quaternary and late Pliocene, prior to the intensification of 
NHG, including linkages and phase relationship with the polar ice core and European 
terrestrial records.

• Variations in sediment color and other physical properties at Site U1385 display very strong 
cyclicity throughout the Pliocene and Pleistocene (Figure F27), permitting the development of 
an orbitally tuned timescale and correlation to Mediterranean cyclostratigraphy. The cycles 
can be matched one-for-one between Site U1385 and Sites U1586 and U1587 (Figure F11), 
providing a powerful cross check of the completeness of the stratigraphic sections.

• Complete recovery of Pliocene sediments to 5.3 Ma permits studies of variability under 
warmer climate conditions and atmospheric CO2 concentrations similar to today.
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A total of 1515.2 m of sediment was recovered at Site U1385 in five holes (U1385F, U1385G, 
U1385H, U1385I, and U1385J), four of which were drilled to a total depth of 400 mbsf. One litho-
stratigraphic unit was defined that primarily consists of nannofossil ooze with varying amounts of 
clay, indicating the dominance of hemipelagic sedimentation. Cyclic color banding is evident 
throughout all cores. Drilling disturbance is present in many cores from all holes, ranging from 
slight to severe, which varies with the drilling system, operation conditions, and gas (methane) 
content of the sediments.

On the basis of 15 nannofossil and 11 planktonic foraminifer bioevents, the ~400 m thick sedi-
mentary succession at Site U1385 ranges in age from the Pleistocene to the earliest Pliocene. Both 
nannofossils and foraminifers show good preservation and are abundant throughout the section. 
The zonal schemes of the two microfossil groups are in good agreement and consistent with pre-
vious biostratigraphy of Expedition 339 Site U1385 for the upper 150 mbsf.

Magnetostratigraphy of Site U1385 was established based on the NRM (after 20 mT demagnetiza-
tion) inclination and (orientation-corrected) declination data from archive-half core sections and 
stepwise NRM demagnetization data from discrete cube samples. The B/M boundary (0.773 Ma) 

Figure F26. Lithologic summary, Site U1385. Left: summary lithostratigraphic logs of Holes U1385F–U1385J. Right: lithologic unit names and preliminary interpreta-
tions of depositional processes. Colors are based on visual description as well as L*a*b* values. Color is independent of lithology and is related to relative amounts of 
minor constituents such as pyrite and glauconite. Inset: cropped section of Seismic Line JC89 Line 9 showing location along transect and depth of Holes U1385F–
U1385J. TWT = two-way traveltime, CMP = common midpoint, SB = seabed, BPle = base Pleistocene, BUPli = base of Upper Pliocene, BPli = base Pliocene.
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is identified in APC cores from Holes U1385G, U1385I, and U1385J. The Jaramillo Subchron is 
recorded in XCB cores from Holes U1385F, U1385G, U1385I, and U1385J. The Olduvai Subchron 
(1.775–1.934 Ma) and the M/G boundary (2.595 Ma) are recorded in XCB cores from Holes 
U1385F, U1385G, U1385H, and U1385J. The magnetostratigraphy and biostratigraphy are gener-
ally in good agreement, and sedimentation rates vary between 9 and 11 cm/ky (Figure F18C).

In the upper 150 m CSF-A, the IW chemistry of Expedition 397 Site U1385 is very similar to that 
of Expedition 339 Site U1385 (Expedition 339 Scientists, 2013b). Sulfate shows a two-step 
decrease before reaching values of zero by 48.8 m CSF-A (Figure F19). The first step represents 
organoclastic sulfate reduction, and the second represents anaerobic oxidation of methane 
(Turchyn et al., 2016). Once sulfate reaches zero, methane increases, reaching maximum values of 
~35,000 between 100–280 m CSF-A. Alkalinity, ammonium, and phosphate also increase in the 
upper 50 m CSF-A in conjunction with sulfate reduction. Calcium declines in two steps in the 
upper 50 m, likely reflecting authigenic precipitation of carbonate as a consequence of increased 
alkalinity associated with the two-step change in sulfate reduction.

Figure F27. Core composite downhole trends of physical properties data, Site U1385. MSP = section-half point MS, NGR = 
whole-round NGR, cps = counts per second. The red MSP data are the same as the original signal but with an expanded 
scale to emphasize the cyclic variability. MSP, L*, and RGB-blue: smoothed curve (black line; 20-point moving average) is 
shown over original data (gray line). NGR: only original data is shown.
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The CaCO3 content of the sediment averages 38.8 wt%, varies between 15.2% and 63.3%, and is 
positively correlated with L* reflectance and negatively correlated with NGR. TOC, TN, and TS 
values at Site U1385 are generally low with a mean value of 0.48, 0.005, and 0.115 wt%, respec-
tively. Organic C/N ratios (mean = 20.2) indicate that organic matter is marine dominated with 
higher terrestrial input in the upper 75 m CSF-A.

Bulk sediment geochemistry suggests that Ca is primarily biogenic carbonate, and because of the 
incorporation of Sr into biogenic carbonates, both elements show an inverse relationship with Al. 
Barium is weakly correlated with Al or Ca, likely due to the presence of barite. Manganese seems 
to be mainly associated with carbonate. Elemental ratios of Ca/Ti, Si/Al, Ti/Al, Zr/Al, K/Al, Sr/Ca, 
and estimated biogenic Ba are suggested as potential proxies of provenance, weathering, and pro-
ductivity.

Physical properties data acquired from whole-round measurements follow those from split core 
measurements. A decline in MS in the upper 50 m follows sulfate reduction in the sediment pore 
waters, suggesting that H2S from sulfate reduction reacts with Fe in magnetite to produce iron 
monosulfides and pyrite. The cyclic variations in MS, NGR, and L* color reflectance parameter 
values are particularly strong throughout all holes at Site U1385 (Figure F27), showing lower MS 
and NGR values in carbonate-rich sediments with higher L* values and higher MS and NGR val-
ues in clay-rich sediments with lower L* values. The gradual increasing trend of bulk densities, 
thermal conductivity, and P-wave velocity and the decreasing trend in porosity are attributed to 
the compaction of sediments with depth. The X-ray images reveal the presence of pyritized 
burrows, authigenic minerals, gas expansion, and drilling disturbance. Comparisons of physical 
properties measured for Expedition 339 Holes U1385A–U1385E and Expedition 397 Holes 
U1385F–U1385I show good agreement between expeditions.

Stratigraphic correlation between holes at Site U1385 were accomplished using Correlator soft-
ware (version 4.0.1). Tie points were established using the L* color reflectance parameter, whole-
round MS, and the blue color channel extracted from the core images (RGB-blue). We constructed 
a splice from 0 to 452.7 m CCSF-A using all five of the newly drilled holes at the site (U1385F–
U1385J). The data from Site U1385 will be integrated postcruise with Expedition 339 Holes 
U1385A–U1385E to produce a common spliced composite section. The Pliocene sequences of 
Sites U1586 and U1587 correlate cycle-for-cycle (Figure F11).

5.4. Site U1588

5.4.1. Background and objectives
Site U1588 is the closest to the coast and the shallowest of the proposed depth transect (1339 
mbsl) (Figures F1, F2, F28). The site is on a drift deposit formed under the influence of the lower 
MOW (Hernández-Molina et al., 2014). It lies on the broad, gently inclined middle-slope region of 
the PPA, where the seismic data indicate an extensive plastered drift deposit located on the distal 
part of the contourite system (Figure F29). The water depth of Site U1588 complements the sites 

U1588
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Figure F28. Location of Site U1588 on the Promontório dos Príncipes de Avis (PPA) at a water depth of 1339 mbsl. See 
Figure F2 for broader bathymetric context. (Figure made by Helder Pereira using Mirone and iVew4D software.)
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drilled during Expedition 339 in the Gulf of Cádiz (Sites U1386–U1390) and along the Portuguese 
margin (Site U1391) at intermediate water depths (560–1073 mbsl) to study past variations in the 
depth and intensity of the MOW.

Our objective at Site U1588 was to drill multiple holes to 500 mbsf to recover a continuous and 
complete Pliocene–Pleistocene sedimentary succession (Figure F29). Sedimentation rates at Site 
U1588 are the highest (±20 cm/ky) of the four sites drilled during Expedition 397 (Figure F7), 
which provides a marine reference section for reconstructing climate variability at high temporal 
resolution (millennial to submillennial) and studying how the MOW has varied on orbital and 
millennial timescales.

5.4.2. Operations
The operational plan for Site U1588 was to core five holes with the APC/XCB systems. The first 
three were to be cored to 500 mbsf, and the final two holes were to be cored to 250 mbsf. Down-
hole logging measurements were to be conducted in Hole U1588D. Because of time constraints 
toward the end of the expedition and unexpectedly high methane gas content in the formation, the 
coring plan was shortened to three holes to approximately 350 mbsf and a fourth hole cored as 
deep as possible with the remaining time, reaching a final depth of 412.5 mbsf. Downhole logging 
was canceled.

Figure F29. Original and interpreted seismic profile (TGS-NOPEC PD00-613) showing the location of Site U1588 with pene-
tration to ~400 mbsf. The depth of penetration and age of the reflectors have been revised to reflect the actual depth and 
age of the recovered sediment (data courtesy of TGS-NOPAC Geophysical Company ASA). TWT = two-way traveltime, 
CMP = common midpoint.
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Significant core expansion and curatorial difficulties encountered in Hole U1588A due to high 
methane gas content in the sediment led to a change in the XCB coring strategy starting with Core 
397-U1588A-25X and followed at all subsequent holes at the site. XCB cores were taken using half 
advances, giving cores room to expand inside the core liners as gas was released.

Holes U1588A, U1588B and U1588D were APC cored to 154.2, 81.8, and 90.5 mbsf, respectively, 
and then XCB cored to their final depths. Because of increasing seas, APC coring was dropped in 
Hole U1588C in favor of drilling ahead to 92.0 mbsf before starting to XCB core the lower section.

A total of 242 cores were taken at the site, 37 APC and 205 XCB. All APC cores used nonmagnetic 
core barrels and were oriented using the Icefield orientation tool. In total, 1377.1 m were cored, 
recovering 1748.93 m (127%). Formation temperature measurements were done with the APCT-3 
tool in Hole U1588A on Cores 4H, 7H, 10H, and 13H. Site U1588 took 186.75 h (7.8 days) to 
complete.

5.4.3. Principal results
Principal results for Site U1588 are as follows:

• Successful demonstration of an alternative coring method for gassy sediment involving half 
advances of the XCB, thereby allowing the core to expand into the empty part of the liner.

• Recovery of an expanded 412.5 m sequence spanning the last 2.2 My with sedimentation rates 
averaging 18 cm/ky (Figures F18D, F30). 

• Recovery of a marine reference section for studying Quaternary climate variability at very 
high temporal resolution (millennial to submillennial), including changes across the mid-
Pleistocene transition.

• Proxy signals of surface temperature (e.g., alkenones, planktonic δ18O) will constitute a marine 
sediment analog for the Greenland ice core.

• Contourite sedimentation under the influence of the lower MOW will, in conjunction with 
other Expedition 339 sites (Expedition 339 Scientists, 2013a), provide a detailed history of the 
response of the MOW to orbital and millennial climate change.

At Site U1588, because of the significant core expansion, all depths of the scientific results are 
reported in meters on the core depth below seafloor, Method B (m CSF-B), scale hereafter. The 
CSF-B depth scale corrects for core expansion by uniformly compressing the recovery to the ad-
vance of the bit (driller's depth).

The ~412.5 m thick sedimentary succession drilled at Site U1588 consists of one lithostratigraphic 
unit (Figure F30). Most sediments are from Lithofacies 1 and consist primarily of nannofossil 
ooze, with varying amounts of inorganic/detrital/recrystallized calcium carbonate of indetermi-
nate origin (hereafter termed “carbonate”) and clay. The abundance of nannofossil ooze with sub-
stantial amounts of clay and carbonate indicates the persistence of hemipelagic sedimentation and 
an indeterminate (recrystallized or detrital) source of carbonate at Site U1588 through the Pleisto-
cene. Foraminifers, diagenetic features (dark patches and pyrite), and rare, subtle color banding are 
disseminated throughout the cores. Bioturbation varies from absent to heavy and generally 
increases downhole. Deformational sedimentary structures are rare and, when present, are at a 
decimeter scale. Drilling disturbance is present within most cores in all holes, varies from slight to 
severe, and is influenced by the drilling type, operation conditions (ship heave), and methane gas 
contents of sediments.

Site U1588 ranges in age from the Holocene to the early Pleistocene (~2.2 Ma) based on calcareous 
nannofossil (21 bioevents) and planktonic foraminifer (6 bioevents) biostratigraphy. The zonal 
schemes of calcareous nannofossils and planktonic foraminifers generally agree, indicating an 
average sedimentation rate of 18 cm/ky (Figure F18D).

The site revealed excellent preservation for all microfossils, including biogenic Si, mainly in the 
form of diatoms, sponge spicules, silicoflagellates, and radiolarians at specific depth intervals that 
are associated with some glacial terminations (e.g., Terminations XII, VI, and V). The occurrence 
of biogenic silica at these terminations is in good agreement with observations from Expedition 
339 Site U1391 (Abrantes et al., 2017). All calcareous microfossils, including coccoliths, plank-
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tonic and benthic foraminifers, and ostracods, are abundant and are generally well distributed 
throughout the succession. Excellent preservation is also indicated by the presence of pteropods. 
Ostracod diversity increases toward the top of the sequence, and variations in planktonic foramin-
ifer species composition throughout the Pleistocene are likely associated with glacial–interglacial 
or even millennial-scale climate fluctuations. Benthic foraminifer assemblages suggest variability 
in organic flux and/or oxygen conditions relative to changes in surface productivity and bottom 
water oxygenation.

Magnetostratigraphy of Site U1588 was established based on the NRM (after 20 mT demagnetiza-
tion) inclination and (orientation-corrected) declination data from archive-half core sections and 
stepwise NRM demagnetization data from discrete cube samples. The B/M boundary (0.773 Ma) 
is identified in APC cores from Hole U1588A and XCB cores from Holes U1588B–U1588D. The 
Jaramillo Subchron (0.99–1.07 Ma) and the top of the Olduvai Subchron (1.775 Ma) appear to be 
recorded in XCB cores from all four holes. The bottom of the Olduvai Subchron (1.934 Ma) is only 
recorded in XCB cores from the deepest Hole U1588D (below 350 m CSF-B).

Geochemistry of IW samples show that alkalinity, ammonium, and phosphate increase in the 
upper 50 m, whereas sulfate shows a two-step decrease in the upper 50 m (Figure F19), indicating 
organic matter respiration. At this site, the sulfate reaches zero and stays low. Methane levels 

Figure F30. Lithologic summary, Site U1588. Left: summary lithostratigraphic logs of Holes U1588A–U1588D. Right: lithologic unit name and preliminary interpreta-
tion of depositional processes. Colors are based on visual description as well as L*a*b* values. Inset: cropped section of Seismic Line JC89 Line PD00-613 showing 
location along transect and depth of the holes at the site. TWT = two-way traveltime, CMP = common midpoint, SB = seabed, MPle = Middle Pleistocene.
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increase to about 45,000 ppmv at 50 m CSF-B but decline to ~5,000 ppmv by 100 m to the bottom 
of the hole. Given the consistently high degassing of sediment below 50 m CSF-B, it is likely the 
decrease in methane concentrations measured in headspace samples does not accurately reflect 
the sediment gas content, which is supported by very high methane concentrations measured in 
void gas.

CaCO3 content varies between 16.0% and 53.6% and averages 30.2 wt%. The CaCO3 content deter-
mined by coulometric titration shows consistent results with stoichiometric CaCO3 calculated 
from the Ca concentrations measured by ICP-AES, and both are positively correlated with L* 
reflectance and negatively correlated with NGR, TOC, TN, and TS. TOC, TN, and TS values at 
Site U1588 are generally low, ranging 0.30–1.89 wt% (mean = 0.74 wt%), 0.042–0.189 wt% (mean = 
0.085 wt%), and 0–3.18 wt% (mean = 0.291 wt%), respectively. Organic C/N ratios (3.04–16.5; 
mean = 8.97) suggest that organic matter is marine dominated.

Bulk sediments SiO2, K2O, and TiO2 show strong positive correlations with Al2O3, indicating the 
dominance of terrigenous detritus. Relatively weak correlations are observed for Fe2O3, MgO, 
Na2O, MnO, and Ba against Al2O3 due to the widespread presence of authigenic and biogenic 
phases such as pyrite, dolomite and/or Mg-bearing calcite, halite (NaCl) precipitated from seawa-
ter, Mn hydroxides, and barite, respectively. Bulk sediment Ca primarily represents biogenic car-
bonate (CaCO3), and because of the incorporation of Sr into biogenic carbonates, both elements 
show an inverse relationship with Al. Elemental ratios of Ca/Ti, Si/Al, Ti/Al, Zr/Al, K/Al, Sr/Ca, 
and estimated biogenic Ba are potentially useful proxies for provenance, weathering, and produc-
tivity.

Physical properties data acquired from whole-round core measurements for Site U1588 are in 
good agreement with measurements carried out on split core and discrete samples. A decrease in 
MS at shallower depths follows sulfate reduction in sediment pore waters. The cyclic variations in 
MS, NGR, and L* values are distinct throughout all holes (Figure F31), showing lower NGR and 
MS values in carbonate-rich sediments with higher L* values, whereas higher MS and NGR values 
occur in clay-rich sediments with lower L* values. The gradually increasing values of bulk density, 
thermal conductivity, P-wave velocity, and a decreasing trend in porosity are attributed to the 
compaction of sediments with increasing depth. X-ray imaging of the core sections revealed the 
presence of authigenic minerals and burrows, further evidence of gas expansion, and drilling dis-
turbance.

Four downhole formation temperature measurements were made in Hole U1588A. The calculated 
in situ sediment temperatures yields a geothermal gradient of 33.2°C/km and a heat flow of 32.0 m 
W/m2, which are slightly lower than the published value for the region.

Stratigraphic correlation between holes at Site U1588 was accomplished using Correlator software 
(version 4.0.1). Tie points were established using MS from the Whole-Round Multisensor Logger 
(WRMSL) as well as NGR. A splice was constructed from 0 to 366 m core composite depth below 
seafloor, Method B (CCSF-B) using four holes (U1588A–U1588D). The drilling and correlation 
strategies were unique at this site due to the severely expanded cores. A mixture of APC, full-
advanced XCB, and half-advanced XCB coring was used for different levels of core expansion at 
each hole. Instead of the CSF-A scale, the CSF-B scale was used for correlation, producing the 
CCSF-B composite depth scale. Considering the high-quality XCB cores and the high sedimenta-
tion rate at this site, the composite section was nearly complete with only one possible small gap.
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