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ABSTRACT: Astrometry, the precise measurement of star motions, offers an alternative avenue
to investigate low-frequency gravitational waves through the spatial deflection of photons,
complementing pulsar timing arrays reliant on timing residuals. Upcoming data from Gaia,
Theia, and Roman can not only cross-check pulsar timing array findings but also explore the
uncharted frequency range bridging pulsar timing arrays and LISA. We present an analytical
framework to evaluate the feasibility of detecting a gravitational wave background, considering
measurement noise and the intrinsic variability of the stochastic background. Furthermore,
we highlight astrometry’s crucial role in uncovering key properties of the gravitational wave
background, such as spectral index and chirality, employing information-matrix analysis.
Finally, we simulate the emergence of quadrupolar correlations, commonly referred to as
the generalized Hellings-Downs curves.
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1 Introduction

Recent breakthroughs in pulsar timing arrays (PTAs) have heralded a transformative era
for the observation of gravitational waves (GWs) at nano-Hertz (nHz) frequencies. These
advancements leverage the precise timing information obtained from pulsars, enabling a
galactic-scale gravitational wave detector. This innovative approach first led to the detection
of a common-spectrum process by the Nanohertz Observatory for Gravitational Waves
(NANOGrav) collaboration [1], a finding subsequently corroborated by the Parkes PTA,
European PTA, and International PTA [2-4]. More recently, multiple PTA collaborations
have found evidence for the quadrupolar angular correlation of these signals on the sky [5-8].
These collective findings consistently support the presence of a quadrupolar correlation
function known as the Hellings-Downs curve [9], a pivotal characteristic of gravitational-wave
induced timing residuals. Furthermore, the amplitude and spectral index of the inferred
stochastic gravitational wave background (SGWB) align broadly with predictions derived for
a cosmological population of supermassive black hole binaries (SMBHBs) as the gravitational
wave sources [10, 11]. Nonetheless, while not definitively ruled out, certain cosmological
sources may still provide potential explanations for the observed SGWB.

On a parallel front, it is essential to note that GWs not only perturb photon travel times
but also deflect their paths. This phenomenon serves as the basis for astrometric detection of
GWs, which relies on measuring correlated wobbling movements of stars on the sky [12-16].
Astrometry represents another promising avenue for the detection and characterization of
gravitational waves, providing a complementary perspective to the PTA approach [17-30].
While astrometry currently has less constraining power than PTAs [23, 27, 29], complete



datasets from space-borne astrometry missions like Gaia [31], including full time series, have
the potential to provide sensitivity comparable to PTAs. The next-generation astrometric
observations have the potential to exceed the sensitivity of PTAs [26].

Compared to PTAs, astrometry boasts several noteworthy complementary advantages.
The distinct response functions of PTA and astrometry make them sensitive to incoming GWs
from different directions as pulsars or stars are more concentrated toward the direction of the
Galactic Center [17]. Additionally, the strain sensitivity of astrometry remains nearly constant
across the frequency spectrum [17], unlike the linear decrease in PTA sensitivity toward higher
frequencies. This opens a new window for GWs, exploring uncharted frequency ranges lying
between PTAs and the Laser Interferometer Space Antenna (LISA) band [32]. For instance,
the Nancy Grace Roman Space Telescope (Roman), with its significantly higher observing
cadence, can indeed extend the frequency range to above 10~ Hz [28, 33-35]. Moreover,
the presence of parity-odd correlations among astrometric observables or PTA-astrometry
cross-correlations can reveal the existence of a chiral component of SGWB [21, 30, 36]. Hence,
it is imperative to explore in detail the prospects of astrometry.

This study is dedicated to forecasting the potential of astrometry in discovering SGWBs
and characterizing their properties with future data releases, in conjunction with PTAs or
without. We establish a framework for predicting the feasibility of astrometric SGWB detection
and the resolution of key SGWB parameters. These parameters, including the normalization
of characteristic strain, spectral index, and chirality, are crucial for comprehending the
distribution of SMBHBs, their potential interaction with the environment, and the presence of
any sub-leading cosmological sources. The vector nature of astrometry observables introduces
various options for cross-correlations [19, 21], in addition to the redshift-only correlation of
PTA. Each of these correlations possesses unique quadrupolar correlation functions [19, 21]
and corresponding variances due to the stochastic nature of GWs. Identifying them will not
only provide a cross-check of the PTA Hellings-Downs curve at nHz but may also uncover
a GW signal at higher frequencies.

The paper’s structure is organized as follows: in section 2, we review the basics of both
PTA and astrometry for the detection of the SGWB. Moving to section 3, we analytically
calculate the sensitivities for various cross-correlation choices associated with PTA and
astrometry and evaluate the resolution of key SGWB properties. Section 4 delves into the
simulation of spatial correlations, specifically exploring the generalized Hellings-Downs curve,
and offers a theoretical insight into intrinsic variance of SGWBs. Finally, in section 5, we
draw our conclusions and discuss our findings.

2 PTA and astrometric detection of the stochastic gravitational wave
background

2.1 Responses and angular correlations for PTA and astrometry

GWs induce perturbations in the paths of photons along geodesics. These perturbations
give rise to two distinct categories of observable phenomena: shifts in the temporal arrival
of photons and the proper motion of their sources across the celestial sphere [16]. PTAs,
functioning as an exceptional network of cosmic clocks, possess the remarkable capability



to precisely measure the arrival times of radio pulses from distant pulsars. On the other
hand, astrometry is dedicated to the precise determination of the positions and motion of
stars across the celestial sphere. The shifts depend on both the metric perturbations at the
observation point (Earth term) and on the emission sources (pulsar or star terms). However,
the latter can usually be disregarded when the distance between the two points significantly
exceeds the wavelength of the GWs [19], or treated as noise when correlations among different
baselines result in only the Earth term being coherently summed up. For the purposes of
this study, we will focus solely on the Earth term.

The received GW strain at a specific location can be represented as a sum of fre-
quency modes:

hi () = /m df/dQQth(ﬁ Q) e (€) 2ift (2.1)
. .

In the above equation, f, Q and P label the frequency, incoming direction, and polarization
mode of the GW, respectively. In this work, we will only consider polarization modes within
the framework of Einstein’s gravity. The strain amplitude in the frequency domain is given
by hp(f,€), and eg(ﬁ) is the polarization basis tensor satisfying eg(ﬁ)fg,(fl) = 26pf>/. The
time-domain strain imposes a real condition, necessitating that hp(f, Q) = hp(—f, Q)* and
EZ(Q)* = eﬁ(ﬂ) for linear polarization basis P = +/x. The frequency-domain signals from
PTAs and astrometry can be universally expressed as [36]:

Xulf) = X(10) = [ 20 h(£, Q) () RE(S 5. (2:2)
P

Here, we introduce X = {0z, dx} to encompass both the photon redshift §z from PTAs and
the proper motion on the celestial sphere dx from astrometry. The subscript a designates the
a-th pulsar/star, with the line-of-sight direction denoted as fi,. The redshift and astrometric
response functions are elucidated in ref. [16] as follows:

n'n’

A A 1 npl A 1 A i
RY (Q, 1) = () , R(;Jrl(ﬂ,n) =3 1_l_m(nl + QY — 8iad | . (2.3)
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Here, we utilize a Cartesian coordinate system where the components are labeled by ¢, j
and [. Notably, the timing residual signal represents the time integral of the redshift ¢z,
introducing an additional factor of 1/(27f).

For a Gaussian, stationary GW background, the two-point correlation function of hp
is as follows:

(hp(f, Q) hp (f1, )"y = 6(f — ) 6(S2, ) Ppp(£.Q), (2.4)

where Ppp:(f, fl) represents the power spectrum of correlation between the P mode and
the P’ mode. When the SGWB exhibits isotropy, the power spectrum matrix can be
parameterized as [37]:

1) —iV(f)> (25)

Pep(f) = (iV(f) 1(f)



for P/P’' € {4+, x}, where the real quantities I(f) and V(f) represent the total intensity
and the circular polarization, respectively. The isotropic SGWB, as defined in egs. (2.4)
and (2.5), results in correlations between two received signals from a pair of pulsars, stars,
or pulsar-star pairs, as follows:

(Xa(£) X5 (f)) = 6(f = f) / Q> (Pep(£) () ) (0)7) RE(Q,0,)RE (€, 8).
PP’
(2.6)

For PTA with redshift correlations, eq. (2.6) leads to the well-known Hellings-Downs
curve [9]:

(6za(£)825(f)) = 6(f = f") I(f) T=(Bup),
0= [1 (s 2) 6 (s ) (s g)] e

where the function I',(6,,) depends solely on 6,, = i, - fi, due to the rotational invariance
of an isotropic SGWB.

Correlations involving astrometric motions of a pair of stars or a star and a pulsar
can be categorized into directions that are parallel (éﬁ and éﬁ) and perpendicular (&) to
their great arc [19], defined as:

ﬁa X ﬁb
1 — (fg - 0yp)?

b _ éj_xﬁb
RV YR e

Using these definitions, the correlations in eq. (2.6) can be simplified to the following
expressions [19, 21, 30, 36]:

é
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(02a(£)xi () = 6(F = f) (1()) &} +iV(f) &.) Tasn(bur),

(2.9)
(Oxa (105 () = 8(F — ') [1(£) (8] +&181) +iV () (8fe1 —&18])) | Dox(O),
where the dimensionless correlation functions satisfy
A7 . 0\ 2 0
I.5x(0) = —sin(0) |1+ 3 (tan ) In (Sln ) ,
3 2 2
(2.10)

2 2 2
Féx(e) = 2% ll -7 (sin z) —12 (sin g) <tan g) In (sin Z)] )

These functions are commonly known as generalized Hellings-Downs curves.

2.2 Gravitational wave signal in spherical harmonic space

An alternative representation of SGWB signals in PTAs and astrometric observation is
achieved through the use of spherical harmonic space, as demonstrated in prior works such as
refs. [21, 28, 38-40]. The key advantage of this representation lies in its ability to diagonalize
both the signals and the SGWB-induced variances, simplifying the definition of estimators.



In this formalism, both the GW-induced redshift and angular deflection can be expressed
as discrete summations over the harmonic basis:

oS) l
0zq(f) = Z Z 2om (f)Yem (fia)

f:j ""‘7@ (2.11)
5%a(£) = Y0 32 [Ban(f)Yhin(B1a) + B (£) Y13 (8)|

{=2m=—{

where Yy, represents spherical harmonic functions, and Yfm and Yfm are the F- and B-
components of vector spherical harmonic functions, respectively. Correspondingly, 2z, (f),
Eun(f), and By, (f) are their respective expansion coefficients. Employing the orthogonality
of the spherical harmonic basis, we can determine these components as follows:

zﬁm(f) = 52 dzﬁéza(f) Yom (ﬁ)* )
Eﬁm(f) = 52 dgﬁéxa(f) ’ YZEm(ﬁ)* ) (212)
Bum(f) = |, *R0%a(f) - YE,(8)".

It is important to note that in realistic observations, a finite number of pulsars and non-
uniform distributions of pulsars/stars should be taken into account when reconstructing
these components. These factors can lead to a mixture of modes and consequently introduce
noise [41]. However, recent simulations using mock data have shown that the influence of
this mixture is negligible [40].

To simplify notation, we introduce Xy, = {zem, E¢m, Bem} to represent all spherical-
harmonic components. With this representation, we can construct the rotationally invariant
power spectra:

1 ¢

CrY(f) = T+ m;gXém(f) Xom ()" (2.13)

These power spectra satisfy C;~ "(f)r = cf "X(f). Here, T represents the total observation
time, which is used to account for the factor 6(0) — 7" in the discrete frequency domain.

A convenient way to calculate Xy, is by using the total angular momentum (TAM)
decomposition of GW strain [42], which includes both transverse polarization modes, denoted
as a € {TE,TB}. Consequently the GW-induced (h) spherical harmonic components can
be expressed as [21]:

Xg(f) =S anit BN ng, (f), (2.14)

for £ > 2. Here, F£X " are projection factors derived for various combinations of X and
« [21]. The respective strain amplitudes, denoted as h{,, (f), exhibit correlations that can
be parameterized as:

(B (F) R (1)) = 28(f — F") 02 Surame P (f) - (2.15)



This assumes an isotropic SGWB with vanishing linear polarization components. The power
spectra matrix P,g is structured as [37, 43]:

(1) —v(p)
P”ﬁ(f)_<iV(f) 1) ) 210

for a/p € {TE,TB}.
The ensemble average of CfX/( f) comprises an independent sum of GW-induced signals
(h) and measurement noise (n):

(CEN) = Cge (N + Caje (1), (217)
The signal part is directly derived from eq. (2.14) and (2.15):

OX¥ (f) = 3202 S F O B P Pas(f). (2.18)
a?ﬁ

More explicitly, each component of eq. (2.18) is directly related to either the total inten-
sity I(f):

Clme(f) =1(f) A,
Cliye(f) = Cluyi(H) = 1(f) Ae BE, (2.19)
Cie(f) = I(f) A¢ By,
or the circular polarization V(f) [25, 30, 36]:

CiRi(f) = =iV (f) Ae By,

. (2.20)
Clsi(f) = =iV (f) A BE.
Here, we define
2
A= 167 B=——2 _ (2.21)

(C+2)((+ el —1) SN (=T A

On the contrary, the Gaussian noise inherent in each measurement results in an /-
independent noise spectrum [39]. In the case of a uniform distribution of Ny pulsars or
patches (Ngp = Np = Njx) on the celestial sphere, the noise spectra in harmonic space
can be expressed as:

_ 4mSS) 5

N J=1") 0 Sy Sxx7- (2.22)
X

(X (1) Xprr (1))
Here, Sg?)( f) represents the noise spectra from each pulsar/patch. For astrometry, these
spectra satisfy Sg)( f) = Sgl)( f) = S(gz)( f), where Séz)( f) is the measurement noise of
the average proper motion of the patch. The rotational invariant noise spectra directly
follow from eq. (2.22):

’ 47TS(n)
Cine () = ]\)er(f) Sxxr (2.23)



3 Dissecting the stochastic gravitational wave background

In this section, we assess the sensitivity of both PTA and astrometry utilizing rotational
invariant power spectra Cg( X' As highlighted earlier, these observables derive considerable
advantage from their diagonal nature in harmonic space. Our exploration commences with
the formulation of estimators built upon Cj(X/, followed by a thorough analysis of their
properties. Subsequently, we employ the information matrix [44-46] to gauge the sensitivity
towards total intensity, spectral index, and chirality.

3.1 Rotational invariant estimators

In the frequency domain, discrete frequencies fj span from 1/7T to 1/(2At), where At is the
cadence of observation. We use the integer k to label measurements in a certain frequency
bin such that CXX/ = CXX'(fy). The total intensity I can be estimated from X X' =
2z/EE/BB/zE, while the circular polarization V}, arises from the parity-odd observables
2B/EB. Each estimator is directly constructed from eq. (2.19) and (2.20):

EE/BB E
7 = sz; - 4775?12/]\[2 jEE/BB _ Ce k /BB _ 47TS§Z?I</N5X ~E R {Czk}
B L A

= zE
bk = Ay ’ Lk B AgBl? ’ bk = Ang
o EB Cx zB
VEB — S {CM} V2B = o [CM] (3.1)
bk = AB kT 4B '

whose ensemble averages are either [ or Vi. Given that each power spectrum in harmonic
space is independent, the signal-to-noise ratio (SNR) of these estimators in a given frequency
bin receives contributions from all achievable ¢-modes:

2
RS 2]
- 5 .
=2 | xx0 4n3§?)k 5 oXxX 47rs("> X ans),
(h)e, kT XX/ (R),k T T Nx (h)e, kT Ny
(3.2)
- (2£+1)( Cliyen! (€ h)ék:+47TSXk/NX)) , X=X
- 2(20+1)|C
e:z; — it — X £ X
‘C()flff, X +(C(W k+47rSX7k/NX)(C()fl)fk-&-zmsx,’k/NX/)

Here, lax ~ /Nx /2 is the highest observable ¢ for the constructed power spectra. The
denominator corresponds to the variance of the estimator in eq. (3.1), derived using Isserlis’
theorem [47] for Gaussian fields Xy,,.

To gain a quantitative understanding of eq. (3.2), we depict the SNRZ as a function of
& = Ik/(4775§?3€/NX) in figure 1 for the I, estimators. These estimators include PTA-only
(zz) in blue, astrometry-only (E'E or BB) in orange, and PTA-astrometry cross-correlation
(zF) in green. Two scenarios are presented with £, = 10 (solid lines) and 50 (dashed lines).
The PTA-only case (zz) aligns with results previously obtained using cross-correlations in
separation-angle space [48]. To better understand the behaviour of the results plotted in
figure 1, we consider the plot categorized into three regions:
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Figure 1. SNRXY' plotted against &, = I,/ (477*9;3@ /Nx) for I}, estimators, encompassing PTA-only
correlation zz (blue), astrometry-only correlation FE or BB (orange), and PTA-astrometry cross-
correlation zE (green). Two options for the highest /~-mode constructed, £max = 10 (solid lines) and
50 (dashed lines), are considered. In the case of zF correlation, we assume S ink) /N, = J(EnL /NEg.

e Weak signal ({; < 1): the denominator of eq. (3.2) is dominated by the measurement
noise ~ Sg?;c, resulting in SNR? o 5,3.

e Strong signal ({ — 00): the measurement noise is subdominant, and the data variance
is predominantly determined by the stochastic variance of GW. The saturated value of
SNR? is 20m5< (20 + 1) = (€2, + 2lmax — 3)/2, which is universal for all cases.

max

e Intermediate signal: between the weak and strong signal limits, the contribution of
the lowest few f-modes of (C'(Xh))gk)2 surpasses that of the measurement noise. As
C()}(L))Zk decreases with higher ¢, the transition commences at lower values of ¢ > 2
until the f,.-mode becomes dominant. In this region, we introduce leg < fpax to
label the highest {-mode whose power spectra dominates over the measurement noise.
Consequently, the SNR becomes ngz(% +1) = (2 + 2ler — 3)/2. Lo can be related

to &k since C()fl))?k ox 1/ for large values of leg. Thus, for PTA-only with C(Z}f)e e <1/ &
and astrometry-only C('%')E& K= C(E;Lﬁ’ X1/ /8, SNR% scales as 5,1/ % and 5,1/ 3, respectively.

The zFE correlation behaves similarly to astrometry only, as for large fog, C(iﬁ/ f B

becomes comparable to the measurement noise much later than C(Z}f) 0k

The two cases with different ¢, exhibit nearly identical behavior in the weak signal regions,
start to deviate in the middle of the intermediate signal regions, and eventually reach
saturation at their respective maximum SNR values.

For estimators of circular polarization Vi, the variance incorporates C(Xh){k, which is
proportional to I. Consequently, their maximum SNR is typically suppressed by the ratio
of circular polarization Vj/Ij.



3.2 Sensitivity and parameter estimation

In addition to exploring the total intensity and circular polarization, many aspects of the
SGWB remain to be unraveled. In this section, we establish an analytical framework to dissect
the SGWB. This includes sensitivity estimation and the assessment of various pertinent
parameters, all based on the information matrix [44].

We introduce a vector Xy, . defined as follows:

Xemk = {zem ks Eemgs Bomi ) (3.3)

encompassing both redshift and astrometric observables. Assuming Gaussianity and station-
arity for both the SGWB and the measurement noise, each Xy, ; follows an independent
complex multivariate normal distribution:

Xgm’k ~CN (0, Eg’k) . (3.4)

Here, 3/, is the 3 x 3 covariance matrix:

Civer Cibor Cinon Clnen
Bek = | Cler Clyen Claren |+ Claye ! (3:5)
Clnex Cliyer Clnye Clit

where all the components are defined across eqgs. (2.19), (2.20) and (2.23).

Given the statistical independence of X, 5, for different m, ¢, and k, the joint probability
can be expressed as the product of individual probabilities. Consequently, the In-likelihood
function is given by:

emax

mL(X|0)=-3Y"% Z (X}, 1 Zek(O) ™ Ky e + In det £y (O)] + Comst, — (3.6)
k 0=2 m=—¢
where O represents the model parameters, and f]&k((?) is the covariance matrix constructed
from the corresponding model parameters. Importantly, ig,k(O) adheres to the condition
f]&k((?truth) = Xy, as defined in eq. (3.5), where Oguen represents the true parameters. The
ability to estimate the parameters is gauged by the information matrix [44]:

2InL
Ti=— ( ——
J <8(’)i8(’)j>

Here, O; represents the i-th parameter, and (...) denotes the ensemble average over Xy, i.

(3.7)

O=0¢;uth

The inverse of the information matrix Z provides the uncertainties for parameter estimation:
o*(0;) = (T V)i (3.8)

In cases where the only model parameter of interest is the GW spectrum intensity I, the
SNR of this amplitude is given by:

SNR? = Z IPo=2( (3.9)

It is crucial to note that the informatlon—matrlx analysis is accurate primarily when the
SNR is robust [45, 46, 49]. Therefore, we consistently choose SNR > 1 as the threshold to
ensure the validity of the subsequent discussion.



3.2.1 Power-law stochastic gravitational wave background

In this study, we examine power-law SGWB models and investigate the possible presence of a
circularly polarized component. The power-law model is a prevalent approach to characterize
the power spectrum of SGWB. Many SGWB models arising from astrophysical or primordial
origins can be effectively approximated by power laws in the nHz frequencies. The intensity
spectrum of this model is expressed as follows:

1 =ta( L) (3.10)

where frf represents the reference frequency, commonly chosen as fiof = 1/yr in PTA
observations, and « denotes the spectrum index. The dimensionless characteristic strain

hc(f)z./16wf1(f)zA<fif>a, (3.11)

with A = (1671t fref)l/ 2 serving as the strain amplitude normalization factor at fie¢. This

can then be defined as

normalization choice is in accordance with refs. [50, 51].

The spectral index of the SGWB can deviate from a constant value. At the low-frequency
end of the nHz spectrum, potential interactions with the environment [52-54] or orbital
eccentricities of SMBHBs [55] lead to a turning of the spectrum slope [10]. The high-frequency
turning, occurring around ~ 1079 Hz for SMBHBs with masses of ~ 10° M, happens as
SMBHBs approach the merger phase [56]. However, in the frequency range we consider, the
low-frequency deviation is expected to be small, while the high-frequency contribution is
sub-leading in sensitivity. Thus, we focus on a constant spectral index in the following.

Another feature of the SGWB is chirality, parameterized by macroscopic circular polar-
ization. Cosmological models, such as those described in refs. [57-61], can generate chirality
through parity-violating interactions. A finite sum of nearby SMBHBs can also produce a
random fraction of chirality [62-64]. As Clney in €q. (2.19) is dependent solely on Jj, and
lacks any Vj, dependence, measuring the isotropic circular polarization map using PTA-only
observations is not possible. It is noteworthy that PTA can still probe anisotropic circular
polarization [65—68], which is beyond the scope of this study.

Fiducial SGWB model from PTA observation. Recent observations by NANOGrav [5],
PPTA [7], EPTA [6], and CPTA [8] suggest that the SGWB signal is consistent with that
produced by SMBHBs. Assuming that the nearly-circular orbit evolution is predominantly
driven by GW emission, the SGWB spectrum can be well-described by a power-law model
with o = —2/3, despite a potential deviation at the low-frequency end due to environmental
effects or eccentric orbits [10, 69, 70]. With a = —2/3 fixed, the strain found by NANOGrav
(NG) is given by

—2/3
hYCG(f) = Ang frfef> . (3.12)

where Ang ~ 2.4 x 107 [5]. Utilizing eq. (3.11), the power spectrum of our fiducial
SGWB model has a reference intensity INs = (1/16m)A%qyr ~ 1.1 x 1073 yr. In the

ref



subsequent sections, the fiducial model will be employed to compare sensitivities across
different observational channels. Any deviation from o = —2/3 can be interpreted as
environmental effects or primordial origins.

Power-law model parameters. The power-law model involves two parameters, denoted
as O = {log;g A, a}. The derivatives with respect to these parameters are obtained through
the chain rule:

)
dlogyy A oI,

0 0

= 21In(10) ka 0

(3.13)

where we define the dimensionless factor Ay = 1/(T frer). The information matrix is ex-
pressed as

In(10)%2  In(kAj)In(10)
I= 42 <ln (kA¢)In(10) ln(k{AJv)2 )’ (3:-14)

where o, = 0(I)). Note that the matrix inside the summation may appear singular, but the
overall matrix after summation is not. The uncertainties of {log;, 4, a} are given by

s 4 [Sudi/od 1n<kAf>]2]
0,% >k I,%/Jl% ln(kAf)2

o 2(logyy A) = 41n(10)? l
k (3.15)

0'_2(04) —4 [Z L]E ln(k'Af)Q _ [Zk Ilz/o-l% ;H(/;Af)]Q] ’
K Ok 2k 1/ ok

respectively. An alternative parameterization using O = {log;;, 4,7}, where a = (3 —v)/2,
results in a straightforward rescaling of o(v) = 20(«).

The assessability of both A and « is significantly dependent on the total SNR. However,
the weighted summation of individual frequency bins adds complexity to the equations. In
the following, we will directly calculate o~2(a) and o~2(log;y A) and examine their behavior
in different observation channels.

3.2.2 Pulsar timing arrays

In PTA-only observations, the In-likelihood defined in eq. (3.6) exclusively involves the redshift
Z¢m,k, Obtained by marginalizing over all Fy,, and By ,:

max

ng k2lm,k 2 >
In Lpra) = Z Z Z CZZ)E T C'(ZZ) +In (C(Zh)&k + C(,f)e’k)] + Const.  (3.16)
k£ m=—/

As discussed previously, this likelihood is not sensitive to Vj.
According to eq. (3.8), the uncertainty of each {Ij} is given by

Lrmax S(n) -2
Uk2 — ((I_l)kk)_l — Z(QE—}— 1) ﬁ+[k (3.17)
(=2 Z
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The total SNR follows eq. (3.9)

emax _2 I
SNRZppy) =3 Y (20+1) [(gA)~ +1] 7, g=—Tb—, (3.18)
) ko 0=2 { } 47rS£7k)/NZ

which aligns with the estimator using C775 in eq. (3.2). Given various £ value ranges, the
SNR can be categorized into weak, intermediate, and strong signal regions, as discussed
in section 3.1.

PTA sensitivity to the power-law SGWB. We proceed to estimate the sensitivity to
the power-law SGWB in realistic PTA observations. The Gaussian noise for timing residual
consists of a white noise component and a red noise one, relatively well-fitted by the power-law
spectrum [71]. By transitioning from timing residual (TR) to redshift, the noise spectrum
for a single pulsar can be expressed as

f
fref

f
f ref

. 2
‘szﬁwm()fw@%ﬂ ),$WMEﬁmemwmw

Here, S,i’”) and SS”) are the corresponding noise components, org is the timing residual
uncertainty of each measurement for a pulsar, At is the cadence of the observation.

We consider recent NANOGrav and future SKA observations. The red noise for
NANOGrav is fit to be Sy) = 1.3 x 1072 yr and v, = 0 [5, 71], while for SKA, we as-
sume there is only white noise. The benchmark parameters for the two observations are
taken from [71] and [72, 73], respectively:

NANOGrav : orr = 80ns, At = 14days, Tops = 15yr, N, = 50,

3.20
SKA : orr = 30ns, At = 14days, Typs = 20yr, N, = 200. ( )

Here, Ty is the total observation time. Comparing our noise model for NANOGrav with
the fiducial SGWB model defined in eq. (3.10), we find that the SGWB dominates the noise
in the lowest 5 bins, consistent with NANOGrav’s result [5]. With N, = 50 pulsars for
NANOGrav, this leads to £,.x = 5, while for SKA, /.« = 10.

In the left part of figure 2, we depict the SNR distribution of the power-law SGWB as
a function of log;; A and « for both PTA observations. The fiducial SGWB model yields
an SNR~ 4.0 for NANOGrav (NG) and SNR~ 34.1 for SKA. Notably, we observe that
above SNR = 80, the NANOGrav sensitivity reaches a saturation phase, where a stronger
A no longer improves the SNR due to the intrinsic variation in SGWB, consistent with the
result in ref. [48]. On the other hand, for SKA with a larger value of £, and more sensitive
frequency bins, the threshold for saturation is significantly higher.

We also compute the estimation uncertainty of the power-law model parameters, log;, A
and «, using eq. (3.8), as illustrated in figure 3. For the fiducial SGWB model, the NANOGrav
case yields o(log;y A) ~ 0.25 and o(«) ~ 0.24, consistent with their data analysis [5]. In
comparison, the SKA demonstrates superior resolution over NANOGrav by factors of 21 and
14 for the two parameters, respectively. Akin to the total SNR observations, the uncertainty
ceases to improve beyond the saturation phase for NANOGrav.
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Figure 2. The SNR distribution as a function of the power-law SGWB model parameters, the reference
strain log;y A and spectral index « as defined in eq. (3.11), for the four considered observations. The
left two correspond to PTAs, while the right two represent astrometric observations. The white regions
indicate SNR < 1, where the information matrix is not applicable. Yellow stars mark the fiducial
parameters from eq. (3.12), with SNR values of 4.0, 1.5, 34.1, and 43.9 for NANOGrav, Gaia, SKA,
and XG-Gaia, respectively. The current exclusion region, defined as SNR > 10 for NANOGrav, is
highlighted by yellow dashed lines.

3.2.3 Astrometry

For astrometry, we have two independent measurements, Xy, . = {Eem i, Bem i}, resulting
in a covariance matrix:

CEE CEB CEE
o= e e o (e, ) oa
C(h)e,k C(h)z,k C(n)e,k

Here, ngi/ ]? B s proportional to I, while Cﬁﬁ 15 proportional to Vi. We insert the

covariance matrix eq. (3.21) into the likelihood function eq. (3.6), labeling it as In £ ,g)-
We first calculate the SNR of the total intensity Ij assuming vy = Vi/Ir = 0. The
measurement uncertainty of Ij follows eq. (3.8),

2 Yo 4m Sy, -
li (1) =2 20+1) | —25 1 . 3.22
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Figure 3. The resolution of the two power-law SGWB model parameters, o(log;y A) and o(«), as a
function of log;, A and «, for the four considered observations. The yellow stars correspond to the
fiducial parameters observed by NANOGrav, and the yellow dashed lines are excluded in its SNR > 10
region. The resolutions at the fiducial value, from top to bottom, are o(log;, A) = 0.25, 1.3, 0.012,
and 0.0056, and o(a) = 0.24, 1.3, 0.017, and 0.0080.

The total SNR is derived from eq. (3.9):

emax _2 I
SNRZ =23 Y 20+ 1) [(*ABH " +1] T, g¥=—TF — (323
(o= k(=2 [ ] 47r8§2k /Nsx

This expression is equivalent to the sum of estimators using kaE and Cf,f in eq. (3.2).
The SNR is very similar to that of PTA in eq. (3.17), despite the additional factor Be? x
1/(£(¢+ 1)), which makes higher /-modes more suppressed. Consequently, while astrometry
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can accommodate a significantly higher ¢, due to the larger number of stars compared to
pulsars, redistributing stars into an appropriate number of patches will not diminish sensitivity.

Astrometric sensitivity to the power-law SGWB. Due to the large number of observed
stars in astrometry, an efficient strategy, without sacrificing sensitivity, involves dividing
the celestial sphere into various patches [17, 18]. The distribution of these patches can be
realized through HEALPix [74]. Each patch combines the spatial deflections of stars on the
celestial sphere into an average dx. For Ng stars evenly distributed in Ngx patches, the
two-sided noise power spectrum of each patch is given by

S{g ) U%At

M 0" 3.24
¥ Ng/Nsx (3:24)

Here, oy represents the uncertainty of each measurement for a star. The SNR contribution
from a specific £-mode is characterized by 52" in eq. (3.23), which is independent of the
number of patches Ngx. On the other hand, Ngx determines fy,,«, influencing SNR, in the
strong signal region. Thus, a reasonable choice of Nsx is necessary in astrometric observation.
Gaia [31] and upcoming missions such as Roman [28, 33-35] and Theia [75, 76] play
pivotal roles in astrometric observations. The Gaia mission, having measured the proper
motion of over ~ 10° stars and ~ 10° quasi-stellar objects (QSOs) for more than 10 years, has
provided a rich dataset. The QSO data from Gaia has been leveraged to constrain ultralow
(<« nHz) frequency gravitational waves [23, 27, 29]. In this study, we consider the full dataset
from Gaia upon its release, including its comprehensive measurements. The proposed mission
Theia boasts significantly improved resolution but with a small field of view [75, 76]. We
anticipate that the next-generation upgrade of Gaia, which we abbreviate as ‘XG-Gaia’, will
achieve pas-resolution while maintaining its cadence and the number of observed stars [77].
The benchmark parameters for the two astrometric missions are listed as follows [17, 77]:

Gaia : o9 = 100 pas, At = 24days, Tpps = 10yr, Ng = 1.5 x 107,

3.25
XG-Gaia : o9 = 1 pas, At = 24 days, Tops = 20yr, Ng = 1.5 x 10°. ( )

Note that we adopt a conservative estimate for the number of stars compared to ref. [26].

We evaluate the SNR for various measurements of the power-law SGWB model, assuming
uniform distribution of stars across the celestial sphere, each possessing identical measurement
properties. While a total of Ng = 1.5 x 10° stars would allow for an fmax ~ 10, we opt for
Nsyx = 40000 for Gaia and XG-Gaia with £y, = 200, as further increasing the number no
longer significantly enhances the SNR within our parameter space of interest.

In the right panel of figure 2, we depict the SNR distribution of Gaia and XG-Gaia using
eq. (3.23) concerning power-law model parameters. Generally, PTA’s sensitivity exhibits a
more pronounced change in terms of «, attributed to its more tentative decrease in sensitivity
at higher frequencies. The fiducial SGWB signal yields an SNR ~ 1.5 for Gaia, compared
to 4.0 in NANOGrav, indicating Gaia resides in the marginal region for cross-checking
PTA discoveries. On the other hand, XG-Gaia achieves an SNR ~ 43.9, higher than SKA,
benefiting from contributions at higher ¢ and frequency modes.

In figure 3, we compare the resolution of power-law parameters in astrometry with those
in PTA. The resolution approximately follows the distribution of 1/SNR. XG-Gaia, with
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resolutions below 10~2 for both amplitude and spectral index, can provide an exceptionally
precise dissection of the SGWB spectrum. This high precision is pivotal for gaining insights
into the distribution and evolution of SMBHBSs, including potential environmental effects.

The Roman telescope, distinguished by its much higher cadence, demonstrates sensitivity
to the SGWB in the frequency band situated between PTA and LISA [28, 35]. The associated
frequency range of Roman offers valuable insights into whether the SGWB displays a frequency
turning point higher than the typical PTA band. This aspect is crucial for elucidating the
mass distribution of SMBHBs and investigating potential cosmological components of the
SGWRB. Additionally, it allows for cross-correlation with other proposed measurements in the
same frequency band, such as binary neutron star resonance [78, 79].

Identifying circular polarization with astrometry. Astrometry holds the potential to
explore circular polarization through EB correlation [21, 30, 36]. We estimate the resolution
of the circular polarization fraction vy = Vj /I, considering parameters on each frequency
mode Oy, = {Ij,vr}. The corresponding information matrix, as per eq. (3.7), is given by

L 2
. 1 max 2C£ k
T =5 > 0+ 1) SR
fim (1 2+ G (3.26)
y 2 — u + 200 kuy, + CF Uk Tk (1 - C?k“k)
oo (1= ) 12 (142600 + Gy (2 — i)

where u, = 1 — 07 and (pp = fngng = IkAgBl?/(leS(gZ?k/N(;x).

Due to the complexity of the expression in eq. (3.26), we consider a small portion of
circular polarization in the limit |vg| < 1. In this limit, the off-diagonal terms Z@ are sub-
leading, implying that I and v are uncorrelated. We find the inverse of the uncertainties as

2 emax

_ . " o<1 1y
2 _ 1 _ k k 4 1\—2
o) = (%), = Tl — () I %:(2“ D+ )™
(3.27)
III |’U ‘<<1 émax
-2 _ —1 _ k k R —1\—2
o (w) = (Z;1), = ST O .2 %:(264— D(1+¢H™2

Here, the uncertainty for I aligns with the expression in eq. (3.22), as expected.

Considering a power-law model with « fixed at the fiducial value and assuming a constant
circular polarization fraction vy across all frequencies (i.e., vy = v), the uncertainty of v
converges to the total SNR:

emax
Jim o (v) = ijviigoa‘Q(vk) =2 Xk: ZZ: (20+1)(1+¢ )2 =SNRZ,,.  (3.28)

Note that this assumption applies to cosmological sources rather than a finite sum of nearby
SMBHBEs.

In the top panel of figure 4, we display the posterior distribution on the {log;y A, v}
plane for Gaia and XG-Gaia, assuming a truth value of v = 0.1. The degeneracy between
the two parameters turns out to be negligible. We also present the marginalized distribution
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Figure 4. Posteriors of the reference strain amplitude log;, A and the fraction of circular polarization
v = Vi /1, for astrometric observations (left) and PTA-astrometry synergistic analyses (right). The
red stars correspond to the true parameters, including the fiducial value for log;, A and the assumed
v = 0.1. The marginalized distribution of each parameter is presented next to the posterior distribution.
The dark and light blue regions represent the 1o and 20 regions, respectively. The 1o uncertainties for
v are o(v) = 0.57, 0.39, 0.022, and 0.022 for Gaia, NANOGrav + Gaia, XG-Gaia, and SKA + XG-Gaia,
respectively.

of both parameters, finding that the uncertainty for XG-Gaia, o(v) ~ 0.022, is very close
to 1/SNR. Thus, XG-Gaia serves as a powerful test for circular polarization that can reach
a fractional value as low as 2.2%. In contrast, the marginal detection of SGWB for Gaia
(SNR ~ 1.5) makes it challenging to resolve the circular polarization component.

3.2.4 Synergistic analyses between PTAs and astrometry

In this section, we explore the synergistic potential of joint observations involving both
PTAs and astrometry, considering all possible correlations. Assuming an ideal scenario
where all measurements share the same cadence and total observation time, we consider
independent measurements X, x = {2emk, Eem k» Bem,k} With a covariance matrix 3
. s 22/EE/BB/zE o . 2B/EB
defined in eq. (3.5). Within 3/, C(h)(k are sensitive to I, while C(h)ék are
proportional to Vj. Inserting 3, into the likelihood eq. (3.6), the SNR in the limit where
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vg = Vi/I, = 0 is given by:

£y 2 2 2
C2(26%(C+1)2+ 26820+ 1)(C+1)+2¢(¢+ 1)+ 1)
2 — Y .
SNRm) zk: ZZZQ (2¢+1) CT 1203+ A1 0 , (329

where ;) = Bl?(Sé:?k/Ngz)/(S(gZ?k/Ngx), and we omit the index ¢ and k on the right-hand

side for simplicity. We keep 5%2) to be the one of PTA, as #j,ax for astrometry is typically

much higher.
In the weak signal region, where (;} = IkAng/(éLwSéZ?k/Ngx) < 1, the SNR simplifies to:

sy
C , <<1 max

SNREym) > D D (26+1) (/87 +2/Bes +2) G (3.30)
k=2

Here, the 372, 37!, and B° terms correspond to the estimation from PTA, PTA-astrometry
correlation, and astrometry only, respectively. Thus, in addition to the sum of each type
of observation, the synergistic observation has the additional contribution from the cross-
correlation among the two.

As astrometry has a higher £, than PTAs, the remaining astrometric-only ¢f-modes
can be included separately into the analysis:

In ‘C(tot) =1In ‘C(Syn) + In ‘c(ast)

e <<’

2 _ 2 2
SNR?,,) = SNRZ, + SNR?,)

(3.31)

e co<eist)

Here, we define Egﬁﬁ) and eﬁii‘;) to distinguish the maximal ¢ from the synergistic analysis

and that from the astrometry-only.

Parameter estimation in synergistic analyses of PTA and astrometry. We explore
two pairs of joint observations: the ongoing NANOGrav 4+ Gaia and the future SKA + XG-
Gaia. A challenge in these synergistic analyses arises from differences in cadence and total
observation time, as detailed in eq. (3.20) and (3.25). In our approach, we adopt a conservative
strategy by selecting the longer cadence, the shorter observation time, and the smaller value
among N, and Nsx from each pair. The corresponding benchmark parameters are as follows:

NANOGrav + Gaia : At = 24 days, Tops = 10yr, N, = Ngx = 50,

3.32
SKA + XG-Gaia : At = 24 days, Typs = 20yr, N, = Nsx = 200. ( )

The measurement uncertainties and the total number of observed stars remain consistent
with eq. (3.20) and (3.25).

The total SNR and parameter resolution for the power-law SGWB model are comparable
between the more sensitive of the pair, namely NANOGrav and XG-Gaia. Thus, no additional
figures similar to figure 2 and 3 are presented for further comparison.

The measurement of circular polarization in PTA-astrometry cross-observations can be
realized through the 2B correlation, in addition to the E'B correlation in the astrometry-only
correlations. Similar to the process outlined in section 3.2.3, we first calculate the information
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matrix I,ij and derive the corresponding uncertainty of v. Due to the complexity of the
expressions, we present the result for the case when |v| < 1:

lim o~2(v) = 2263%’((% +1) (Bew +1)C7 ), _ (3.33)
v=0 k(=2 (Cere + 1) (BekCok + Beg + Cor)

This expression is the linear sum of contributions from both the zB correlation:
lim o5 (v) = 22}; Z:ZQ (20 + 1) ot 1)2(/8%@;& TR an) (3.34)

and the EB correlation in eq. (3.28).

In the bottom panel of figure 4, we present the posterior distribution for {log;y 4, v} for
the two joint observations, along with the two astrometry-only observations. The SKA + XG-
Gaia pair exhibits slightly better resolution o(v) ~ 0.022 compared to the XG-Gaia-only
observation, attributed to XG-Gaia’s overall better sensitivity. On the other hand, the
NANOGrav 4 Gaia pair can achieve a much superior resolution with o(v) ~ 0.39 compared to
the Gaia-only observation, benefiting from NANOGrav’s higher sensitivity. Thus, we conclude
that to effectively constrain circular polarization using current-generation observations, a
cross-correlation between PTA and Gaia is necessary.

4 Emergence of generalized Hellings-Downs correlation patterns

An essential feature for identifying the quadrupolar nature of SGWB lies in the spatial
correlation pattern, which can be revealed through either the coefficients of C(),i))? as a
function of ¢, as discussed in section 2.2, or in the separation angle space, such as the
Hellings-Downs curve recently explored by various PTA collaborations [5-8]. While we
extensively discussed observables in spherical harmonic space in section 3, this section focuses
on correlation functions in the separation angle space.

Instead of using the information matrix, we generate random realizations of both SGWB-
induced redshift/deflections and measurement noises. These realizations ultimately lead to
predictions of spatial correlation patterns with uncertainties in each separation angle bin.

4.1 Realization of correlations in PTA and astrometry

In this section, we elaborate on the detailed methodology employed for simulating SGWB-
induced signals in both PTA and astrometric observations in configuration space, presenting
various illustrative examples of results.

To commence, we partition the celestial sphere into N evenly distributed patches using
HEALPix [74], denoting their central locations as {fi, }. In the frequency domain, the signals are
complex variables. Each patch is attributed a stochastic complex dimension-3 vector denoted
as (0zq,0X,), where dx, represents complex dimension-2 vectors on planes perpendicular to
each fi,. The generation of 0z, and dx, follows a probability distribution given by

({024}, {0%a}) ~ NC(03n,C),  C=Cpy +Cp. (4.1)
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Here, C is the 3N x 3N complex covariance matrix, representing the linear sum of the
SGWB-induced correlation Cpy and the noise C(,). The SGWB covariance matrix, following
ref. [19], is defined as:

(4.2)

Cs: Csisx

C:gzzsx ng

where I and V are the true parameters of total intensity and circular polarization of the
SGWB at a given frequency (with the frequency label k omitted for simplicity). The matrices
Cs., Cs.sx, and Csy are of dimensions N x N, N x 2N, and 2N x 2N, respectively. Their
definitions mirror those of eq. (2.7) and (2.9) but lack the J-functions:

CE =T.(0w) I,
ngdx Erzdx(eab) [ | } (4.3)
Cat = Tox(0r) |1 (8] ? +e18,) +iV (efe, —e.8f)].

éﬁ, and &, are defined in eq. (2.8), and the I' functions are defined in egs. (2.7)

Here, éﬁ,
and (2.10). The symmetry (C)" = C% ensures that Cj, is Hermitian, and so is the
covariance matrix C).

The noise matrix is purely diagonal due to spatially uncorrelated measurement noise:
C(n) = diag (S§”>1 N, ng)lzN) , (4.4)

where S and Séz) are defined in eq. (3.19) and (3.24), respectively.
In practice, to generate data from a complex normal distribution, we decompose both
the signals and the covariance matrix into real and imaginary parts:

& T
((RB2]), (Rl (31520, {S15%])) ~ N (O, €, CE;@E gg]) (4.5

Here, R[C] contains signals proportional to I and measurement noise C,, while S[C] only
contains the term proportional to V.

In figure 5, we present three cases of realizations for both redshift §z and angular
deflection dx with V/I = —1,0, and 1, respectively. The background circle colors represent
the real part of §z, ranging from red (6z > 0) to blue (dz < 0). The real and imaginary
components of the angular deflections are depicted with black and white arrows, respectively,
with lengths proportional to their magnitudes. In these examples, noise is assumed to vanish.
Consequently, in the two maximally polarized cases, the real and imaginary parts of dx are
always perpendicular, with the relative phases having different signs for the two cases. On
the other hand, for V' = 0, they exhibit random behavior without any correlations.

Another consistency check, aiming to connect with the previous discussion in the spherical
harmonic space in section 3, involves the reconstruction of the spherical harmonic observable
from {z,} and {0x,} using eqgs. (2.12) and (2.13), in the absence of measurement noise.
Examples of the corresponding Cg(X " are depicted in figure 6. The violins at each f-mode
showcase the statistical distribution of the estimated Ci( X’ values for all ¢ < 6, based on a

total of 10* realizations. The modes for £ = 0 and 1 turn out to be negligible, as expected.
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Figure 5. Examples of realizations on the celestial sphere for V/I = —1 (top), 0 (middle), and 1
(bottom), featuring a total of 432 patches. Each patch contains information on the real part of the
redshift 6z represented on a circle, spanning from red (> 0) to blue (< 0). The real (black arrow)
and imaginary (white arrow) components, with lengths proportional to their magnitudes, are also
displayed. The measurement noise is not included in these examples. In cases with V/I = +1, the real
and imaginary arrows are always perpendicular, while in the unpolarized case, they are uncorrelated.

We normalize the remaining modes by their expected average values, involving C()}i))[g " defined in
egs. (2.19) and (2.20). Consequently, the red dots representing the average values consistently
hover around 1. The variance for I estimators, including zz, EF, BB, and zE correlations,
shown in orange, all exhibit uncertainties of approximately 1. This is again consistent with the
theoretical predictions in the denominator of eq. (3.2). For V estimators involving E'B and
zB correlations, their variance, shown in blue, is larger than 1, attributed to our assumption
of V/I = 0.3, and the fact that the variance for V includes a contribution from I.
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Figure 6. Reconstructions of rotationally invariant power spectra in the spherical harmonic space
for ¢ ranging from 2 to 6. Each reconstruction is derived from a random realization of a map of 108
patches of {0z,} and {0x,} using eqs. (2.12) and (2.13), in the absence of measurement noise. Total
intensity I estimators are depicted in orange, while circular polarization V' estimators are shown in
blue, assuming V/I = 0.3. Each spectrum is normalized by its theoretical average value. Violins
represent the variance of reconstructions from 10* realizations, and the red dots denote the average
values of realizations. Both are consistent with the variance calculation in the denominator of eq. (3.2).

4.2 Generalized Hellings-Downs correlations

In this section, we employ the developed simulation to project how spatial correlations in
the configuration space manifest for various PTAs and astrometric observations, accounting
for a more realistic scenario where both measurement noise and intrinsic variance of SGWB
are present.

We consider distinct cases of observations: NANOGrav and SKA as PTAs, Gaia and
its next-generation upgrade as astrometry missions, and their cross-correlations. Each
observation channel differs in terms of the number of pulsars or patches, and noise levels,
with corresponding benchmark parameters listed in egs. (3.20), (3.25), and (3.32). For the
simulations, we use the fiducial SGWB model defined in eq. (3.12), assuming V/I = 0
throughout the analysis.
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Figure 7. Distribution of sky-averaged two-point functions from 100 simulations presented in gray
violins for various PTA and astrometric observation channels, displayed for the first frequency bin
(left) and weight-averaged across all frequency bins (right). The red lines illustrate the generalized
Hellings-Downs curves defined in egs. (2.7) and (2.10). The variance from the simulations encompasses
both SGWB variance and measurement noises. The central values of the violins, shown in blue, align
with the red lines.

We conduct a total of 100 simulations, each comprising realizations for all frequency bins,
resulting in distributions of {dz,,0x,} maps for each frequency. For every pair of patches,
characterized by their separation angle 0, we categorize them into 11 evenly distributed
bins spanning from 0 to 180°. Within each separation angle bin, we compute the averages
of the products 62,02, (&vll&vg* + dx o) /2, and &za(hg , where o represents the
projection of dx, along & eH or €. This computation yields a sky-averaged two-point function
for a single realization. From the 100 simulations, we determine the standard deviation at
the 0;-th separation angle and frequency mode k as oy, i, incorporating contributions from
both the SGWB and measurement noises.

In the left part of figure 7, violins are employed to illustrate the distribution from 100
simulations of sky-averaged two-point functions for various observation channels, presenting
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Figure 8. Sky-averaged two-point functions from a single simulation for various PTA and astrometric
observation channels. Each gray line represents a realization in a specific frequency bin, with opacity
inversely proportional to the variance associated with that frequency bin. The black dashed lines
depict the weighted averages of all frequency bins, aligning with the generalized Hellings-Downs curves
(red) defined in egs. (2.7) and (2.10) for observations involving SKA or XG-Gaia.

only the first frequency bin of the observations. The red solid lines represent the theoretical
prediction for the average correlations, as defined in egs. (2.7) and (2.10). In the right part, we
conduct an average across all frequency bins for each separation angle, incorporating a weight
factor 1/ Ug,»,k' The frequency-averaged variance agi, defined as 1/ agi =%il/ agi,k, becomes
narrower, and the average values, shown in blue, closely align with the theoretical predictions.

Figure 8 illustrates predictions for spatial correlations across various observation channels.
Each gray line represents one realization obtained at a specific frequency bin. The opacity
of each line corresponds to the weight factor of the frequency, defined as 1/ 0,3 =31/ 031-,;«
The black dashed lines represent the averages of these gray lines, accounting for the weight
factor 1/ agh i across all frequencies. For current observations involving NANOGrav or Gaia,
the gray lines fluctuate around the generalized Hellings-Downs curves in red, while the
dashed lines exhibit some deviation from it. In contrast, next-generation observations like
SKA or XG-Gaia have averaged values that align well with the red. The gray lines are
predominantly localized in specific regions, a result of the stochastic nature of the SGWB
rather than measurement noise, owing to the high sensitivity of these measurements. In the

— 24 —



next subsection, we will delve into a detailed discussion of the origin of uncertainty regions,
commonly referred to as cosmic variances.

4.3 Cosmic variances

As depicted in figure 8, even in the limit of SNR > 1 for high-sensitivity observations that
encompass a large number of patches, the sky-averaged spatial correlations still exhibit an
uncertainty envelope. The discussion of these inherent uncertainties for PTAs, referred to
as cosmic variance, has been the subject of recent studies in refs. [80-86]. In this section,
we present a theoretical derivation of cosmic variances for general PTA and astrometric
observations.

Cosmic variance manifests itself in patch pairs separated by a specific angular separation
on the celestial sphere, denoted as the variance intrinsic to the sky-averaged spatial correlations
at a given separation angle 6. To calculate cosmic variance, we begin by introducing the
sky-averaged two-point functions [82, 87]:

xxyy = [

where X can represent dz, dz!l, or dazt. This expression can be further simplified in the

h, [ d
o ﬁXX 5 (fig - fiy — cosf) (4.6)

spherical harmonic space, as seen in the case of PTAs [21, 3841, 82, 88]:

(626235 =33 zumzie / d*fq wym( @)Y /(i) 8 (g - iy, — cosb)
4m ¢'m/!

20 + 1 (4.7)

7° Py(cosb).

Here, P, are the Legendre polynomials.
A parallel set of steps can be applied to astrometric observations, taking into account
their expansion in terms of vector spherical harmonics as follows [21]:

{62162l

=Y Y K [ CR g [ T [vx (@ D) [Yi (@] 6 (a- iy = cost)

X,X'€{E,B} t;m 'm’

20 + 1
—— [CF Gy (0) + CPP G (0)] (4.8)

1 P}(cosb)

G(m)(ﬁ)z—;[W:_DPEQ(COSH)—PEO(COSH)}, G (0) =~y g (49)

S
are functions of associated Legendre polynomials P [21]. The expression for {5ZJ‘ 5$J‘*}9
only differs from eq. (4.8) by switching G ;1) <+ G g9). The expression for the PTA-astrometry
cross-correlation can be derived similarly:

@W@ﬂi_;%glahmﬁ%ﬂﬁ@w. (4.10)

,25,



The explicit forms of C3*, CFE, CBB and C;¥ have been defined in eq. (2.13). The ensemble
averages of egs. (4.7), ( .8), and (4.10) yield the generalized Hellings-Downs curves as defined
in egs. (2.7) and (2.10).

The cosmic variance (CV) at a separation angle precisely corresponds to the variance
of the sky-averaged two-point correlations defined in eq. (4.6):

CV(X X")g = <({XX’*}9) > - <{XX’*}§>2. (4.11)

Here, (---) denotes the ensemble average over the SGWB, as the definition of CV does not
include measurement noises. The calculation of CV can be simplified using correlations
in the spherical harmonic space [82].

For the PTA-only observation, the CV becomes:

(2041) (20'+1)
47 4

2
zzZ zZz 2€ +1 zzZ
Py(cos0) Py (cos0)(C;*CiF) — (Z . Py(cos0)(Cj ))
l

CV(6z6z")g = Z

o

2041 2
_Z e ( h)ZPg(COSG)> .
(4.12)
In this calculation, we used (C}~') = C’()fb))? and
(CXXCXXy —oXxexx 1 EHK (4.13)
7 Cy meCime T 57 \Cne ) Oeers :

which arises from Isserlis’ theorem [47].
A similar result can be obtained for the astrometry-only correlations. We begin by
calculating the first term in eq. (4.11), focusing on the parallel directions:

A5\ 2 204+1)(20 + 1
<<{5x|6a:” }0> > :Z ( 1)6;2 )[<CEEC§E>G(61)G(£’1) + (CfBCgB>G(Z2)G(K'2)
o

+(CPPCEP)G (41)G 2y + (CPPCHP) G2y G

(4.14)
where we omit the f-dependence in G(y1)(0) and G (0) for simplicity. The first two terms
within the [- - -] can be computed directly from eq. (4.13), while the last two terms represent

(PP CiP)y =cfichyn,  (CPPCi®) = Ci il (4.15)

in the absence of circular polarization. The second term in eq. (4.11) is merely the square
of the sky average in eq. (4.8) after applying (Ci(X/> = C()}‘;))g/. Combining these two terms
yields the final CV result:

. 20+ 1
OV (oall 621y = - T (c(h)) (Gieny(0)? + Gz (0)?) (4.16)
l

where we utilized the relationship C(h) )= Cf,i])ge. The expressions for correlations involving
dx* are derived analogously, with the result given by the above equation and Gy < Guo)
swapped.
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Note that in figures 7 and 8, the astrometric observations involve a linear combination
of parallel and perpendicular correlations, specifically (5:656.%;)'* + 5xf;(5:n§-* )/2. The CV for
this configuration is

2€+1( EE

oV (92l o2l + satoxt) 2) =3 CEE) (Cun0) + Gy ()", (417)

2
7 167
which differs from the parallel-only case presented in eq. (4.16).
Finally, turning our attention to the PTA-astrometry cross-correlation, its CV can be
obtained through analogous procedures, yielding:

V(R [oz8al])y = S 2L

2
Wm (C(ngg Pél(COS 9)) . (418)
l

It is noteworthy that the CVs presented in eqgs. (4.12), (4.17), and (4.18) share a common
characteristic: each f-mode is the square of the coefficients in their corresponding average
values of eqs. (4.7), (4.8), and (4.10), divided by (2¢+ 1). The numerical values of these CVs
align with the variance envelope observed in the right part of figure 8.

5 Conclusion

In this study, we utilize a joint likelihood that incorporates both astrometric and PTA
observations to predict the detection of SGWB and the resolution of SGWB parameters.
Our analysis takes advantage of the diagonal structure inherent in both measurement noise
and intrinsic SGWB variance in the spherical harmonic space. This results in an analytical
framework that facilitates the comparison of various PTA and astrometric observations,
providing intuitive insights. Astrometry showcases its advantages in the harmonic space: the
abundance of stars allows for a high value of [,,.x, yielding more independent estimators and,
consequently, higher SNR in the strong signal regions. This SNR, in turn, translates into the
resolution of SGWB parameters, enabling the precise dissection of SGWB properties.

Our findings yield several predictions regarding astrometric observations. Firstly, the
upcoming full data release of Gaia is expected to marginally detect the SGWB, which has
already been observed by current PTA observations. Consequently, Gaia can serve as a
valuable cross-check for PTA results, providing an independent demonstration of spatial
correlation distinct from PTA’s Hellings-Downs curve. Gaia’s individual observations can
also contribute to checking the chirality nature of SGWB. However, a significantly improved
resolution of chirality can be achieved through cross-correlations between current PTAs and
Gaia. The next-generation upgrade of Gaia is poised to deliver the best-ever sensitivity to the
SGWB, particularly for its spectrum and chirality. Precise measurements of these quantities
are crucial for understanding the evolution of SMBHBs, including eccentricity distribution
and environmental effects that may influence the low-frequency end of the spectrum, as well
as any potential cosmological signatures. The exploration of the high-frequency turning
point in the SGWB spectrum remains an intriguing area, where high-cadence observations
by Roman can provide valuable insights.

Looking forward, the prospects for the field appear promising. The anisotropy in the
SGWB, a facet beyond the scope of our current analysis, represents another crucial aspect
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that astrometric observations could potentially illuminate. Our assumption of uniformly
distributed stars on the celestial sphere, with uniform noise levels and cadences, can be
refined by considering the realistic star distribution found in Gaia datasets. Incorporating
this distribution along with the response functions of astrometry and PTA further strengthens
the complementarity between these two types of observations, as they exhibit sensitivity to
different incoming directions of the GWs. Such angular-dependent sensitivity will play an
essential role in resolving individual SMBHBs, likely marking the next significant milestone
in gravitational astronomy.
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