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measurement noise and the intrinsic variability of the stochastic background. Furthermore,
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Finally, we simulate the emergence of quadrupolar correlations, commonly referred to as

the generalized Hellings-Downs curves.
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1 Introduction

Recent breakthroughs in pulsar timing arrays (PTAs) have heralded a transformative era

for the observation of gravitational waves (GWs) at nano-Hertz (nHz) frequencies. These

advancements leverage the precise timing information obtained from pulsars, enabling a

galactic-scale gravitational wave detector. This innovative approach first led to the detection

of a common-spectrum process by the Nanohertz Observatory for Gravitational Waves

(NANOGrav) collaboration [1], a finding subsequently corroborated by the Parkes PTA,

European PTA, and International PTA [2–4]. More recently, multiple PTA collaborations

have found evidence for the quadrupolar angular correlation of these signals on the sky [5–8].

These collective findings consistently support the presence of a quadrupolar correlation

function known as the Hellings-Downs curve [9], a pivotal characteristic of gravitational-wave

induced timing residuals. Furthermore, the amplitude and spectral index of the inferred

stochastic gravitational wave background (SGWB) align broadly with predictions derived for

a cosmological population of supermassive black hole binaries (SMBHBs) as the gravitational

wave sources [10, 11]. Nonetheless, while not definitively ruled out, certain cosmological

sources may still provide potential explanations for the observed SGWB.

On a parallel front, it is essential to note that GWs not only perturb photon travel times

but also deflect their paths. This phenomenon serves as the basis for astrometric detection of

GWs, which relies on measuring correlated wobbling movements of stars on the sky [12–16].

Astrometry represents another promising avenue for the detection and characterization of

gravitational waves, providing a complementary perspective to the PTA approach [17–30].

While astrometry currently has less constraining power than PTAs [23, 27, 29], complete
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datasets from space-borne astrometry missions like Gaia [31], including full time series, have

the potential to provide sensitivity comparable to PTAs. The next-generation astrometric

observations have the potential to exceed the sensitivity of PTAs [26].

Compared to PTAs, astrometry boasts several noteworthy complementary advantages.

The distinct response functions of PTA and astrometry make them sensitive to incoming GWs

from different directions as pulsars or stars are more concentrated toward the direction of the

Galactic Center [17]. Additionally, the strain sensitivity of astrometry remains nearly constant

across the frequency spectrum [17], unlike the linear decrease in PTA sensitivity toward higher

frequencies. This opens a new window for GWs, exploring uncharted frequency ranges lying

between PTAs and the Laser Interferometer Space Antenna (LISA) band [32]. For instance,

the Nancy Grace Roman Space Telescope (Roman), with its significantly higher observing

cadence, can indeed extend the frequency range to above 10−4 Hz [28, 33–35]. Moreover,

the presence of parity-odd correlations among astrometric observables or PTA-astrometry

cross-correlations can reveal the existence of a chiral component of SGWB [21, 30, 36]. Hence,

it is imperative to explore in detail the prospects of astrometry.

This study is dedicated to forecasting the potential of astrometry in discovering SGWBs

and characterizing their properties with future data releases, in conjunction with PTAs or

without. We establish a framework for predicting the feasibility of astrometric SGWB detection

and the resolution of key SGWB parameters. These parameters, including the normalization

of characteristic strain, spectral index, and chirality, are crucial for comprehending the

distribution of SMBHBs, their potential interaction with the environment, and the presence of

any sub-leading cosmological sources. The vector nature of astrometry observables introduces

various options for cross-correlations [19, 21], in addition to the redshift-only correlation of

PTA. Each of these correlations possesses unique quadrupolar correlation functions [19, 21]

and corresponding variances due to the stochastic nature of GWs. Identifying them will not

only provide a cross-check of the PTA Hellings-Downs curve at nHz but may also uncover

a GW signal at higher frequencies.

The paper’s structure is organized as follows: in section 2, we review the basics of both

PTA and astrometry for the detection of the SGWB. Moving to section 3, we analytically

calculate the sensitivities for various cross-correlation choices associated with PTA and

astrometry and evaluate the resolution of key SGWB properties. Section 4 delves into the

simulation of spatial correlations, specifically exploring the generalized Hellings-Downs curve,

and offers a theoretical insight into intrinsic variance of SGWBs. Finally, in section 5, we

draw our conclusions and discuss our findings.

2 PTA and astrometric detection of the stochastic gravitational wave

background

2.1 Responses and angular correlations for PTA and astrometry

GWs induce perturbations in the paths of photons along geodesics. These perturbations

give rise to two distinct categories of observable phenomena: shifts in the temporal arrival

of photons and the proper motion of their sources across the celestial sphere [16]. PTAs,

functioning as an exceptional network of cosmic clocks, possess the remarkable capability
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to precisely measure the arrival times of radio pulses from distant pulsars. On the other

hand, astrometry is dedicated to the precise determination of the positions and motion of

stars across the celestial sphere. The shifts depend on both the metric perturbations at the

observation point (Earth term) and on the emission sources (pulsar or star terms). However,

the latter can usually be disregarded when the distance between the two points significantly

exceeds the wavelength of the GWs [19], or treated as noise when correlations among different

baselines result in only the Earth term being coherently summed up. For the purposes of

this study, we will focus solely on the Earth term.

The received GW strain at a specific location can be represented as a sum of fre-

quency modes:

hij(t) =

∫ +∞

−∞
df

∫
d2Ω̂

∑

P

hP (f, Ω̂) ǫP
ij(Ω̂) e2πift . (2.1)

In the above equation, f , Ω̂ and P label the frequency, incoming direction, and polarization

mode of the GW, respectively. In this work, we will only consider polarization modes within

the framework of Einstein’s gravity. The strain amplitude in the frequency domain is given

by hP (f, Ω̂), and ǫP
ij(Ω̂) is the polarization basis tensor satisfying ǫP

ij(Ω̂)ǫij
P ′(Ω̂) = 2δP P ′ . The

time-domain strain imposes a real condition, necessitating that hP (f, Ω̂) = hP (−f, Ω̂)∗ and

ǫP
ij(Ω̂)∗ = ǫP

ji(Ω̂) for linear polarization basis P = +/×. The frequency-domain signals from

PTAs and astrometry can be universally expressed as [36]:

Xa(f) ≡ X(f, n̂a) =

∫

S2
d2Ω̂

∑

P

hP (f, Ω̂) ǫP
ij(Ω̂) Rij

X(Ω̂, n̂a). (2.2)

Here, we introduce X ≡ {δz, δx} to encompass both the photon redshift δz from PTAs and

the proper motion on the celestial sphere δx from astrometry. The subscript a designates the

a-th pulsar/star, with the line-of-sight direction denoted as n̂a. The redshift and astrometric

response functions are elucidated in ref. [16] as follows:

Rij
δz(Ω̂, n̂) =

1

2

(
n̂in̂j

1 + Ω̂ · n̂

)
, Rij

δxl
(Ω̂, n̂) =

1

2

[
n̂in̂j

1 + Ω̂ · n̂
(n̂l + Ω̂l) − δi

l n̂
j

]
. (2.3)

Here, we utilize a Cartesian coordinate system where the components are labeled by i, j

and l. Notably, the timing residual signal represents the time integral of the redshift δz,

introducing an additional factor of 1/(2πf).

For a Gaussian, stationary GW background, the two-point correlation function of hP

is as follows:

〈hP (f, Ω̂) hP ′(f ′, Ω̂′)∗〉 = δ(f − f ′) δ(Ω̂, Ω̂′) PP P ′(f, Ω̂) , (2.4)

where PP P ′(f, Ω̂) represents the power spectrum of correlation between the P mode and

the P ′ mode. When the SGWB exhibits isotropy, the power spectrum matrix can be

parameterized as [37]:

PP P ′(f) =

(
I(f) −iV (f)

iV (f) I(f)

)
(2.5)
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for P/P ′ ∈ {+, ×}, where the real quantities I(f) and V (f) represent the total intensity

and the circular polarization, respectively. The isotropic SGWB, as defined in eqs. (2.4)

and (2.5), results in correlations between two received signals from a pair of pulsars, stars,

or pulsar-star pairs, as follows:

〈Xa(f) X ′
b(f

′)∗〉 = δ(f − f ′)

∫
d2Ω̂

∑

P,P ′

(
PP P ′(f) ǫP

ij(Ω̂) ǫP ′

kl (Ω̂)∗
)

Rij
X(Ω̂, n̂a)Rkl

X′(Ω̂, n̂b) .

(2.6)

For PTA with redshift correlations, eq. (2.6) leads to the well-known Hellings-Downs

curve [9]:

〈δza(f)δz∗
b (f ′)〉 = δ(f − f ′) I(f) Γz(θab),

Γz(θ) ≡
4π

3

[
1 −

1

2

(
sin

θ

2

)2

+ 6

(
sin

θ

2

)2

ln

(
sin

θ

2

)]
,

(2.7)

where the function Γz(θab) depends solely on θab ≡ n̂a · n̂b due to the rotational invariance

of an isotropic SGWB.

Correlations involving astrometric motions of a pair of stars or a star and a pulsar

can be categorized into directions that are parallel (êa
|| and êb

||) and perpendicular (ê⊥) to

their great arc [19], defined as:

ê⊥ ≡
n̂a × n̂b√

1 − (n̂a · n̂b)2
, êa

|| ≡
ê⊥ × n̂a√

1 − (ê⊥ · n̂a)2
, êb

|| ≡
ê⊥ × n̂b√

1 − (ê⊥ · n̂b)2
. (2.8)

Using these definitions, the correlations in eq. (2.6) can be simplified to the following

expressions [19, 21, 30, 36]:

〈δza(f)δx∗
b(f ′)〉 = δ(f − f ′)

(
I(f) êb

|| + iV (f) ê⊥

)
Γzδx

(θab),

〈δxa(f)δx∗
b(f ′)〉 = δ(f − f ′)

[
I(f)

(
êa

||ê
b
|| + ê⊥ê⊥

)
+ iV (f)

(
êa

||ê⊥ − ê⊥êb
||

) ]
Γδx

(θab),
(2.9)

where the dimensionless correlation functions satisfy

Γzδx
(θ) ≡

4π

3
sin(θ)

[
1 + 3

(
tan

θ

2

)2

ln

(
sin

θ

2

)]
,

Γδx
(θ) ≡

2π

3

[
1 − 7

(
sin

θ

2

)2

− 12

(
sin

θ

2

)2 (
tan

θ

2

)2

ln

(
sin

θ

2

)]
.

(2.10)

These functions are commonly known as generalized Hellings-Downs curves.

2.2 Gravitational wave signal in spherical harmonic space

An alternative representation of SGWB signals in PTAs and astrometric observation is

achieved through the use of spherical harmonic space, as demonstrated in prior works such as

refs. [21, 28, 38–40]. The key advantage of this representation lies in its ability to diagonalize

both the signals and the SGWB-induced variances, simplifying the definition of estimators.
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In this formalism, both the GW-induced redshift and angular deflection can be expressed

as discrete summations over the harmonic basis:

δza(f) =
∞∑

ℓ=2

ℓ∑

m=−ℓ

zℓm(f)Yℓm(n̂a)

δxa(f) =
∞∑

ℓ=2

ℓ∑

m=−ℓ

[
Eℓm(f)YE

ℓm(n̂a) + Bℓm(f)YB
ℓm(n̂a)

] (2.11)

where Yℓm represents spherical harmonic functions, and YE
ℓm and YB

ℓm are the E- and B-

components of vector spherical harmonic functions, respectively. Correspondingly, zℓm(f),

Eℓm(f), and Bℓm(f) are their respective expansion coefficients. Employing the orthogonality

of the spherical harmonic basis, we can determine these components as follows:

zℓm(f) =

∫

S2
d2n̂ δza(f) Yℓm (n̂)∗ ,

Eℓm(f) =

∫

S2
d2n̂ δxa(f) · YE

ℓm(n̂)∗ ,

Bℓm(f) =

∫

S2
d2n̂ δxa(f) · YB

ℓm(n̂)∗ .

(2.12)

It is important to note that in realistic observations, a finite number of pulsars and non-

uniform distributions of pulsars/stars should be taken into account when reconstructing

these components. These factors can lead to a mixture of modes and consequently introduce

noise [41]. However, recent simulations using mock data have shown that the influence of

this mixture is negligible [40].

To simplify notation, we introduce Xℓm ≡ {zℓm, Eℓm, Bℓm} to represent all spherical-

harmonic components. With this representation, we can construct the rotationally invariant

power spectra:

CXX′

ℓ (f) ≡
1

T (2ℓ + 1)

ℓ∑

m=−ℓ

Xℓm(f) X ′
ℓm(f)∗ . (2.13)

These power spectra satisfy CXX′

ℓ (f)∗ = CX′X
ℓ (f). Here, T represents the total observation

time, which is used to account for the factor δ(0) → T in the discrete frequency domain.

A convenient way to calculate Xℓm is by using the total angular momentum (TAM)

decomposition of GW strain [42], which includes both transverse polarization modes, denoted

as α ∈ {TE, TB}. Consequently the GW-induced (h) spherical harmonic components can

be expressed as [21]:

X
(h)
ℓm (f) =

∑

α

4πiℓ F X,α
ℓ hα

ℓm(f), (2.14)

for ℓ ≥ 2. Here, F X,α
ℓ are projection factors derived for various combinations of X and

α [21]. The respective strain amplitudes, denoted as hα
ℓm(f), exhibit correlations that can

be parameterized as:

〈hα
ℓm(f) hβ

ℓ′m′(f
′)∗〉 = 2 δ(f − f ′) δℓℓ′ δmm′ Pαβ(f) . (2.15)

– 5 –
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This assumes an isotropic SGWB with vanishing linear polarization components. The power

spectra matrix Pαβ is structured as [37, 43]:

Pαβ(f) =

(
I(f) −iV (f)

iV (f) I(f)

)
, (2.16)

for α/β ∈ {TE, TB}.

The ensemble average of CXX′

ℓ (f) comprises an independent sum of GW-induced signals

(h) and measurement noise (n):

〈CXX′

ℓ (f)〉 = CXX′

(h)ℓ (f) + CXX′

(n)ℓ (f) , (2.17)

The signal part is directly derived from eq. (2.14) and (2.15):

CXX′

(h)ℓ (f) = 32π2
∑

α,β

F X,α
ℓ F X′,β ∗

ℓ Pαβ(f) . (2.18)

More explicitly, each component of eq. (2.18) is directly related to either the total inten-

sity I(f):

Czz
(h)ℓ(f) = I(f) Aℓ,

CEE
(h)ℓ(f) = CBB

(h)ℓ(f) = I(f) Aℓ B2
ℓ ,

CzE
(h)ℓ(f) = I(f) Aℓ Bℓ,

(2.19)

or the circular polarization V (f) [25, 30, 36]:

CzB
(h)ℓ(f) = −iV (f) Aℓ Bℓ,

CEB
(h)ℓ(f) = −iV (f) Aℓ B2

ℓ .
(2.20)

Here, we define

Aℓ ≡
16π2

(ℓ + 2)(ℓ + 1)ℓ(ℓ − 1)
, Bℓ ≡

2√
(ℓ + 1)ℓ

. (2.21)

On the contrary, the Gaussian noise inherent in each measurement results in an ℓ-

independent noise spectrum [39]. In the case of a uniform distribution of NX pulsars or

patches (NE = NB ≡ Nδx
) on the celestial sphere, the noise spectra in harmonic space

can be expressed as:

〈X
(n)
ℓm (f) X

′(n)
ℓ′m′(f

′)∗〉 =
4πS

(n)
X (f)

NX
δ(f − f ′) δℓℓ′ δmm′ δXX′ . (2.22)

Here, S
(n)
X (f) represents the noise spectra from each pulsar/patch. For astrometry, these

spectra satisfy S
(n)
E (f) = S

(n)
B (f) ≡ S

(n)
δx

(f), where S
(n)
δx

(f) is the measurement noise of

the average proper motion of the patch. The rotational invariant noise spectra directly

follow from eq. (2.22):

CXX′

(n)ℓ (f) =
4πS

(n)
X (f)

NX
δXX′ . (2.23)

– 6 –
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3 Dissecting the stochastic gravitational wave background

In this section, we assess the sensitivity of both PTA and astrometry utilizing rotational

invariant power spectra CXX′

ℓ . As highlighted earlier, these observables derive considerable

advantage from their diagonal nature in harmonic space. Our exploration commences with

the formulation of estimators built upon CXX′

ℓ , followed by a thorough analysis of their

properties. Subsequently, we employ the information matrix [44–46] to gauge the sensitivity

towards total intensity, spectral index, and chirality.

3.1 Rotational invariant estimators

In the frequency domain, discrete frequencies fk span from 1/T to 1/(2∆t), where ∆t is the

cadence of observation. We use the integer k to label measurements in a certain frequency

bin such that CXX′

ℓ,k ≡ CXX′

ℓ (fk). The total intensity Ik can be estimated from XX ′ =

zz/EE/BB/zE, while the circular polarization Vk arises from the parity-odd observables

zB/EB. Each estimator is directly constructed from eq. (2.19) and (2.20):

Îzz
ℓ,k ≡

Czz
ℓ,k − 4πS

(n)
z,k /Nz

Aℓ
, Î

EE/BB
ℓ,k ≡

C
EE/BB
ℓ,k − 4πS

(n)
δx,k/Nδx

AℓB
2
ℓ

, ÎzE
ℓ,k ≡

ℜ
[
CzE

ℓ,k

]

AℓBℓ
,

V̂ EB
ℓ,k ≡ −

ℑ
[
CEB

ℓ,k

]

AℓB
2
ℓ

, V̂ zB
ℓ,k ≡ −

ℑ
[
CzB

ℓ,k

]

AℓBℓ
, (3.1)

whose ensemble averages are either Ik or Vk. Given that each power spectrum in harmonic

space is independent, the signal-to-noise ratio (SNR) of these estimators in a given frequency

bin receives contributions from all achievable ℓ-modes:

(
SNRXX′

k

)2
=

ℓmax∑

ℓ=2

2(2ℓ + 1)
∣∣∣CXX′

(h)ℓ,k

∣∣∣
2

∣∣∣∣∣C
XX′

(h)ℓ,k +
4πS

(n)
X,k

NX
δXX′

∣∣∣∣∣

2

+

(
CXX

(h)ℓ,k +
4πS

(n)
X,k

NX

)(
CX′X′

(h)ℓ,k +
4πS

(n)

X′,k

NX′

)

=
ℓmax∑

ℓ=2





(2ℓ + 1)
(
CXX

(h)ℓ,k/(CXX
(h)ℓ,k + 4πS

(n)
X,k/NX)

)2
, X = X ′.

2(2ℓ+1)

∣∣∣CXX′

(h)ℓ,k

∣∣∣
2

∣∣∣CXX′

(h)ℓ,k

∣∣∣
2

+(CXX
(h)ℓ,k

+4πS
(n)
X,k

/NX)(CX′X′

(h)ℓ,k
+4πS

(n)

X′,k
/NX′ )

, X 6= X ′.

(3.2)

Here, ℓmax ∼
√

NX/2 is the highest observable ℓ for the constructed power spectra. The

denominator corresponds to the variance of the estimator in eq. (3.1), derived using Isserlis’

theorem [47] for Gaussian fields Xℓm.

To gain a quantitative understanding of eq. (3.2), we depict the SNR2
k as a function of

ξk ≡ Ik/(4πS
(n)
X,k/NX) in figure 1 for the Ik estimators. These estimators include PTA-only

(zz) in blue, astrometry-only (EE or BB) in orange, and PTA-astrometry cross-correlation

(zE) in green. Two scenarios are presented with ℓmax = 10 (solid lines) and 50 (dashed lines).

The PTA-only case (zz) aligns with results previously obtained using cross-correlations in

separation-angle space [48]. To better understand the behaviour of the results plotted in

figure 1, we consider the plot categorized into three regions:
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3.2 Sensitivity and parameter estimation

In addition to exploring the total intensity and circular polarization, many aspects of the

SGWB remain to be unraveled. In this section, we establish an analytical framework to dissect

the SGWB. This includes sensitivity estimation and the assessment of various pertinent

parameters, all based on the information matrix [44].

We introduce a vector Xℓm,k defined as follows:

Xℓm,k ≡ {zℓm,k, Eℓm,k, Bℓm,k}T , (3.3)

encompassing both redshift and astrometric observables. Assuming Gaussianity and station-

arity for both the SGWB and the measurement noise, each Xℓm,k follows an independent

complex multivariate normal distribution:

Xℓm,k ∼ CN (0, Σℓ,k) . (3.4)

Here, Σℓ,k is the 3 × 3 covariance matrix:

Σℓ,k =




Czz
(h)ℓ,k CzE

(h)ℓ,k CzB
(h)ℓ,k

CzE∗
(h)ℓ,k CEE

(h)ℓ,k CEB
(h)ℓ,k

CzB∗
(h)ℓ,k CEB∗

(h)ℓ,k CBB
(h)ℓ,k


+




Czz
(n)ℓ,k

CEE
(n)ℓ,k

CBB
(n)ℓ,k


 , (3.5)

where all the components are defined across eqs. (2.19), (2.20) and (2.23).

Given the statistical independence of Xℓm,k for different m, ℓ, and k, the joint probability

can be expressed as the product of individual probabilities. Consequently, the ln-likelihood

function is given by:

ln L(X|O) = −
∑

k

ℓmax∑

ℓ=2

ℓ∑

m=−ℓ

[
X

†
ℓm,kΣ̃ℓ,k(O)−1Xℓm,k + ln det Σ̃ℓ,k(O)

]
+ Const, (3.6)

where O represents the model parameters, and Σ̃ℓ,k(O) is the covariance matrix constructed

from the corresponding model parameters. Importantly, Σ̃ℓ,k(O) adheres to the condition

Σ̃ℓ,k(Otruth) = Σℓ,k, as defined in eq. (3.5), where Otruth represents the true parameters. The

ability to estimate the parameters is gauged by the information matrix [44]:

Iij ≡ −

〈
∂2 ln L

∂Oi∂Oj

〉∣∣∣∣∣
O=Otruth

. (3.7)

Here, Oi represents the i-th parameter, and 〈. . . 〉 denotes the ensemble average over Xℓm,k.

The inverse of the information matrix I provides the uncertainties for parameter estimation:

σ2(Oi) ≡ (I−1)ii. (3.8)

In cases where the only model parameter of interest is the GW spectrum intensity Ik, the

SNR of this amplitude is given by:

SNR2 ≡
∑

k

I2
kσ−2(Ik). (3.9)

It is crucial to note that the information-matrix analysis is accurate primarily when the

SNR is robust [45, 46, 49]. Therefore, we consistently choose SNR ≥ 1 as the threshold to

ensure the validity of the subsequent discussion.
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3.2.1 Power-law stochastic gravitational wave background

In this study, we examine power-law SGWB models and investigate the possible presence of a

circularly polarized component. The power-law model is a prevalent approach to characterize

the power spectrum of SGWB. Many SGWB models arising from astrophysical or primordial

origins can be effectively approximated by power laws in the nHz frequencies. The intensity

spectrum of this model is expressed as follows:

I(f) = Iref

(
f

fref

)2α−1

, (3.10)

where fref represents the reference frequency, commonly chosen as fref = 1/yr in PTA

observations, and α denotes the spectrum index. The dimensionless characteristic strain

can then be defined as

hc(f) ≡
√

16πfI(f) ≡ A

(
f

fref

)α

, (3.11)

with A ≡ (16πIreffref)
1/2 serving as the strain amplitude normalization factor at fref . This

normalization choice is in accordance with refs. [50, 51].

The spectral index of the SGWB can deviate from a constant value. At the low-frequency

end of the nHz spectrum, potential interactions with the environment [52–54] or orbital

eccentricities of SMBHBs [55] lead to a turning of the spectrum slope [10]. The high-frequency

turning, occurring around ∼ 10−6 Hz for SMBHBs with masses of ∼ 109 M⊙, happens as

SMBHBs approach the merger phase [56]. However, in the frequency range we consider, the

low-frequency deviation is expected to be small, while the high-frequency contribution is

sub-leading in sensitivity. Thus, we focus on a constant spectral index in the following.

Another feature of the SGWB is chirality, parameterized by macroscopic circular polar-

ization. Cosmological models, such as those described in refs. [57–61], can generate chirality

through parity-violating interactions. A finite sum of nearby SMBHBs can also produce a

random fraction of chirality [62–64]. As Czz
(h)ℓ,k in eq. (2.19) is dependent solely on Ik and

lacks any Vk dependence, measuring the isotropic circular polarization map using PTA-only

observations is not possible. It is noteworthy that PTA can still probe anisotropic circular

polarization [65–68], which is beyond the scope of this study.

Fiducial SGWB model from PTA observation. Recent observations by NANOGrav [5],

PPTA [7], EPTA [6], and CPTA [8] suggest that the SGWB signal is consistent with that

produced by SMBHBs. Assuming that the nearly-circular orbit evolution is predominantly

driven by GW emission, the SGWB spectrum can be well-described by a power-law model

with α = −2/3, despite a potential deviation at the low-frequency end due to environmental

effects or eccentric orbits [10, 69, 70]. With α = −2/3 fixed, the strain found by NANOGrav

(NG) is given by

hNG
c (f) = ANG

(
f

fref

)−2/3

. (3.12)

where ANG ≃ 2.4 × 10−15 [5]. Utilizing eq. (3.11), the power spectrum of our fiducial

SGWB model has a reference intensity ING
ref = (1/16π)A2

NG yr ≃ 1.1 × 10−31 yr. In the
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subsequent sections, the fiducial model will be employed to compare sensitivities across

different observational channels. Any deviation from α = −2/3 can be interpreted as

environmental effects or primordial origins.

Power-law model parameters. The power-law model involves two parameters, denoted

as O = {log10 A, α}. The derivatives with respect to these parameters are obtained through

the chain rule:

∂

∂ log10 A
= 2 ln(10)

∑

k

Ik
∂

∂Ik
,

∂

∂α
=
∑

k

2 ln (k∆f ) Ik
∂

∂Ik
,

(3.13)

where we define the dimensionless factor ∆f ≡ 1/(Tfref). The information matrix is ex-

pressed as

I = 4
∑

k

I2
k

σ2
k

(
ln(10)2 ln(k∆f ) ln(10)

ln(k∆f ) ln(10) ln(k∆f )2

)
, (3.14)

where σk ≡ σ(Ik). Note that the matrix inside the summation may appear singular, but the

overall matrix after summation is not. The uncertainties of {log10 A, α} are given by

σ−2(log10 A) = 4 ln(10)2

[
∑

k

I2
k

σ2
k

−

[∑
k I2

k/σ2
k ln(k∆f )

]2
∑

k I2
k/σ2

k ln(k∆f )2

]
,

σ−2(α) = 4

[
∑

k

I2
k

σ2
k

ln(k∆f )2 −

[∑
k I2

k/σ2
k ln(k∆f )

]2
∑

k I2
k/σ2

k

]
,

(3.15)

respectively. An alternative parameterization using O = {log10 A, γ}, where α ≡ (3 − γ)/2,

results in a straightforward rescaling of σ(γ) = 2σ(α).

The assessability of both A and α is significantly dependent on the total SNR. However,

the weighted summation of individual frequency bins adds complexity to the equations. In

the following, we will directly calculate σ−2(α) and σ−2(log10 A) and examine their behavior

in different observation channels.

3.2.2 Pulsar timing arrays

In PTA-only observations, the ln-likelihood defined in eq. (3.6) exclusively involves the redshift

zℓm,k, obtained by marginalizing over all Eℓ,m and Bℓ,m:

ln L(PTA) = −
∑

k

ℓmax∑

ℓ

ℓ∑

m=−ℓ

[
z∗

ℓm,kzℓm,k

Czz
(h)ℓ,k + Czz

(n)ℓ,k

+ ln
(
Czz

(h)ℓ,k + Czz
(n)ℓ,k

)]
+ Const. (3.16)

As discussed previously, this likelihood is not sensitive to Vk.

According to eq. (3.8), the uncertainty of each {Ik} is given by

σ−2
k = ((I−1)kk)−1 =

ℓmax∑

ℓ=2

(2ℓ + 1)


4πS

(n)
z,k

NzAℓ
+ Ik




−2

. (3.17)
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The total SNR follows eq. (3.9)

SNR2
(PTA) =

∑

k

ℓmax∑

ℓ=2

(2ℓ + 1)
[
(ξz

kAℓ)
−1 + 1

]−2
, ξz

k ≡
Ik

4πS
(n)
z,k /Nz

, (3.18)

which aligns with the estimator using Czz
ℓ,k in eq. (3.2). Given various ξz

k value ranges, the

SNR can be categorized into weak, intermediate, and strong signal regions, as discussed

in section 3.1.

PTA sensitivity to the power-law SGWB. We proceed to estimate the sensitivity to

the power-law SGWB in realistic PTA observations. The Gaussian noise for timing residual

consists of a white noise component and a red noise one, relatively well-fitted by the power-law

spectrum [71]. By transitioning from timing residual (TR) to redshift, the noise spectrum

for a single pulsar can be expressed as

S(n)
z (f) = S(r)

z (fref)

(
f

fref

)γr

+ S(w)
z (fref)

(
f

fref

)2

, S(w)
z (fref) ≡ σ2

TR(2πfref)
2∆t. (3.19)

Here, S
(r)
z and S

(w)
z are the corresponding noise components, σTR is the timing residual

uncertainty of each measurement for a pulsar, ∆t is the cadence of the observation.

We consider recent NANOGrav and future SKA observations. The red noise for

NANOGrav is fit to be S
(r)
z = 1.3 × 10−28 yr and γr = 0 [5, 71], while for SKA, we as-

sume there is only white noise. The benchmark parameters for the two observations are

taken from [71] and [72, 73], respectively:

NANOGrav : σTR = 80 ns, ∆t = 14 days, Tobs = 15 yr, Nz = 50,

SKA : σTR = 30 ns, ∆t = 14 days, Tobs = 20 yr, Nz = 200.
(3.20)

Here, Tobs is the total observation time. Comparing our noise model for NANOGrav with

the fiducial SGWB model defined in eq. (3.10), we find that the SGWB dominates the noise

in the lowest 5 bins, consistent with NANOGrav’s result [5]. With Nz = 50 pulsars for

NANOGrav, this leads to ℓmax = 5, while for SKA, ℓmax = 10.

In the left part of figure 2, we depict the SNR distribution of the power-law SGWB as

a function of log10 A and α for both PTA observations. The fiducial SGWB model yields

an SNR ≃ 4.0 for NANOGrav (NG) and SNR ≃ 34.1 for SKA. Notably, we observe that

above SNR ≈ 80, the NANOGrav sensitivity reaches a saturation phase, where a stronger

A no longer improves the SNR due to the intrinsic variation in SGWB, consistent with the

result in ref. [48]. On the other hand, for SKA with a larger value of ℓmax and more sensitive

frequency bins, the threshold for saturation is significantly higher.

We also compute the estimation uncertainty of the power-law model parameters, log10 A

and α, using eq. (3.8), as illustrated in figure 3. For the fiducial SGWB model, the NANOGrav

case yields σ(log10 A) ≃ 0.25 and σ(α) ≃ 0.24, consistent with their data analysis [5]. In

comparison, the SKA demonstrates superior resolution over NANOGrav by factors of 21 and

14 for the two parameters, respectively. Akin to the total SNR observations, the uncertainty

ceases to improve beyond the saturation phase for NANOGrav.
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can accommodate a significantly higher ℓmax due to the larger number of stars compared to

pulsars, redistributing stars into an appropriate number of patches will not diminish sensitivity.

Astrometric sensitivity to the power-law SGWB. Due to the large number of observed

stars in astrometry, an efficient strategy, without sacrificing sensitivity, involves dividing

the celestial sphere into various patches [17, 18]. The distribution of these patches can be

realized through HEALPix [74]. Each patch combines the spatial deflections of stars on the

celestial sphere into an average δx. For NS stars evenly distributed in Nδx
patches, the

two-sided noise power spectrum of each patch is given by

S
(n)
δx

=
σ2

θ∆t

NS/Nδx

. (3.24)

Here, σθ represents the uncertainty of each measurement for a star. The SNR contribution

from a specific ℓ-mode is characterized by ξδx

k in eq. (3.23), which is independent of the

number of patches Nδx
. On the other hand, Nδx

determines ℓmax, influencing SNR in the

strong signal region. Thus, a reasonable choice of Nδx
is necessary in astrometric observation.

Gaia [31] and upcoming missions such as Roman [28, 33–35] and Theia [75, 76] play

pivotal roles in astrometric observations. The Gaia mission, having measured the proper

motion of over ∼ 109 stars and ∼ 106 quasi-stellar objects (QSOs) for more than 10 years, has

provided a rich dataset. The QSO data from Gaia has been leveraged to constrain ultralow

(≪ nHz) frequency gravitational waves [23, 27, 29]. In this study, we consider the full dataset

from Gaia upon its release, including its comprehensive measurements. The proposed mission

Theia boasts significantly improved resolution but with a small field of view [75, 76]. We

anticipate that the next-generation upgrade of Gaia, which we abbreviate as ‘XG-Gaia’, will

achieve µas-resolution while maintaining its cadence and the number of observed stars [77].

The benchmark parameters for the two astrometric missions are listed as follows [17, 77]:

Gaia : σθ = 100 µas, ∆t = 24 days, Tobs = 10 yr, NS = 1.5 × 109,

XG-Gaia : σθ = 1 µas, ∆t = 24 days, Tobs = 20 yr, NS = 1.5 × 109.
(3.25)

Note that we adopt a conservative estimate for the number of stars compared to ref. [26].

We evaluate the SNR for various measurements of the power-law SGWB model, assuming

uniform distribution of stars across the celestial sphere, each possessing identical measurement

properties. While a total of NS = 1.5 × 109 stars would allow for an ℓmax ∼ 104, we opt for

Nδx
= 40000 for Gaia and XG-Gaia with ℓmax = 200, as further increasing the number no

longer significantly enhances the SNR within our parameter space of interest.

In the right panel of figure 2, we depict the SNR distribution of Gaia and XG-Gaia using

eq. (3.23) concerning power-law model parameters. Generally, PTA’s sensitivity exhibits a

more pronounced change in terms of α, attributed to its more tentative decrease in sensitivity

at higher frequencies. The fiducial SGWB signal yields an SNR ≃ 1.5 for Gaia, compared

to 4.0 in NANOGrav, indicating Gaia resides in the marginal region for cross-checking

PTA discoveries. On the other hand, XG-Gaia achieves an SNR ≃ 43.9, higher than SKA,

benefiting from contributions at higher ℓ and frequency modes.

In figure 3, we compare the resolution of power-law parameters in astrometry with those

in PTA. The resolution approximately follows the distribution of 1/SNR. XG-Gaia, with
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resolutions below 10−2 for both amplitude and spectral index, can provide an exceptionally

precise dissection of the SGWB spectrum. This high precision is pivotal for gaining insights

into the distribution and evolution of SMBHBs, including potential environmental effects.

The Roman telescope, distinguished by its much higher cadence, demonstrates sensitivity

to the SGWB in the frequency band situated between PTA and LISA [28, 35]. The associated

frequency range of Roman offers valuable insights into whether the SGWB displays a frequency

turning point higher than the typical PTA band. This aspect is crucial for elucidating the

mass distribution of SMBHBs and investigating potential cosmological components of the

SGWB. Additionally, it allows for cross-correlation with other proposed measurements in the

same frequency band, such as binary neutron star resonance [78, 79].

Identifying circular polarization with astrometry. Astrometry holds the potential to

explore circular polarization through EB correlation [21, 30, 36]. We estimate the resolution

of the circular polarization fraction vk ≡ Vk/Ik, considering parameters on each frequency

mode Ok ≡ {Ik, vk}. The corresponding information matrix, as per eq. (3.7), is given by

Iij
k =

1

I2
k

ℓmax∑

ℓ=2

(2ℓ + 1)
2ζ2

ℓ,k(
1 + 2ζℓ,k + ζ2

ℓ,kuk

)2

×


2 − uk + 2ζℓ,kuk + ζ2

ℓ,kuk Ikvk

(
1 − ζ2

ℓ,kuk

)

Ikvk

(
1 − ζ2

ℓ,kuk

)
I2

k

(
1 + 2ζℓ,k + ζ2

ℓ,k (2 − uk)
)

 ,

(3.26)

where uk ≡ 1 − v2
k and ζℓ,k ≡ ξδx

k AℓB
2
ℓ = IkAℓB

2
ℓ /(4πS

(n)
δx,k/Nδx

).

Due to the complexity of the expression in eq. (3.26), we consider a small portion of

circular polarization in the limit |vk| ≪ 1. In this limit, the off-diagonal terms IvI
k are sub-

leading, implying that Ik and vk are uncorrelated. We find the inverse of the uncertainties as

σ−2(Ik) =
(
I−1

k

)

II
=

Ivv
k

Ivv
k III

k − (IIv
k )2

|vk|≪1
−−−−→

2

I2
k

ℓmax∑

ℓ

(2ℓ + 1)(1 + ζ−1
ℓ,k )−2,

σ−2(vk) =
(
I−1

k

)

vv
=

III
k

Ivv
k III

k − (IIv
k )2

|vk|≪1
−−−−→ 2

ℓmax∑

ℓ

(2ℓ + 1)(1 + ζ−1
ℓ,k )−2.

(3.27)

Here, the uncertainty for Ik aligns with the expression in eq. (3.22), as expected.

Considering a power-law model with α fixed at the fiducial value and assuming a constant

circular polarization fraction vk across all frequencies (i.e., vk = v), the uncertainty of v

converges to the total SNR:

lim
vk−→0

σ−2(v) =
∑

k

lim
vk−→0

σ−2(vk) = 2
∑

k

ℓmax∑

ℓ

(2ℓ + 1)(1 + ζ−1
ℓ,k )−2 = SNR2

(ast). (3.28)

Note that this assumption applies to cosmological sources rather than a finite sum of nearby

SMBHBs.

In the top panel of figure 4, we display the posterior distribution on the {log10 A, v}

plane for Gaia and XG-Gaia, assuming a truth value of v = 0.1. The degeneracy between

the two parameters turns out to be negligible. We also present the marginalized distribution
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vk ≡ Vk/Ik = 0 is given by:

SNR2
(syn) =

∑

k

ℓ
(syn)
max∑

ℓ=2

(2ℓ + 1)
ζ2
(
2β2(ζ + 1)2 + 2β(2ζ + 1)(ζ + 1) + 2ζ(ζ + 1) + 1

)

(ζ + 1)2(βζ + β + ζ)2
, (3.29)

where βℓ,k ≡ B2
ℓ (S

(n)
δz,k/Nδz)/(S

(n)
δx,k/Nδx

), and we omit the index ℓ and k on the right-hand

side for simplicity. We keep ℓ
(syn)
max to be the one of PTA, as ℓmax for astrometry is typically

much higher.

In the weak signal region, where ζℓ,k ≡ IkAℓB
2
ℓ /(4πS

(n)
δx,k/Nδx

) ≪ 1, the SNR simplifies to:

SNR2
(syn)

ζℓ,k≪1
−−−−→

∑

k

ℓ
(syn)
max∑

ℓ=2

(2ℓ + 1) (1/β2
ℓ,k + 2/βℓ,k + 2) ζ2

ℓ,k. (3.30)

Here, the β−2, β−1, and β0 terms correspond to the estimation from PTA, PTA-astrometry

correlation, and astrometry only, respectively. Thus, in addition to the sum of each type

of observation, the synergistic observation has the additional contribution from the cross-

correlation among the two.

As astrometry has a higher ℓmax than PTAs, the remaining astrometric-only ℓ-modes

can be included separately into the analysis:

ln L(tot) = ln L(syn) + ln L(ast)

∣∣∣
ℓ

(syn)
max <ℓ≤ℓ

(ast)
max

,

SNR2
(tot) = SNR2

(syn) + SNR2
(ast)

∣∣∣
ℓ

(syn)
max <ℓ≤ℓ

(ast)
max

.
(3.31)

Here, we define ℓ
(syn)
max and ℓ

(ast)
max to distinguish the maximal ℓ from the synergistic analysis

and that from the astrometry-only.

Parameter estimation in synergistic analyses of PTA and astrometry. We explore

two pairs of joint observations: the ongoing NANOGrav + Gaia and the future SKA + XG-

Gaia. A challenge in these synergistic analyses arises from differences in cadence and total

observation time, as detailed in eq. (3.20) and (3.25). In our approach, we adopt a conservative

strategy by selecting the longer cadence, the shorter observation time, and the smaller value

among Nz and Nδx
from each pair. The corresponding benchmark parameters are as follows:

NANOGrav + Gaia : ∆t = 24 days, Tobs = 10 yr, Nz = Nδx
= 50,

SKA + XG-Gaia : ∆t = 24 days, Tobs = 20 yr, Nz = Nδx
= 200.

(3.32)

The measurement uncertainties and the total number of observed stars remain consistent

with eq. (3.20) and (3.25).

The total SNR and parameter resolution for the power-law SGWB model are comparable

between the more sensitive of the pair, namely NANOGrav and XG-Gaia. Thus, no additional

figures similar to figure 2 and 3 are presented for further comparison.

The measurement of circular polarization in PTA-astrometry cross-observations can be

realized through the zB correlation, in addition to the EB correlation in the astrometry-only

correlations. Similar to the process outlined in section 3.2.3, we first calculate the information
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matrix Iij
k and derive the corresponding uncertainty of v. Due to the complexity of the

expressions, we present the result for the case when |v| ≪ 1:

lim
v→0

σ−2(v) = 2
∑

k

ℓmax∑

ℓ=2

(2ℓ + 1)
(βℓ,k + 1)ζ2

ℓ,k

(ζℓ,k + 1)(βℓ,kζℓ,k + βℓ,k + ζℓ,k)
. (3.33)

This expression is the linear sum of contributions from both the zB correlation:

lim
v→0

σ−2
zB(v) = 2

∑

k

ℓmax∑

ℓ=2

(2ℓ + 1)
ζ2

ℓ,k

(ζℓ,k + 1)2(βℓ,kζℓ,k + βℓ,k + ζℓ,k)
, (3.34)

and the EB correlation in eq. (3.28).

In the bottom panel of figure 4, we present the posterior distribution for {log10 A, v} for

the two joint observations, along with the two astrometry-only observations. The SKA + XG-

Gaia pair exhibits slightly better resolution σ(v) ≃ 0.022 compared to the XG-Gaia-only

observation, attributed to XG-Gaia’s overall better sensitivity. On the other hand, the

NANOGrav + Gaia pair can achieve a much superior resolution with σ(v) ≃ 0.39 compared to

the Gaia-only observation, benefiting from NANOGrav’s higher sensitivity. Thus, we conclude

that to effectively constrain circular polarization using current-generation observations, a

cross-correlation between PTA and Gaia is necessary.

4 Emergence of generalized Hellings-Downs correlation patterns

An essential feature for identifying the quadrupolar nature of SGWB lies in the spatial

correlation pattern, which can be revealed through either the coefficients of CXX′

(h)ℓ as a

function of ℓ, as discussed in section 2.2, or in the separation angle space, such as the

Hellings-Downs curve recently explored by various PTA collaborations [5–8]. While we

extensively discussed observables in spherical harmonic space in section 3, this section focuses

on correlation functions in the separation angle space.

Instead of using the information matrix, we generate random realizations of both SGWB-

induced redshift/deflections and measurement noises. These realizations ultimately lead to

predictions of spatial correlation patterns with uncertainties in each separation angle bin.

4.1 Realization of correlations in PTA and astrometry

In this section, we elaborate on the detailed methodology employed for simulating SGWB-

induced signals in both PTA and astrometric observations in configuration space, presenting

various illustrative examples of results.

To commence, we partition the celestial sphere into N evenly distributed patches using

HEALPix [74], denoting their central locations as {n̂a}. In the frequency domain, the signals are

complex variables. Each patch is attributed a stochastic complex dimension-3 vector denoted

as (δza, δxa), where δxa represents complex dimension-2 vectors on planes perpendicular to

each n̂a. The generation of δza and δxa follows a probability distribution given by

({δza}, {δxa}) ∼ N C(03N , C), C = C(h) + C(n). (4.1)

– 19 –



J
C
A
P
0
5
(
2
0
2
4
)
0
3
0

Here, C is the 3N × 3N complex covariance matrix, representing the linear sum of the

SGWB-induced correlation C(h) and the noise C(n). The SGWB covariance matrix, following

ref. [19], is defined as:

C(h)(I, V ) ≡

(
Cδz Cδzδx

C
†
δzδx

Cδx

)
, (4.2)

where I and V are the true parameters of total intensity and circular polarization of the

SGWB at a given frequency (with the frequency label k omitted for simplicity). The matrices

Cδz, Cδzδx
, and Cδx

are of dimensions N × N , N × 2N , and 2N × 2N , respectively. Their

definitions mirror those of eq. (2.7) and (2.9) but lack the δ-functions:

Cab
δz ≡ Γz(θab) I,

Cab
δzδx

≡ Γzδx
(θab)

[
I êb

|| + iV ê⊥

]
,

Cab
δx

≡ Γδx
(θab)

[
I
(
êa

||ê
b
|| + ê⊥ê⊥

)
+ iV

(
êa

||ê⊥ − ê⊥êb
||

)]
.

(4.3)

Here, êa
||, êb

||, and ê⊥ are defined in eq. (2.8), and the Γ functions are defined in eqs. (2.7)

and (2.10). The symmetry (Cab
δx

)† = Cba
δx

ensures that Cδx is Hermitian, and so is the

covariance matrix C(h).

The noise matrix is purely diagonal due to spatially uncorrelated measurement noise:

C(n) = diag
(
S(n)

z 1N , S
(n)
δx

12N

)
, (4.4)

where S
(n)
z and S

(n)
δx

are defined in eq. (3.19) and (3.24), respectively.

In practice, to generate data from a complex normal distribution, we decompose both

the signals and the covariance matrix into real and imaginary parts:

({ℜ[δza]}, {ℜ[δxa]}, {ℑ[δza]}, {ℑ[δxa]}) ∼ N (06N , C′), C′ ≡
1

2

(
ℜ[C] ℑ[C]T

ℑ[C] ℜ[C]

)
. (4.5)

Here, ℜ[C] contains signals proportional to I and measurement noise C(n), while ℑ[C] only

contains the term proportional to V .

In figure 5, we present three cases of realizations for both redshift δz and angular

deflection δx with V/I = −1, 0, and 1, respectively. The background circle colors represent

the real part of δz, ranging from red (δz > 0) to blue (δz < 0). The real and imaginary

components of the angular deflections are depicted with black and white arrows, respectively,

with lengths proportional to their magnitudes. In these examples, noise is assumed to vanish.

Consequently, in the two maximally polarized cases, the real and imaginary parts of δx are

always perpendicular, with the relative phases having different signs for the two cases. On

the other hand, for V = 0, they exhibit random behavior without any correlations.

Another consistency check, aiming to connect with the previous discussion in the spherical

harmonic space in section 3, involves the reconstruction of the spherical harmonic observable

from {za} and {δxa} using eqs. (2.12) and (2.13), in the absence of measurement noise.

Examples of the corresponding CXX′

ℓ are depicted in figure 6. The violins at each ℓ-mode

showcase the statistical distribution of the estimated CXX′

ℓ values for all ℓ ≤ 6, based on a

total of 104 realizations. The modes for ℓ = 0 and 1 turn out to be negligible, as expected.
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next subsection, we will delve into a detailed discussion of the origin of uncertainty regions,

commonly referred to as cosmic variances.

4.3 Cosmic variances

As depicted in figure 8, even in the limit of SNR ≫ 1 for high-sensitivity observations that

encompass a large number of patches, the sky-averaged spatial correlations still exhibit an

uncertainty envelope. The discussion of these inherent uncertainties for PTAs, referred to

as cosmic variance, has been the subject of recent studies in refs. [80–86]. In this section,

we present a theoretical derivation of cosmic variances for general PTA and astrometric

observations.

Cosmic variance manifests itself in patch pairs separated by a specific angular separation

on the celestial sphere, denoted as the variance intrinsic to the sky-averaged spatial correlations

at a given separation angle θ. To calculate cosmic variance, we begin by introducing the

sky-averaged two-point functions [82, 87]:

{
X X ′∗}S

θ ≡
∫

d2n̂a

4π

∫
d2n̂b

4π
XaX ′∗

b δ (n̂a · n̂b − cos θ) , (4.6)

where X can represent δz, δx||, or δx⊥. This expression can be further simplified in the

spherical harmonic space, as seen in the case of PTAs [21, 38–41, 82, 88]:

{δz δz∗}S
θ =

∑

ℓ,m

∑

ℓ′m′

zℓmz∗
ℓ′m′

∫
d2n̂a

4π

∫
d2n̂b

4π
Yℓm(n̂a)Y ∗

ℓ′m′(n̂b) δ (n̂a · n̂b − cos θ)

=
∑

ℓ

2ℓ + 1

4π
Czz

ℓ Pℓ(cos θ).

(4.7)

Here, Pℓ are the Legendre polynomials.

A parallel set of steps can be applied to astrometric observations, taking into account

their expansion in terms of vector spherical harmonics as follows [21]:

{
δx|| δx||∗

}S

θ

=
∑

X,X′∈{E,B}

∑

ℓ,m

∑

ℓ′m′

XℓmX
′∗
ℓ′m′

∫
d2n̂a

4π

∫
d2n̂b

4π

[
YX

ℓm(n̂a)
]

||

[
YX′

ℓ′m′(n̂b)
]∗

||
δ (n̂a · n̂b − cos θ)

=
∑

ℓ

2ℓ + 1

4π

[
CEE

ℓ G(ℓ1)(θ) + CBB
ℓ G(ℓ2)(θ)

]
. (4.8)

Here,

G(ℓ1)(θ) ≡ −
1

2

[
1

ℓ(ℓ + 1)
P 2

ℓ (cos θ) − P 0
ℓ (cos θ)

]
, G(ℓ2)(θ) ≡ −

1

ℓ(ℓ + 1)

P 1
ℓ (cos θ)

sin θ
, (4.9)

are functions of associated Legendre polynomials P m
ℓ [21]. The expression for

{
δx⊥ δx⊥∗

}S

θ
only differs from eq. (4.8) by switching G(ℓ1) ↔ G(ℓ2). The expression for the PTA-astrometry

cross-correlation can be derived similarly:

{
ℜ
[
δz δx||∗

]}S

θ
=
∑

ℓ

2ℓ + 1

4π

1√
ℓ(ℓ + 1)

ℜ
[
CzE

ℓ

]
P 1

ℓ (cos θ). (4.10)
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The explicit forms of Czz
ℓ , CEE

ℓ , CBB
ℓ , and CzE

ℓ have been defined in eq. (2.13). The ensemble

averages of eqs. (4.7), (4.8), and (4.10) yield the generalized Hellings-Downs curves as defined

in eqs. (2.7) and (2.10).

The cosmic variance (CV) at a separation angle precisely corresponds to the variance

of the sky-averaged two-point correlations defined in eq. (4.6):

CV(X X ′∗)θ =

〈({
XX ′∗}S

θ

)2
〉

−
〈{

XX ′∗}S
θ

〉2
. (4.11)

Here, 〈· · · 〉 denotes the ensemble average over the SGWB, as the definition of CV does not

include measurement noises. The calculation of CV can be simplified using correlations

in the spherical harmonic space [82].

For the PTA-only observation, the CV becomes:

CV(δz δz∗)θ =
∑

ℓℓ′

(2ℓ+1)

4π

(2ℓ′+1)

4π
Pℓ(cos θ)Pℓ′(cos θ)〈Czz

ℓ Czz
ℓ′ 〉 −

(
∑

ℓ

2ℓ +1

4π
Pℓ(cos θ)〈Czz

ℓ 〉

)2

=
∑

ℓ

2ℓ + 1

16π2

(
Czz

(h)ℓ Pℓ(cos θ)
)2

.

(4.12)

In this calculation, we used 〈CXX′

ℓ 〉 = CXX′

(h)ℓ and

〈CXX
ℓ CXX

ℓ′ 〉 = CXX
(h)ℓ CXX

(h)ℓ′ +
1

2ℓ + 1

(
CXX

(h)ℓ

)2
δℓℓ′ , (4.13)

which arises from Isserlis’ theorem [47].

A similar result can be obtained for the astrometry-only correlations. We begin by

calculating the first term in eq. (4.11), focusing on the parallel directions:

〈({
δx||δx||∗

}S

θ

)2
〉

=
∑

ℓℓ′

(2ℓ + 1)(2ℓ′ + 1)

16π2
[〈CEE

ℓ CEE
ℓ′ 〉G(ℓ1)G(ℓ′1) + 〈CBB

ℓ CBB
ℓ′ 〉G(ℓ2)G(ℓ′2)

+ 〈CEE
ℓ CBB

ℓ′ 〉G(ℓ1)G(ℓ′2) + 〈CBB
ℓ CEE

ℓ′ 〉G(ℓ2)G(ℓ′1)] ,

(4.14)

where we omit the θ-dependence in G(ℓ1)(θ) and G(ℓ2)(θ) for simplicity. The first two terms

within the [· · · ] can be computed directly from eq. (4.13), while the last two terms represent

〈CEE
ℓ CBB

ℓ′ 〉 = CEE
(h)ℓ CBB

(h)ℓ′ , 〈CBB
ℓ CEE

ℓ′ 〉 = CBB
(h)ℓ CEE

(h)ℓ′ , (4.15)

in the absence of circular polarization. The second term in eq. (4.11) is merely the square

of the sky average in eq. (4.8) after applying 〈CXX′

ℓ 〉 = CXX′

(h)ℓ . Combining these two terms

yields the final CV result:

CV(δx|| δx||∗)θ =
∑

ℓ

2ℓ + 1

16π2

(
CEE

(h)ℓ

)2 (
G(ℓ1)(θ)2 + G(ℓ2)(θ)2

)
, (4.16)

where we utilized the relationship CEE
(h)ℓ = CBB

(h)ℓ. The expressions for correlations involving

δx⊥ are derived analogously, with the result given by the above equation and G(ℓ1) ↔ G(ℓ2)

swapped.
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Note that in figures 7 and 8, the astrometric observations involve a linear combination

of parallel and perpendicular correlations, specifically (δx
||
aδx

||∗
b + δx⊥

a δx⊥∗
b )/2. The CV for

this configuration is

CV
(
(δx|| δx||∗ + δx⊥δx⊥∗)/2

)

θ
=
∑

ℓ

2ℓ + 1

16π2

(
CEE

(h)ℓ

)2 (
G(ℓ1)(θ) + G(ℓ2)(θ)

)2
, (4.17)

which differs from the parallel-only case presented in eq. (4.16).

Finally, turning our attention to the PTA-astrometry cross-correlation, its CV can be

obtained through analogous procedures, yielding:

CV(ℜ
[
δz δx||∗

]
)θ =

∑

ℓ

2ℓ + 1

16π2

1

ℓ(ℓ + 1)

(
CzE

(h)ℓ P 1
ℓ (cos θ)

)2
. (4.18)

It is noteworthy that the CVs presented in eqs. (4.12), (4.17), and (4.18) share a common

characteristic: each ℓ-mode is the square of the coefficients in their corresponding average

values of eqs. (4.7), (4.8), and (4.10), divided by (2ℓ + 1). The numerical values of these CVs

align with the variance envelope observed in the right part of figure 8.

5 Conclusion

In this study, we utilize a joint likelihood that incorporates both astrometric and PTA

observations to predict the detection of SGWB and the resolution of SGWB parameters.

Our analysis takes advantage of the diagonal structure inherent in both measurement noise

and intrinsic SGWB variance in the spherical harmonic space. This results in an analytical

framework that facilitates the comparison of various PTA and astrometric observations,

providing intuitive insights. Astrometry showcases its advantages in the harmonic space: the

abundance of stars allows for a high value of lmax, yielding more independent estimators and,

consequently, higher SNR in the strong signal regions. This SNR, in turn, translates into the

resolution of SGWB parameters, enabling the precise dissection of SGWB properties.

Our findings yield several predictions regarding astrometric observations. Firstly, the

upcoming full data release of Gaia is expected to marginally detect the SGWB, which has

already been observed by current PTA observations. Consequently, Gaia can serve as a

valuable cross-check for PTA results, providing an independent demonstration of spatial

correlation distinct from PTA’s Hellings-Downs curve. Gaia’s individual observations can

also contribute to checking the chirality nature of SGWB. However, a significantly improved

resolution of chirality can be achieved through cross-correlations between current PTAs and

Gaia. The next-generation upgrade of Gaia is poised to deliver the best-ever sensitivity to the

SGWB, particularly for its spectrum and chirality. Precise measurements of these quantities

are crucial for understanding the evolution of SMBHBs, including eccentricity distribution

and environmental effects that may influence the low-frequency end of the spectrum, as well

as any potential cosmological signatures. The exploration of the high-frequency turning

point in the SGWB spectrum remains an intriguing area, where high-cadence observations

by Roman can provide valuable insights.

Looking forward, the prospects for the field appear promising. The anisotropy in the

SGWB, a facet beyond the scope of our current analysis, represents another crucial aspect
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that astrometric observations could potentially illuminate. Our assumption of uniformly

distributed stars on the celestial sphere, with uniform noise levels and cadences, can be

refined by considering the realistic star distribution found in Gaia datasets. Incorporating

this distribution along with the response functions of astrometry and PTA further strengthens

the complementarity between these two types of observations, as they exhibit sensitivity to

different incoming directions of the GWs. Such angular-dependent sensitivity will play an

essential role in resolving individual SMBHBs, likely marking the next significant milestone

in gravitational astronomy.
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