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Abstract—OFDM modulation and OTFS modulation have
demonstrated their efficacy in mitigating interference in the time
and frequency domains, respectively, caused by path delay and
Doppler shifts. However, no established modulation technique
exists to address inter-Doppler interference (IDI) resulting from
time-varying Doppler shifts. Additionally, both OFDM and OTFS
require supplementary precoding techniques to mitigate inter-
user interference (IUI) in MU-MIMO channels. To address these
limitations, we present a generalized modulation method for
any multidimensional channel, based on Higher Order Mercer’s
Theorem (HOGMT) [1], [2] which has been proposed recently to
decompose multi-user non-stationary channels into independent
fading subchannels (Eigenwaves). The proposed method, called
multidimensional Eigenwaves Multiplexing (MEM) modulation,
uses jointly orthogonal eigenwaves decomposed from the multidi-
mensional channel as subcarriers, thereby avoiding interference
from other symbols transmitted over multidimensional chan-
nels. We show that MEM modulation achieves diversity gain
in eigenspace, which in turn achieves the total diversity gain
across each degree of freedom(e.g., space (users/antennas), time-
frequency and delay-Doppler). The accuracy and generality of
MEM modulation are validated through simulation studies on
three non-stationary channels.

I. INTRODUCTION

Path delays cause the Inter-Symbol Interference (ISI), which
can be mitigated by OFDM as it transmits symbols in
frequency domain [3]. On the other hand, Doppler effect
causes Inter-Carrier Interference (ICI), which can be mitigated
by OTFS modulation by transmitting symbols in the delay-
Doppler domain [4]However, in non-stationary channels, both
the delay and the Doppler effects change over time and fre-
quency, leading to interference at the delay-Doppler domain,
which is also referred as Inter-Doppler Interference (IDI) [5].
Detectors have been investigated to mitigate IDI for OTFS
symbols [5], [6]. However, these additional techniques can
not ensure interference-free at the delay-Doppler domain,
especially for highly non-stationary channels. As shown in
figure 1, these techniques are developed iteratively to mitigate
ISI, ICI and then IDI due to path difference (�x), veloc-
ity difference (�x

0) and acceleration difference (�x
00), by

investigating orthogonality in the time, time-frequency and
delay-Doppler domain, respectively. In general, modulation
techniques design carriers in the domain represented by high
order physics as it is relatively less variant with minimal inter-
ference. This motivates us to investigate a general modulation
for high dimensional channels. Moreover, the above modu-
lations can not directly incorporate space domain, therefore
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Figure 1: The evolution of modulation techniques
requiring additional precoding techniques to cancel spatial
interference for MU-MIMO channels [7], [8]. In this paper,
we present a general high dimensional modulation for non-
stationary channels. Notice stationary channels can be seen
as a special case of the non-stationary channel. Therefore the
proposed modulation for non-stationary channels will certainly
generalize to any wireless channel. Recently, HOGMT has
been proposed as a mathematical tool for multi-user non-
stationary channel decomposition [1], [2]. It can decompose
the high-dimensional channels into independent subchannels
along each degree of freedom (DoF). We leverage this tool
to develop Multidimensional Eigenwave Multiplexing (MEM)
modulation which uses the jointly orthogonal eigenwaves
decomposed from the high dimensional channel as carriers.
Symbols on these carriers achieve orthogonality across each
DoF, thereby avoiding interference from all DoF.

We summarize the qualitative differences between OTFS
and MEM in Table I. OTFS obtains the carriers by Symplectic
Fourier Transform (SFT), while MEM obtains its carriers by
HOGMT. The OTFS carriers are in the delay-Doppler domain,
while carriers of MEM are at the eigen domain. Further, OTFS
requires CSI at the receiver side only, while MEM requires
CSI at both transmitter and receiver side. This is the main
cost of MEM, although the CSI is generally required at the
transmitter in modern wireless systems that is well docu-
mented in the literature [9]. The OTFS input-output relation
and the corresponding modulation schemes for non-stationary
channels does not exist currently and it cannot directly gener-
alize to higher dimensional channels. For instance, it requires
additional precoding for MU-MIMO channels as it does not
achieve spatial orthogonality. The details about the limitations
of OTFS are discussed in Section III. The proposed MEM
is able to achieve orthogonality for non-stationary channels
and generalize to higher dimension, meaning it doesn’t require
additional detector and precoding to cancel IDI and IUI. To
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Table I: Comparison between OTFS and MEM

Modulations OTFS MEM
Mathematical tool SFT HOGMT
Carriers domain Delay-Doppler domain Eigen domain
CSI requirement CSI at Rx CSI at Tx and Rx

Adaptive to NS channels No Yes
General to HD channels No Yes

the best of our knowledge, MEM is the first generalized
modulation for high-dimensional non-stationary channels. The
contribution of this paper is summarized as follows:

• We deduce the input-output relation for non-stationary
channels and show the limitations of OTFS modulation,
which is susceptible to IDI due to OTFS symbols being
unable to maintain orthogonality for time- and frequency-
varying delay-Doppler response.

• We design a multidimensional modulation with jointly
orthogonal eigenwaves as subcarriers, cancelling interfer-
ence in all degrees of freedom in non-stationary channels.

• We show the generality of MEM to stationary channels,
non-stationary channels and higher dimensional chan-
nels, where we validate higher dimensional generality
by extending the non-stationary channel to space domain
(e.g., MU-MIMO non-stationary channels) and demon-
strate MEM can also cancel spatial interference without
additional precoding.

• We validate MEM under three channels, two of which
show the performance in non-stationary channels with
different non-stationarity intervals. The third shows its
generality by incorporating the spatial domain.

II. PRELIMINARY

The wireless channel is typically expressed by a linear op-
erator H , and the received signal r(t) is given by r(t)=Hs(t),
where s(t) is the transmitted signal. The physics of the impact
of H on s(t) is described using the delays and Doppler shift
in the multipath propagation [10] given by (1),

r(t) =
XP

p=1
hps(t� ⌧p)e

j2⇡⌫pt (1)

where hp, ⌧p and ⌫p are the path attenuation factor, time delay
and Doppler shift for path p, respectively. (1) is expressed in
terms of the overall delay ⌧ and Doppler shift ⌫ [10] in (2),

r(t) =

ZZ
SH(⌧, ⌫)s(t�⌧)ej2⇡⌫t d⌧ d⌫ (2)

=

Z
LH(t, f)S(f)ej2⇡tf df =

Z
h(t, ⌧)s(t�⌧) d⌧ (3)

where SH(⌧, ⌫) is the (delay-Doppler) spreading function of
channel H , which describes the combined attenuation factor
for all paths in the delay-Doppler domain. S(f) is the Fourier
transform of s(t) and the time-frequency (TF) domain repre-
sentation of H is characterized by its TF transfer function,
LH(t, f) which can be obtained by 2-D Fourier transform
as (4). The time-varying impulse response h(t, ⌧) is obtained
as the Inverse Fourier transform of SH(⌧, ⌫) from the Doppler

Orange grid: Time-Delay domain
Red grid: Time-Frequency domain
Blue grid: Delay-Doppler domain

Spreading function TF transfer function

Time-varying impulse response

Figure 2: General LTV model transition in 4-D domain (time,
frequency, delay and Doppler) [10], [12].

domain to the time domain as in (5).

LH(t, f)=

ZZ
SH(⌧, ⌫)ej2⇡(t⌫�f⌧)

d⌧ d⌫ (4)

h(t, ⌧)=

Z
SH(⌧, ⌫)ej2⇡t⌫ d⌫ (5)

Figure 2 shows a general Linear Time Varying (LTV) channel
model, represented in different domains and illustrates the
mutual relationship between h(t, ⌧), LH(t, f) and SH(⌧, ⌫).
For non-stationary channels, the second-order statistics are 4-
D functions. The details are given in Appendix A [11].

III. LIMITATIONS OF OTFS

OTFS input-output relation: The OTFS delay-Doppler input-
output relation [4] can be rewritten in continuous form as,

r(t, f) =

ZZ
hw(⌧, ⌫)s(t� ⌧, f � ⌫) d⌧ d⌫ + v(t, f) (6)

where v(t, f) is noise, and hw(⌧, ⌫) is the twisted convolution
of delay-Doppler response, hc(⌧, ⌫) with window function
w(⌧, ⌫) (Heisenberg transform) as in (7),

hw(⌧, ⌫)=

ZZ
e
�j2⇡⌫0

⌧
0
hc (⌧

0
, ⌫

0)w (⌫�⌫0, ⌧�⌧ 0) d⌧ 0d⌫0

(7)
and relation of spreading function SH(⌧, ⌫) and delay-Doppler
response hc(⌧, ⌫), as given in [12] is,

SH(⌧, ⌫) = e
�j2⇡⌫0

hc(⌧, ⌫) (8)

Then (7) is rewritten as

hw(⌧, ⌫) =

ZZ
SH(⌧ 0, ⌫0)w (⌫ � ⌫

0
, ⌧ � ⌧

0) d⌧ 0d⌫0 (9)

Notice hw(⌧, ⌫) is the flipped correlation of spreading function
and a window function, i.e., hw(⌧, ⌫) = E{SH(⌧ 0, ⌫0)w(⌫ �
⌫
0
, ⌧ � ⌧

0)}, which implies the stationary channel assump-
tion.Currently, the model of OTFS input-output relation for
non-stationary channels is not available in the literature.
Limitations of OTFS in non-stationary channels: For non-
stationary channels, we have E{SH(⌧ 0, ⌫0)w(⌫�⌫0, ⌧�⌧ 0)} =
hw(⌧ 0, ⌫0; ⌧, ⌫). Then hw(⌧, ⌫) in (9) is extended to time- and
frequency-varying case to hw(t, f ; ⌧, ⌫), which we define as
local delay-Doppler response (LDR).

Definition 1. (Local delay-Doppler Response) In the non-
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stationary channels, hw(⌧, ⌫) undergoes a transformation to
hw(⌧ 0, ⌫0; ⌧, ⌫), which can subsequently be transferred to
hw(t, f ; ⌧, ⌫) as

hw(t, f ; ⌧, ⌫) , F
2{E{SH(⌧ 0, ⌫0)w(⌫ � ⌫

0
, ⌧ � ⌧

0)}}

=

ZZ
hw(⌧

0
, ⌫

0; ⌧, ⌫)⇥ e
j2⇡(t⌫0�f⌧

0)
d⌧

0
d⌫

0 (10)

where F
2 is the Symplectic Fourier Transform (SFT), i.e., 2-D

Fourier Transform.

Therefore OTFS input-output relation (6) for non-stationary
channel is reformulated as,

r(t, f)=

ZZ
hw(t, f ; ⌧, ⌫)s(t�⌧, f�⌫) d⌧ d⌫+v(t, f) (11)

Note that (11) has a similar form as (6) but shows the
time and frequency variation of the impulse response function
hw(⌧, ⌫). The above deduction shows that OTFS symbols
cannot maintain orthogonality in non-stationary channels as
the delay-Doppler domain is no longer independent of the
time-frequency domain which leads to interference in the
delay-Doppler domain. Currently, the OTFS modulation for
non-stationary channels is not available in the literature.
Limitations of OTFS in higher dimensional channels:
Consider the deduced OTFS input-output relation for non-
stationary channels in (16). Let k(t, f ; t0, f 0) , hw(t, f ; t �
t
0
, f � f

0) be the channel kernel, then (6) is rewritten as,

r(t, f) =

ZZ
k(t, f ; t0, f 0)s(t0, f 0) dt0 df 0 + v(t, f) (12)

For MU-MIMO non-stationary channels, hw(t, f ; ⌧, ⌫) is
extended to H(t, f ; ⌧, ⌫). For notational convenience, we use u
and u

0 to represent a continuous space domain (users/antennas)
at the receiver and transmitter, respectively. Then H(t, f ; ⌧, ⌫)
is henceforth rewritten as hw(u, t, f ;u0

, ⌧, ⌫) and thus (12) can
also be extended to MU-MIMO case as in (13),

r(u, t, f) =

ZZZ
k(u, t, f ;u0

, t
0
, f

0)s(u0
, t

0
, f

0) du0
dt

0
df

0

+ v(u, t, f) (13)

where k(u, t, f ;u0
, t

0
, f

0) , hw(u, t, f ;u0
, t � t

0
, f � f

0)
denotes the space-time-frequency transfer function. The OTFS
symbol is not able to achieve joint orthogonality at space-time-
frequency domain thereby leading to not only the spatial inter-
ference but also the joint space-time-frequency interference.

In conclusion, OTFS modulation has the limitations: 1)
OTFS cannot deal with non-stationary channels where the
delay-Doppler response is time- and frequency-varying. 2)
OTFS require additional equalizer for MU-MIMO channels.
Moreover, the equalizer and OTFS can only achieve the
optimal interference cancellation at space and time-frequency
domain respectively, as modulation and equalizers are indepen-
dent processes. It is not able to achieve the global optimization
for the joint space-time-frequency interference cancellation.

Figure 3: 2-D Eigenwave Multiplexing Modulation

IV. EIGENWAVE MODULATION

A. HOGMT decomposition - a brief background

In [1], authors derived a generalized version of Mercer’s
Theorem [13] for asymmetric kernels and extended it to
higher-order kernels, which decomposes an asymmetric multi-
dimensional channel into jointly orthogonal subchannels. For
any multidimensional process K(⇣1,...,⇣P ;�1,...,�Q), it can be
decomposed by Theorem 1 in [1] as,

K(⇣1,...,⇣P ;�1,...,�Q)=
NX

n=1

�n n(⇣1,...,⇣P )�n(�1,...,�Q)

where E{�n�0
n
}=�n�nn0 . �n is the n

th eigenvalue. {�n} and
{ n} are eigenfunctions having orthonormal property as,

Z
. . .

Z
�n(�1,...,�Q)�n0(�1,...,�Q) d�1,..., d�Q = �nn0

Z
. . .

Z
 n(⇣1,...,⇣P ) n0(⇣1,...,⇣P ) d⇣1,..., d⇣P = �nn0

B. Multidimensional Eigenwave Multiplexing modulation

We leverage the decomposition framework in [1] and rede-
fine the eigenfunctions with multiple variables, which can be
defined as eigenwaves in multiple dimensions.

Lemma 1. (Associative property of eigenwave set projection)
Define �a=⌃N

n
an�n(�1,...,�Q), we have

h�a,�
⇤
b
i = h�ab,�

⇤i = h�,�⇤
ab
i (14)

where h·, ·i is the eigenwave set projection operator.
�n(�1,...,�Q) is Q dimensional eigenfunction.

Proof. The proof is provided in Appendix B [11].

Theorem 1. (Multidimensional Eigenwave Multiplexing Mod-
ulation and Matched Filter)

Given, a M=Q+P dimensional channel transfer function
H(⇣1,...,⇣P ;�1,...,�Q) with input-output relation as

r(⇣1,...,⇣P )

=

Z
. . .

Z
H(⇣1,...,⇣P ;�1,...,�Q)s(�1,...,�Q) d�1,..., d�Q

+ v(⇣1,...,⇣P )

is decomposed into multidimensional eigenfunctions [1] as,

H(⇣1,...,⇣P ;�1,...,�Q)=
NX

n=1

�n n(⇣1,...,⇣P )�n(�1,...,�Q)
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r(⇣1,...,⇣P ) =

Z
. . .

Z
H(⇣1,...,⇣P ;�1,...,�Q)s(�1,...,�Q) d�1,..., d�Q+v(⇣1,...,⇣P )

=

Z
. . .

Z ⇢ NX

n=1

�n n(⇣1,...,⇣P )�n(�1,...,�Q)
NX

n

sn�n(�1, . . ., �Q)

�

| {z }
Lemma 1

d�1,..., d�Q + v(⇣1,...,⇣P )

=

Z
. . .

Z ⇢ NX

n=1

�nsn n(⇣1,...,⇣P ) |�n(�1,...,�Q)|2
| {z }

=1

+
NX

n0 6=n

�nsn0 n(⇣1,...,⇣P )�n(�1,...,�Q)�n0 (�1,...,�Q)
| {z }

=0

�
d�1,..., d�Q + v(⇣1,...,⇣P )

=
NX

n

�nsn n(⇣1,...,⇣P ) + v(⇣1,...,⇣P ) (17)

ŝn =

Z
. . .

Z
r(⇣1,...,⇣P ) ⇤

n(⇣1,...,⇣P ) d⇣1,..., d⇣P

=

Z
. . .

Z X

n

�nsn n(⇣1,...,⇣P ) ⇤
n(⇣1,...,⇣P ) d⇣1,..., d⇣P+

Z
. . .

Z
v(⇣1,...,⇣P ) ⇤

n(⇣1,...,⇣P ) d⇣1,..., d⇣P

=

Z
. . .

Z
�nsn| n(⇣1,...,⇣P )|2 d⇣1,..., d⇣P + vn = �nsn + vn =) Interference-free data symbols across all degrees of freedom (18)

then, a given symbol set, {sn} is modulated using eigenfunc-
tions {�⇤

n
} as subcarriers given by,

s(⇣1,...,⇣P ) =
NX

n

sn�
⇤
n
(�1,...,�Q) (15)

Demodulating the received signal r(⇣1,...,⇣P ) is accomplished
by employing the eigenwave matched filter, { ⇤

n
} and the

estimate ŝn is given by,

ŝn = �nsn + vn (16)

where, vn is the projection of noise v(⇣1,...,⇣P ) onto the
eigenwave  ⇤

n
(⇣1,...,⇣P ).

Proof. Transmitting the modulated symbol s(�1,...,�Q)
over the multidimensional channel with transfer function
H(⇣1,...,⇣P ;�1,...,�Q), the received signal is obtained by (17).
Demodulating r(⇣1,...,⇣P ) with  

⇤
n
(⇣1,...,⇣P ), the estimated

data ŝn is given by (18), which suggests that the demodulated
symbol ŝn is the data symbol sn multiplied a scaling factor
(channel gain) �n along with AWGN, meaning there is no
interference from other symbols.

Figure 3 shows an example of 2-D eigenwave modulation
using Theorem 1. At the transmitter, each data symbol, sn is
multiplied by one eigenwave �n, obtained by HOGMT decom-
position and then summed to create the modulated signal. The
data symbols remain independent during transmission over the
channel due to the joint orthogonality of eigenwaves. At the
receiver, each each data symbol estimate, ŝn is obtained by
a matching filter using the eigenwave  n, also obtained by
HOGMT decomposition giving the data symbol sn multiplied
by the corresponding channel gain, �n with AWGN, vn.
Theorem 1 is applied to non-stationary channels as follows.

Corollary 1. (MEM modulation for non-stationary chan-
nels) Given the non-stationary channel Local delay-Doppler
Response (LDR), hw(t, f ; ⌧, ⌫) in (10) with channel kernel
k(t, f ; t0, f 0), and the input-output relation in (12), the data
set {sn} is modulated by MEM as

s(t, f) =
NX

n

sn�
⇤
n
(t, f) (19)

At the receiver, interference-free estimated symbol ŝn is ob-
tained by demodulating the received signal r(t, f) using
eigenfunctions { ⇤

n
} as

ŝn =

ZZ
r(t, f) ⇤

n
(t, f) dt df = �nsn+vn (20)

where, �n(t, f) and  n(t, f) are the 2-D eigenwave decom-
posed from k(t, f ; t0, f 0) by HOGMT.

Proof. It follows the same steps and deductions as in the
proof of Theorem 1, except for non-stationary channels the
multidimensional transfer function H(⇣1,...,⇣P ;�1,...,�Q) is
replaced by the channel kernel k(t, f ; t0, f 0).

Therefore, (20) shows that data symbols are only influenced
the channel gain and AWGN, while avoiding interference
in non-stationary channel by the use of MEM modulation.
Furthermore, MEM modulation can also incorporate additional
beamformer such as water filling, MVDR, etc., according to
the desired optimization criteria [14]. However, beamformers
and equalizers are out of the scope of this paper. Meanwhile,
replacing k(t, f ; t0, f 0) by k(u, t, f ;u0

, t
0
, f

0) in (13), MEM
modulation can directly incorporate the spatial domain without
any modification. It means MEM can be directly applied to
MU-MIMO channels without additional precoding.

C. Generalization

Stationary channels: Assuming the channel is ergodic, as the
channel is divided into N independent subchannels (for the
non-singular channel matrix/tensor, N is the multiplication
of the length of each dimension), the capacity of MEM is
the summation capacity of N subchannels. Then the average
capacity is given by,

C̄ = max
{Pn}

1

T

NX

n

log2
�
1 +

Pn|�n|2

N0

�
(21)

where, T is the time length. Pn and N0 is the power of sn and
vn, respectively. (21) shows that, with water filling algorithm,
MEM achieves the capacity for stationary channels.
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Figure 4: Eigen domain view of space, time-frequency and
delay Doppler domain

Remark 1: MEM modulation achieves the sum rate in
eigenspace, where eigenwaves are independent subchannels. It
also implies achieving the diversity gain in eigenspace. Non-
stationary channels: The capacity for non-stationary channels
is not well defined as the ergodic assumption no longer holds.
In this case, we give a qualitative analysis about the optimality
by using the concept of “diversity achieving” for the non-
stationary wireless channels. We know from [1] that the total
channel gain for the non-stationary channel LDR hw(t, f ; ⌧, ⌫)
in (10) is given by,

ZZZZ
|hw(t, f ; ⌧, ⌫)|2 dt df d⌧ d⌫ =

NX

n

�n (22)

where, �n is n
th eigenvalue, and E{�n�0

n
} = �n�nn0 . The

deduction of (22) is given in Appendix C [11]. Meanwhile,
the power over all demodulated symbol ŝn as in (20) is,

E

8
<

:

�����

NX

n

ŝn

�����

2
9
=

; =
NX

n

�nPn +N0 (23)

From (22) and (23) we find that the data symbol {sn} has
leveraged all the diversity gain.
Higher dimensional channels: Replacing hw(t, f ; ⌧, ⌫)
in (22) by H(t, f ; ⌧, ⌫), MEM modulation can still achieve
diversity gain for MU-MIMO non-stationary channels. The
reason is that the diversity of the multidimensional channel at
each DoF (space, time-frequency, delay-Doppler) are merged
(integral along each DoF as in (22)) and then divided in the
eigenspace into independently eigewaves as shown in Figure 4.
Therefore, eigenwaves achieve diversity in eigenspace, imply-
ing that “diversity achieving” for the total channel as well.

V. RESULTS

We analyze the accuracy of MEM modulations without
supplemental detectors and present comparisons to OTFS with
SToA detectors for non-stationary channels exhibiting varying
degrees of non-stationarity. We then demonstrate the generality
of our approach for higher-dimensional channels by directly
applying MEM modulation to MU-MIMO channels without
the need for precoding techniques. In all simulations, we
assume perfect CSI at both the transmitter and receiver.
Non-stationary channels: We establish the channels in Matlab
using the Extended Vehicular A (EVA) model with parameters
provided in Table II. To demonstrate the effects of non-
stationarity, we compared our methods with OTFS for two

(a) �1(t, f) (b) �2(t, f)

(c) �1(⌧, ⌫) (d) �2(⌧, ⌫)

Figure 5: Eigenwaves in time-frequency, �n(t, f) and delay-
Doppler domain, �n(⌧, ⌫)

channels: 1) Channel-A, where the resolution of time evolution
is one symbol, and 2) Channel-B, where the resolution of
time evolution is one subcarrier. In Channel-A and Channel-B,
we generate the delay-Doppler response per symbol and per
subcarrier, respectively, which also correspond to the station-
arity intervals of the two channels. OTFS is equipped with
the time-frequency single tap (TFST) [15] detector and Zero-
Padded maximal ratio combining (ZP-MRC) [16] detector,
respectively. For a fair comparison, we also implement a Zero-
Padded MEM (ZP-MEM) version, where zero pad is placed
on eigenfunctions with the lowest �n. The ZP length is 1/8
symbol for both ZP-MEM and ZP-MRC.

To illustrate the geometry of the eigenspace, Figure 5 shows
an example of two time-frequency eigenwaves extracted from
the kernel k(t, f ; t0, f 0) by HOGMT and their representations
in the delay-Doppler Domain. Unlike OFDM and OTFS, the
eigenwave is an orthonormal surface across its degrees of
freedom instead of an unit division in the time-frequency or
the delay-Doppler domain. However, from another perspective,
consider a Hilbert space, H� with basis {�n}, then each
eigenwave can be seen as an unit division in H�. It means
MEM analyzes the channel as one unified space (eigenspace)
instead of multiple subspaces of its degrees of freedom.

Figure 6a compares the BER of MEM, ZP-MEM, OTFS
Table II: Parameters of Channel-A and Channel-B

Parameter Value
Channel model EVA model

Bandwidth Bw = 960 KHz
Center frequency fc = 5 GHz

Subcarriers Ns = 64 subcarriers
Carrier spacing �f = 15 KHz

Speed range v 2 [100, 150] km/h
Symbols per frame LF = 10 symbols
Frame per packet LP = 100 frames

Stationarity interval Channel A: 1 symbol; Channel B: 1 subcarrier
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Figure 6: BER and Throughput comparison between MEM and OTFS for Channel-A and Channel-B with QPSK modulation

with TFST and OTFS with ZP-MRC. MEM has lower BER
than OTFS with TFST after 20 dB SNR, but higher BER
than both ZP-MEM and OTFS with ZP-MRC. This is because
demodulating data symbols on carriers (eigenwaves) with least
�n will enhance the noise as well. ZP-MEM doesn’t put data
symbols on those eigenwaves, thereby achieving lower BER.
On the other hand, ZP-MRC detector can cancel interference
among OTFS symbols and thus has the similar BER with ZP-
MEM. However, as shown in figure 6b, MEM has the highest
throughput due to no zero pad.

Figure 6c shows the BER for Channel-B, where the sta-
tionarity interval is just one subcarrier. TFST detector doesn’t
work at all in this case and ZP-MRC detector has a similar
BER as MEM because there are more interference at delay-
Doppler domain in this channel. Both ZP-MEM and MEM
are not affected because interference at delay-Doppler domain
would not affect the orthogonality among eigenwaves. MEM
still has the highest throughput as shown in figure 6d, while
TFST performs much worse in this scenario.
Higher dimension channels: We also validate the generality
of MEM to higher dimension by incorporating space domain
using 3GPP 38.901 UMa NLOS senario built on QuaDriga
in Matlab. The channel parameters and results are given in
Appendix D [11].

VI. CONCLUSION

In this paper, we show the evolution and limitations of
current modulation techniques (OFDM, OTFS) for MU-MIMO
non-stationary channels and proposed a novel MEM modula-
tion based on HOGMT decomposition. It is able to achieve
orthogonality for non-stationary channels and generalizes to
higher dimensions by using multidimensional eigenwaves as
carriers, which are jointly orthogonal across its DoF (space,
time-frequency and delay-Doppler domains). Therefore MEM
modulated symbols that are transmitted over multidimensional
channels will remain independent of each other, and thus
eliminates multidimensional interference without any addi-
tional precoding at the transmitter or detectors at the receiver.
Moreover, we demonstrate that achieving the diversity gain
in eigenspace is equivalent to achieving the diversity gain in
DoF, thus validating the generality of MEM modulation.
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