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Efficient data processing using tunable 
entropy-stabilized oxide memristors

Sangmin Yoo    1,8, Sieun Chae    2,8, Tony Chiang    2, Matthew Webb    2, 
Tao Ma    3, Hanjong Paik    4, Yongmo Park    1, Logan Williams    2, 
Kazuki Nomoto5, Huili G. Xing    5,6, Susan Trolier-McKinstry7, 
Emmanouil Kioupakis2, John T. Heron    2   & Wei D. Lu    1 

Memristive devices are of potential use in a range of computing 
applications. However, many of these devices are based on amorphous 
materials, where systematic control of the switching dynamics is 
challenging. Here we report tunable and stable memristors based on an 
entropy-stabilized oxide. We use single-crystalline (Mg,Co,Ni,Cu,Zn)O 
films grown on an epitaxial bottom electrode. By adjusting the magnesium 
composition (XMg = 0.11–0.27) of the entropy-stabilized oxide films, a range 
of internal time constants (159–278 ns) for the switching process can be 
obtained. We use the memristors to create a reservoir computing network 
that classifies time-series input data and show that the reservoir computing 
system, which has tunable reservoirs, offers better classification accuracy 
and energy efficiency than previous reservoir system implementations.

A memristor1–3 is a two-terminal device with an electrical resistance 
that can be modulated by electrical inputs. The devices can be used 
to colocate compute and memory functions, improving system 
throughput and energy efficiency while providing a high integration 
density4–8. So far, several memristor-based prototypes have been devel-
oped for tasks such as neural network inference and training2,3,6–10. 
The programmed conductance values of devices are often used for 
multiply-and-accumulate applications. However, the (short-term and 
long-term) internal dynamics of memristors have also been used to 
directly process temporal data for tasks such as time-series analysis 
and prediction11–15.

The switching dynamics of a memristor are determined by how 
the storage material is physically reconfigured in response to electrical 
input16. Various memristive materials and their switching mechanisms 
have been studied, with efforts focused on amorphous oxides such as 
TaOx (ref. 17–20), NbOx (ref. 21), WOx (refs. 22,23) and TiO2 (ref. 3), whose 
resistivity states are determined by an electric field-driven redistribu-
tion of oxygen vacancies. However, challenges associated with the 

stochasticity during the filament growth process and the limited tun-
ability of the material composition have restricted the development 
of physical dynamics that can be customized for specific applications.

Entropy-stabilized oxides (ESOs) are a new class of materials in 
which a uniform solid solution of typically five or more different cati-
ons is stabilized in a single phase due to the configurational entropy 
overcoming a competing enthalpy24. Local compositional variations 
render a local structural disorder (Fig. 1a) that can modify the mate-
rial’s fundamental structure–property relationships. ESOs are thus 
a promising material for achieving targeted functional properties 
through fine-tuning of alloy composition25.

In this Article, we report the development of memristors formed 
through the epitaxial integration of single-crystalline ESO films on a 
single-crystal oxide electrode. The devices offer tunable and stable 
resistive switching (RS) dynamics that are derived from composi-
tion control. We use single-crystalline (Mg,Co,Ni,Cu,Zn)O ESO films 
grown on an epitaxial bottom electrode, where a controlled trapped 
state forms over small changes in cation composition with associated 
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Fig. 2). The in-plane orientation of the bilayers is further verified by the 
phi scans in Supplementary Fig. 3 that show fourfold symmetry of ESO 
022 and YBCO 026 peaks.

Transmission electron microscopy (TEM) and energy-dispersive 
X-ray spectroscopy (EDS) studies were performed to investigate the 
composition and interface of the films (Fig. 1c). TEM reveals significant 
diffraction contrast consistent with relaxed films. Elemental mapping 
reveals a sharp interface for both ESO/YBCO and YBCO/MgO without 
noticeable diffusion (the mapping for each element is shown in Sup-
plementary Fig. 4). The homogenous elemental distribution in ESO and 
YBCO layers verifies that the films are uniform without clear cluster 
formation or phase separation at the nanometre scale.

The tuning of ESO structural disorder by Mg composition is 
predicted by the structural relaxation from density functional theory 
(DFT) and then experimentally observed by the X-ray diffraction of 
our thin films. Among the binary oxides with the constituent cations 
forming the ESO film, MgO exhibits the rocksalt structure in the 
ground state with a lattice parameter close to that of the ESO. There-
fore, increasing Mg composition is expected to reduce the structural 
distortion of ESO without significant changes of the lattice parameter. 
Figure 1d shows the calculated bond angle distribution of the ESO for 
different Mg compositions (XMg = 0.1, 0.2, 0.3) from DFT calculations 
(see Methods for calculation details). The calculated bond angle 
distribution of the ESO better matches the ideal rocksalt structure as 
XMg increases. X-ray diffraction rocking curves of the three ESO thin 
films show an evolution that is commensurate with the calculated 
structural disorder. Figure 1e plots the full-width half-maximum of the 
X-ray diffraction rocking curve (Δω) of the ESO thin films multiplied 
by cos θ, where θ is the diffraction peak, along with the DFT-calculated 
average bond angle deviation, Δαave, of the ESO. Both Δωcosθ and 
Δαave decrease with XMg, showing the compositional tuning of the 
structural distortion.

structural distortion. In particular, decreasing (increasing) magne-
sium composition increases (decreases) the vacancy concentration26, 
resulting in the controlled tuning of hopping conductivity instead of 
stochastic filament formation processes. We use the ESO memristors 
to implement a reservoir computing (RC) network11–13,15 that classifies 
time-series input data. Our experimental and computational results 
show that fine-tuning of switching dynamics can be achieved by adjust-
ing the bulk properties of ESO-based memristors, and the tunability 
can be used to enhance computing performance.

Structure of ESO memristors
An epitaxial YBa2Cu3O7−x (YBCO) thin film is employed as the bottom 
electrode to fabricate epitaxial ESO metal–insulator–metal (MIM) 
structures and memristor devices. The details of the ESO/YBCO depo-
sition on (001)-oriented MgO substrates and the fabrication of MIM 
structures are described in Methods. During growth, the structural 
disorder of the ESO film is tuned by adjusting the Mg concentration 
(XMg = 0.11, 0.20, 0.27 in (MgxCo(1−x)/4Ni(1−x)/4 Cu(1−x)/4 Zn(1−x)/4)O).

The crystallinity and epitaxial relationship of multilayer thin films 
are characterized by X-ray measurements. Figure 1b shows X-ray dif-
fraction measurements from a representative ESO (here XMg = 0.20)/
YBCO bilayer sample. X-ray diffraction results for other Mg-variant 
ESO/YBCO thin films are shown in Supplementary Fig. 1, and the lattice 
parameter variation with Mg composition was found to be negligible 
in the range of XMg = 0.11–0.27. The YBCO layers are (001)-oriented 
and single phase. Despite the large misfit between the in-plane lattice 
parameters of ESO and YBCO (10.7% and 8.86% along the a and b direc-
tions, respectively), a strong ESO 002 X-ray diffraction peak is observed 
for all compositions, and no impurity peaks are detected. ESO films are 
75 nm thick and strain-relaxed for all compositions. From asymmetric 
022 and 026 peaks of the ESO and YBCO, respectively, the in-plane epi-
taxial relationship is determined as [100]ESO||[100]YBCO (Supplementary 
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Fig. 1 | Tunable composition and structural disorder in single-crystalline ESO 
thin films on epitaxial YBCO electrodes. a, DFT-calculated atomic structure 
of (Mg,Co,Ni,Cu,Zn)O-type rocksalt ESO, highlighting the local distortions of 
the bond length and the deviation of the bond angle (α) from the ideal rocksalt 
structure. The variance is dominated by the Cu incorporation. b, X-ray diffraction 
pattern of an equimolar ESO/YBCO epitaxial bilayer on (001)-oriented MgO 
substrates. c, TEM and EDS elemental mapping images of the cross-section 

reveal sharp interfaces between the ESO/YBCO thin films. d, Histogram of anion–
cation–anion bond angles for ESOs with varied Mg composition calculated from 
DFT. e, DFT-calculated average bond angle deviation, Δαave, and the full-width 
half-maximum, Δωcosθ, of the X-ray diffraction rocking curve of ESO thin films 
decrease with increasing Mg composition, showing that the degree of structural 
distortion can be tuned by Mg composition. Inset: the raw data of the ESO 
(XMg = 0.20) rocking curve.
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Tunable hopping conductivity
To evaluate the effects of composition tuning on the ESO film’s electrical 
properties, MIM structure-based memristors using single-crystalline 
ESO films are fabricated (inset in Fig. 2a) using the YBCO film and  
Ti/Pt films as bottom and top electrodes, respectively; the high field 
electrode was the top electrode. The d.c. current (I)–voltage (V) sweeps 
of the ESO memristors reveal two dominant transport regimes, Schottky 
emission27 (ln(I) ∝ V1/2) at low electric field and hopping conduction28 
(ln(I) ∝ V) at high electric field (Fig. 2a). Notably, no apparent threshold 
behaviour is observed in the I–V curve for different sizes of electrodes 
from 200 nm to 60 μm (Supplementary Fig. 5), indicating the absence 
of the formation of conductive filaments.

The observed high field behaviour is consistent with defect- 
mediated hopping conduction by emptying and refilling the traps 
in the mid-gap states28. Due to the inherent structural disorder, ESO 
can accommodate a large amount of charged carriers associated with 
charged defects and multivalency of cations that contributes to hop-
ping conduction29,30. Among native point defects, we determine that the 
majority of defects formed at our thermodynamic synthesis condition 
are VO

2+, followed by VCu
2−, making Cu–O defect complexes the antici-

pated defect that mediates hopping26. To characterize the transport 
behaviour, frequency-dependent conductivity measurements were 
performed for all Mg concentrations under the bias of 1 V (hopping 
conduction) in Fig. 2b. The a.c. conductivity for all compositions can 
be well fit with a power-law equation:

σa.c. ∝ (2πf )s (s ≤ 1) (1)

From the fit, s parameters of 0.65 ± 0.11, 0.76 ± 0.08 and 0.80 ± 0.05 
are obtained for XMg = 0.11, 0.20 and 0.27, respectively. These s values 
fall into the range that corresponds to hopping conduction31, which 
is consistent with the I–V characteristics measurements and fitting 
results (Fig. 2a).

To obtain more information on the conduction mechanism, the 
data were analysed using the correlated barrier hopping (CBH) model, 
which describes the hopping of charge carriers through isolated trap 
pairs assuming a random distribution of traps. In the CBH model, the s 
parameter is related to the number of pairs that participate in hopping 
and can be expressed as32

s = 1 − 6kT
WM

(2)

where k is the Boltzmann constant, T is the absolute temperature and 
WM is the maximum barrier height between two traps. WM was calcu-
lated from the s parameters and plotted in Fig. 2c. The calculated WM 
are 0.44 ± 0.15 eV, 0.66 ± 0.25 eV and 0.77 ± 0.19 eV for XMg = 0.11, 0.20 
and 0.27, respectively, showing that increasing XMg enhances the bar-
rier energy for hopping. The Mg-composition-dependent hopping 
barrier can be related to the DFT-calculated (0/+1) ionization energy 
of oxygen vacancy (Ei) (ref. 33). DFT predicts that Ei is dependent on 
local configuration, but the weighted average of Ei increases with Mg 
composition (Ei = 0.53 eV, 0.56 eV and 0.59 eV for XMg = 0.11, 0.20 and 
0.27), which follows the experimental trend.

Throughout the measured frequency range (f  = 5 × 103  
to 5 × 106 Hz), the conductivity of ESO memristors decreases as the  
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Fig. 2 | Tunable defect-mediated hopping conductivity in single-crystalline 
thin-film ESOs. a, The d.c. current–voltage sweeps of an ESO memristor 
(XMg = 0.20), with the curves fit by Schottky (cyan) and hopping conduction 
models (blue). No apparent threshold behaviour is observed, indicating the 
absence of the formation of conductive filaments. Inset: schematic of the 
ESO memristor stack. b, Frequency (f)-dependent conductivity (σa.c.) of ESO 
memristors at E = 133 kV cm−1 for three Mg concentrations. The measurement 

was performed with 15 devices for each composition, and data are presented as 
mean values with error bars defined by standard deviation. c, Fitted parameter 
s, from the power law given by σa.c. ∝ (2πf)s, and the energy barrier for hopping 
WM, obtained by the CBH model33, for the three Mg variants. Inset: the hopping 
barrier between defect sites. d, DFT-calculated cation and oxygen vacancy 
concentration as a function of Mg composition.
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Mg composition increases, which is attributed to the decreased vacancy 
concentration of the ESO. Figure 2d shows the calculated oxygen and 
cation vacancy concentration as a function of Mg concentration, using 
the linear regression model of DFT-calculated vacancy formation 
energy obtained in ref. 26. Both oxygen and cation vacancies decrease 
with increasing Mg concentration, as more Mg leads to less local struc-
tural distortion and strain. To eliminate possible changes of the band 
gap as a factor, the band gap of each composition was computed and 
experimentally determined by absorption (Supplementary Fig. 6 and 
Methods). The result shows a small variation of the band gap with 
composition (within 0.1 eV). The Nyquist plot in Supplementary Fig. 7 
presents a partial semicircle at high frequency (104 to 7 × 106 Hz) for all 
compositions, showing the presence of a charge-transfer mechanism 
and insulating behaviour of ESO thin films. Therefore, we conclude 
that the tunable conductivity of Mg-varied ESOs originates from the 
tuned vacancy concentration, where less Mg leads to more hopping 
sites for carriers.

Tunable RS characteristics
Next, pulse measurements were performed on the ESO memristors to 
investigate how the tunable hopping barrier height and defect con-
centration affect the memristors’ RS dynamics and memory state. 
Specifically, defects due to oxygen vacancies in ESOs have deep energy 
levels in the mid gap. These defects are normally filled5 and not acces-
sible for newly injected electrons, and conduction through the device 
is through Schottky emission only, resulting in a high resistive state 
(HRS), as shown in Fig. 3a. At high applied voltage, electrons trapped 
in the defect levels escape from the traps, and these empty traps can 
facilitate hopping conduction of the injected electrons, leading to 
increased conductance (low resistive state (LRS)). After the bias is 
removed, it takes finite time (longer than the relaxation time (τ)) to 
refill the traps, leading to the observed short-term memory effect. 
The density of the traps is varied by the compositional difference, and 
the equilibrium Fermi level can be obtained by adapting the Fermi 
level pinning model as a function of oxygen potential, as discussed 
in ref. 32. For the experiment, pulse trains consisting of consecutive 
programming pulses and a read pulse are used, as shown in the inset 
of Fig. 3b. Details of the measurements can be found in Methods. Pulse 
trains with different time intervals (tinterval) between the programming 
pulses are also used to probe the internal dynamics of the ESO device 
with different Mg concentrations.

Figure 3b shows the results of the response to pulse trains with 
different tinterval for the ESO devices with XMg = 0.11. The results of the 
ESO devices with XMg = 0.20 and 0.27 can be found in Supplementary 
Fig. 8. In all cases, a shorter tinterval leads to a larger increase in the device 
conductance. This behaviour is consistent with previous studies on 
memristors with short-term memory22,23 and can be explained by the 
interplay between the excitation caused by the programming pulses 
and gradual closing of the conduction channels due to the short-term 
memory effect between the pulses11,12,22.

To test the capability of ESO-based memristors for temporal data 
processing beyond the simple pulse train, different combinations of 
pulses were used to measure the memristor’s behaviour. Figure 3c 
depicts the memristor’s conductance dynamics induced by the input 
pulse combinations illustrated in the top of each graph. As demon-
strated in Fig. 3b and Supplementary Fig. 8, devices with different Mg 
concentrations show different responses to the temporally coded data. 
In general, conductance is enhanced by a programming pulse (input 1),  
whereas it relaxes towards the resting value in the absence of the pulse 
(input 0), and the overall device conductance depends not only on 
the number of programming pulses but also on their temporal loca-
tions. For example, in the (1,0,1,0) case, the conductance values after 
the first and third pulses are different, even though both pulses have 
a preceding 0 input. The higher conductance after the third pulse is 
caused by the remaining carriers excited by the first pulse that are not 

fully relaxed. As discussed in the previous studies11,12,22, the short-term 
memory properties of the memristors allow the device to (nonlin-
early) transform the temporal information into the different device 
states, where the information may be more efficiently processed in 
approaches such as RC. Area dependency of the conductance under the 
pulse inputs is also investigated and presented in Supplementary Fig. 9. 
The conductance of both HRS and LRS shows the area dependency.

The benefit of the ESO films studied here is that by tuning the Mg 
concentration, the short-term properties of the memristors can be 
systematically tuned, allowing a more diverse transformation and a 
larger reservoir state space. As can be seen in Fig. 3d, which plots the 
change in conductance ΔG (from post first pulse to post fourth pulse) 
as a function of tinterval for the three Mg concentration cases. Smaller 
Mg concentration leads to a wider dynamic range of the conductance, 
as explained by the higher concentration of defects (Fig. 2d) that act 
as hopping sites. To further verify the role of oxygen vacancies, we 
post-annealed the ESO device at 100 mtorr O2, 400 °C to compensate 
for the vacancies. The result shows that the dynamic range of the ESO 
is significantly suppressed, as shown in Supplementary Fig. 10.

The relaxation-time constants of the memristors were also charac-
terized by the temporal dynamics of the conductance after program-
ming. Fifty-five devices were measured in each Mg concentration using 
a pulse train of (1,0,0,0) (data shown in Supplementary Fig. 11), and the 
measured G versus time after the programming pulse was fitted with 
the stretched-exponential function34,35

G (t) = G0 exp[−(t/τ)
β] (3)

where G(t) is the conductance, G0 is the conductance just after pro-
gramming, τ is the characteristic relaxation time and β is the stretch 
index representing the degree of disorder in the system23. The 
stretched-exponential function is commonly used to describe elec-
tronic or structural relaxation in disordered materials34,36 and is used 
here to extract the relaxation time and measure the relative disorder 
from the temporal dynamics. Figure 3e shows the relaxation time and 
the stretch index of three devices from the stretched-exponential fit-
ting. The results show that the electronic relaxation time increases with 
increasing Mg concentration, which is consistent with the extracted 
higher hopping energy barrier (WM) (Fig. 2c) that prevents electrons 
trapped in the defects from escaping. The average of τ for XMg = 0.11, 
0.20, 0.27 is 159 ± 6 ns, 199 ± 16 ns and 278 ± 2 ns (the ± reflects one 
standard deviation), respectively. The decrease in β with increasing 
Mg concentration is also consistent with results from Fig. 1e, which 
shows decreasing structural disorder with increasing Mg in the ESO. 
The average (with ± one standard deviation) of β for XMg = 0.11, 0.20, 
0.27 is 0.215 ± 0.016, 0.188 ± 0.013, 0.153 ± 0.012, respectively.

Figure 3f shows endurance measurement results of the ESO-based 
memristors. The conductance of LRS and HRS was monitored after 
every 500 excitation/relaxation events. Stable switching behaviours 
with a standard deviation of 3.6% of the total average conductance 
and an On/Off ratio of 84 can be observed throughout the 1 million 
programming pulses. We also observe that the memristor behaviour 
is independent of background environment and the presence of water 
molecules, as shown in Supplementary Figs. 12 and 13. Supplementary 
Fig. 12 compares d.c. I–V curves and the conductance of LRS and HRS 
measured by the pulse trains obtained in dry N2 and ambient condi-
tions, and Supplementary Fig. 13 compares those of devices before 
and after heating at 100 °C in a vacuum.

ESO memristor-based RC
The fine-tunability of the device dynamics makes ESOs an excel-
lent candidate for ‘task-specific’ neural network systems, which has 
remained challenging in amorphous oxides-based memristor devices 
due to the lack of tunability. In particular, the decaying time constant 
(relaxation time) has been widely used by various neural networks, 
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where each network may require an optimal time constant for the best 
performance. Examples include the leaky term of a leaky integrate 
and fire neuron37, time context in a time surface38 and reservoir nodes 
in RC systems11,12,15. In a leaky integrate and fire neuron circuit that 
accumulates the potential and produces a spike when the potential 
exceeds its threshold, ESOs can replace a resistor/capacitor in reduc-
ing/accumulating the potential with improved energy efficiency and 
area density39.

RC systems are another class that have gained interest in effi-
cient temporal data processing. An RC network uses the nonlinear 
transformation function of the reservoir to map an input vector into 
a high-dimensional computational space (the reservoir state)12,40. 
Key to RC performance is the ability of the reservoir to offer diverse 
temporal dynamics to map temporal data (such as pulse trains repre-
senting time-series data) onto the reservoir state, and the tunability 

of internal time constants in the ESO film helps the implementation 
of such reservoirs.

To verify how the tunability of ESO memristors can improve  
RC system performance, a spoken-digit recognition test was per-
formed using physically implemented ESO memristor-based res-
ervoir hardware and the architecture depicted in Fig. 4a. For the 
time-series dataset, Audio-MNIST41 was used, and an example of the 
dataset is shown in Fig. 4b. Each input is 64 time steps long. Following 
the cochlear ear model42, the input data are translated into spikes 
from 64 frequency channels. A pulse (spike) is generated whenever 
the intensity exceeds a pre-fixed threshold in each channel. In the 
experimental setup, input pulses from each channel are applied to a 
memristor, such as M1, M2, …, Mn, where the collection of memristors 
form a reservoir. Three different physical RC systems were fabricated. 
Each physical RC system includes 64 ESO memristors with a certain 
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time (τ) to refill the traps and re-establish the equilibrium state, leading to the 
short-term memory effect. b, Conductance changes induced by pulse trains 
with nine different time gaps (tinterval) between pulses (labelled in colours) on 

ESO-based memristors for XMg = 0.11. Each pulse train consists of four pulses with 
2 V amplitude. The data were achieved 10 times for each time-gap condition on 55 
devices per Mg concentration and are presented as mean values with error bars 
indicating standard deviation. c, Examples of conductance modulation caused 
by different input streams illustrated in the top of each graph, for the three types 
of memristor device. d, Effect of tinterval on the excitation dynamic range for the 
three types of memristor devices. e, Decay time constant t and stretch index β as 
a function of Mg concentration. f, Endurance test for the device with XMg = 0.11 
composition. The conductance was measured after every 500 excitation/
relaxation events.
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cation composition. Each memristor in an RC system is individually 
connected to an input channel. No interconnection and data trans-
portation are needed between the memristors. The concept of virtual 
nodes was adopted to divide the inputs into segments43 and record 
the memristor states at the end of each segment as a virtual node 
of the reservoir. In this study, 16 virtual nodes (N1, N2, …, Nk) were 
adopted per memristor: that is, the memristor conductance is read 
every four time steps43. Consequently, the total number of virtual 
nodes in the reservoir is 64 × 16. The experimentally recorded mem-
ristor states are then sent to the readout layer, which is a simple fully 
connected layer with 64 × 16 inputs and ten outputs implemented in 
Python. In the RC system, only the readout layer is trained. A detailed 
description of the RC operation and readout layer training can be 
found in Methods.

Memristors with different internal time constants allow the right 
device to be engineered for different applications. Figure 4c shows 
results from the three different RC systems for the Audio-MNIST test, 
using ESO memristors of a kind with Mg concentrations of XMg = 0.11, 
0.20, 0.27, respectively. All RC systems have the same structure, and 
the inputs are applied at 100 ns intervals between time steps. All three 
systems produced very high classification accuracy, suggesting the ESO 
memristors are excellent candidates for RC systems. The RC network 
with XMg = 0.11 shows the best accuracy of 99.42% among the three sys-
tems, because the internal time constant of these memristors (~100 ns) 
better matches the inputs. The confusion matrix of the classification 
outputs for the XMg = 0.11 memristor system is shown in Fig. 4d, showing 
high classification accuracy for all input digits.

When the input time-step interval is increased, corresponding to 
inputs with longer temporal features, the responses from the RC sys-
tems changed accordingly (Fig. 4e). As the input time step is increased 
to 250 and 400 ns, the performance of the RC system with XMg = 0.11 
decreases, whereas that of the RC systems with XMg = 0.20 and 0.27 
increases. The XMg = 0.20 system reaches the highest accuracy when 
the input time step interval is 250 ns and starts to decrease again, 
while the XMg = 0.27 system reaches the highest accuracy at the longest 
input time-step interval of 400 ns. The ability to tune the internal time 
constants of the ESO memristors suggests the feasibility of engineering 
devices and RC systems to optimally match given tasks.

Figure 4f shows the capability of the RC system to predict of the 
digit before completing the utterance: that is, classification using 
incomplete input data12. In this test, after training the network with the 
standard dataset, the network output is measured using partial input 
data for the spoken digits. Figure 4f shows that for 100 ns time-step 
inputs, the RC system based on memristors with XMg = 0.11 still produces 
acceptable performance (>91.7% accurate) with only 50% inputs. RC 
systems based on memristors with XMg = 0.20 and XMg = 0.27 show worse 
performance for this input scale, and the degradation in accuracy 
becomes more severe as the input becomes more incomplete.

Energy consumption for the nonlinear transformation in the RC 
experiment was calculated using the experimentally implemented 
spike and read pulses and the measured conductance values from a 
reservoir of ESOs with XMg = 0.11. The current/voltage values meas-
ured by read pulses were used for the calculation of read operations, 
and the averaged measured conductance value was used to calculate 
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currents induced by spikes. The energy consumed per spike is 3.39 pJ, 
and the total energy consumption during testing of 600 spoken digits 
is 8.81 µJ. Compared with other systems using the numerical differential 
equation solvers in central processing units and field-programmable 
gate arrays or physical dynamics of other memristors12,44, the ESO-based 
reservoir consumed one order of magnitude lower energy per input 
than the state of the art, for the similar usages as presented in Table 1.

Conclusions
We have reported the development of ESO memristors. Through com-
position control, tunable local structural disorder can be formed in the 
devices, which leads to stable and tunable switching dynamics. We used 
the ESO-based memristors to form RC networks, with the controllabil-
ity of the internal time constants allowing matched reservoirs to be 
engineered for tasks such as spoken-digit recognition and prediction 
at different time scales. The temporal dynamics of ESO memristors, 
and their predictable tuning parameters, make them a promising sys-
tem for use in efficient spatiotemporal data-processing applications.

Methods
Fabrication of ESO memristors
Single-crystal ESO films were grown on (001)-oriented MgO substrates 
by pulsed laser deposition using a 248 nm KrF excimer laser and stoichi-
ometric targets. ESO targets were prepared by mixing the constituent 
powders (MgO (Alfa Aesar 99.99%), CoO (Alfa Aesar 99.99%), NiO (Alfa 
Aesar 99.99%), CuO (Alfa Aesar, 99.99%) and ZnO (Alfa Aesar, 99.99%)), 
pressing the mixture of powders under 50,000 psi and sintering at 
1,000 °C for 24 hours in air. YBCO targets were prepared by mixing the 
raw powders Y2O3 (Alfa Aesar 99.995%), BaCO3 (Alfa Aesar 99.95%) and 
CuO (Alfa Aesar, 99.99%) in a ratio of Y:Ba:Cu = 1:2:3 using the reaction 
0.5(Y2O3) + 2(BaCO3) + 3(CuO) → YBa2Cu3O7−x + 2(CO2). This mixture 
was thoroughly mixed with an agate mortar and pestle, reground by 
ball milling and placed in an Al2O3 crucible. First a calcination step was 
performed in a tube furnace at 920 °C in air for 24 hours. After cooling 
to room temperature, the black powder was reground using an agate 
mortar and pestle and then pressed under pressure of 12,000 psi into 
a 2-inch-diameter pellet. The sintering step was carried out at 940 °C 
for 48 hours. Cooling after the last sintering step and the subsequent 
oxygen heat treatment were performed in an oxygen atmosphere.

Before film deposition, the MgO substrate was pre-annealed at 
950 °C in 50 mtorr of O2 for 30 min to remove hydroxides on the sub-
strate surface. To deposit the YBCO bottom electrode, the substrate was 
cooled to 850 °C, and the O2 pressure was increased to 100 mtorr. The 
laser was directed onto the YBCO target with a fluence of 2 J cm−2 and a 
repetition frequency of 5 Hz. After 30 min of deposition, 50-nm-thick 
YBCO thin films were obtained. An ESO film of the desired composition 
was subsequently deposited on the YBCO layer at a substrate tem-
perature of 400 °C and pressure of 5 mtorr of O2 using the same laser 
fluence and 2 Hz rep rate. After 2 hours of deposition, 5-nm-thick ESO 
films were obtained. After growth, the substrates were slowly cooled 
to room temperature under 100 sccm O2 flow (~500 mtorr).

After deposition of the ESO/YBCO bilayers, circular top contacts 
ranging in diameter from 15 to 130 μm were patterned on the surface 
using standard photolithography and lift-off processes. Top contacts 
of Pt(100 nm)/Ti(2 nm) were deposited at room temperature by pulsed 
laser deposition in 10 mtorr Ar with a laser fluence of 3 J cm−2 and a 
repetition frequency of 5 Hz.

DFT calculation of ESOs with varied Mg incorporation
DFT calculations were performed to calculate the structural distor-
tion and band gap of Mg-variant ESOs. The projector augmented wave 
method and generalized gradient approximation functionals were 
implemented in the Vienna Ab initio Simulation Package45 with a Hub-
bard U parameter46 assigned for the transition metal cations. The 
same pseudopotential, plane-wave cut-off energy, energy criterion 
for electronic relaxation, ionic relaxation algorithm, force criterion for 
ionic relaxation and Hubbard U parameters were used for the calcula-
tion of ESO in ref. 26.

One hundred and sixty atom supercells of ESOs with three dif-
ferent compositions were modelled: Mg0.1Co0.225Ni0.225Cu0.225Zn0.225O, 
Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O and Mg0.3Co0.175Ni0.175Cu0.175Zn0.175O. The alloy 
randomness was modelled using special quasi-random structures47. 
The antiferromagnetic structure of the ESO48 was considered by equally 
populating each cation in the two magnetic states. The lattice constant 
was determined by the energy minimum and was only varied with Mg 
composition by <0.01 Å, which agrees with our X-ray diffraction data. 
The k-point sampling for the supercell is Γ-centred 2 × 2 × 1 in the first 
Brillouin zone. The band gap was calculated at the Γ point.

Band-gap measurement of ESO thin films
The band gap (Eg) of Mg-varied ESO thin films was determined from epi-
taxial films deposited on bare MgO substrates with the same deposition 
conditions used for ESO deposition on YBCO-buffered MgO substrates. 
The optical transmittance of Mg-variant ESO thin films was measured 
(Supplementary Fig. 6a). To evaluate optical Eg, the difference between 
the measured absorbance of ESO thin films on MgO and that of a bare 
MgO substrate was taken. A Tauc plot (Supplementary Fig. 6b) reveals a 
linear relation for (ahv)2 versus hv (a, absorption coefficient; h, Planck’s 
constant; v, frequency of light; hv, photon energy), which indicates an 
indirect transition. The obtained band gap of the ESO (Supplementary 
Fig. 6c) is almost constant for the different Mg compositional variants 
(Eg = 2.55 eV, 2.58 eV and 2.60 eV for XMg = 0.11, 0.20 and 0.27, respec-
tively). The Urbach tail was excluded from the fit.

Pulse measurement of ESO-based memristors
All pulse measurements were performed on the MIM stacks (described 
previously) using a Keithley 4200S semiconductor analyser. Program-
ming pulses with an amplitude of 2 V and pulse width of 1 ms and read 
pulses with an amplitude of 0.3 V and pulse width of 10 ms were used. 
The pulses were applied to the top electrode of the MIM stack as shown 
in the inset of Fig. 3a. The time gap between the last programming 
pulse of a series of programming pulses and the read pulse was set to 
be 100 ns, and the gap between programming pulses was varied as 
intended. Nine different time gaps were tested in total. To minimize 
effects from noise and device variations, the measurements were 
performed ten times for each time-gap condition on 55 devices per 
Mg concentration.

RC using ESO-based memristors
The first 3,000 data of the Audio-MNIST dataset were chosen for the RC 
experiment. The data inputs were binarized by the pre-fixed threshold 
value of 0.4 to convert normalized inputs to spike trains. The amplitude 
and width of the spikes and the read pulse were identical to those 
used for the standalone pulse measurements discussed earlier. The 
spike train from each channel was applied to a separate ESO-based 

Table 1 | Comparison of energy consumption to generate a signal spike on different systems

CPU12 FPGA12 Memristor

WOx (ref. 12) NbOx (ref. 44) B-Te (ref. 44) HfO2 (ref. 44) ESO

Energy per spike 54.8 µJ 143 nJ 3 nJ 50 pJ 30 pJ 20 pJ 3.39 pJ

CPU, central processing unit; FPGA, field-programmable gate array.
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memristor, and its conductance was monitored every four spikes 
(corresponding to 16 virtual nodes) experimentally. The conductance 
history of 64 devices, representing 64 channels for the data per Mg 
concentration, was recorded.

After the experimental encoding and recording of the ESO memris-
tor in the reservoir, the computation simulation is followed to perform 
the speech-recognition task using the experimental data. The readout 
function is a 64 × 16 × 10 network with ten outputs representing ten 
different digits in the case of a RC system with a reservoir. It takes 
the recorded conductance values as inputs (64 × 16) and outputs ten 
outputs using the input vector and its weight matrix. The probability 
of an output neuron being chosen as the classification result was calcu-
lated by a SoftMax function, and the neuron with the largest possibil-
ity was selected. The cost was derived by categorical cross-entropy12 
and RMSprop was used for optimization skill49. Eighty per cent of the 
recorded data were used for training the readout function and the rest 
were used for testing the network12.

Data availability
Source data are provided with this paper. Additional data related to 
this work are available from the corresponding authors upon request.

Code availability
Computational simulation code of the RC system for the 
speech-recognition task is available from the corresponding authors 
upon reasonable request.
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