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Memristive devices are of potential use in arange of computing
applications. However, many of these devices are based on amorphous
materials, where systematic control of the switching dynamics is
challenging. Here we report tunable and stable memristors based on an
entropy-stabilized oxide. We use single-crystalline (Mg,Co,Ni,Cu,Zn)O
films grown on an epitaxial bottom electrode. By adjusting the magnesium
composition (Xy, = 0.11-0.27) of the entropy-stabilized oxide films, arange
of internal time constants (159-278 ns) for the switching process can be
obtained. We use the memristors to create areservoir computing network
that classifies time-series input data and show that the reservoir computing
system, which has tunable reservoirs, offers better classification accuracy

and energy efficiency than previous reservoir system implementations.

A memristor' is a two-terminal device with an electrical resistance
that can be modulated by electrical inputs. The devices can be used
to colocate compute and memory functions, improving system
throughput and energy efficiency while providing a high integration
density*®. So far, several memristor-based prototypes have been devel-
oped for tasks such as neural network inference and training>*¢™°.
The programmed conductance values of devices are often used for
multiply-and-accumulate applications. However, the (short-term and
long-term) internal dynamics of memristors have also been used to
directly process temporal data for tasks such as time-series analysis
and prediction ™,

The switching dynamics of a memristor are determined by how
the storage materialis physically reconfiguredin responseto electrical
input’®. Various memristive materials and their switching mechanisms
have beenstudied, with efforts focused onamorphous oxides such as
TaO, (ref.17-20), NbO, (ref. 21), WO, (refs. 22,23) and TiO, (ref. 3), whose
resistivity states are determined by an electric field-driven redistribu-
tion of oxygen vacancies. However, challenges associated with the

stochasticity during the filament growth process and the limited tun-
ability of the material composition have restricted the development
of physical dynamics that can be customized for specific applications.

Entropy-stabilized oxides (ESOs) are a new class of materials in
which a uniform solid solution of typically five or more different cati-
ons is stabilized in a single phase due to the configurational entropy
overcoming a competing enthalpy®*. Local compositional variations
render alocal structural disorder (Fig. 1a) that can modify the mate-
rial’s fundamental structure-property relationships. ESOs are thus
a promising material for achieving targeted functional properties
through fine-tuning of alloy composition®.

Inthis Article, we report the development of memristors formed
through the epitaxial integration of single-crystalline ESO films on a
single-crystal oxide electrode. The devices offer tunable and stable
resistive switching (RS) dynamics that are derived from composi-
tion control. We use single-crystalline (Mg,Co,Ni,Cu,Zn)0O ESO films
grown on an epitaxial bottom electrode, where a controlled trapped
state forms over small changes in cation composition with associated
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Fig.1| Tunable composition and structural disorder in single-crystalline ESO
thin films on epitaxial YBCO electrodes. a, DFT-calculated atomic structure

of (Mg,Co,Ni,Cu,Zn)O-type rocksalt ESO, highlighting the local distortions of

the bond length and the deviation of the bond angle (a) from the ideal rocksalt
structure. The variance is dominated by the Cuincorporation. b, X-ray diffraction
pattern of an equimolar ESO/YBCO epitaxial bilayer on (001)-oriented MgO
substrates. ¢, TEM and EDS elemental mapping images of the cross-section

reveal sharp interfaces between the ESO/YBCO thin films. d, Histogram of anion-
cation-anion bond angles for ESOs with varied Mg composition calculated from
DFT. e, DFT-calculated average bond angle deviation, Aa,,., and the full-width
half-maximum, Awcos@, of the X-ray diffraction rocking curve of ESO thin films
decrease with increasing Mg composition, showing that the degree of structural
distortion can be tuned by Mg composition. Inset: the raw data of the ESO
(Xmg=0.20) rocking curve.

structural distortion. In particular, decreasing (increasing) magne-
sium compositionincreases (decreases) the vacancy concentration®,
resulting in the controlled tuning of hopping conductivity instead of
stochastic filament formation processes. We use the ESO memristors
toimplement areservoir computing (RC) network™ "> that classifies
time-series input data. Our experimental and computational results
show that fine-tuning of switching dynamics can be achieved by adjust-
ing the bulk properties of ESO-based memristors, and the tunability
can be used to enhance computing performance.

Structure of ESO memristors

An epitaxial YBa,Cu;0;_, (YBCO) thin film is employed as the bottom
electrode to fabricate epitaxial ESO metal-insulator-metal (MIM)
structures and memristor devices. The details of the ESO/YBCO depo-
sition on (001)-oriented MgO substrates and the fabrication of MIM
structures are described in Methods. During growth, the structural
disorder of the ESO film is tuned by adjusting the Mg concentration
(Xyg=0.11,0.20, 0.27 in (Mg,Co_sNig s Clrrys ZNgiry74) O)-

The crystallinity and epitaxial relationship of multilayer thin films
are characterized by X-ray measurements. Figure 1b shows X-ray dif-
fraction measurements from a representative ESO (here Xy, = 0.20)/
YBCO bilayer sample. X-ray diffraction results for other Mg-variant
ESO/YBCO thinfilms are showninSupplementary Fig. 1, and the lattice
parameter variation with Mg composition was found to be negligible
in the range of Xy, = 0.11-0.27. The YBCO layers are (001)-oriented
andsingle phase. Despite the large misfit between the in-plane lattice
parameters of ESO and YBCO (10.7% and 8.86% along the a and b direc-
tions, respectively), astrong ESO 002 X-ray diffraction peakis observed
forall compositions, and noimpurity peaks are detected. ESO films are
75 nmthick and strain-relaxed for all compositions. From asymmetric
022 and 026 peaks of the ESO and YBCO, respectively, thein-plane epi-
taxial relationshipis determined as [100];¢.|/[100],5co (Supplementary

Fig.2). Thein-plane orientation of the bilayersis further verified by the
phiscansinSupplementary Fig. 3 that show fourfold symmetry of ESO
022 and YBCO 026 peaks.

Transmission electron microscopy (TEM) and energy-dispersive
X-ray spectroscopy (EDS) studies were performed to investigate the
composition and interface of the films (Fig. 1c). TEM reveals significant
diffraction contrast consistent with relaxed films. Elemental mapping
reveals asharpinterface for both ESO/YBCO and YBCO/MgO without
noticeable diffusion (the mapping for each element is shown in Sup-
plementaryFig.4). The homogenous elemental distributionin ESO and
YBCO layers verifies that the films are uniform without clear cluster
formation or phase separation at the nanometre scale.

The tuning of ESO structural disorder by Mg composition is
predicted by the structural relaxation from density functional theory
(DFT) and then experimentally observed by the X-ray diffraction of
our thin films. Among the binary oxides with the constituent cations
forming the ESO film, MgO exhibits the rocksalt structure in the
ground state with alattice parameter close to that of the ESO. There-
fore, increasing Mg compositionis expected toreduce the structural
distortion of ESO without significant changes of the lattice parameter.
Figure 1d shows the calculated bond angle distribution of the ESO for
different Mg compositions (Xy, = 0.1, 0.2, 0.3) from DFT calculations
(see Methods for calculation details). The calculated bond angle
distribution of the ESO better matches theideal rocksalt structure as
Xug increases. X-ray diffraction rocking curves of the three ESO thin
films show an evolution that is commensurate with the calculated
structural disorder. Figure 1e plots the full-width half-maximum of the
X-ray diffraction rocking curve (Aw) of the ESO thin films multiplied
by cos 8, where @is the diffraction peak, along with the DFT-calculated
average bond angle deviation, Aa,,., of the ESO. Both Awcosf and
Aa,,. decrease with X, showing the compositional tuning of the
structural distortion.
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Fig.2| Tunable defect-mediated hopping conductivity in single-crystalline
thin-filmESOs. a, The d.c. current-voltage sweeps of an ESO memristor
(Xwg=0.20), with the curves fit by Schottky (cyan) and hopping conduction
models (blue). No apparent threshold behaviour is observed, indicating the
absence of the formation of conductive filaments. Inset: schematic of the

ESO memristor stack. b, Frequency (f)-dependent conductivity (o, ) of ESO
memristors at £=133 kV cm™ for three Mg concentrations. The measurement
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was performed with 15 devices for each composition, and data are presented as
mean values with error bars defined by standard deviation. ¢, Fitted parameter
s, from the power law givenby g, . = (21f)°, and the energy barrier for hopping
Wy, obtained by the CBH model™, for the three Mg variants. Inset: the hopping
barrier between defect sites. d, DFT-calculated cation and oxygen vacancy
concentration as a function of Mg composition.

Tunable hopping conductivity

Toevaluate the effects of composition tuning onthe ESO film’s electrical
properties, MIM structure-based memristors using single-crystalline
ESO films are fabricated (inset in Fig. 2a) using the YBCO film and
Ti/Pt films as bottom and top electrodes, respectively; the high field
electrode was the top electrode. The d.c. current (/)-voltage (V) sweeps
ofthe ESO memrristors reveal two dominant transportregimes, Schottky
emission® (In(/) < V*2) at low electric field and hopping conduction®
(In(/) =< V) at high electric field (Fig. 2a). Notably, no apparent threshold
behaviourisobservedinthe/-Vcurve for different sizes of electrodes
from200 nmto 60 pm (Supplementary Fig. 5), indicating the absence
of the formation of conductive filaments.

The observed high field behaviour is consistent with defect-
mediated hopping conduction by emptying and refilling the traps
in the mid-gap states®. Due to the inherent structural disorder, ESO
canaccommodate alarge amount of charged carriers associated with
charged defects and multivalency of cations that contributes to hop-
ping conduction”?*°, Among native point defects, we determine that the
majority of defects formed at our thermodynamic synthesis condition
are V2, followed by V2", making Cu-0O defect complexes the antici-
pated defect that mediates hopping®. To characterize the transport
behaviour, frequency-dependent conductivity measurements were
performed for all Mg concentrations under the bias of 1 V (hopping
conduction) in Fig. 2b. The a.c. conductivity for all compositions can
be well fit with a power-law equation:

Ope o (21F) (s <1) )

Fromthe fit, s parameters of 0.65 + 0.11,0.76 + 0.08 and 0.80 + 0.05
are obtained for X, = 0.11, 0.20 and 0.27, respectively. These s values
fall into the range that corresponds to hopping conduction®, which
is consistent with the /-V characteristics measurements and fitting
results (Fig. 2a).

To obtain more information on the conduction mechanism, the
datawere analysed using the correlated barrier hopping (CBH) model,
which describes the hopping of charge carriers throughisolated trap
pairsassuming arandomdistribution of traps. Inthe CBH model, the s
parameterisrelated to the number of pairs that participate in hopping
and can be expressed as*

s=1—-— (2)

where kis the Boltzmann constant, Tis the absolute temperature and
Wy is the maximum barrier height between two traps. W,, was calcu-
lated from the s parameters and plotted in Fig. 2c. The calculated W,,
are0.44+0.15eV,0.66 £ 0.25eVand 0.77 + 0.19 eV for X, = 0.11,0.20
and 0.27, respectively, showing that increasing X, enhances the bar-
rier energy for hopping. The Mg-composition-dependent hopping
barrier can be related to the DFT-calculated (0/+1) ionization energy
of oxygen vacancy (£;) (ref. 33). DFT predicts that E; is dependent on
local configuration, but the weighted average of E; increases with Mg
composition (£;=0.53 eV, 0.56 eV and 0.59 eV for X, = 0.11, 0.20 and
0.27), which follows the experimental trend.

Throughout the measured frequency range (f=5 x10°
to 5 x10° Hz), the conductivity of ESO memristors decreases as the
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Mg compositionincreases, whichis attributed to the decreased vacancy
concentration of the ESO. Figure 2d shows the calculated oxygen and
cation vacancy concentration as afunction of Mg concentration, using
the linear regression model of DFT-calculated vacancy formation
energy obtainedinref. 26. Both oxygen and cation vacancies decrease
withincreasing Mg concentration, as more Mg leads toless local struc-
tural distortion and strain. To eliminate possible changes of the band
gap as afactor, the band gap of each composition was computed and
experimentally determined by absorption (Supplementary Fig. 6 and
Methods). The result shows a small variation of the band gap with
composition (within 0.1 eV). The Nyquist plotin SupplementaryFig.7
presents a partial semicircle at high frequency (10*to 7 x 10° Hz) for all
compositions, showing the presence of acharge-transfer mechanism
and insulating behaviour of ESO thin films. Therefore, we conclude
that the tunable conductivity of Mg-varied ESOs originates from the
tuned vacancy concentration, where less Mg leads to more hopping
sites for carriers.

Tunable RS characteristics

Next, pulse measurements were performed on the ESO memristors to
investigate how the tunable hopping barrier height and defect con-
centration affect the memristors’ RS dynamics and memory state.
Specifically, defects due to oxygen vacanciesin ESOs have deep energy
levels in the mid gap. These defects are normally filled® and not acces-
sible for newly injected electrons, and conduction through the device
is through Schottky emission only, resulting in a high resistive state
(HRS), as shown in Fig. 3a. At high applied voltage, electrons trapped
in the defect levels escape from the traps, and these empty traps can
facilitate hopping conduction of the injected electrons, leading to
increased conductance (low resistive state (LRS)). After the bias is
removed, it takes finite time (longer than the relaxation time (7)) to
refill the traps, leading to the observed short-term memory effect.
The density of the trapsis varied by the compositional difference, and
the equilibrium Fermi level can be obtained by adapting the Fermi
level pinning model as a function of oxygen potential, as discussed
inref. 32. For the experiment, pulse trains consisting of consecutive
programming pulses and aread pulse are used, as shown in the inset
of Fig. 3b. Details of the measurements can be found in Methods. Pulse
trains with different time intervals (¢,.rva) between the programming
pulses are also used to probe the internal dynamics of the ESO device
with different Mg concentrations.

Figure 3b shows the results of the response to pulse trains with
different £, for the ESO devices with Xy, = 0.11. The results of the
ESO devices with X, = 0.20 and 0.27 can be found in Supplementary
Fig.8.Inall cases, ashorter ¢,,.... leadstoalargerincreaseinthe device
conductance. This behaviour is consistent with previous studies on
memristors with short-term memory?** and can be explained by the
interplay between the excitation caused by the programming pulses
and gradual closing of the conduction channels due to the short-term
memory effect between the pulses™'>?,

To test the capability of ESO-based memristors for temporal data
processing beyond the simple pulse train, different combinations of
pulses were used to measure the memristor’s behaviour. Figure 3¢
depicts the memristor’s conductance dynamics induced by the input
pulse combinations illustrated in the top of each graph. As demon-
strated in Fig. 3b and Supplementary Fig. 8, devices with different Mg
concentrations show different responses to the temporally coded data.
Ingeneral, conductanceis enhanced by aprogramming pulse (input1),
whereasit relaxes towards the resting value in the absence of the pulse
(input 0), and the overall device conductance depends not only on
the number of programming pulses but also on their temporal loca-
tions. For example, in the (1,0,1,0) case, the conductance values after
the first and third pulses are different, even though both pulses have
a preceding O input. The higher conductance after the third pulse is
caused by the remaining carriers excited by the first pulse that are not

fully relaxed. As discussed in the previous studies™'>?, the short-term
memory properties of the memristors allow the device to (nonlin-
early) transform the temporal information into the different device
states, where the information may be more efficiently processed in
approachessuchasRC. Areadependency of the conductance under the
pulseinputsis alsoinvestigated and presented in Supplementary Fig. 9.
The conductance of both HRS and LRS shows the area dependency.

The benefit of the ESO films studied here is that by tuning the Mg
concentration, the short-term properties of the memristors can be
systematically tuned, allowing a more diverse transformation and a
larger reservoir state space. As can be seen in Fig. 3d, which plots the
changein conductance AG (from post first pulse to post fourth pulse)
as a function of ¢, for the three Mg concentration cases. Smaller
Mg concentration leads to awider dynamicrange of the conductance,
as explained by the higher concentration of defects (Fig. 2d) that act
as hopping sites. To further verify the role of oxygen vacancies, we
post-annealed the ESO device at 100 mtorr O,,400 °C to compensate
for the vacancies. The result shows that the dynamic range of the ESO
is significantly suppressed, as shownin Supplementary Fig.10.

Therelaxation-time constants of the memristors were also charac-
terized by the temporal dynamics of the conductance after program-
ming. Fifty-five devices were measured in each Mg concentration using
apulsetrainof (1,0,0,0) (datashowninSupplementary Fig.11),and the
measured G versus time after the programming pulse was fitted with
the stretched-exponential function®**

G(0) = Gy expl—(t/Df'] €)

where G(¢) is the conductance, G, is the conductance just after pro-
gramming, 7 is the characteristic relaxation time and B is the stretch
index representing the degree of disorder in the system?. The
stretched-exponential function is commonly used to describe elec-
tronic or structural relaxation in disordered materials®**° and is used
here to extract the relaxation time and measure the relative disorder
from the temporal dynamics. Figure 3e shows the relaxation time and
the stretchindex of three devices from the stretched-exponential fit-
ting. The results show that the electronic relaxation timeincreases with
increasing Mg concentration, which is consistent with the extracted
higher hopping energy barrier (W,,) (Fig. 2c) that prevents electrons
trapped in the defects from escaping. The average of 7 for Xy, = 0.11,
0.20,0.27is159 + 6 ns, 199 +16 ns and 278 + 2 ns (the * reflects one
standard deviation), respectively. The decrease in S with increasing
Mg concentration is also consistent with results from Fig. 1e, which
shows decreasing structural disorder with increasing Mg in the ESO.
The average (with + one standard deviation) of g for Xy, = 0.11, 0.20,
0.27is0.215 +0.016, 0.188 + 0.013, 0.153 + 0.012, respectively.

Figure 3fshows endurance measurement results of the ESO-based
memristors. The conductance of LRS and HRS was monitored after
every 500 excitation/relaxation events. Stable switching behaviours
with a standard deviation of 3.6% of the total average conductance
and an On/Off ratio of 84 can be observed throughout the 1 million
programming pulses. We also observe that the memristor behaviour
isindependent of background environment and the presence of water
molecules, as shownin Supplementary Figs.12and 13. Supplementary
Fig.12 compares d.c./-Vcurves and the conductance of LRS and HRS
measured by the pulse trains obtained in dry N, and ambient condi-
tions, and Supplementary Fig. 13 compares those of devices before
and after heatingat100 °Cinavacuum.

ESO memristor-based RC

The fine-tunability of the device dynamics makes ESOs an excel-
lent candidate for ‘task-specific’ neural network systems, which has
remained challenging in amorphous oxides-based memristor devices
due to the lack of tunability. In particular, the decaying time constant
(relaxation time) has been widely used by various neural networks,
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Fig.3| Tunable RS characteristics. a, Schematic of RS mediated by electrons
trapping/detrappingin defects. (i) At low field, electrons are trapped in the
deep-level defect sites caused by structural disorders in ESOs. The traps are
notaccessible forincoming electrons, and the conduction is dominated by
Schottky emission, leading to a HRS. (ii) When a high electric field is applied,
the traps become empty, which makes hopping conduction possible and leads
toincrease of conduction (LRS). (iii) Evenif the field is removed, it takes finite
time (7) to refill the traps and re-establish the equilibrium state, leading to the
short-term memory effect. b, Conductance changes induced by pulse trains
with nine different time gaps (£;..v)) between pulses (labelled in colours) on

ESO-based memristors for Xy, = 0.11. Each pulse train consists of four pulses with
2 Vamplitude. The data were achieved 10 times for each time-gap condition on 55
devices per Mg concentration and are presented as mean values with error bars
indicating standard deviation. ¢, Examples of conductance modulation caused
by differentinput streamsillustrated in the top of each graph, for the three types
of memristor device. d, Effect of ;... ON the excitation dynamic range for the
three types of memristor devices. e, Decay time constant ¢ and stretchindex S as
afunction of Mg concentration. f, Endurance test for the device with Xy, = 0.11
composition. The conductance was measured after every 500 excitation/
relaxation events.

where each network may require an optimal time constant for the best
performance. Examples include the leaky term of a leaky integrate
and fire neuron”, time context in a time surface®® and reservoir nodes
in RC systems™*", In a leaky integrate and fire neuron circuit that
accumulates the potential and produces a spike when the potential
exceedsitsthreshold, ESOs canreplace aresistor/capacitorin reduc-
ing/accumulating the potential withimproved energy efficiency and
areadensity”.

RC systems are another class that have gained interest in effi-
cient temporal data processing. An RC network uses the nonlinear
transformation function of the reservoir to map an input vector into
a high-dimensional computational space (the reservoir state)'>*°.
Key to RC performance is the ability of the reservoir to offer diverse
temporal dynamics to map temporal data (such as pulse trains repre-
senting time-series data) onto the reservoir state, and the tunability

of internal time constants in the ESO film helps the implementation
of suchreservoirs.

To verify how the tunability of ESO memristors can improve
RC system performance, a spoken-digit recognition test was per-
formed using physically implemented ESO memristor-based res-
ervoir hardware and the architecture depicted in Fig. 4a. For the
time-series dataset, Audio-MNIST* was used, and an example of the
datasetisshowninFig.4b.Eachinputis 64 time steps long. Following
the cochlear ear model*, the input data are translated into spikes
from 64 frequency channels. A pulse (spike) is generated whenever
the intensity exceeds a pre-fixed threshold in each channel. In the
experimental setup, input pulses from each channel are appliedtoa
memristor, suchas M;, M,, ..., M,, where the collection of memristors
form areservoir. Three different physical RC systems were fabricated.
Each physical RC system includes 64 ESO memristors with a certain
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b, Anexample in the spoken-digit dataset. The spikes are represented in white.
Red dotted lines show the division into virtual nodes. ¢, Performance of reservoir
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stepinterval. d, Experimentally obtained confusion matrix representing the

tinterval (NS) Data presented (%)

classification outputs from the RC hardware system using ESOs with X, = 0.11
for the100 ns time interval test. e, Accuracy comparison of three RC systems
oninputs with100, 250,400 ns time-step intervals, respectively. f, Prediction
accuracy of the three RC systems at different percentages of inputs. Inset: the
accuracy drop for systems with Xy, = 0.20 and 0.27 compared with the Xy, = 0.11
system, at differentincomplete input levels.

cation composition. Each memristorinan RC systemisindividually
connected to an input channel. No interconnection and data trans-
portationare needed between the memristors. The concept of virtual
nodes was adopted to divide the inputs into segments* and record
the memristor states at the end of each segment as a virtual node
of the reservoir. In this study, 16 virtual nodes (N,, N,, ..., N;) were
adopted per memristor: thatis, the memristor conductance is read
every four time steps*’. Consequently, the total number of virtual
nodesinthereservoiris 64 x 16. The experimentally recorded mem-
ristor states are thensent to the readout layer, which is a simple fully
connected layer with 64 x 16 inputs and ten outputs implemented in
Python.Inthe RC system, only the readout layer is trained. A detailed
description of the RC operation and readout layer training can be
found in Methods.

Memristors with differentinternal time constants allow the right
device to be engineered for different applications. Figure 4c shows
results from the three different RC systems for the Audio-MNIST test,
using ESO memristors of a kind with Mg concentrations of Xy, = 0.11,
0.20, 0.27, respectively. All RC systems have the same structure, and
theinputsareapplied at100 nsintervalsbetween time steps. All three
systems produced very high classification accuracy, suggesting the ESO
memristors are excellent candidates for RC systems. The RC network
with Xy, = 0.11shows the best accuracy of 99.42% among the three sys-
tems, because the internal time constant of these memristors (-100 ns)
better matches the inputs. The confusion matrix of the classification
outputsfor the Xy,, = 0.11memristor systemis shown inFig. 4d, showing
high classification accuracy for all input digits.

Whentheinputtime-step intervalisincreased, correspondingto
inputs with longer temporal features, the responses from the RC sys-
tems changed accordingly (Fig. 4e). As the input time stepisincreased
t0 250 and 400 ns, the performance of the RC system with Xy, = 0.11
decreases, whereas that of the RC systems with Xy, = 0.20 and 0.27
increases. The Xy, = 0.20 system reaches the highest accuracy when
the input time step interval is 250 ns and starts to decrease again,
while the X, = 0.27 systemreaches the highest accuracy at the longest
input time-step interval of 400 ns. The ability to tune the internal time
constants of the ESO memristors suggests the feasibility of engineering
devices and RC systems to optimally match given tasks.

Figure 4f shows the capability of the RC system to predict of the
digit before completing the utterance: that is, classification using
incompleteinput data®. Inthis test, after training the network with the
standard dataset, the network output is measured using partial input
data for the spoken digits. Figure 4f shows that for 100 ns time-step
inputs, the RC systembased on memristors with X,,, = 0.11still produces
acceptable performance (>91.7% accurate) with only 50% inputs. RC
systems based on memristors with Xy, = 0.20 and X, = 0.27 show worse
performance for this input scale, and the degradation in accuracy
becomes more severe as the input becomes more incomplete.

Energy consumption for the nonlinear transformation in the RC
experiment was calculated using the experimentally implemented
spike and read pulses and the measured conductance values from a
reservoir of ESOs with Xy, = 0.11. The current/voltage values meas-
ured by read pulses were used for the calculation of read operations,
and the averaged measured conductance value was used to calculate
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Table 1| Comparison of energy consumption to generate a signal spike on different systems

CPU™ FPGA" Memristor
WO, (ref.12) NbO, (ref. 44) B-Te (ref. 44) HfO, (ref. 44) ESO
Energy per spike 54.8p) 143nJ 3nJ 50pJ 30pJ 20pJ 3.39pJ

CPU, central processing unit; FPGA, field-programmable gate array.

currentsinduced by spikes. The energy consumed per spike is 3.39 pJ,
and the total energy consumption during testing of 600 spoken digits
is 8.81 . Compared with other systems using the numerical differential
equation solvers in central processing units and field-programmable
gatearrays or physical dynamics of other memristors'>**, the ESO-based
reservoir consumed one order of magnitude lower energy per input
than the state of the art, for the similar usages as presented in Table 1.

Conclusions

We havereported the development of ESO memristors. Through com-
position control, tunablelocal structural disorder canbe formedin the
devices, whichleads to stable and tunable switching dynamics. We used
the ESO-based memristors to form RC networks, with the controllabil-
ity of the internal time constants allowing matched reservoirs to be
engineered for tasks such as spoken-digit recognition and prediction
at different time scales. The temporal dynamics of ESO memristors,
and their predictable tuning parameters, make them a promising sys-
tem for use in efficient spatiotemporal data-processing applications.

Methods

Fabrication of ESO memristors

Single-crystal ESO films were grown on (001)-oriented MgO substrates
by pulsed laser deposition using a248 nm KrF excimer laser and stoichi-
ometrictargets. ESO targets were prepared by mixing the constituent
powders (MgO (Alfa Aesar 99.99%), CoO (Alfa Aesar 99.99%), NiO (Alfa
Aesar 99.99%), CuO (Alfa Aesar, 99.99%) and ZnO (Alfa Aesar, 99.99%)),
pressing the mixture of powders under 50,000 psi and sintering at
1,000 °Cfor 24 hoursinair. YBCO targets were prepared by mixing the
raw powders Y,0; (Alfa Aesar 99.995%), BaCO, (Alfa Aesar 99.95%) and
CuO (AlfaAesar, 99.99%) in aratio of Y:Ba:Cu =1:2:3 using the reaction
0.5(Y,0;) +2(BaC0O;) + 3(CuO) » YBa,Cu;0,_, + 2(CO,). This mixture
was thoroughly mixed with an agate mortar and pestle, reground by
ballmilling and placed inan Al,O, crucible. First a calcination step was
performedinatube furnace at 920 °Cin air for 24 hours. After cooling
to room temperature, the black powder was reground using an agate
mortar and pestle and then pressed under pressure of 12,000 psiinto
a2-inch-diameter pellet. The sintering step was carried out at 940 °C
for 48 hours. Cooling after the last sintering step and the subsequent
oxygen heat treatment were performed in an oxygen atmosphere.

Before film deposition, the MgO substrate was pre-annealed at
950 °C in 50 mtorr of O, for 30 min to remove hydroxides on the sub-
strate surface. Todeposit the YBCO bottomelectrode, the substrate was
cooledto 850 °C, and the O, pressure was increased to 100 mtorr. The
laser was directed onto the YBCO target with afluence of 2J cm2and a
repetition frequency of 5 Hz. After 30 min of deposition, 50-nm-thick
YBCO thin films were obtained. An ESO film of the desired composition
was subsequently deposited on the YBCO layer at a substrate tem-
perature of 400 °C and pressure of 5 mtorr of O, using the same laser
fluence and 2 Hz rep rate. After 2 hours of deposition, 5-nm-thick ESO
films were obtained. After growth, the substrates were slowly cooled
toroom temperature under 100 sccm O, flow (<500 mtorr).

After deposition of the ESO/YBCO bilayers, circular top contacts
ranging in diameter from 15 to 130 um were patterned on the surface
using standard photolithography and lift-off processes. Top contacts
of Pt(100 nm)/Ti(2 nm) were deposited at room temperature by pulsed
laser deposition in 10 mtorr Ar with a laser fluence of 3 cm2and a
repetition frequency of 5 Hz.

DFT calculation of ESOs with varied Mg incorporation

DFT calculations were performed to calculate the structural distor-
tionand band gap of Mg-variant ESOs. The projector augmented wave
method and generalized gradient approximation functionals were
implemented in the Vienna Ab initio Simulation Package® withaHub-
bard U parameter*® assigned for the transition metal cations. The
same pseudopotential, plane-wave cut-off energy, energy criterion
for electronic relaxation, ionic relaxation algorithm, force criterion for
ionicrelaxationand Hubbard U parameters were used for the calcula-
tion of ESO inref. 26.

One hundred and sixty atom supercells of ESOs with three dif-
ferent compositions were modelled: Mg ,C0g,,5Nig2,5CUg 225ZN 2250,
Mg, ,C00,Nig ,Cuo,ZN,,0 and Mg, 3C0, 175Nig 175CUo 17570 1750. The alloy
randomness was modelled using special quasi-random structures®’.
Theantiferromagneticstructure of the ESO** was considered by equally
populating each cationin the two magnetic states. The lattice constant
was determined by the energy minimum and was only varied with Mg
compositionby <0.01 A, which agrees with our X-ray diffraction data.
The k-point sampling for the supercellisI-centred 2 x 2 x 1in the first
Brillouin zone. The band gap was calculated at the I' point.

Band-gap measurement of ESO thin films

Theband gap (£,) of Mg-varied ESO thin films was determined from epi-
taxial films deposited onbare MgO substrates with the same deposition
conditions used for ESO deposition on YBCO-buffered MgO substrates.
The optical transmittance of Mg-variant ESO thin films was measured
(Supplementary Fig. 6a). To evaluate optical £, the difference between
the measured absorbance of ESO thin films on MgO and that of abare
MgO substrate was taken. A Tauc plot (Supplementary Fig. 6b) reveals a
linear relation for (ahv)? versus hv (a, absorption coefficient; i, Planck’s
constant; v, frequency of light; hv, photon energy), whichindicates an
indirect transition. The obtained band gap of the ESO (Supplementary
Fig. 6¢) isalmost constant for the different Mg compositional variants
(Eg=2.55eV,2.58 eV and 2.60 eV for Xy, =0.11, 0.20 and 0.27, respec-
tively). The Urbach tail was excluded from the fit.

Pulse measurement of ESO-based memristors

All pulse measurements were performed on the MIM stacks (described
previously) using aKeithley 4200S semiconductor analyser. Program-
ming pulses with an amplitude of 2 V and pulse width of 1 ms and read
pulses with an amplitude of 0.3 V and pulse width of 10 ms were used.
The pulses were applied to the top electrode of the MIM stack as shown
in the inset of Fig. 3a. The time gap between the last programming
pulse of a series of programming pulses and the read pulse was set to
be 100 ns, and the gap between programming pulses was varied as
intended. Nine different time gaps were tested in total. To minimize
effects from noise and device variations, the measurements were
performed ten times for each time-gap condition on 55 devices per
Mg concentration.

RC using ESO-based memristors

Thefirst 3,000 data of the Audio-MNIST dataset were chosen for the RC
experiment. The datainputs were binarized by the pre-fixed threshold
value of 0.4 to convert normalized inputs to spike trains. Theamplitude
and width of the spikes and the read pulse were identical to those
used for the standalone pulse measurements discussed earlier. The
spike train from each channel was applied to a separate ESO-based
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memristor, and its conductance was monitored every four spikes
(corresponding to16 virtual nodes) experimentally. The conductance
history of 64 devices, representing 64 channels for the data per Mg
concentration, was recorded.

After the experimental encoding and recording of the ESO memris-
torinthereservoir, the computation simulationis followed to perform
the speech-recognition task using the experimental data. The readout
function is a 64 x 16 x 10 network with ten outputs representing ten
different digits in the case of a RC system with a reservoir. It takes
the recorded conductance values as inputs (64 x 16) and outputs ten
outputs using the input vector and its weight matrix. The probability
of anoutput neuronbeing chosen as the classification result was calcu-
lated by a SoftMax function, and the neuron with the largest possibil-
ity was selected. The cost was derived by categorical cross-entropy"
and RMSprop was used for optimization skill*’. Eighty per cent of the
recorded datawere used for training the readout function and the rest
were used for testing the network™.

Data availability
Source data are provided with this paper. Additional data related to
this work are available from the corresponding authorsuponrequest.

Code availability

Computational simulation code of the RC system for the
speech-recognition task is available from the corresponding authors
uponreasonable request.
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