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ABSTRACT

Westudy the structure of triply gradedKhovanov-Rozansky homologyusingboth thedata recently computed
by Nakagane and Sano for knots up to 11 crossings, and the sl(2) action defined by the second author,
Hogancamp and Mellit. In particular, we compute the HOMFLY-PT S-invariant for all knots in the dataset, and
compare it to the sl(N) concordance invariants.
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1. Introduction

In this note, we study the structure of triply graded Khovanov-Rozansky homology [12, 14] which categorifies HOMFLY-PT
polynomial, and its interactions with sl(N) Khovanov-Rozansky homology [13]. Although this link homology theory was defined
over 15 years ago, its definition is rather involved, and the progress in computing and understanding this homology has been
rather slow.

Recently, triply graded homology was computed for all torus knots in [4, 10, 11, 22]. In a different direction, Nakagane and Sano
[23] wrote a program which computed triply graded homology for all knots with at most 10 crossings and most 11-crossing knots.
These developments indicate that the triply graded homology can be used as a rich source of numerical data about knot invariants
which is readily available inmany examples.Wewill argue that for theNakagane-Sano dataset lots of theoretical tools (such as spectral
sequences) simplify dramatically, and can be computed from triply graded homology.

The first, and the most basic problem in approaching this data is its visualization. We will exclusively work with reduced
homology H(K) for knots which is known to be finite-dimensional. By a result of Rasmussen [25] the reduced and unreduced
triply graded homology determine each other. Given a collection of vector spaces indexed by three gradings, one gets a complicated
three-dimensional array of their dimensions. We solve this problem by introducing �-grading (similar to δ-grading in Khovanov
homology), which is a linear combination of the three gradings, and presenting the homology in each �-grading separately. This
breaks the three-dimensional array into two-dimensional slices, see Figure 1. In this and other figures throughout the paperwe show a-
and q-grading (which correspond to the variables in theHOMFLY-PT polynomial), respectively, vertically and horizontally, andmark
�-grading for each slice—this determines the t-grading. The numbers indicate the ranks of the corresponding homology groups.1

Following Rasmussen [24], we call a knot thin, if H(K) is supported in a single �-grading. By the results of [24] all two-bridge
knots are thin and H(K) is determined by the HOMFLY-PT polynomial and the signature. It turns out that all knots in the dataset
[23] are almost thin, that is, supported in at most two�-gradings. More precisely, the distribution of�-gradings is shown in Table 1.

In this note, we argue that even if K is not thin, in many cases (and for most knots in the dataset) it is possible to recover a lot of
useful information about sl(N) homology and various related invariants by simply looking atH(K).

Our first main result describes S-invariants which can be defined using a triply graded analogue of the Lee spectral sequence in
Khovanov homology.

Theorem 1.1. For all knots in the dataset, the S-invariant is determined byH(K).

For example, for the knot 11n80 in Figure 1 the S-invariant equals 2, and corresponds to the (right) red circle in �-grading (−2)
and (q, a) = (2,−2).

We prove Theorem 1.1 in Section 2 as Corollary 2.19, the main observation is that using all three gradings allows us to conclude
that there is only one nontrivial differential in the spectral sequence, and we can pin down the location of its homology. This contrasts
the situation in Khovanov homology where computing s-invariant is highly nontrivial.

Our next results concerns the relation betweenH(K) and (reduced) sl(N)Khovanov-Rozansky homologyHsl(N)(K) for arbitrary
knots. By [25] there is a spectral sequence from H(K) to Hsl(N)(K). Furthermore, it follows from [19, 25] that for every monic

1Note that this is very different from [3] and some other sources where the numbers indicate the t-grading.
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2 A. CHANDLER AND E. GORSKY

Figure 1. Triply graded homology of the knot K = 11n80. The q and a gradings are plotted, and t is determined by either q+ a+ t = −4 or q+ a+ t = −2. The red circles
indicate the homology of the differentials d1 and d−1 , in particular, the HOMFLY-PT S-invariant equals 2.

Table 1. The only alternating knot in the dataset with |�| = 2 is 11a263 , see Figure 3.

|�| = 1 |�| = 2

Two-bridge 173 0
Alternating, not two-bridge 293 1
Not alternating 137 91
Total 603 92

Table 2. The two knots whose S-invariant value differs from the s-invariant are 10125 with S(10125) + s(10125) = −2 and 11n82 with S(11n82) + s(11n82) = 2.

dimH(K) − dimHsl(2)(K) 0 2 6 8 10 14 16 22 24 26 32 34

Number of Knots 14 2 4 27 4 1 19 7 10 1 2 1

S(K) + s(K) -2 0 2

Number of Knots 1 90 1

polynomial ∂W of degree N there exists a spectral sequence with E2 page isomorphic to Hsl(N)(K) and one-dimensional E∞ page.
In [19] Lewark and Lobb used this construction to define a family of link invariants s∂W which, in principle, depend on the choice
of polynomial (see Section 4.1). For N = 2 there is only one such invariant s2 = sx2−x and with our conventions the Rasmussen
s-invariant equals s = 2s2.

Theorem 1.2. For N ≥ 3 the sl(N) homology of all knots in the dataset is isomorphic toH(K) up to regrading. For ∂W = xN − x, the
corresponding invariant sxN−x(K) is determined by the S-invariant, which is known by Theorem 1.1.

For N = 2 or for more complicated knots, the behavior of Rasmussen spectral sequence could be more subtle, see Section 4.2.
Nevertheless, for all but two knots in the dataset the Rasmussen s-invariant in Khovanov homology agrees with the HOMFLY-PT
S-invariant up to a sign. For knots K which are supported in a single�-grading, we know that S(K) = −s(K) and that dim(H(K)) =

dim(Hsl(2)(K)). In Table 2 we show the distributions of values of S(K)+ s(K) and dim(H(K))−dim(Hsl(2)(K)) among the 92 knots
in the dataset which are not supported in a single �-grading.

The following result is more abstract, and uses the action of the Lie algebra sl(2) in triply graded homology constructed in [8]. We
denote its generators by (E,H, F) with the convention that E increases the q-grading by 4 and F decreases it by 4. The action of sl(2)
preserves the �-grading and the a-grading, so it acts horizontally in each �-grading in all figures. One immediate consequence of
the existence of such action, proved in [8], is symmetry ofH(K) and unimodality in each remainder of q-grading modulo 4. This is
clearly visible in Figure 1.

In this note, we record another consequence of the sl(2) action. Let dN be the first differential in the spectral sequence fromH(K)

to sl(N) homology.

Theorem 1.3. (a) There exists a family of operators da|b onH(K) satisfying the following equations:

dN|0 = dN , [E, da|b] = b · da+1|b−1, [F, da|b] = a · da−1|b+1, [H, da|b] = (a − b) · da|b.

The symmetry ofH(K) exchanges da|b with db|a.
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(b) For N = 1 the operators d1 = d1|0 and d−1 = d0|1 satisfy additional relations

d2−1 = d−1d1 + d1d−1 = 0.

We illustrate the action of da|b in the homology of the 15-crossing torus knot T(4, 5) in Section 4.3.

Corollary 1.4. The differentials dN commute with the action of E.

In fact, we first prove Corollary 1.4 as Theorem 3.27, and then deduce Theorem 1.3 from it in Lemma 3.28.
By Theorem 1.3(b), the differentials d1 and d−1 anticommute and span a two-dimensional representation of sl(2). By Theorem 1.1

the action of d1 (and hence of d−1) is completely determined by H(K) for all knots in the dataset. In Proposition 3.31 we use these
ideas to decomposeH(K) in symmetric blocks and explain some patterns in triply graded homology.

For all knots in the dataset, the homology of d1 is one-dimensional (by Proposition 2.17) and supported in �-grading (−S) and
bidegree (q, a) = (S,−S). Similarly, the homology of d−1 is one-dimensional and supported in the same �-grading and (q, a) =

(−S,−S). We illustrate both of these homologies by red circles in all figures and write the value of the S-invariant for the reader’s
convenience.

2. Link homology data

In this section we discuss in detail the link homology data provided by [23], and its interaction with sl(N) Khovanov-Rozansky
homology and the associated spectral sequences defined by Rasmussen in [25].

We postpone the formal definitions of HOMFLY-PT homology and Rasmussen spectral sequences to Section 3, where we prove
some new general properties of differentials in these spectral sequences. In this section, we mostly use these as a black box, recording
only the grading shifts and show that even this limited information in many cases yields very precise answers.

2.1. Gradings onH

In this section we collect and compare several grading conventions from various sources. We use the same skein relation for the
(normalized) HOMFLY-PT polynomial P(L) for links L as Nakagane and Sano [23]:

a−1P( ) − aP( ) = (q−1 − q)P( ) P( ) = 1.

This differs from the HOMFLY-PT polynomial PDGR used in [3] by PDGR(q, a) = P(q, a−1), so P(L) = PDGR(L̄) where L̄ denotes
the mirror of the link L.

Unless stated otherwise, we will always work in reduced triply graded homology with rational coefficients. By the universal
coefficient theorem, this is equivalent to working with any other characteristic zero field (such as C) and we will not make this
distinction unless stated otherwise. The triply graded homologyH has gradings (q, a, t). Our grading choice follows Nakagane and
Sano [23] which is a bit unusual compared with other sources.

The Poincaré polynomial for H(L) is defined as P(L)(q, a, t) =
∑

i,j,k q
iajt

k−j
2 dimHi,j,k(L) and we have P(L)(q, a) =

P(L)(q, a,−1) for all links L [23, Section 1].

Remark 2.1. One slightly confusing note: we often go back and forth between thinking about the Poincaré polynomial and the homology,
which are two different ways of presenting the same data. When referring to homology, the letters q, a, t refer to the values of the gradings
(e.g. if q = 1, a = 2, t = 3 we are talking aboutH1,2,3(L)) but when talking about Poincaré polynomials, these same values become the
powers on the formal variables q, a, t (e.g. if q = 1, a = 2, t = 3 we are talking about the term qa2t3).

Another choice of gradings is discussed in the paper of Dunfield, Gukov and Rasmussen [3]. The q and a gradings are the same,
but the third grading is tDGR = 1

2 (a − t). For knots, the gradings q, a, t are all even and therefore tDGR is an integer.
For signatures, we use the same convention as in [3] that a negative knot has positive signature, so in particular, if K is the negative

trefoil, σ(K) = 2.
Finally, for any N > 0 we will use sl(N)-modified q-grading qsl(N) = q+Na. As we will see below in Proposition 2.4, this agrees

with the q-grading on sl(N) Khovanov-Rozansky homology up to a certain spectral sequence.

2.2. Delta grading and thin knots

The delta grading � = q + a + t will be extremely useful for our work. It is different from the δ-grading used in [3] by a factor of
(−2):

δDGR = −
�

2
= tDGR −

q

2
− a.
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Figure 2. Triply graded homology of the knot K = 11a85 . Since K is two-bridge, it follows that K is thin. The q and a gradings are plotted, and t is determined by q+a+ t = 2.
The S-invariant equals−2.

Figure 3. Triply graded homology of the knot K = 11a263. This is the only alternating knot in the dataset which is not thin. The S-invariant equals−8.

A reader might be more familiar with the δ-grading in sl(2) homology defined by

δsl(2) =
qsl(2)

2
− tDGR =

q

2
+ a − tDGR.

This agrees with the grading �
2 , up to a spectral sequence from Proposition 2.4.

We call a knot K thin (or KR-thin as in [24]) ifH(K) is supported in a single �-grading. We will denote byH�(K) the subspace
ofH(K) in delta grading �. We recall an important result of Rasmussen:

Theorem 2.2. [24] Any two-bridge knot is thin and supported in the �-grading equal to negative its signature.

Figure 2 shows an example of HOMFLY-PT homology for a two-bridge link. We define the �-thickness |�|(K) as the number of
consecutive �-gradings supportingH(K), that is,

|�|(K) =
1

2
(max{� : H� �= 0} − min{� : H� �= 0}) + 1.

For thin knots we have |�| = 1. Recall all two-bridge knots are alternating. Figure 2 shows an example of HOMFLY-PT homology
for a two-bridge knot 11a85 supported in a single delta grading � = 2.

We show the distribution of�-gradings for knots in the dataset in Table 1. The only alternating knot supported in two�-gradings
in the dataset is 11a263, see Figure 3.

Remark 2.3. It is easy to see that there exist knots with arbitrarily large �-thickness. For example, it follows from [22] that the triply
graded homology for (p, p + 1) torus knot contains classes with both (q, a, tDGR) = (−p(p − 1), p(p − 1), 0) and (q, a, tDGR) =

(0, p(p + 1) − 2, p2 − 1) with � = p(p − 1) and � = 2p − 2, respectively, so |�|(T(p, p + 1)) ≥
(p−1)(p−2)

2 + 1. One could also use
connect sums of knots to get arbitrary large |�|.
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We call a knot K parity if t/2 has the same parity on H(K). Equivalently, tDGR − a
2 has the same parity and a + q − � has the

same remainder modulo 4. The main result of [22] implies that all torus knots are parity.

2.3. Differentials and sl(N) homology

We will use differentials dN on HOMFLY-PT homology and the associated spectral sequences, see the details below in Section 3, in
particular Theorem 3.11. We will denote the reduced sl(N) homology by Hsl(N)(K).

Proposition 2.4. [25] There exists a spectral sequence with E1 page isomorphic toH(K) and i-th differential d
(i)
N changing the degrees

by (q, a, t) → (q + 2Ni, a − 2i, t + 2 − 2i). The E∞ page is isomorphic to Hsl(N)(K) with modified q-grading qsl(N) = q + Na.

Remark 2.5. The t-grading on sl(N) homology which we use here agrees with tDGR.

We will denote the first differential in this spectral sequence by dN = d
(1)
N . In our conventions it changes degrees by (q, a, t) →

(q + 2N, a − 2, t). The differentials dN , dN′ anticommute for different N,N′.

Corollary 2.6. The differential d
(i)
N increases the �-grading by 2Ni − 4i + 2 and decreases tDGR by 1.

Corollary 2.7. If K is parity then the differentials d
(i)
N vanish for even i.

As a special case of Proposition 2.4, we can consider N = 1. The sl(1) homology of any knot is one-dimensional and supported
in bidegree (qsl(1), tDGR) = (0, 0). Since qsl(1) = q + a, we get the following:

Corollary 2.8. (a) There is a spectral sequence starting at H(K) and converging to E∞ � Hsl(1)(K) � Q. The surviving homology
group is supported in tridegree (q, a, t) = (S,−S,−S) and �-grading equal to −S.

(b) The differentials d
(i)
1 change the degrees by (q, a, t) → (q + 2i, a − 2i, t + 2 − 2i) and increase the �-grading by 2 − 2i.

The S-invariant ofK [3] is defined as the q-grading of surviving generator ofHsl(1)(K). One can define the analogues of S-invariant
for sl(N) homology using the following theorem.

Theorem 2.9. [19–21, 28] Let ∂W be a degree N monic polynomial with simple root at 0. Then there is a spectral sequence starting at
Hsl(N)(K) and converging to the one-dimensional homology H∂W , which depends on ∂W.

See Theorem 3.14 for more details and Section 4.1 for some examples for various ∂W.

Definition 2.10. Let j∂W be the qsl(N)-degree of the surviving generator in the spectral sequence from Theorem 2.9. Define

s∂W =
j∂W

2(N − 1)
.

In particular, for N = 2 the invariant s∂W does not depend on the choice of ∂W (see Remark 3.16) and we recover the celebrated
s-invariant [26] by s = 2s2. The importance of the invariants s∂W is shown by the following result:

Theorem 2.11. [19–21, 28] The slice genus g∗(K) satisfies the inequality

g∗(K) ≥ |s∂W(K)|

As a consequence, an efficient way of computing s∂W for various N and various polynomials ∂W would give a collection of slice
genus bounds for the knot K.

Remark 2.12. In [19] Lewark and Lobb proposedmore subtle slice genus bounds from unreduced sl(N) homology and its deformations.
It is unlikely if these can be computed by methods of this paper since unreduced HOMFLY-PT homology is infinite-dimensional and
supported in infinitely many �-gradings.

Proposition 2.13. Assume thatH(K) has �-thickness |�|. Then

Hsl(N)(K) � H(K), sxN−x(K) = −
1

2
S(K)

for all N > |�|.

Proof. Since |�| ≥ 1 we get N ≥ 2. By Corollary 2.6 the differential d
(i)
N changes the �-grading by 2Ni − 4i + 2 = 2(N − 2)i + 2.

For N > |�| and i ≥ 1 we have 2(N − 2)i + 2 ≥ 2(N − 2) + 2 = 2(N − 1) ≥ 2|�|, but the difference between the �-gradings of

any two classes is at most 2|�| − 2. So all differentials d
(i)
N must vanish and the spectral sequence collapses.
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Figure4. Herewehaveboth the triplygradedhomologyandsl(3)homologyof the knotK = 911 . The S-invariant equals 4while thesl(3) invariants are equal to jx3−x = −8,

sx3−x =
j
x3−x
4 = −2.

To compare the S-invariants, observe that the spectral sequence for ∂W = xN − x is induced by the differential d1 on Hsl(N),
see Corollary 3.17 (since dN and d1 anticommute, the action of d1 is well defined on Hsl(N)). Therefore, the spectral sequences of
Corollary 2.8 and Theorem 2.9 agree. The surviving generator for the former is supported in degrees (q, a, t) = (S,−S,−S) and
therefore has qsl(N) degree jxN−x = S + N(−S) = −(N − 1)S. Now

sxN−x =
jxN−x

2(N − 1)
= −

1

2
S.

Corollary 2.14. Let K be a knot.

a) If |�| = 1 then Hsl(N)(K) � H(K) for all N ≥ 2.
b) If |�| = 2 then Hsl(N)(K) � H(K) for all N ≥ 3.

In particular, for all knots in the dataset [23] we have Hsl(3)(K) � H(K).

Example 2.15. The HOMFLY-PT and sl(3) homology of the knot 911 are shown in Figure 4. Since |�| = 1, the spectral sequence to
sl(N) homology collapses for all N ≥ 2, andH(K) � Hsl(N)(K) as vector spaces. However, the regrading changes the picture of the
HOMFLY-PT homology (Figure 4, left) to the sl(3) homology (Figure 4, right) significantly.

Next, we address the case N = 1. We call a knot d1-standard if all higher differentials d
(i)
1 in the sl(1) spectral sequence vanish

for i ≥ 2.

Lemma 2.16 (b)). Let K be a knot.

a) Assume thatH(K) is supported in a single �-grading. Then K is d1-standard.
b) Assume thatH(K) is supported in two neighboring �-gradings (�,� + 2). Furthermore, assume that

max{a : Ha,�+2 �= 0} − 4 < min{a : Ha,� �= 0}.

Then K is d1-standard.

Proof. The differential d
(i)
1 changes the �-grading by 2 − 2i, so (a) is clear and in (b) the only possible higher differential is d

(2)
1 . It

shoots from (a,� + 2) to (a − 4,�), and by our assumptions there is no room for it.

Proposition 2.17. All knots in the dataset [23] are d1-standard.

Proof. We checked using computer that all knots in [23] satisfy the assumptions of Lemma 2.16(b) with the following 17 exceptions:

10128, 10136, 11n104, 11n12, 11n126, 11n133, 11n145, 11n155, 11n16, 11n20,

11n39, 11n45, 11n57, 11n61, 11n64, 11n79, 11n9.
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Figure 5. Triply graded homology of the knot K = 942 . This is an example of a knot whose S invariant, 0, is not equal to the negative of its signature, 2.

Recall that d
(2)
1 changes the degrees by (a, q,�) → (a − 4, q + 4,� − 2), so by looking at q- and a-degrees we can exclude

10136, 11n12, 11n20, 11n79 (see Section 4.3 for details).
We show the triply graded homology for all remaining exceptions in Section 4.3. By direct inspection, we see that if a potential

differential d
(2)
1 is nonzero then it has rank 1 and acts from the grading (qK , aK ,� + 2) to (qK + 4, aK − 4,�), where qK , aK are

determined by the knot and listed in the following table:

K 10128 11n9 11n16 11n39 11n45 11n57 11n61 11n64

(qK , aK) (−4,10) (−4,8) (−4,8) (−4,2) (−4,2) (−4,8) (−4,6) (−4,6)
K 11n104 11n126 11n133 11n145 11n155

(qK , aK) (−4,8) (−4,10) (−4,6) (−4,2) (−4,4)

Consider the direct sum of triply graded homology with qsl(1) = q + a = qK + aK , it breaks into two pieces: A in delta grading

� and B in delta grading � + 2. The differential d1 = d
(1)
1 preserves both A and B while d

(2)
1 potentially acts from B to A.

In all exceptional cases but 11n155, the dimensions ofA and B are even (and, in fact, χ(A) = χ(B) = 0), so the dimensions of both

H(A, d1) andH(B, d1) are even as well. If d
(2)
1 has rank 1 then it must have odd-dimensional kernel and cokernel, and the dimension

of the E∞ page with qsl(1) = qK + aK is at least 2. Contradiction.
Finally, for 11n155 the ranks of graded components of A and B have the following form:

1

1

1

5

5

2

A(� = 0)

B(� = 2)

The differential d1 acts in southeast direction for bothA and B, and the potential higher differential d
(2)
1 is shown by the dashed arrow.

If d
(2)
1 �= 0 then it is easy to see that the rank of homology at the E∞ page is at least 3, contradiction.

Lemma 2.18. Assume that K is d1-standard. Then the HOMFLY-PT S-invariant and the ranks of d1 in each trigrading are completely
determined byH(K).

Proof. By Corollary 2.8 the sl(1) spectral sequence converges to the E∞ page which is 1-dimensional and supported in
�-grading −S.

Since K is d1-standard and the differential d1 preserves �-grading, for � �= −S it is acyclic and for � = −S it has 1-dimensional
homology. By computing the Euler characteristic for each �-grading, we compute S. This determines the position of 1-dimensional
homology of d1, and d1 is acyclic on the complement, so its ranks are completely determined byH(K).
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Corollary 2.19. For all knots K in the dataset [23]:

a) the HOMFLY-PT S-invariant and the ranks of d1 at every trigrading are completely determined byH(K).
b) the invariant sxN−x is completely determined byH(K) for N ≥ 3.

Proof. Part (a) is immediate from Proposition 2.17 and Lemma 2.18. Part (b) follows from Proposition 2.13.

Example 2.20. As a warning to the reader, the HOMFLY-PT S-invariant is not necessarily equal to the signature if K is not thin. For
example, for the knot 942 (see Figure 5) the S-invariant equals 0 while the signature equals 2.

For N = 2 the situation is more complicated, see Table 2. Still, for all but two knots in the dataset the HOMFLY-PT and sl(2)
invariants agree up to sign. We show some examples of computations of d2 in Section 4.

3. Differentials, symmetry and sl(2) action

In [8] the first author, Hogancamp and Mellit defined an action of the Lie algebra sl(2) on HOMLFY homology. We review its
definition in Section 3.5, and prove some of its new properties in Section 3.6. These allow us to understand better the structure
of HOMFLY-PT homology.

First, we review in detail the construction ofHOMFLY-PT homology and its y-ification, and the construction of spectral sequences
to sl(N) homology both for HOMFLY-PT and y-ified homology.

3.1. Soergel bimodules and Rouquier complexes

Let R = C[x1, . . . , xn] be the polynomial ring in n variables. It is graded by deg(xi) = q2. To any n-strand braid we will associate a
complex of R-R bimodules, where the two actions of R correspond, respectively, to the marked points on the bottom and top of the
braid. Consider a bimodule

Bi := R
⊗

R(i i+1)

R =
C[x1, . . . , xn, x

′
1, . . . , x

′
n]

xi + xi+1 = x′
i + x′

i+1, xixi+1 = x′
ix

′
i+1, xj = x′

j (j �= i, i + 1)

The Rouquier complexes associated to single crossings are given by

Ti = [Bi
bi
−→ R], T−1

i = [qR
b∗
i

−→ Bi]

where bi : Bi → R and b∗
i : qR → Bi are morphisms of R-R bimodules which send 1 	→ 1 and 1 	→ xi − x′

i+1, respectively. Note that

the bimodules Bi are graded, and the differentials in T±
i preserve the grading.

Theorem 3.1. [27] The complexes Ti,T
−1
i satisfy braid relations up to homotopy:

Ti ⊗ T−1
i � R, Ti ⊗ Ti+1 ⊗ Ti � Ti+1 ⊗ Ti ⊗ Ti+1, Ti ⊗ Tj � Tj ⊗ Ti (|i − j| ≥ 2).

The tensor product is considered over R.

As a consequence, one can associate a complex (known as Rouquier complex) of R-R bimodules to an arbitrary braid β =

σ
ε1
i1

· · · σ
εr
ir

by Tβ = Tε1
i1

· · ·T
εr
ir
. The following construction of “dot-sliding homotopies” is well known, but we spell it out in detail it

for the reader’s convenience.

Proposition 3.2. The left and right actions of R on T±
i are homotopic up to the transposition si = (i i + 1). More specifically, for all a

there is a map ξa : T
±
i → T±

i of homological degree (−1) and q-degree 2, such that

[d, ξa] = xa − x′
s(a)

Proof. For Ti we define ξi = b∗
i , ξi+1 = −b∗

i and ξj = 0 for j �= i, i + 1. For T−1
i we define ξi = bi, ξi+1 = −bi and ξj = 0 for

j �= i, i + 1. All the properties follow from the identity bib
∗
i = b∗

i bi = xi − x′
i+1.

Corollary 3.3. For any braid β the left and right action of R on the complex Tβ are homotopic, up to the permutation corresponding
to β.

Given an R − R bimodule M, we can consider its Hochschild homology HH(M), defined as follows: consider an arbitrary free
R ⊗ R-resolution ofM:

[. . . → M2 → M1 → M0] � M
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identify the left and right R-action on eachMi by writing
[
. . . → M2

⊗

R⊗R

R → M1

⊗

R⊗R

R → M0 ⊗R⊗R R

]

and then take homology of the resulting complex of R-modules.

Definition 3.4. Let β be an arbitrary braid. The triply graded homologyH(β) is defined applying Hochschild homology to the Rouquier
complex Tβ , and computing the homology of the result:

H(β) := H∗(HH(Tβ))

where the functorHH(−) is applied to the bimodules in the complex Tβ term-wise.

Remark 3.5. To be precise, this definesH(β) up to an overall grading shift. In this section we will not need precise formulas for this shift,
and refer to [23] for the precise shift in their grading conventions.

By [25, Section 2.8] the homologyH(β) is a freemodule overC[x1+· · ·+xn] and we can define reduced triply graded homology

as the quotient

H(β) = H(β)/(x1 + · · · + xn)H(β).

If β closes to a knot thenH(β) is finite dimensional, and this is indeed the link homology considered above.
In what follows we will need a variant of this construction due to Rasmussen [25]. Given a braid β = σ

ε1
i1

· · · σ
ε


i

, the associated

Rouquier complex Tβ = Tε1
i1

· · ·T
ε


i

is a tensor product of 
 R−R bimodules. As such, it carries an action of 
+ 1 copies of R, which

motivates the following definition.

Definition 3.6. Let D = β̂ be a knot diagram obtained by closing a braid β. We associate a variable x
(j)
i to any edge in D, where

1 ≤ i ≤ n, 0 ≤ j ≤ 
 there are (
 + 1)n variables in total. The reduced edge ring Re is obtained as the quotient of R[x
(j)
i ] by the

following three sets of linear relations:

(a) At each crossing σ
εk
ik

we have

x
(k−1)
ik

+ x
(k−1)
ik+1 = x

(k)
ik

+ x
(k)
ik+1, x

(k−1)
j = x

(k)
j (j �= ik, ik+1).

(b) The variables at the top and bottom are identified:

x
(0)
i = x

(
)
i

(c) The sum of variables at the bottom vanishes:
∑

i x
(0)
i = 0.

One can also consider the unreduced edge ring using equations (a) and (b), but not (c).

Example 3.7. Consider the braid β = σ1σ
−1
2 σ1σ

−1
2 which closes to the figure-eight knot:

x
(0)
1 x

(0)
2 x

(0)
3

x
(1)
1 x

(1)
2 x

(1)
3

x
(2)
1 x

(2)
2 x

(2)
3

x
(3)
1 x

(3)
2 x

(3)
3

x
(4)
1 x

(4)
2 x

(4)
3

The relations in the edge ring are

x
(0)
1 + x

(0)
2 = x

(1)
1 + x

(1)
2 , x

(1)
2 + x

(1)
3 = x

(2)
2 + x

(2)
3 , x

(2)
1 + x

(2)
2 = x

(3)
1 + x

(3)
2 , x

(3)
2 + x

(3)
3 = x

(4)
2 + x

(4)
3 ,

x
(0)
3 = x

(1)
3 , x

(1)
1 = x

(2)
1 , x

(2)
3 = x

(3)
3 , x

(3)
1 = x

(4)
1 , x

(0)
1 = x

(4)
1 , x

(0)
2 = x

(4)
2 , x

(0)
3 = x

(4)
3 , x

(0)
1 + x

(0)
2 + x

(0)
3 = 0.
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Note that equations (a) and (c) imply that
∑

i x
(j)
i = 0 for all j. We also define the local edge ring as

Rloc,i :=
C[x1, . . . , xn, x

′
1, . . . , x

′
n]

xi + xi+1 = x′
i + x′

i+1, xj = x′
j (j �= i, i + 1)

.

It is clear that the relations (a) define a tensor product of Rloc,ik over appropriate polynomial rings, while Re is obtained as a quotient
of this product by the additional relations (b) and (c).

Lemma 3.8. (a) The R-R bimodules R and Bi have the following resolutions over Rloc,i:

R �

[
Rloc,i

xi−x′
i

−−−→ Rloc,i

]
, (1)

Bi �

[
Rloc,i

(x′
i−xi)(x

′
i−xi+1)

−−−−−−−−−→ Rloc,i

]
. (2)

(b) The morphisms bi : Bi → R and b∗
i : R → Bi lift to the following morphisms of resolutions:

bi �

Rloc,i Rloc,i

Rloc,i Rloc,i

xi−x′
i

(x′
i−xi)(x

′
i−xi+1)

xi+1−x′
i 1

b∗
i �

Rloc,i Rloc,i

Rloc,i Rloc,i

(x′
i−xi)(x

′
i−xi+1)

xi−x′
i

1 xi+1−x′
i

(3)

Proof. For (1), note that xi − x′
i = 0 is equivalent to xi+1 − x′

i+1 = 0 in Rloc,i. For (2), note that for any symmetric function ϕ in two
variables we have ϕ(xi, xi+1)|Bi = ϕ(x′

i, x
′
i+1)|Bi . In particular, (x′

i − xi)(x
′
i − xi+1) = (x′

i − x′
i)(x

′
i − x′

i+1) = 0 in Bi, so we can write

Bi =
C[x1, . . . , xn, x

′
1, . . . , x

′
n]

xi + xi+1 − x′
i − x′

i+1 = 0, (x′
i − xi)(x

′
i − xi+1) = 0, xj = x′

j (j �= i, i + 1)
=

Rloc,i

(x′
i − xi)(x

′
i − xi+1) = 0

and the result follows.
For part (b) note that the diagrams commute, sowe get chainmaps of resolutionswhich induce the desiredmaps on homology.

Lemma 3.9. (a) The tensor product of resolutions (2) for Bi1 , . . . ,Bi
 yields a resolution of Bi1 ⊗· · ·Bi
 over the tensor product of Rloc,ik .
(b) The reduced HOMFLY-PT homologyH(β) can be computed as follows. First, tensor the cones of bi and b∗

i given by (3). Second,
impose the relations (b), (c) from definition of Re, this gives a bicomplex of Re-modules. Take homology of the horizontal differential, then
homology of the vertical differential.

Proof. (a) It is well known that the bimodule Bi1 ⊗ · · ·Bi
 is free both as a left and right R-module (this follows from the fact that R
is free over R(i i+1)). Therefore the derived tensor product of such bimodules is quasi-isomorphic to the usual tensor product.

(b) By (a), to compute the Hochschild homology HH(Bi1 ⊗ · · ·Bi
) it is sufficient to replace each Bi by its resolution (2), tensor
these resolutions and identify the variables on the top and bottom. The rest follows from the definition ofH(β).

3.2. Rasmussen spectral sequences

Following [25], we deform the above construction of H to define a spectral sequence to sl(N) homology. Let us fix an integer N.
We will need a more general version which depends on a one-variable polynomial (called the potential)W(x). The sl(N) homology
corresponds toW(x) = xN+1.

For the crossing σ ε
i we define

Wi := W(xi) + W(xi+1) − W(x′
i) − W(x′

i+1) =

n∑

j=1

(
W(xj) − W(x′

j)
)

∈ Rloc,i

Observe that Wi vanishes both when xi = x′
i (and xi+1 = x′

i+1 by definition of Rloc,i), and when xi+1 = x′
i (and xi = x′

i+1 by
definition of Rloc,i). Since Rloc,i is a free polynomial ring and (xi − x′

i), (xi+1 − x′
i) are coprime in it, we conclude thatWi is divisible

by (xi − x′
i)(xi+1 − x′

i). We denote

W′
i =

Wi

xi − x′
i

, W′′
i =

Wi

(xi − x′
i)(xi+1 − x′

i)
.
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One can replace the resolutions (1) and (2) by the following:

Rloc,i Rloc,i Rloc,i Rloc,i.

xi−x′
i

W′
i

(x′
i−xi)(x

′
i−xi+1)

W′′
i

Note that these are not complexes but matrix factorizations. More precisely, if d+ denotes the rightward differential (which agrees
with the differentials in (1) and (2), respectively), and d∂W denotes the leftward differential then

(d+ + d∂W)2 = Wi.

The maps bi and b∗
i from (3) are unchanged. One can then proceed with defining the complex as in Lemma 3.9, replacing the

horizontal differential with d+ + d∂W . Note that on the tensor product we have

(d+ + d∂W)2 =

n∑

j=1

(
W

(
x
(0)
j

)
− W

(
x
(
)
j

))
= 0 in Re.

Following [19], we label the differential d∂W and the corresponding homology H∂W by the derivative ∂W = dW
dx rather than by

W. This is explained by the following:

Example 3.10. For a given potentialW, the matrix factorization for a trivial braid on one strand is given by

C[x, x′] C[x, x′]

x−x′

W(x)−W(x′)
x−x′

Since W(x)−W(x′)
x−x′ |x=x′ = ∂W, after closing the braid we get the complex:

C[x] C[x]

0

∂W

and the unreduced homology of unknot:

H∂W(unknot) = C[x]/ (∂W) .

Theorem 3.11. [25] (a) For anyW, the homology H∂W := H(H(C(D), d+ +d∂W), dv) is a link invariant. The differential d∂W induces
a spectral sequence fromH(β) to H∂W(β).

(b) For ∂W = xN , the homology H∂W agrees with (reduced) sl(N) Khovanov-Rozansky homology Hsl(N)(β). The differential d∂W

and the corresponding spectral sequence agree with the differential dN and the spectral sequence from Proposition 2.4.

Remark 3.12. In what follows we will need some details of the proof of Theorem 3.11 concerning the order of differentials defining spectral
sequence which we recall now. First, we define

H+(C) = H(C(D), d+), H±(C) = H(H+(C), d∂W) = H(H(C(D), d+), d∂W).

By [25, Corollary 5.9] H±(C) is supported in a single horizontal grading. By [25, Lemma 5.12] this implies that the spectral sequence

H±(C) = H(H(C(D), d+), d∂W) ⇒ H(C(D), d+ + d∂W) (4)

collapses and induces a canonical isomorphism between these homology groups. Furthermore, the spectral sequence

H(H±(C), dv) = H(H(H+(C), d∂W), dv) ⇒ H(H+(C), d∂W + dv) (5)

collapses as well [25, Proposition 5.10] since the differential d∂W changes the horizontal grading by (−1), the differential dv preserves the
horizontal grading and therefore higher differentials must increase the horizontal grading which is impossible by the above.

To sum up, the collapse of spectral sequences (4) and (5) implies a chain of isomorphisms

H∂W(β) � H(H(C(D), d+ + d∂W), dv) � H(H±(C), dv) � H(H+(C), d∂W + dv). (6)

On the other hand, by Lemma 3.9 we have a spectral sequence

H(β) = H(H+(C), dv) ⇒ H(H+(C), d∂W + dv) � H∂W(β).

induced by d∂W .
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As above, for ∂W = xN we denote the differentials in the spectral sequence by d
(i)
N and write dN = d

(1)
N . By [25, Corollary 5.6] the

differentials dM , dN anticommute for differentM,N.

Lemma 3.13. The dot-sliding homotopies ξi from Proposition 3.2 commute with both differentials d+ and d∂W above.

Proof. We can lift ξi to the resolutions (3) as follows:

Rloc,i Rloc,i

Rloc,i Rloc,i

xi−x′
i

1

W′
i

xi+1−x′
i

(x′
i−xi)(x

′
i−xi+1)

xi+1−x′
i

W′′
i,N

1

Rloc,i Rloc,i

Rloc,i Rloc,i

(x′
i−xi)(x

′
i−xi+1)

xi+1−x′
i

W′′
i

1

xi−x′
i

1

W′
i

xi+1−x′
i

Here ξi are denoted by downward arrows, and the vertical differential dv by upward arrows, as above. It is easy to see that

[ξi, d+] = [ξi, d∂W] = 0, [dv, ξi] = xi+1 − x′
i,

and the result follows.

3.3. Generalizations of the s-invariant

In [19] Lewark and Lobb defined a family of link invariants s∂W,α depending on a choice of a potentialW and a complex number α

satisfying ∂W(α) = 0 (so that α is a critical point ofW). By [19, Proposition 3.3] the invariants forW(x) andW(x+ c) are equal, so
throughout the paper we will assume α = 0. Furthermore, we can assume that ∂W is monic andW(0) = 0, and write

W(x) =
xN+1

N + 1
+ aN

xN

N
+ · · · + a2

x2

2
, ∂W = xN + aNx

N−1 + · · · + a2x. (7)

The following is a variation of [19, Theorem 2.4], adapted to our setting of HOMFLY-PT homology.

Theorem 3.14. (a) Assume that a2 �= 0 (so that α = 0 is a simple root of ∂W). Then the reduced homology H∂W(K) of any knot K is
one-dimensional.

(b) There is a spectral sequence fromH(K) to H∂W(K) with the first differential

d∂W = dN + aNdN−1 + · · · + a2d1

(c) There is a spectral sequence from Hsl(N)(K) to H∂W(K) with the first differential

aNdN−1 + · · · + a2d1

Proof. Part (b) is immediate from Theorem 3.11, since d∂W is linear inW.
To prove parts (a) and (c), we define two different filtrations on the corresponding chain complex. Observe that the differential dm

changes (q, a) bidegree to (q + 2m, a − 2), so it changes qsl(k) by 2m − 2k = 2(m − k).
To prove (a), we use qsl(1) to define a filtration. Indeed, the term a2d1 preserves qsl(1) and other terms dN + · · · + a3d2 strictly

increase qsl(1). Since the homology of d1 is one-dimensional, the spectral sequence of the filtered complex collapses, and H∂W(K) is
one-dimensional as well.

To prove (c), we use qsl(N) to define a filtration. Indeed, the term dN preserves qsl(N) and other terms aNdN−1 +· · ·+a2d1 strictly
decrease qsl(N), so we get a desired spectral sequence for the filtered complex.

Following [19], we denote by j∂W(K) the qsl(N)-degree of the surviving generator of the E∞ page in the spectral sequence in
Theorem 3.14(c) and write

s∂W =
j∂W

2(N − 1)
.
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Remark 3.15. One canmake the definition of j∂W more explicit as follows. By the proof of Theorem 3.14(c), the underlying chain complex
C is filtered by qsl(N), and one can consider subcomplexes

FjC = {u ∈ C : qsl(N)(u) ≤ j}.

This filtration induces a filtration on the homology H∂W :FjH∂W consists of homology classes which have representatives inFjC. The E∞

page of the spectral sequence is then given by

E∞ =
⊕

j

FjH∂W/Fj−1H∂W .

Since H∂W is one-dimensional, j∂W can be simply defined by

j∂W = min{j : FjH∂W �= 0}.

Remark 3.16. For N = 2we have ∂W = x2+a2x with a2 �= 0. By [19, Proposition 3.3] one can assume a2 = −1, so that ∂W = x2−x.
Therefore, for N = 2 all invariants s∂W agree and we write sx2−x = s2.

Corollary 3.17. For ∂W = xN − x there is a spectral sequence from Hsl(N) to HxN−x induced by the differential d1.

Another interesting choice of potential corresponds to ∂W = xN − 1 and α = 1. We can replace it by ∂W = (x + 1)N − 1 and
α = 0.

Example 3.18. For N = 3 we get (x + 1)3 − 1 = x3 + 3x2 + 3x, so there is a spectral sequence fromHsl(3) toH(x+1)3−1 induced by
the differential 3(d2 + d1).

As shown in [19], the invariants sxN−x and s(x+1)N−1 could in fact differ, see Section 4.1 for an example.

3.4. y-ification

Following [7], we define the y-ification of triply graded homology. We introduce additional formal variables yi (associated to strands
of the braid) and tensor all chain groups by C[yi]. In terms of Rouquier complexes, we deform the differential as

D = d +
∑

yiξi, D
2 =

∑
yi(xi − x′

w(i)).

After closing the braid and identifying yi on the same connected component of the link, we get a well defined complex since D2 = 0
[7, Lemma 3.3]. The rest of Definition 3.4 goes through, and the definition of Hochschild homology is unchanged.We will denote the
y-ified complex with differential D by Y(β) and its homology (also known as y-ified homology by HY(β). One of the main results
of [7] proves that HY(β) is a topological invariant of the closure of β .

In the notations of Lemma 3.9, we deform the vertical differential byDv = dv+
∑

yiξi and do not change the horizontal differential
d+. By replacing the horizontal differential by d+ + d∂W , we get a definition of y-ified homology HY∂W . For ∂W = xN , this yields
y-ified sl(N) homology (see also [1, 2]).

Theorem 3.19. The above construction yields a well-defined y-ified homology HY∂W where the horizontal differential d+ + d∂W

commutes with the vertical differential Dv. There is a spectral sequence fromHY(β) toHY∂W(β) similar to the one in Theorem 3.11.

Proof. We follow the logic of the proof of Theorem 3.11 outlined in Remark 3.12. By Lemma 3.13 the differential Dv anticommutes
with both d+ and d∂W . The definitions ofH+ andH± are unchanged, soH± is supported in a single horizontal degree. The spectral
sequence (4) is unchanged (and collapses), while the spectral sequence (5) is replaced by

H(H±(C),Dv) = H(H(H+(C), d∂W),Dv) ⇒ H(H+(C), d∂W + Dv)

The differentialDv preserves the horizontal degree, so by the same argument as in Remark 3.12 this spectral sequence collapses. This
implies a chain of isomorphisms

Hsl(N)(β) � H(H(C(D), d+ + d∂W),Dv) � H(H±(C),Dv) � H(H+(C), d∂W + Dv). (8)

and a spectral sequence

HY(β) = H(H+(C),Dv) ⇒ H(H+(C), d∂W + Dv) � HY∂W(β).

induced by d∂W .

Corollary 3.20. Suppose that 
 : C(β) ⊗ C[yi] → C(β) ⊗ C[yi] commutes with Dv, d+ and d∂W . Then 
 defines an operator on
HY(β) which commutes with the differentials in the spectral sequence from Theorem 3.19.

Proof. Since 
 commutes with d+ and d∂W , it induces well-defined operators on H+(C) ⊗ C[yi] and H±(C) ⊗ C[yi]. Since 


commutes with Dv as well, it commutes with all the isomorphisms in (8), and the result follows.
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3.5. Action of sl(2): definition

Lemma 3.21. On any Rouquier complex Tβ there exists an operator u of homological degree (−2) and q-degree 4 such that

[d, u] =

n∑

a=1

(xa + x′
w(a))ξa (9)

where w is the permutation corresponding to β.

Proof. We define u = 0 for the braid generators T±
i . This satisfies (9) for Ti since

n∑

a=1

(xa + x′
w(a))ξa = b∗

i (xi + x′
i+1 − xi+1 − x′

i) = 0,

the check forT−1
i is similar. Given two braidsβ and γ with the corresponding permutations v,w, homotopies ξ

β
a and ξ

γ
a and operators

uβ , uγ , we define

uβγ = uβ + uγ +

n∑

a=1

ξ
β
a ξ

γ

v(a). (10)

We have

[d, uβγ ] =

n∑

a=1

(xa + x′
v(a))ξ

β
a +

n∑

a=1

(x′
v(a) + x′′

wv(a))ξ
γ

v(a) +

n∑

a=1

(xa − x′
v(a))ξ

γ

v(a) −

n∑

a=1

(x′
v(a) − x′′

wv(a))ξ
β

v(a)

=

n∑

a=1

(xa + x′′
wv(a))ξ

β
a +

n∑

a=1

(xa + x′′
wv(a))ξ

γ

v(a) =

n∑

a=1

(xa + x′′
wv(a))(ξ

β
a + ξ

γ

v(a)).

On the other hand, ξ
βγ
a = ξ

β
a + ξ

γ

v(a). This allows us define u inductively for arbitrary products of T±
i .

Remark 3.22. If we unpack the above proof and use (10) repeatedly, we will get the following elementary formula:

u =
∑

c≺c′

αc,c′ξ
(c)ξ (c′) (11)

where c, c′ are two crossings in a braid β, ξ (c) and ξ (c′) are single dot-sliding homotopies at c, c′ (given by bi or b
∗
i ) and αc,c′ is the sum of

the following terms:
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

+1 if the right output strand of c connects to the left input strand of c′

−1 if the right output strand of c connects to the right input strand of c′

−1 if the left output strand of c connects to the left input strand of c′

+1 if the left output strand of c connects to the right input strand of c′

Proof. It follows from (10) that

u =
∑

c≺c′

∑

a

ξ (c)
a ξ

(c′)
w(a)

where w is the permutation matching the input strands of c with the input strands of c′. It remains to notice that the ξ
(c)
a for the left

input (and the right output) strand of c corresponds to ξ (c), the right input (and the left output) strand of c corresponds to −ξ (c), and
all other strands contribute 0.

Now we can define the operator on y-ified homology:

E =
∑

a

(
xa + x′

w(a)

) ∂

∂yi
+ u

Theorem 3.23. [8]We get the following:
(a) [D,E] = 0, so E defines a chain map on the y-ified complex Y(β)

(b) E induces an endomorphism of the y-ified homologyHY(β) which is an invariant of the link obtained by closure of β.
(c) There exists an endomorphism F ofHY(β) such that (E, F,H) form an sl(2)-triple, and H = 1

2 degq.
(d) If β closes up to a knot K, the Lie algebra sl(2) generated by E, F,H also acts in the reduced HOMFLY-PT homology of K.

Remark 3.24. In [8] the operator E was denoted by F2. Here we chose to change notations to match representation theory of sl(2) better.
In particular, we want to emphasize that E increases the q-grading, so one should think of it as a raising operator.
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Remark 3.25. As explained above, one can define E on chain level by a fairly explicit formula. On the contrary, the construction of F is
not explicit, and follows from the “hard Lefshetz property” for E.

3.6. Action of sl(2): properties

The first and the most important consequence from the existence of sl(2) action is that triply graded homology is symmetric, as is
any finite-dimensional sl(2)-representation.

Theorem 3.26. [8] For any knot K, the triply graded homologyH(K) is symmetric around the vertical axis. The symmetry preserves the
�-grading and transforms the three gradings by (q, a, t) → (−q, a, t + 2q).

Theorem 3.27. (a) The operator E from sl(2) commutes with all differentials in the y-ified sl(N) spectral sequence from Theorem 3.19.
(b) Suppose that β closes to a knot. Then the operator E from sl(2) commutes with all differentials in the sl(N) spectral sequence (in

particular, with dN).

Proof. By Theorem 3.23 E commutes with the differentialDv. By (11) we can write the operator u as a linear combination of products
of ξi, hence by Lemma 3.13 we have [u, d+] = [u, d∂W] = 0. Therefore [E, d+] = [E, d∂W] = 0 and by Corollary 3.20 this implies
part (a). Part (b) follows from (a) and Theorem 3.23.

Lemma 3.28. There exists a family of operators da|b onH(K) satisfying the following equations:

dN|0 = dN , [E, da|b] = b · da+1|b−1, [F, da|b] = a · da−1|b+1, [H, da|b] = (a − b) · da|b.

The symmetry ofH(K) exchanges da|b with db|a.

Proof. If dN = 0 then we can set da|b = 0 for all a + b = N. Otherwise, assume dN �= 0 onH(K).
The endomorphism algebra End(H(K)) is a finite-dimensional representation of sl(2)which acts by adE, adF , adH . The eigenvalue

of adH on an endomorphism A equals half of q-degree of A, in particular, adH(dN) = NdN . Furthermore, adE(dN) = 0 by
Theorem 3.27(b), so dN is a highest weight vector of weight N, and hence spans an (N + 1)-dimensional representation of sl(2).

More precisely, for a + b = N we can define

da|b :=
1

b!
adbF(dN) ∈ End(H(K)),

then the sl(2) relations are satisfied and

[F, d0|N] =
1

N!
adN+1

F (dN) = 0.

See Section 4.3 for an example of computation of da|b.

Remark 3.29. One might expect that the operators da|b agree with the conjectural “supergroup differentials” conjectured in [6, 9], but we
do not pursue it here.

Corollary 3.30. Define d−1 = adF(d1) = [F, d1]. Then

[E, d−1] = d1, [F, d−1] = 0, (12)

so that d1, d−1 span a 2-dimensional representation of sl(2). Furthermore,

d2−1 = d−1d1 + d1d−1 = 0. (13)

The symmetry ofH(K) exchanges d1 with d−1, in particular, d−1 is a canceling differential if d1 is.

Proof. Equation (12) follows from Lemma 3.28, but we need to prove (13). Observe that

[F, d−1] = F(Fd1 − d1F) − (Fd1 − d1F)F = F2d1 + d1F
2 − 2Fd1F = 0,

so

Fd1F =
1

2
(F2d1 + d1F

2).

Now

d−1d1 + d1d−1 = (Fd1 − d1F)d1 + d1(Fd1 − d1F) = Fd21 − d1Fd1 + d1Fd1 − d21F = 0

and

d2−1 = (Fd1 − d1F)2 = Fd1Fd1 − Fd21F − d1F
2d1 + d1Fd1F

=
1

2
(F2d1 + d1F

2)d1 − d1F
2d1 +

1

2
d1(F

2d1 + d1F
2) = 0.
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Proposition 3.31. Assume that a knot K is d1-standard. ThenH(K) is filtered by the symmetric blocks of the following form:

1 1 · · · 1

1 2 2 · · · 2 1

1 1 · · · 1

E

d−1

d1

E

d−1

d1

E

d−1

d1

d−1

d1

d1

d−1

d1

d−1

d1

d−1

d1

d−1

E E E

or zigzags of the following form:

1 · · · 1

1 · · · 1

d1

E

d1

d−1

E

d−1

or

1 · · · 1

1 · · · 1

d1

d−1

d1

d−1

E E

Furthermore, there is exactly one zigzag of either type.

Proof. Wehave an action of sl(2)�〈d−1, d1〉 onH(K)where d−1 and d1 square to zero and anticommute by (13). All these operators
preserve �-grading, so we can focus on one �-grading.

Let U be an sl(2)-irreducible summand of H(K) in the top a-degree. Define Û = U ⊗ 〈1, d−1, d1, d−1d1〉. We have a natural
sl(2) � 〈d−1, d1〉-invariant map ϕ : Û → H(K), let us describe its possible kernel and image.

Let L(n) denote the irreducible representation of sl(2) of highest weight n. If U � L(n), then

U ⊗ 〈d−1, d1〉 � L(n) ⊗ L(1) � L(n + 1) ⊕ L(n − 1)

as sl(2) representations, and Û decomposes into irreducible sl(2) representations as follows: L(n) in top a-degree, L(n+1)⊕L(n−1)
in the middle a-degree, and L(n) in the bottom a-degree. This is precisely the block in the above picture, so if Ker(ϕ) = 0 we will see
this block inH(K).

Otherwise we have the following options:
(1) Ker(ϕ) contains L(n+ 1) in the middle a-degree and L(n) in the bottom a-degree. Then Im(ϕ) is isomorphic to a zigzag of the

first type.
(2) Ker(ϕ) contains L(n− 1) in the middle a-degree and L(n) in the bottom a-degree. Then Im(ϕ) is isomorphic to a zigzag of the

second type.
(3) Ker(ϕ) contains both L(n + 1) and L(n − 1) in the middle a-degree, and L(n) in the bottom a-degree. Then Im(ϕ) � U.
(4) Ker(ϕ) contains only L(n) in the bottom a-degree. In this case Im(ϕ) contains L(n) on the top a-degree and L(n+1)⊕L(n−1)

in the middle a-degree.
Now we use the fact that the homology of d1 is one-dimensional. The full block Û is acyclic, while the zigzags in cases (1) and (2)

contribute one-dimensional homology. In cases (3) and (4) we get (n + 1)-dimensional homology, which is possible only if n = 0
and we get special cases of zigzags again.

4. Examples

4.1. Example: 10125

One interesting example is given by the knot 10125. Its homology is shown in Figure 6.
Clearly, we have two blocks as in Proposition 3.31 in different �-gradings.

u Eu E2u

y (Ey, z) (E2y,Ez) E3y

w Ew E2w

m

d2

d−1 d1

d1

� = −2 � = 0
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Figure 6. Triply graded homology of the knot 10125 where the S-invariant equals 0, while the Rasmussen invariant equals s = −2. Furthermore, sx3−x = S = 0 while

sxN−1 = − 1
N−1 .

In �-grading (−2) the homology splits into irreducible sl(2) representations as follows: for a = 2 we have an irreducible 3-
dimensional representation generated by u; for a = 0 we have a direct sum of a 4-dimensional representation generated by y and a
2-dimensional representation generated by z; for a = −2 we have an irreducible 3-dimensional representation generated by w.

We can pin down the generators by requiring that d−1(u) = y and d1(y) = w. Then F(u) = 0, so

F(d1(u)) = [F, d1](u) = d−1(u) = y, d21(u) = 0.

On the other hand, F(Ey) = [F,E]y = −Hy = 3y, F(z) = 0, and d1(Ey) = Ed1(y) = Ew. Therefore one can uniquely scale z such
that

d1(u) =
1

3
Ey + z, d1(z) = −

1

3
Ew.

Next, we determine the differential d2. One can check that the total rank of reduced Khovanov homologyHsl(2)(10125) is smaller
than the rank ofH(10125), so d2 must be nonzero and (by degree reasons) the only possibility is d2(u) = m. By Proposition 2.13 we
have

dN = 0, Hsl(N)(10125) � H(10125) for N ≥ 3.

To compute various s-invariants, we use Theorem 3.14. Clearly, the homology of d1 is generated by m and S = 0. To compute
s2 = sx2−x, we use the potential ∂W = x2 − x and the differential dx2−x = d2 −d1. The corresponding spectral sequence has the first
differential d2 (which kills u and m) and the second differential −d1 with homology spanned by 1

6Ey + z supported in qsl(2) = −2.

Therefore, s = j2 = −2 and s2(10125) =
j2
2 = −1.

For N = 3, we have two different deformations of sl(3) homology. For ∂W = x3 − x, we get the spectral sequence with the first
differential d3 = 0, and the next differential d1 with homology spanned by m, so sx3−x(10125) = 0 as in Theorem 1.2. On the other
hand, for ∂W = (x+1)3−1 = x3+3x2+3xwe get the first differential d3 = 0 while the second differential 3(d2+d1) has homology

〈
m,

1

3
Ey + z

〉
/

(
m +

1

3
Ey + z = 0

)

Note that qsl(3)(m) = 0 while qsl(3)
(
1
3Ey + z

)
= −2. The homology generator [m] has a representative with qsl(2) ≤ −2, so

H∂W = F−2H∂W in the notations of Remark 3.15. Therefore jx3−1 = j(x+1)3−1 = −2 and sx3−1(10125) = −2
4 = − 1

2 .

A similar computation shows sxN−x(10125) = 0 while sxN−1(10125) = − 1
N−1 in agreement with [19, Section 1.2].

4.2. A larger example

Let us analyze the behavior of sl(N) differentials for the knot 11n135 shown in Figure 7. We break the computation in several steps:
Step 1: N = 1. By Lemma 2.16 the knot is d1-standard, so the homology of d1 is one-dimensional in � = 4 and hence are

supported at bidegree (q, a) = (−4, 4) marked by the left red circle in Figure 7 and by n in Figure 8. In particular, S(K) = −4. The
differential d1 is acyclic everywhere else, and it is easy to reconstruct it.

Step 2: Reconstruct the action of sl(2): see Figure 8.
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Figure 7. Here we have both the triply graded homology and sl(2) homology of the knot K = 11n135. The S-invariant equals−4 while the Rasmussen s-invariant equals 4.

Figure 8. Differentials in the sl(2) spectral sequence for 11n135. The generators in�-grading 2 are above the line, and the generators in�-grading 4 are below the line.
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In particular, we see that d1(b) = Ex and d1(x) = z and, up to a choice of scalars, we get

d1(m) = β , d1(k) = Em + α, d1(α) = −Eβ .

Step 3: N = 2. Let us reconstruct the action of d2. Recall that qsl(2) = q + 2a, these degrees are marked in red in Figure 8, and

d2 preserves qsl(2) while decreasing a-degree by 2 and increasing �-grading by 2. Potentially, there are also higher differentials d
(i)
2

which preserve qsl(2) while decreasing a-degree by 2i and increasing �-grading by 2.
In degree qsl(2) = 16 we have three generators inH(K) and only one generator inHsl(2)(K). Therefore there should be exactly one

cancelation and by looking at a-degrees we conclude that there is no room for higher differentials and d2(b) = E2k (up to a nonzero
coefficient which we ignore).

Now [d1, d2] = 0, so

d2(Ex) = d2(d1(b)) = d1(d2(b)) = d1(E
2k) = E3m,

This is the only cancelation in degree 14, and this computation excludes another potential cancelation or higher differential. There
are no cancelations in degree 12. Since [d2,E] = 0, we get

E(d2(x)) = d2(Fx) = E3m,

so d2(x) �= 0, this is the only cancelation in degree 10.
Finally, let us understand the cancelations in degree 8. If d2(c) �= 0 then d2(Ec) = E(d2(c)) �= 0, and there is a cancelation in

degree 12. Contradiction, hence d2(c) = 0. We have two cases:

{
d2(z) = E2β , d

(2)
2 = 0

d2(z) = 0, d
(2)
2 = E2β .

In the first case (shown in Figure 8) we have we have d1(d2(x)) �= 0 while in the second case (shown by the dashed arrow) we have
d1(d2(x)) = 0, so d2(x) is proportional to d1(k).

Step 4: N ≥ 3. By Proposition 2.13 all differentials d
(i)
N vanish for N ≥ 3, and Hsl(N)(K) = H(K) up to regrading.

Step 5: In either case above, the generator n survives in sl(2) spectral sequence, so s2 = 1
2 (−4 + 2 · 4) = 2. Similarly, s∂W =

1
2(N−1) (−4+N ·4) = 2 for allN and arbitrary potential ∂W of degreeN. The Rasmussen s-invariant equals s = 2s2 = 4, in agreement

with [15].

4.3. Example: T(4, 5)

In this subsection we consider the 15-crossing torus knot T(4, 5) which is not covered by the data in [23]. On the other hand,
Hogancamp in [10] proved a conjecture of the second author [5] relating the triply graded homology of torus knots T(n, n + 1)
to so-called q, t-Catalan numbers. In particular,H(T(4, 5)) agrees with its conjectural description in [5, Section 3.4] and is presented
in Figure 9. The total dimension ofH(T(4, 5)) equals 45.

We can give a more precise description of the differentials on H(T(4, 5)) using the above results. First, T(4, 5) is parity and by

Corollary 2.7 d
(i)
N vanish for i even. It is easy to check that by degree reasons d

(i)
N = 0 for i ≥ 3, hence the Rasmussen spectral

sequences from Proposition 2.4 collapse after the first differential dN for all N.
In particular,T(4, 5) is d1-standard andH(T(4, 5)) decomposes into blocks as in Proposition 3.31, as Figure 9 clearly demonstrates.

In fact, there is only one block in each �-grading in this case. The action of sl(2) is clear from the blocks. The homology of d1 is
one-dimensional, it is marked by the red circle.

The reduced sl(2) homology has rank 9 and is shown in yellow in Figure 9 (a half-colored box corresponds to one-dimensional
Hsl(2) and two-dimensionalH in a given degree).

The reduced sl(3) homology has rank 23 and is shown in white and yellow, in agreement with [17]. The differential d3 increases
� by 4, and cancels the blue regions for � = 6, 10 as well as the green regions for � = 8, 12.

Finally, we can study the operators da|b from Lemma 3.28. Let X denote the generator at the very top of Figure 9, with (q, a,�) =

(0, 18, 6). Since F(X) = 0, we observe that:

• There is a length 2 sl(2) chain containing d1(X) and Fd1(X) = d0|1(X) = d−1(X).
• There is a length 3 sl(2) chain containing d2(X), Fd2(X) = d1|1(X) and 1

2F
2d2(X) = d0|2(X).

• There is a length 4 sl(2) chain containing d3(X), Fd3(X) = d2|1(X), 12F
2d3(X) = d1|2(X) and 1

6F
3d3(X) = d0|3(X).

In particular, all of the operators da|b for a, b ≤ 3 are nontrivial onH(T(4, 5)).
We expect that for a more general torus knot T(n,m) the operators da|b are nontrivial for a, b ≤ min(n,m) − 1 and plan to

investigate them in more detail in a future work.
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Figure 9. The reduced sl(2) homology (yellow) and the reduced sl(3) homology (yellow and white) of T(4, 5). These have total ranks 9 and 23, respectively. The differential
d3 cancels blue and green regions in pairs.
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Appendix: Potentially d1-nonstandard knots

The figures below illustrate the exceptional cases in the proof of Proposition 2.17. The knots 10136, 11n12, 11n20, and 11n79 have

no room for the differential d
(2)
1 because there are no nonzero homology groups in the necessary gradings (see Figures 10–13). For

the remaining exceptional cases, we indicate the location of the potential higher differential d
(2)
1 in the sl(1) spectral sequence and

conclude that it vanishes, otherwise the dimension of the E∞ page is at least 2 (Figures 14–26).

Figure 10. 10136 : For there to be a nonzero d
(2)
1 there would have to be nonzero homology group in (q, a,�) = (4,−4,−2).

Figure 11. 11n12 : For there to be a nonzero d
(2)
1 there would have to be nonzero homology group in (q, a,�) = (4, 0, 0), (2,−2, 0) or (6,−2, 0).



22 A. CHANDLER AND E. GORSKY

Figure 12. 11n20 : For there to be a nonzero d
(2)
1 there would have to be nonzero homology group in (q, a,�) = (4,−4,−2).

Figure 13. 11n79 : For there to be a nonzero d
(2)
1 there would have to be nonzero homology group in (q, a,�) = (−4, 4, 2).

Figure 14. 10128 : There is a potential differential d
(2)
1 from (q, a) = (−4, 10) to (0, 6)which must vanish. The S-invariant equals−6.
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Figure 15. 11n9 : There is a potential differential d
(2)
1 from (q, a) = (−4, 8) to (0, 4)which must vanish. The S-invariant equals−6.

Figure 16. 11n16 : There is a potential differential d
(2)
1 from (q, a) = (−4, 8) to (0, 4)which must vanish. The S-invariant equals−4.

Figure 17. 11n39 : There is a potential differential d
(2)
1 from (q, a) = (−4, 2) to (0,−2)which must vanish. The S-invariant equals 0.
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Figure 18. 11n45 : There is a potential differential d
(2)
1 from (q, a) = (−4, 2) to (0,−2)which must vanish. The S-invariant equals 0.

Figure 19. 11n57 : There is a potential differential d
(2)
1 from (q, a) = (−4, 8) to (0, 4)which must vanish. The S-invariant equals−6.

Figure 20. 11n61 : There is a potential differential d
(2)
1 from (q, a) = (−4, 6) to (0, 2)which must vanish. The S-invariant equals−4.
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Figure 21. 11n64 : There is a potential differential d
(2)
1 from (q, a) = (−4, 6) to (0, 2)which must vanish. The S-invariant equals−4.

Figure 22. 11n104: There is a potential differential d
(2)
1 from (q, a) = (−4, 8) to (0, 4)which must vanish. The S-invariant equals−6.

Figure 23. 11n126: There is a potential differential d
(2)
1 from (q, a) = (−4, 10) to (0, 6)which must vanish. The S-invariant equals−6.
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Figure 24. 11n133: There is a potential differential d
(2)
1 from (q, a) = (−4, 6) to (0, 2)which must vanish. The S-invariant equals−4.

Figure 25. 11n145: There is a potential differential d
(2)
1 from (q, a) = (−4, 2) to (0,−2)which must vanish. The S-invariant equals 0.

Figure 26. 11n155: There is a potential differential d
(2)
1 from (q, a) = (−4, 4) to (0, 0)which must vanish. The S-invariant equals−2.
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