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ABSTRACT KEYWORDS
We study the structure of triply graded Khovanov-Rozansky homology using both the data recently computed HOMFLY homology; spectral
by Nakagane and Sano for knots up to 11 crossings, and the s[(2) action defined by the second author, sequence; S-invariant

Hogancamp and Mellit. In particular, we compute the HOMFLY-PT S-invariant for all knots in the dataset, and
compare it to the s[(N) concordance invariants.

1. Introduction

In this note, we study the structure of triply graded Khovanov-Rozansky homology [12, 14] which categorifies HOMFLY-PT
polynomial, and its interactions with s[(N) Khovanov-Rozansky homology [13]. Although this link homology theory was defined
over 15 years ago, its definition is rather involved, and the progress in computing and understanding this homology has been
rather slow.

Recently, triply graded homology was computed for all torus knots in [4, 10, 11, 22]. In a different direction, Nakagane and Sano
[23] wrote a program which computed triply graded homology for all knots with at most 10 crossings and most 11-crossing knots.
These developments indicate that the triply graded homology can be used as a rich source of numerical data about knot invariants
which is readily available in many examples. We will argue that for the Nakagane-Sano dataset lots of theoretical tools (such as spectral
sequences) simplify dramatically, and can be computed from triply graded homology.

The first, and the most basic problem in approaching this data is its visualization. We will exclusively work with reduced
homology H(K) for knots which is known to be finite-dimensional. By a result of Rasmussen [25] the reduced and unreduced
triply graded homology determine each other. Given a collection of vector spaces indexed by three gradings, one gets a complicated
three-dimensional array of their dimensions. We solve this problem by introducing A-grading (similar to §-grading in Khovanov
homology), which is a linear combination of the three gradings, and presenting the homology in each A-grading separately. This
breaks the three-dimensional array into two-dimensional slices, see Figure 1. In this and other figures throughout the paper we show a-
and g-grading (which correspond to the variables in the HOMFLY-PT polynomial), respectively, vertically and horizontally, and mark
A-grading for each slice—this determines the ¢-grading. The numbers indicate the ranks of the corresponding homology groups.!

Following Rasmussen [24], we call a knot thin, if #(K) is supported in a single A-grading. By the results of [24] all two-bridge
knots are thin and H(K) is determined by the HOMFLY-PT polynomial and the signature. It turns out that all knots in the dataset
[23] are almost thin, that is, supported in at most two A-gradings. More precisely, the distribution of A-gradings is shown in Table 1.

In this note, we argue that even if K is not thin, in many cases (and for most knots in the dataset) it is possible to recover a lot of
useful information about sI(N) homology and various related invariants by simply looking at H (K).

Our first main result describes S-invariants which can be defined using a triply graded analogue of the Lee spectral sequence in
Khovanov homology.

Theorem 1.1. For all knots in the dataset, the S-invariant is determined by H(K).

For example, for the knot 11ngg in Figure 1 the S-invariant equals 2, and corresponds to the (right) red circle in A-grading (—2)
and (¢, a) = (2, -2).

We prove Theorem 1.1 in Section 2 as Corollary 2.19, the main observation is that using all three gradings allows us to conclude
that there is only one nontrivial differential in the spectral sequence, and we can pin down the location of its homology. This contrasts
the situation in Khovanov homology where computing s-invariant is highly nontrivial.

Our next results concerns the relation between #H (K) and (reduced) s[(N) Khovanov-Rozansky homology Hs ) (K) for arbitrary
knots. By [25] there is a spectral sequence from H(K) to Hsin)(K). Furthermore, it follows from [19, 25] that for every monic

"Note that this is very different from [3] and some other sources where the numbers indicate the t-grading.
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Figure 1. Triply graded homology of the knot K = 11ngg. The g and a gradings are plotted, and t is determined by eitherg+ a+t = —4orqg+ a+t = —2.The red circles
indicate the homology of the differentials dy and d_1, in particular, the HOMFLY-PT S-invariant equals 2.

Table 1. The only alternating knot in the dataset with |A| = 2is 11a43, see Figure 3.

Al =1 Al =2
Two-bridge 173 0
Alternating, not two-bridge 293 1
Not alternating 137 91
Total 603 92

Table 2. The two knots whose S-invariant value differs from the s-invariant are 10125 with $(10125) + s(10125) = —2 and 11ng, with S(11ng3) + s(11ng) = 2.

dim H(K) —dimHgl(z)(K) 0 2 6 8 10 14 16 22 24 26 32 34
Number of Knots 14 2 4 27 4 1 19 7 10 1 2 1
S(K) + s(K) -2 0 2

Number of Knots 1 9 1

polynomial d W of degree N there exists a spectral sequence with E, page isomorphic to Hs ) (K) and one-dimensional E«, page.
In [19] Lewark and Lobb used this construction to define a family of link invariants sy which, in principle, depend on the choice
of polynomial (see Section 4.1). For N = 2 there is only one such invariant s, = s,2_, and with our conventions the Rasmussen
s-invariant equals s = 2s,.

Theorem 1.2. For N > 3 the s{(N) homology of all knots in the dataset is isomorphic to H(K) up to regrading. For dW = x~ — x, the
corresponding invariant s,n _ . (K) is determined by the S-invariant, which is known by Theorem 1.1.

For N = 2 or for more complicated knots, the behavior of Rasmussen spectral sequence could be more subtle, see Section 4.2.
Nevertheless, for all but two knots in the dataset the Rasmussen s-invariant in Khovanov homology agrees with the HOMFLY-PT
S-invariant up to a sign. For knots K which are supported in a single A-grading, we know that S(K) = —s(K) and that dim(#(K)) =
dim(Hs(2) (K)). In Table 2 we show the distributions of values of S(K) 4 s(K) and dim(# (K)) — dim(Hj(2)(K)) among the 92 knots
in the dataset which are not supported in a single A-grading.

The following result is more abstract, and uses the action of the Lie algebra s[(2) in triply graded homology constructed in [8]. We
denote its generators by (E, H, F) with the convention that E increases the g-grading by 4 and F decreases it by 4. The action of s1(2)
preserves the A-grading and the a-grading, so it acts horizontally in each A-grading in all figures. One immediate consequence of
the existence of such action, proved in [8], is symmetry of H(K) and unimodality in each remainder of g-grading modulo 4. This is
clearly visible in Figure 1.

In this note, we record another consequence of the s[(2) action. Let dy be the first differential in the spectral sequence from H(K)
to sI(N) homology.

Theorem 1.3. (a) There exists a family of operators dy), on H(K) satisfying the following equations:
dnjo = dns [E dapl = b - dag1jp—15 [Fsdapl = a - da_1jp41, [H, dap] = (@ — b) - dgp.

The symmetry of H(K) exchanges dg)p with dp),.



EXPERIMENTAL MATHEMATICS ’ 3

(b) For N = 1 the operators d; = dyjo and d_y = dy1 satisfy additional relations
&, =d_idy +did_, =0.

We illustrate the action of d,;, in the homology of the 15-crossing torus knot T'(4, 5) in Section 4.3.
Corollary 1.4. The differentials dy commute with the action of E.

In fact, we first prove Corollary 1.4 as Theorem 3.27, and then deduce Theorem 1.3 from it in Lemma 3.28.

By Theorem 1.3(b), the differentials d; and d_; anticommute and span a two-dimensional representation of 5((2). By Theorem 1.1
the action of d; (and hence of d_) is completely determined by # (K) for all knots in the dataset. In Proposition 3.31 we use these
ideas to decompose H(K) in symmetric blocks and explain some patterns in triply graded homology.

For all knots in the dataset, the homology of d; is one-dimensional (by Proposition 2.17) and supported in A-grading (—S) and
bidegree (g,a) = (S, —S). Similarly, the homology of d_; is one-dimensional and supported in the same A-grading and (g,a) =
(=S, —=S). We illustrate both of these homologies by red circles in all figures and write the value of the S-invariant for the reader’s
convenience.

2. Link homology data

In this section we discuss in detail the link homology data provided by [23], and its interaction with s[(N) Khovanov-Rozansky
homology and the associated spectral sequences defined by Rasmussen in [25].

We postpone the formal definitions of HOMFLY-PT homology and Rasmussen spectral sequences to Section 3, where we prove
some new general properties of differentials in these spectral sequences. In this section, we mostly use these as a black box, recording
only the grading shifts and show that even this limited information in many cases yields very precise answers.

2.1. GradingsonH

In this section we collect and compare several grading conventions from various sources. We use the same skein relation for the
(normalized) HOMFLY-PT polynomial P(L) for links L as Nakagane and Sano [23]:

a'PCR) —aPl) =@ ' -9P) O PO =1

This differs from the HOMFLY-PT polynomial Ppgr used in [3] by Ppgr(q, @) = P(g,a~ '), s0 P(L) = Ppgr(L) where L denotes
the mirror of the link L.

Unless stated otherwise, we will always work in reduced triply graded homology with rational coefficients. By the universal
coeflicient theorem, this is equivalent to working with any other characteristic zero field (such as C) and we will not make this
distinction unless stated otherwise. The triply graded homology # has gradings (g, a, t). Our grading choice follows Nakagane and
Sano [23] which is a bit unusual compared with other sources.

The Poincaré polynomial for (L) is defined as 2 (L)(q,a,t) = ), ik qiajt? dim H**(L) and we have P(L)(g,a) =
9 (L)(q,a,—1) for all links L [23, Section 1].

Remark 2.1. One slightly confusing note: we often go back and forth between thinking about the Poincaré polynomial and the homology,
which are two different ways of presenting the same data. When referring to homology, the letters q, a, t refer to the values of the gradings
(e.g.ifg = 1,a = 2,t = 3 we are talking about H*3(L)) but when talking about Poincaré polynomials, these same values become the
powers on the formal variables q, a, t (e.g. if g = 1,a = 2,t = 3 we are talking about the term qa*t®).

Another choice of gradings is discussed in the paper of Dunfield, Gukov and Rasmussen [3]. The g and a gradings are the same,
but the third grading is tpgr = %(a — t). For knots, the gradings ¢, a, t are all even and therefore tpgr is an integer.

For signatures, we use the same convention as in [3] that a negative knot has positive signature, so in particular, if K is the negative
trefoil, o (K) = 2.

Finally, for any N > 0 we will use s[(N)-modified g-grading gs(vy = g + Na. As we will see below in Proposition 2.4, this agrees
with the g-grading on s[(N) Khovanov-Rozansky homology up to a certain spectral sequence.

2.2. Delta grading and thin knots
The delta grading A = q + a + t will be extremely useful for our work. It is different from the §-grading used in [3] by a factor of
(=2):

) = =t 1
=——== - ——a
DGR > DGR — 5
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Figure 2. Triply graded homology of the knot K = 11ags. Since K is two-bridge, it follows that K is thin. The g and a gradings are plotted, and t is determined by g+a+t = 2.
The S-invariant equals —2.
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Figure 3. Triply graded homology of the knot K = 11a5¢3. This is the only alternating knot in the dataset which is not thin. The S-invariant equals —8.

A reader might be more familiar with the §-grading in s[(2) homology defined by

12
ds12) = % — IDGR = g +a — tpgr.

This agrees with the grading %, up to a spectral sequence from Proposition 2.4.
We call a knot K thin (or KR-thin as in [24]) if H(K) is supported in a single A-grading. We will denote by # A (K) the subspace
of H(K) in delta grading A. We recall an important result of Rasmussen:

Theorem 2.2. [24] Any two-bridge knot is thin and supported in the A-grading equal to negative its signature.

Figure 2 shows an example of HOMFLY-PT homology for a two-bridge link. We define the A-thickness |A|(K) as the number of
consecutive A-gradings supporting H(K), that is,

|A|(K) = %(maX{A :Ha # 0} — min{A : Ha #0}) + 1.

For thin knots we have |A| = 1. Recall all two-bridge knots are alternating. Figure 2 shows an example of HOMFLY-PT homology
for a two-bridge knot 11ags supported in a single delta grading A = 2.

We show the distribution of A-gradings for knots in the dataset in Table 1. The only alternating knot supported in two A-gradings
in the dataset is 11a,¢3, see Figure 3.

Remark 2.3. It is easy to see that there exist knots with arbitrarily large A-thickness. For example, it follows from [22] that the triply
graded homology for (p,p + 1) torus knot contains classes with both (q,a,tpgr) = (—p(p — 1),p(p — 1),0) and (g,a,tpGgr) =
O, p(p+1) — 2,p> — 1) with A = p(p — 1) and A = 2p — 2, respectively, so |A|(T(p,p + 1)) > w + 1. One could also use
connect sums of knots to get arbitrary large |A|.
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We call a knot K parity if £/2 has the same parity on #(K). Equivalently, tpGr — § has the same parity and a + g — A has the
same remainder modulo 4. The main result of [22] implies that all torus knots are parity.

2.3. Differentials and s/(N) homology

We will use differentials dy on HOMFLY-PT homology and the associated spectral sequences, see the details below in Section 3, in
particular Theorem 3.11. We will denote the reduced sI(N) homology by Hsn) (K).

Proposition 2.4. [25] There exists a spectral sequence with E; page isomorphic to H(K) and i-th differential dl(\? changing the degrees

by (g,a,t) — (q + 2Ni,a — 2i,t + 2 — 2i). The Ex, page is isomorphic to Hs(n)(K) with modified q-grading qsyny = q + Na.
Remark 2.5. The t-grading on s\(N) homology which we use here agrees with tpGr.

We will denote the first differential in this spectral sequence by dy = dz(\}) . In our conventions it changes degrees by (¢,4,t) —
(g + 2N, a — 2,t). The differentials dy, dy’ anticommute for different N, N’.

Corollary 2.6. The differential dz(\? increases the A-grading by 2Ni — 4i + 2 and decreases tpgr by 1.

Corollary 2.7. IfK is parity then the differentials dz(\? vanish for even i.

As a special case of Proposition 2.4, we can consider N = 1. The s(1) homology of any knot is one-dimensional and supported
in bidegree (gs11), tpgr) = (0,0). Since gs((1) = g + a, we get the following:

Corollary 2.8. (a) There is a spectral sequence starting at H(K) and converging to Eo, =~ Hgi1y(K) = Q. The surviving homology
group is supported in tridegree (g, a,t) = (S, —S, —S) and A-grading equal to —S.
(b) The differentials dg’) change the degrees by (q, a,t) — (q + 2i,a — 2i,t + 2 — 2i) and increase the A-grading by 2 — 2i.

The S-invariant of K [3] is defined as the g-grading of surviving generator of Hg(1)(K). One can define the analogues of S-invariant
for s[(N) homology using the following theorem.

Theorem 2.9. [19-21, 28] Let 9W be a degree N monic polynomial with simple root at 0. Then there is a spectral sequence starting at
Hg ) (K) and converging to the one-dimensional homology Hyw, which depends on oW .

See Theorem 3.14 for more details and Section 4.1 for some examples for various 0 W.

Definition 2.10. Let jyw be the qsi(n)-degree of the surviving generator in the spectral sequence from Theorem 2.9. Define
Jaw

W= AN —1)

In particular, for N = 2 the invariant sy does not depend on the choice of dW (see Remark 3.16) and we recover the celebrated
s-invariant [26] by s = 2s,. The importance of the invariants say is shown by the following result:

Theorem 2.11. [19-21, 28] The slice genus g, (K) satisfies the inequality
8(K) = [syw (K)|

As a consequence, an efficient way of computing syw for various N and various polynomials d W would give a collection of slice
genus bounds for the knot K.

Remark 2.12. In [19] Lewark and Lobb proposed more subtle slice genus bounds from unreduced s((N) homology and its deformations.
It is unlikely if these can be computed by methods of this paper since unreduced HOMFLY-PT homology is infinite-dimensional and
supported in infinitely many A-gradings.

Proposition 2.13. Assume that H(K) has A-thickness |A|. Then
1
Hgiowy (K) = H(K), sev_(K) = —55(K)
forallN > |A|.
Proof. Since |A] > 1 we get N > 2. By Corollary 2.6 the differential dz(\? changes the A-grading by 2Ni — 4i 4+ 2 = 2(N — 2)i 4 2.

For N > |Alandi > 1 we have 2(N — 2)i +2 > 2(N — 2) + 2 = 2(N — 1) > 2|A|, but the difference between the A-gradings of
any two classes is at most 2| A| — 2. So all differentials dI(\’]) must vanish and the spectral sequence collapses.
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Figure4. Here we have both the triply graded homology and 51(3) homology of the knot K = 911.The S-invariant equals 4 while the 5[(3) invariants are equal toj,3 _, = —8,

I3 _x
S3x = T F = 2

To compare the S-invariants, observe that the spectral sequence for 9W = xV — x is induced by the differential d; on Hg),
see Corollary 3.17 (since dy and d; anticommute, the action of d; is well defined on Hgy(n)). Therefore, the spectral sequences of
Corollary 2.8 and Theorem 2.9 agree. The surviving generator for the former is supported in degrees (g,a,t) = (S, —S, —S) and
therefore has g4((v) degreejnv_, =S+ N(=S) = —(N — 1)S. Now

j 1
S = —]XN_X = ——S.

HxTON—D T 2 0
Corollary 2.14. Let K be a knot.

a) If|A| = 1 then Hgy(n)(K) = H(K) for all N > 2.
b) If|A| = 2 then Hg((n)(K) =~ H(K) for all N > 3.

In particular, for all knots in the dataset [23] we have Hg(3)(K) ~ H(K).

Example 2.15. The HOMFLY-PT and s((3) homology of the knot 911 are shown in Figure 4. Since |A| = 1, the spectral sequence to
s[(N) homology collapses for all N > 2, and H(K) =~ Hgn)(K) as vector spaces. However, the regrading changes the picture of the
HOMFLY-PT homology (Figure 4, left) to the s[(3) homology (Figure 4, right) significantly.

Next, we address the case N = 1. We call a knot d;-standard if all higher differentials dgi) in the s[(1) spectral sequence vanish
fori > 2.

Lemma 2.16 (b)). Let K be a knot.

a) Assume that H(K) is supported in a single A-grading. Then K is d;-standard.
b) Assume that H(K) is supported in two neighboring A-gradings (A, A + 2). Furthermore, assume that

max{a : H***? £ 0} — 4 < min{a : H** # 0}.
Then K is dy-standard.

Proof. The differential dii) changes the A-grading by 2 — 2i, so (a) is clear and in (b) the only possible higher differential is d?)_ It
shoots from (a, A + 2) to (a — 4, A), and by our assumptions there is no room for it. O

Proposition 2.17. All knots in the dataset [23] are d)-standard.

Proof. We checked using computer that all knots in [23] satisfy the assumptions of Lemma 2.16(b) with the following 17 exceptions:

10128, 10136, 117104, 11112, 111126, 111133, 110145, 110155, 11n16, 11ny,

11n3g, 11nys, 1lnsy, 11ngy, 1lngy, 11ny9, 11ng.
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Figure 5. Triply graded homology of the knot K = 9. This is an example of a knot whose S invariant, 0, is not equal to the negative of its signature, 2.

Recall that d§2) changes the degrees by (a,4,A) — (a — 4,9 + 4, A — 2), so by looking at g- and a-degrees we can exclude
10136, 11112, 11159, 11179 (see Section 4.3 for details).

We show the triply graded homology for all remaining exceptions in Section 4.3. By direct inspection, we see that if a potential
differential diz) is nonzero then it has rank 1 and acts from the grading (gx, ax, A + 2) to (qx + 4,ax — 4, A), where gk, ak are
determined by the knot and listed in the following table:

K 10128 111’19 11”16 11}’139 11}’[45 111’!57 111’[61 11}’164
K 111’[104 11”126 111’[133 111’!145 11n155

(CIK) aK) (_4)8) (_4)10) (_4’6) (_4)2) (_4’4)

Consider the direct sum of triply graded homology with gsi(1) = q + @ = qx + ax, it breaks into two pieces: A in delta grading
A and B in delta grading A + 2. The differential d; = dgl) preserves both A and B while diz) potentially acts from B to A.

In all exceptional cases but 11755, the dimensions of A and B are even (and, in fact, x (A) = x (B) = 0), so the dimensions of both
H(A,d;) and H(B, d;) are even as well. If dﬁ” has rank 1 then it must have odd-dimensional kernel and cokernel, and the dimension
of the E, page with gs11) = gk + ak is at least 2. Contradiction.

Finally, for 11n,55 the ranks of graded components of A and B have the following form:

B(A =2)

The differential d; acts in southeast direction for both A and B, and the potential higher differential d 52) is shown by the dashed arrow.
If diz) # 0 then it is easy to see that the rank of homology at the E, page is at least 3, contradiction. O

Lemma 2.18. Assume that K is di-standard. Then the HOMFLY-PT S-invariant and the ranks of d, in each trigrading are completely
determined by H(K).

Proof. By Corollary 2.8 the sl(1) spectral sequence converges to the E. page which is 1-dimensional and supported in
A-grading —S.

Since K is d; -standard and the differential d; preserves A-grading, for A # —S§itis acyclic and for A = —§ it has 1-dimensional
homology. By computing the Euler characteristic for each A-grading, we compute S. This determines the position of 1-dimensional
homology of d;, and d; is acyclic on the complement, so its ranks are completely determined by #(K). O
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Corollary 2.19. For all knots K in the dataset [23]:

a) the HOMFLY-PT S-invariant and the ranks of dy at every trigrading are completely determined by H(K).
b) the invariant sy _, is completely determined by H(K) for N > 3.

Proof. Part (a) is immediate from Proposition 2.17 and Lemma 2.18. Part (b) follows from Proposition 2.13. O

Example 2.20. As a warning to the reader, the HOMFLY-PT S-invariant is not necessarily equal to the signature if K is not thin. For
example, for the knot 94 (see Figure 5) the S-invariant equals 0 while the signature equals 2.

For N = 2 the situation is more complicated, see Table 2. Still, for all but two knots in the dataset the HOMFLY-PT and s[(2)
invariants agree up to sign. We show some examples of computations of d, in Section 4.

3. Differentials, symmetry and s((2) action

In [8] the first author, Hogancamp and Mellit defined an action of the Lie algebra s((2) on HOMLFY homology. We review its
definition in Section 3.5, and prove some of its new properties in Section 3.6. These allow us to understand better the structure
of HOMFLY-PT homology.

First, we review in detail the construction of HOMFLY-PT homology and its y-ification, and the construction of spectral sequences
to sI(N) homology both for HOMFLY-PT and y-ified homology.

3.1. Soergel bimodules and Rouquier complexes

Let R = C[xy,...,x,] be the polynomial ring in 7 variables. It is graded by deg(x;) = ¢*. To any n-strand braid we will associate a
complex of R-R bimodules, where the two actions of R correspond, respectively, to the marked points on the bottom and top of the
braid. Consider a bimodule

Clxts .o Xps X552

Bi:=R (X) R= R
ROED Xi+xiy1 = x +x+1,x1xl+1 = x1x1+1,x] = x] G#iLi+1)

The Rouquier complexes associated to single crossings are given by

. b*
Ty=(B; X R, T '=[qR-> B

1

where b; : B; — Rand b} : gR — B; are morphisms of R-R bimodules which send 1 + 1and 1 — x; — x;__,, respectively. Note that

/
i+1°
the bimodules B; are graded, and the differentials in TijE preserve the grading.

Theorem 3.1. [27] The complexes T;, T; ! satisfy braid relations up to homotopy:
Ti®T'~R Ti®Tu1 ®Ti~Tiy1 ®T;® Tit1, iTi~T,®T (li—jl=2).
The tensor product is considered over R.

As a consequence one can associate a complex (known as Rouquier complex) of R-R bimodules to an arbitrary braid § =

ol o by Tg = T ol Te’ The following construction of “dot-sliding homotopies” is well known, but we spell it out in detail it

i
for the readers convemence

Proposition 3.2. The left and right actions of R on T are homotopic up to the transposition s; = (i i + 1). More specifically, for all a
there is a map &, : TjE — TjE of homological degree (—1) and q-degree 2, such that

[d,€,] = x4 — xs(a)

Proof. For T; we define & = bf,&,1 = —bf and § = 0 forj # i,i + 1. For T,._1 we define & = b;, &1 = —b;and & = 0 for
j # i,i+ 1. All the properties follow from the identity b;b} = b}b; = x; — x7 ;. O
Corollary 3.3. For any braid B the left and right action of R on the complex Tg are homotopic, up to the permutation corresponding
to B.

Given an R — R bimodule M, we can consider its Hochschild homology HH(M), defined as follows: consider an arbitrary free
R ® R-resolution of M:

L.. —> A42 —> A4i — A40]::_A4
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identify the left and right R-action on each M; by writing

|:...—>M2®R—>M1®R—>MO®R®RR:|

R®R R®R

and then take homology of the resulting complex of R-modules.

Definition 3.4. Let 8 be an arbitrary braid. The triply graded homology H(PB) is defined applying Hochschild homology to the Rouquier
complex Tg, and computing the homology of the result:

H(p) = H,(HH(Tp))
where the functor HH(—) is applied to the bimodules in the complex Tg term-wise.

Remark 3.5. To be precise, this defines H(B) up to an overall grading shift. In this section we will not need precise formulas for this shift,
and refer to [23] for the precise shift in their grading conventions.

By [25, Section 2.8] the homology H(B) is a free module over C[x| +- - - +x,,] and we can define reduced triply graded homology
as the quotient

H(B) = H(B)/(x1 + -+ -+ x)H(B).

If B closes to a knot then H(B) is finite dimensional, and this is indeed the link homology considered above.
In what follows we will need a variant of this construction due to Rasmussen [25]. Given a braid 8 = Ufll cen (717, the associated

Rouquier complex Tg = Tfll e T; ! is a tensor product of £ R — R bimodules. As such, it carries an action of £ + 1 copies of R, which
motivates the following definition.

Definition 3.6. Let D = B be a knot diagram obtained by closing a braid B. We associate a variable xfi) to any edge in D, where

1 <i<n0 <j<{thereare (£ + 1)n variables in total. The reduced edge ring R, is obtained as the quotient of R[xlg) 1 by the
following three sets of linear relations:

(a) At each crossing a;" we have
x?}f‘_l) + xl(::f) = x;f) + xﬁf}rl, x;k_l) = x;k) G # ik iks1)-
(b) The variables at the top and bottom are identified:
0 = x©
(c) The sum of variables at the bottom vanishes: ), x?o) =0.

One can also consider the unreduced edge ring using equations (a) and (b), but not (c).

Example 3.7. Consider the braid 8 = 010, ‘010, ! which closes to the figure-eight knot:

NONENC xg?f_\

X1 Asz X3 T

The relations in the edge ring are

A0 4 0 = 2D D D

SNC RN INNCINC

(2) (3) 3 3

S N C BN C RN O O SN )

+x3 =X, ~|—x3 s

ng) 1 (1) 2 @2 (3 ,3) 4 (0) @, (0) 4 (0) 4)  (0) (0)

_ _ _ _ _ _ _ 0) _
=X3,X] 0 =X X3 = X3 LX) = X] L,X] =X L% =X X3 =X3,X +X% 0 X3 =0.
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Note that equations (a) and (c) imply that ), x?) = 0 for all j. We also define the local edge ring as

Clxts - o X X5 o 50

Xi 4 Xip1 = %+ X, 5 szx]’- G#ii+1)

Rloc,i =

It is clear that the relations (a) define a tensor product of Rj,;, over appropriate polynomial rings, while R, is obtained as a quotient
of this product by the additional relations (b) and (c).

Lemma 3.8. (a) The R-R bimodules R and B; have the following resolutions over Ry, ;:

Xi—X;
R >~ [ Rypei — Ripc,i | > (1)
(X} =x1) (X =%i+1)
B ~ [Rloc,i - loc,ii| (2)
(b) The morphisms b; : B — R and b} : R — B, lift to the following morphisms of resolutions:
X —X]
Ripci — > Rige,i (X —=x) (X, —=%it1)
; Rioci ——— Riog,i
~ XiJrl_xiT 1T .
b; ~ (=) (%= 11) bi — IT xi+1*x,{T (3)
Rloc,i E— Rloc,i xi—X,

Rloc,i _— Rloc,i

Proof. For (1), note that x; — x; = 0 is equivalent to x4 — x; 41 = 01in Ry,;. For (2), note that for any symmetric function ¢ in two
variables we have ¢(x;, Xi+1) |5, = ¢ (x}, X, 1 )|p;- In particular, (x] — x;) (%] — xi+1) = (x; — ;) (x; — X/, ;) = 0 in B;, so we can write

B — Clxts -« s X X5 oo 5 X0y _
11— . .. —_—
Xi + Xit1 —xé—x;_H =0, (x; — x)(x; — xiy1) =0, xj:x]’. G#ii+1)
Rloc,i

(x; — %) (x} — xi41) =0

and the result follows.
For part (b) note that the diagrams commute, so we get chain maps of resolutions which induce the desired maps on homology. [

Lemma 3.9. (a) The tensor product of resolutions (2) for By, . . ., B;, yields a resolution of B;; ® - - - B;, over the tensor product of R, -

(b) The reduced HOMFLY-PT homology H(B) can be computed as follows. First, tensor the cones of b; and b} given by (3). Second,
impose the relations (b), (c) from definition of R,, this gives a bicomplex of R.-modules. Take homology of the horizontal differential, then
homology of the vertical differential.

Proof. (a) It is well known that the bimodule B;, ® - - - B;, is free both as a left and right R-module (this follows from the fact that R
is free over R 7+ Therefore the derived tensor product of such bimodules is quasi-isomorphic to the usual tensor product.

(b) By (a), to compute the Hochschild homology HH(B;, ® - - - B;,) it is sufficient to replace each B; by its resolution (2), tensor
these resolutions and identify the variables on the top and bottom. The rest follows from the definition of #(8). O

3.2. Rasmussen spectral sequences

Following [25], we deform the above construction of A to define a spectral sequence to s[(IN) homology. Let us fix an integer N.
We will need a more general version which depends on a one-variable polynomial (called the potential) W (x). The s[(N) homology
corresponds to W(x) = AN+

For the crossing o we define

W= W) + Wixia) = W) = W) = Y (W) = W) € R,
j=1

Observe that W; vanishes both when x; = x] (and x;11 = xj,, by definition of Rj,;), and when x;3; = x] (and x; = xj,, by
definition of Ryo,;). Since Ry, is a free polynomial ring and (x; — x}), (xi4+1 — x}) are coprime in it, we conclude that W; is divisible
by (x; — x}) (xit1 — ;). We denote

Fxi—d T (= X)) (i — X))
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One can replace the resolutions (1) and (2) by the following:

xi—X] (=) (x;=%it1)
/\ /\
Rloc,i Rloc,i Rloc,i Rlac,i .
v v
w! wY

i

Note that these are not complexes but matrix factorizations. More precisely, if d; denotes the rightward differential (which agrees
with the differentials in (1) and (2), respectively), and dyw denotes the leftward differential then

(dy +dyw)* = W

The maps b; and b} from (3) are unchanged. One can then proceed with defining the complex as in Lemma 3.9, replacing the
horizontal differential with dy + djyw . Note that on the tensor product we have

n
(dy + dyw)? = Z (W (x}o)) -w (x;l)» =0inR,.
j=1
Following [19], we label the differential dj and the corresponding homology Hjw by the derivative dW = ‘fj—‘;v rather than by
W. This is explained by the following:

Example 3.10. For a given potential W, the matrix factorization for a trivial braid on one strand is given by

X—X

Clx, '] Clx, x']
1\_/

WE-W()

X—

Since % lx=x = O W, after closing the braid we get the complex:

0

A
Clx] Clx]

~_

ow
and the unreduced homology of unknot:
Hyw (unknot) = C[x]/ (0W).
Theorem 3.11. [25] (a) For any W, the homology Hyw := H(H(C(D),d+ +dyw), dy) is a link invariant. The differential dyw induces
a spectral sequence from H(B) to Hyw (B).

(b) For dW = xV, the homology Hyw agrees with (reduced) sI(N) Khovanov-Rozansky homology Hs i) (B). The differential dyw
and the corresponding spectral sequence agree with the differential dy and the spectral sequence from Proposition 2.4.

Remark 3.12. In what follows we will need some details of the proof of Theorem 3.11 concerning the order of differentials defining spectral
sequence which we recall now. First, we define
H*(C) = HC(D),dy), H*(C) =H(HT(C),dyw) = HH(C(D),dy),dyw).
By [25, Corollary 5.9] HE(C) is supported in a single horizontal grading. By [25, Lemma 5.12] this implies that the spectral sequence
H*(C) = HH(CD), d+), daw) = H(C(D), dy + daw) @)
collapses and induces a canonical isomorphism between these homology groups. Furthermore, the spectral sequence
H(H*(C),dy) = HHH" (©), dyw), dy) = HHT (C), dyw + dy) (5)

collapses as well [25, Proposition 5.10] since the differential daw changes the horizontal grading by (—1), the differential d,, preserves the
horizontal grading and therefore higher differentials must increase the horizontal grading which is impossible by the above.
To sum up, the collapse of spectral sequences (4) and (5) implies a chain of isomorphisms

Haw(B) ~ H(H(C(D),dy + dyw), dy) ~ HHT(C), d\) ~ HHT (C), daw + d,). (6)
On the other hand, by Lemma 3.9 we have a spectral sequence
H(B) = HHT(C),dy) = HHT(C),dyw + dy) ~ Hyw (B).
induced by dyw.
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As above, for W = xN we denote the differentials in the spectral sequence by d;\? and write dy = d;;). By [25, Corollary 5.6] the
differentials dpy, dy anticommute for different M, N.

Lemma 3.13. The dot-sliding homotopies &; from Proposition 3.2 commute with both differentials d and dyw above.

Proof. We can lift ; to the resolutions (3) as follows:

xi—x] (=) (X} —xi11)
Rloc,i Rloc,i Rloc,i Rloc,i
w; wy
Xip1—X; 1 1 Xit1 —x§ 1 Xit1—X; Xip1—X] 1
(o, —x7) (X, —%i11) Xj—X;
Rloc,i Rloc,i Rloc,i Rloc,i
Win w;

Here &; are denoted by downward arrows, and the vertical differential d, by upward arrows, as above. It is easy to see that
(&, dy] = [E daw] = 0,[dy, &1 = xip1 — X,

and the result follows. O

3.3. Generalizations of the s-invariant

In [19] Lewark and Lobb defined a family of link invariants sy, depending on a choice of a potential W and a complex number o
satisfying 0 W («) = 0 (so that « is a critical point of W). By [19, Proposition 3.3] the invariants for W (x) and W (x + ¢) are equal, so
throughout the paper we will assume o = 0. Furthermore, we can assume that 9 W is monic and W(0) = 0, and write

AN+1 Pl 2
N+1+aNﬁ+m+a2x7’ AW =N + a1+ -+ anx. (7)

W(x) =

The following is a variation of [19, Theorem 2.4], adapted to our setting of HOMFLY-PT homology.

Theorem 3.14. (a) Assume that a, # 0 (so that o = 0 is a simple root of 9W). Then the reduced homology Hyw (K) of any knot K is
one-dimensional.
(b) There is a spectral sequence from H(K) to Hyw (K) with the first differential

dyw = dn + andn—1 + - - - + axdy
(c) There is a spectral sequence from Hgi(n) (K) to Hyw (K) with the first differential
aNndn—1 + -+ + axd;

Proof. Part (b) is immediate from Theorem 3.11, since djyy is linear in W.

To prove parts (a) and (c), we define two different filtrations on the corresponding chain complex. Observe that the differential d,,
changes (g, a) bidegree to (q + 2m, a — 2), so it changes g4 k) by 2m — 2k = 2(m — k).

To prove (a), we use gs((1) to define a filtration. Indeed, the term a,d; preserves gs((1) and other terms dy + - - - + asd, strictly
increase gs(1). Since the homology of d; is one-dimensional, the spectral sequence of the filtered complex collapses, and Hyw (K) is
one-dimensional as well.

To prove (c), we use gs((n) to define a filtration. Indeed, the term dy preserves gsi(v) and other terms andn—1 + - - - +axd; strictly
decrease gs1(n), so we get a desired spectral sequence for the filtered complex. O

Following [19], we denote by jaw (K) the gsi(n)-degree of the surviving generator of the Ey, page in the spectral sequence in
Theorem 3.14(c) and write

Jow

W SN
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Remark 3.15. One can make the definition of jaw more explicit as follows. By the proof of Theorem 3.14(c), the underlying chain complex
C is filtered by qs((n), and one can consider subcomplexes

FiC={ue C:qsivy(w) <j}.
This filtration induces a filtration on the homology Hyw: FiHyw consists of homology classes which have representatives in J;C. The Exo
page of the spectral sequence is then given by
Ey = @]:jHaw/]:j—lHaw-
j
Since Hyw is one-dimensional, jaw can be simply defined by
jow = min{j : F;Hyw # 0}.

Remark 3.16. For N = 2 we have dW = x> 4 axx with ay # 0. By [19, Proposition 3.3] one can assume a; = —1, so that W = x> —x.
Therefore, for N = 2 all invariants syw agree and we write s,2_, = $».

Corollary 3.17. For W = xN — x there is a spectral sequence from Hey(ny to Hon_ . induced by the differential d.

Another interesting choice of potential corresponds to W = xN — 1 and & = 1. We can replace it by dW = (x + 1)¥ — 1 and
a=0.

Example 3.18. For N = 3 we get (x + 1)> — 1 = x” 4 3x” + 3x, so there is a spectral sequence from Hg(3) to H1)3_; induced by
the differential 3(d, + d,).

As shown in [19], the invariants s,v_, and s, 1)v_; could in fact differ, see Section 4.1 for an example.

3.4. y-ification

Following [7], we define the y-ification of triply graded homology. We introduce additional formal variables y; (associated to strands
of the braid) and tensor all chain groups by C[y;]. In terms of Rouquier complexes, we deform the differential as

D=d+) yi D> =) yi(xi — X))

After closing the braid and identifying y; on the same connected component of the link, we get a well defined complex since D* = 0
[7, Lemma 3.3]. The rest of Definition 3.4 goes through, and the definition of Hochschild homology is unchanged. We will denote the
y-ified complex with differential D by J(8) and its homology (also known as y-ified homology by HY(8). One of the main results
of [7] proves that HY () is a topological invariant of the closure of .

In the notations of Lemma 3.9, we deform the vertical differential by D, = d,+ ) y;&; and do not change the horizontal differential
d.. By replacing the horizontal differential by d + dw, we get a definition of y-ified homology HY 1. For dW = xV, this yields
y-ified sI(IN) homology (see also [1, 2]).

Theorem 3.19. The above construction yields a well-defined y-ified homology HY 3w where the horizontal differential d + dyw
commutes with the vertical differential D,.. There is a spectral sequence from HY (8) to HY 3w (8) similar to the one in Theorem 3.11.

Proof. We follow the logic of the proof of Theorem 3.11 outlined in Remark 3.12. By Lemma 3.13 the differential D, anticommutes
with both d and dyw. The definitions of H* and H* are unchanged, so H is supported in a single horizontal degree. The spectral
sequence (4) is unchanged (and collapses), while the spectral sequence (5) is replaced by

H(H*(C),D,) = HH(H" (C), dyw), Dy) = H(H(C), dyw + Dy)

The differential D,, preserves the horizontal degree, so by the same argument as in Remark 3.12 this spectral sequence collapses. This
implies a chain of isomorphisms

Hgiovy (B) = HH(C(D), dy + dyw), Dy) = H(H*(C),D,) ~ H(H" (C),dyw + D,). (8)
and a spectral sequence
HY(B) = HH*(C),Dy) = HH"(C),dyw + D) ~ HYyw (B).
induced by djw. O

Corollary 3.20. Suppose that @ : C(B) ® Cly;] — C(B) ® Clyil commutes with D,,d+ and dyw. Then O defines an operator on
HY (B) which commutes with the differentials in the spectral sequence from Theorem 3.19.

Proof. Since ® commutes with d; and dyyw, it induces well-defined operators on H"(C) ® C[y;] and H*() ® Clyi]. Since @
commutes with D, as well, it commutes with all the isomorphisms in (8), and the result follows. O
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3.5. Action of 51(2): definition
Lemma 3.21. On any Rouquier complex Tg there exists an operator u of homological degree (—2) and q-degree 4 such that

[d,u] = Z(xa + Xy(a))Ea ©)

a=1

where w is the permutation corresponding to f8.

Proof. We define u = 0 for the braid generators Tl.i. This satisfies (9) for T; since

n
Z(xa + x;,(a))%-a = b;'k(xi + x;+1 — Xit+1 — x:) =0,

a=1

the check for T}~ !is similar. Given two braids 8 and y with the corresponding permutations v, w, homotopies Sf and &) and operators
ug, uy, we define

n
ugy =g+, + Y ELEN. (10)
a=1
We have
n n n n
/ B B
[d: upy] = Y (% + Xy0)Ea + D Kiay + Xonia)Elay + D0 = Xia)Elay = D_hia) — Tnia) e
a=1 a=1 a=1 a=1
n n n
= o+ Xy )EL + Yo K EL = D (o ) EL +E) ).
a=1 a=1 a=1
On the other hand, éf V= Sf + Svy( 2 This allows us define u inductively for arbitrary products of Tii. O

Remark 3.22. If we unpack the above proof and use (10) repeatedly, we will get the following elementary formula:
u=y @ g (11)
c=<c

where ¢, ¢ are two crossings in a braid B, £© and € are single dot-sliding homotopies at ¢, ¢’ (given by b; or bY) and o is the sum of
the following terms:

+1  if the right output strand of ¢ connects to the left input strand of ¢

—1 if the right output strand of ¢ connects to the right input strand of ¢

—1 ifthe left output strand of ¢ connects to the left input strand of ¢’

+1 if the left output strand of ¢ connects to the right input strand of ¢

Proof. It follows from (10) that

u=32 8%

c<d a

where w is the permutation matching the input strands of ¢ with the input strands of ¢. It remains to notice that the £L9 for the left
input (and the right output) strand of ¢ corresponds to &), the right input (and the left output) strand of ¢ corresponds to —£ ), and
all other strands contribute 0. O

Now we can define the operator on y-ified homology:
Gl
E = Z (xa +X;/(a)) a—yl +u
a

Theorem 3.23. [8] We get the following:
(a) [D, E] = 0, so E defines a chain map on the y-ified complex Y ()
(b) E induces an endomorphism of the y-ified homology HY (B) which is an invariant of the link obtained by closure of B.
(c) There exists an endomorphism F of HY(B) such that (E, F, H) form an sl(2)-triple, and H = % deg,.
(d) If B closes up to a knot K, the Lie algebra sl(2) generated by E, F, H also acts in the reduced HOMFLY-PT homology of K.

Remark 3.24. In [8] the operator E was denoted by F,. Here we chose to change notations to match representation theory of s\(2) better.
In particular, we want to emphasize that E increases the q-grading, so one should think of it as a raising operator.
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Remark 3.25. As explained above, one can define E on chain level by a fairly explicit formula. On the contrary, the construction of F is
not explicit, and follows from the “hard Lefshetz property” for E.

3.6. Action of 51(2): properties

The first and the most important consequence from the existence of 5[(2) action is that triply graded homology is symmetric, as is
any finite-dimensional s[(2)-representation.

Theorem 3.26. [8] For any knot K, the triply graded homology H(K) is symmetric around the vertical axis. The symmetry preserves the
A-grading and transforms the three gradings by (q,a,t) — (—q,a,t + 29).

Theorem 3.27. (a) The operator E from s[(2) commutes with all differentials in the y-ified sI(N) spectral sequence from Theorem 3.19.
(b) Suppose that B closes to a knot. Then the operator E from s((2) commutes with all differentials in the s\(N) spectral sequence (in
particular, with dy ).

Proof. By Theorem 3.23 E commutes with the differential D,. By (11) we can write the operator u as a linear combination of products
of &, hence by Lemma 3.13 we have [u,d ] = [u,dyw] = 0. Therefore [E,d;] = [E,dyw] = 0 and by Corollary 3.20 this implies
part (a). Part (b) follows from (a) and Theorem 3.23. O

Lemma 3.28. There exists a family of operators dg, on H(K) satisfying the following equations:
dnjo = dns [E, dapp]l = b - dayrjp—15 [Fodapl = a - da—1jp41, [H, dap] = (@ — b) - dgpp.
The symmetry of H(K) exchanges dg)p with dp),.
Proof. If dy = 0 then we can set d,)p, = 0 for all a + b = N. Otherwise, assume dy # 0 on H(K).
The endomorphism algebra End( (K)) is a finite-dimensional representation of 5[(2) which acts by adg, adp, ady. The eigenvalue
of ady on an endomorphism A equals half of g-degree of A, in particular, ady(dy) = Ndy. Furthermore, adg(dy) = 0 by

Theorem 3.27(b), so dy is a highest weight vector of weight N, and hence spans an (N + 1)-dimensional representation of s[(2).
More precisely, for a + b = N we can define

1
dapp = gadg(dN) € End(H(K)),
then the s[(2) relations are satisfied and
1
[F,don] = ﬁadf\!H(dN) =0.

O
See Section 4.3 for an example of computation of dyp.

Remark 3.29. One might expect that the operators dgp, agree with the conjectural “supergroup differentials” conjectured in [6, 9], but we
do not pursue it here.

Corollary 3.30. Define d_, = adp(d;) = [F, d;]. Then

[E) d—l] = d1> [F’ d—l] =0, (12)
so that dy, d_, span a 2-dimensional representation of sI(2). Furthermore,
d* | =d_ydy +did_1 = 0. (13)

The symmetry of H(K) exchanges dy with d_1, in particular, d_, is a canceling differential if d, is.

Proof. Equation (12) follows from Lemma 3.28, but we need to prove (13). Observe that
[F,d_] = F(Fd, — &\F) — (Fd, — d\F)F = F?d, 4 d,F*> — 2Fd,F = 0,

SO
Fd\F = %(del + diF?).
Now
d_ydy + dvd_, = (Fdy — d1F)d; + dy(Fd, — d\F) = Fd} — d\Fd + diFd; — diF = 0
and

d* | = (Fd, — d\F)* = Fd\Fd, — F&iF — d\F*d, + d\Fd\F

1 1
= E(FZdl + leZ)dl — d1F2d1 + Edl(FZdl + leZ) =0.
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Proposition 3.31. Assume that a knot K is dy-standard. Then H(K) is filtered by the symmetric blocks of the following form:
E E E

N
&
et

1

AN AN AN AN
N AN AN AN A

2
E

or zigzags of the following form:
E E

/\/‘\

1 . 1 e
&‘ dl or dl dl
A \ Al A | Ay \
1 . 1 1 o
\Ii/’ \E/(
Furthermore, there is exactly one zigzag of either type.

Proof. We have an action of 5[(2) x (d_1, d;) on H(K) where d_; and d; square to zero and anticommute by (13). All these operators
preserve A-grading, so we can focus on one A-grading.

Let U be an sl(2)-irreducible surﬁmand of H(K) in the top a-degree. Define U=U® (1,d_1,d1,d_1d;). We have a natural
5[(2) x (d_1,d;)-invariant map ¢ : U — H(K), let us describe its possible kernel and image.

Let L(n) denote the irreducible representation of 5[(2) of highest weight n. If U ~ L(n), then

U®(d_1,d1) =L(n) ®L(1) xL(n+1) @ L(n—1)

as 51(2) representations, and U decomposes into irreducible s[(2) representations as follows: L(n) in top a-degree, L(n+ 1)@ L(n—1)
in the middle a-degree, and L(n) in the bottom a-degree. This is precisely the block in the above picture, so if Ker(¢) = 0 we will see
this block in H (K).

Otherwise we have the following options:

(1) Ker(¢) contains L(n+ 1) in the middle a-degree and L(n) in the bottom a-degree. Then Im(g) is isomorphic to a zigzag of the
first type.

(2) Ker(gp) contains L(n — 1) in the middle a-degree and L(n) in the bottom a-degree. Then Im(g) is isomorphic to a zigzag of the
second type.

(3) Ker(¢) contains both L(n + 1) and L(n — 1) in the middle a-degree, and L(n) in the bottom a-degree. Then Im(¢) ~ U.

(4) Ker(¢) contains only L(n) in the bottom a-degree. In this case Im(¢) contains L(n) on the top a-degree and L(n+1) @ L(n—1)
in the middle a-degree. R

Now we use the fact that the homology of d, is one-dimensional. The full block U is acyclic, while the zigzags in cases (1) and (2)
contribute one-dimensional homology. In cases (3) and (4) we get (n + 1)-dimensional homology, which is possible only if n = 0
and we get special cases of zigzags again. O

4. Examples
4.1. Example: 10135

One interesting example is given by the knot 10;25. Its homology is shown in Figure 6.
Clearly, we have two blocks as in Proposition 3.31 in different A-gradings.

dy
u Eu EZu
d/ yil
y (Ey,2) (E%y, E2) Ey m
AN
o Ew E*w
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Figure 6. Triply graded homology of the knot 10125 where the S-invariant equals 0, while the Rasmussen invariant equals s = —2. Furthermore, s,3_, = S = 0 while

_ 1
SN_1 = ~N=T"

In A-grading (—2) the homology splits into irreducible s[(2) representations as follows: for a = 2 we have an irreducible 3-
dimensional representation generated by u; for a = 0 we have a direct sum of a 4-dimensional representation generated by y and a
2-dimensional representation generated by z; for a = —2 we have an irreducible 3-dimensional representation generated by w.

We can pin down the generators by requiring that d_; (4) = y and d;(y) = w. Then F(u) = 0, so

F(di(w)) = [F,di1(u) = d_1(w) = y, d2 (1) = 0.

On the other hand, F(Ey) = [F,Ely = —Hy = 3y, F(z) = 0, and d,(Ey) = Ed;(y) = Ew. Therefore one can uniquely scale z such
that

1 1
di(u) = gEy +z, di(2) = —ng.

Next, we determine the differential d;. One can check that the total rank of reduced Khovanov homology Hs(2)(10125) is smaller
than the rank of H(10;25), so d, must be nonzero and (by degree reasons) the only possibility is d» (1) = m. By Proposition 2.13 we
have

dv =0, Hgav(10125) >~ H(10125) for N > 3.

To compute various s-invariants, we use Theorem 3.14. Clearly, the homology of d; is generated by m and S = 0. To compute
$2 = s,2_, we use the potential 9W = x? — x and the differential d,>_, = d, — d;. The corresponding spectral sequence has the first
differential d, (which kills # and m) and the second differential —d; with homology spanned by éEy + z supported in gs12) = —2.

Therefore, s = j, = —2 and 5,(10125) = ]72 = —1.
For N = 3, we have two different deformations of 5[(3) homology. For dW = x> — x, we get the spectral sequence with the first
differential d3 = 0, and the next differential d; with homology spanned by m, so s,3_,(10125) = 0 as in Theorem 1.2. On the other

hand, for W = (x+1)* —1 = x> + 3x? 4 3x we get the first differential d3 = 0 while the second differential 3(d, +d;) has homology
1 1
<m,5Ey+z>/ (m+ 5Ey+z= O)

Note that gs13)(m) = 0 while g41(3) (%Ey + z) = —2. The homology generator [m] has a representative with gs12) < —2, so
Hyw = F_Haw in the notations of Remark 3.15. Therefore j,3_; = jx41)3_1 = —2 and s,3_;(10125) = —Tz = —%.
A similar computation shows s,v_,(10125) = 0 while s,nv_;(10125) = —ﬁ in agreement with [19, Section 1.2].

4.2. Alarger example

Let us analyze the behavior of s[(N) differentials for the knot 111135 shown in Figure 7. We break the computation in several steps:
Step 1: N = 1. By Lemma 2.16 the knot is d;-standard, so the homology of d; is one-dimensional in A = 4 and hence are
supported at bidegree (g, a) = (—4,4) marked by the left red circle in Figure 7 and by # in Figure 8. In particular, S(K) = —4. The
differential d; is acyclic everywhere else, and it is easy to reconstruct it.
Step 2: Reconstruct the action of s[(2): see Figure 8.
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Reduced HOMFLY-PT

Homology of 11n_135 Reduced HOMFLY-PT
Delta=2=q+a+t Homelogy of 11n_135
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Figure 7. Here we have both the triply graded homology and s[(2) homology of the knot K = 11n135. The S-invariant equals —4 while the Rasmussen s-invariant equals 4.
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Figure 8. Differentials in the s[(2) spectral sequence for 11n135. The generators in A-grading 2 are above the line, and the generators in A-grading 4 are below the line.
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In particular, we see that di (b) = Ex and d; (x) = z and, up to a choice of scalars, we get
di(m) = B, di(k) = Em +a, dy(a) = —EB.

Step 3: N = 2. Let us reconstruct the action of d. Recall that gsi2) = g + 24, these degrees are marked in red in Figure 8, and
dy preserves gs((2) while decreasing a-degree by 2 and increasing A-grading by 2. Potentially, there are also higher differentials dg)
which preserve gs((2) while decreasing a-degree by 2i and increasing A-grading by 2.

In degree g5((2) = 16 we have three generators in H (K) and only one generator in Hg(2) (K). Therefore there should be exactly one
cancelation and by looking at a-degrees we conclude that there is no room for higher differentials and d,(b) = E*k (up to a nonzero
coefficient which we ignore).

Now [dl, dz] =0, so

dy(Ex) = dy(d1 (b)) = d1(d2(b)) = dy(E*k) = E®>m,

This is the only cancelation in degree 14, and this computation excludes another potential cancelation or higher differential. There
are no cancelations in degree 12. Since [d,, E] = 0, we get

E(dy(x)) = dy(Fx) = E’m,

50 d2(x) # 0, this is the only cancelation in degree 10.
Finally, let us understand the cancelations in degree 8. If d»(c) # 0 then d2(Ec) = E(dz(c)) # 0, and there is a cancelation in
degree 12. Contradiction, hence d»(c) = 0. We have two cases:

dy(2) = E2B, dY =0
d(2) =0, d = B28.

In the first case (shown in Figure 8) we have we have d; (d2(x)) # 0 while in the second case (shown by the dashed arrow) we have
d1(d2(x)) = 0, so da(x) is proportional to d (k).

Step 4: N > 3. By Proposition 2.13 all differentials d;\? vanish for N > 3, and Hy () (K) = H(K) up to regrading.

Step 5: In either case above, the generator n survives in s[(2) spectral sequence, so s, = %(—4 + 2 -4) = 2. Similarly, saw =
ﬁ (—4+N-4) = 2 forall N and arbitrary potential d W of degree N. The Rasmussen s-invariant equals s = 2s, = 4, in agreement
with [15].

4.3. Example:T(4,5)

In this subsection we consider the 15-crossing torus knot T'(4,5) which is not covered by the data in [23]. On the other hand,
Hogancamp in [10] proved a conjecture of the second author [5] relating the triply graded homology of torus knots T'(n,n + 1)
to so-called g, t-Catalan numbers. In particular, H(T'(4, 5)) agrees with its conjectural description in [5, Section 3.4] and is presented
in Figure 9. The total dimension of #(T'(4,5)) equals 45.

We can give a more precise description of the differentials on H(T'(4,5)) using the above results. First, T(4, 5) is parity and by
Corollary 2.7 d;f,) vanish for i even. It is easy to check that by degree reasons d;\l,) = 0 for i > 3, hence the Rasmussen spectral
sequences from Proposition 2.4 collapse after the first differential dy for all N.

In particular, T(4, 5) is d; -standard and H(T'(4, 5)) decomposes into blocks as in Proposition 3.31, as Figure 9 clearly demonstrates.
In fact, there is only one block in each A-grading in this case. The action of s[(2) is clear from the blocks. The homology of d; is
one-dimensional, it is marked by the red circle.

The reduced s1(2) homology has rank 9 and is shown in yellow in Figure 9 (a half-colored box corresponds to one-dimensional
Hj(2) and two-dimensional H in a given degree).

The reduced s((3) homology has rank 23 and is shown in white and yellow, in agreement with [17]. The differential d3 increases
A by 4, and cancels the blue regions for A = 6, 10 as well as the green regions for A = 8, 12.

Finally, we can study the operators d,);, from Lemma 3.28. Let X denote the generator at the very top of Figure 9, with (¢,a, A) =
(0,18, 6). Since F(X) = 0, we observe that:

+ There is a length 2 s(2) chain containing d; (X) and Fd (X) = doj1 (X) = d_1(X).
o There is a length 3 s(2) chain containing d,(X), Fd,(X) = d;; (X) and %dez(X) = dop(X).
+ There is a length 4 s(2) chain containing d3(X), Fd3(X) = dy1(X), %F2d3(X) = dy)p(X) and éF3d3(X) = do;3(X).

In particular, all of the operators dg, for a, b < 3 are nontrivial on H(T(4, 5)).
We expect that for a more general torus knot T'(n,m) the operators dg; are nontrivial for a,b < min(n,m) — 1 and plan to
investigate them in more detail in a future work.
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N ) X
a o
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18 1 dy(X)
L »

A=6 16 1 1

14 1 d(X)

o .

16 1 1 1
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12 1 1 1 d3(X)
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Figure 9. The reduced s[(2) homology (yellow) and the reduced s((3) homology (yellow and white) of T(4, 5). These have total ranks 9 and 23, respectively. The differential
d3 cancels blue and green regions in pairs.
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Appendix: Potentially di-nonstandard knots

The figures below illustrate the exceptional cases in the proof of Proposition 2.17. The knots 10136, 11#1)3, 11159, and 11n79 have
no room for the differential diz) because there are no nonzero homology groups in the necessary gradings (see Figures 10-13). For

the remaining exceptional cases, we indicate the location of the potential higher differential diz) in the s[(1) spectral sequence and
conclude that it vanishes, otherwise the dimension of the E,, page is at least 2 (Figures 14-26).

Reduced HOMFLY-PT

Reduced HOMFLY-PT Homology of 10_136 :
Homology of 10_136 . Delta=0=q+a+t 10 136
3 Delta=-2=q+a+t
ST G N\
L 5 S T R JU OUE N SO OO TO
o1 11 111 131 (L1 i1
e-14i i i i i i i i i|e 0
B L i \ \
2.2 1 2 J
IR NN NN
-5 -4-3-2-1 01 2 3 4 5
-1 T T
a -1 0 1

Figure 10. 10434: For there to be a nonzero d1(2) there would have to be nonzero homology group in (g, a, A) = (4, —4, —2).
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Figure 11. 11n4;: For there to be a nonzero d1(2) there would have to be nonzero homology group in (g, a, A) = (4,0,0), (2, —2,0) or (6, —2,0).
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Figure 12. 11n: For there to be a nonzero d$2) there would have to be nonzero homology group in (g, a, A) = (4, —4, —2).
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Figure 13. 11n79: For there to be a nonzero d$2) there would have to be nonzero homology group in (g,a, A) = (—4,4,2).
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Figure 14. 104;g: There is a potential differential d%z) from (g, a) = (—4,10) to (0, 6) which must vanish. The S-invariant equals —6.
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Figure 15. 11ng: There is a potential differential d$2) from (g, a) = (—4, 8) to (0, 4) which must vanish. The S-invariant equals —6.
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Figure 16. 11n14: There is a potential differential d%z) from (g, a) = (—4, 8) to (0, 4) which must vanish. The S-invariant equals —4.
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Figure 17. 11n39: There is a potential differential d§2) from (g, a) = (—4,2) to (0, —2) which must vanish. The S-invariant equals 0.
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Figure 18. 11n45: There is a potential differential dgz) from (g, a) = (—4,2) to (0, —2) which must vanish. The S-invariant equals 0.
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Figure 19. 11ns7: There is a potential differential d%z) from (g, a) = (—4, 8) to (0, 4) which must vanish. The S-invariant equals —6.
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Figure 20. 11ng7: There is a potential differential d%z) from (g, a) = (—4, 6) to (0, 2) which must vanish. The S-invariant equals —4.




Reduced HOMFLY-PT
Homology of 11n_64
Delta=2=q+a+t

-3 =2 2 0 1 2
q

Reduced HOMFLY-PT
Homology of 11n_64

EXPERIMENTAL MATHEMATICS (&) 25

Figure 21. 11ngg4: There is a potential differential d?) from (g, a) = (—4, 6) to (0, 2) which must vanish. The S-invariant equals —4.
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Figure 22. 11n794: There is a potential differential d1(2) from (g, a) = (—4, 8) to (0, 4) which must vanish. The S-invariant equals —6.
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Figure 23. 11n126: There is a potential differential d%z) from (g, a) = (—4, 10) to (0, 6) which must vanish. The S-invariant equals —6.
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Figure 24. 11nq33: There is a potential differential d%z) from (g, a) = (—4, 6) to (0, 2) which must vanish. The S-invariant equals —4.
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Figure 25. 11n145: There is a potential differential d1(2) from (g, a) = (—4,2) to (0, —2) which must vanish. The S-invariant equals 0.
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Figure 26. 11n155: There is a potential differential d1(2) from (g, a) = (—4,4) to (0, 0) which must vanish. The S-invariant equals —2.




	Abstract
	1.  Introduction
	2.  Link homology data
	2.1.  Gradings on H
	2.2.  Delta grading and thin knots
	2.3.  Differentials and sl(N) homology

	3.  Differentials, symmetry and sl(2) action
	3.1.  Soergel bimodules and Rouquier complexes
	3.2.  Rasmussen spectral sequences
	3.3.  Generalizations of the s-invariant
	3.4.  y-ification
	3.5.  Action of sl(2): definition
	3.6.  Action of sl(2): properties

	4.  Examples
	4.1.  Example: 10125
	4.2.  A larger example
	4.3.  Example: T(4,5)

	Acknowledgments
	Funding
	References
	Appendix: Potentially d1-nonstandard knots


