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Establishing building energy models (BEMs) for building design and analysis poses significant challenges due to
demanding modeling efforts, expertise to use simulation software, and building science knowledge in practice.
These make building modeling labor-intensive, hindering its widespread adoptions in building development.
Therefore, to overcome these challenges in building modeling with enhanced automation in modeling practice,
this paper proposes Eplus-LLM (EnergyPlus-Large Language Model) as the auto-building modeling platform,
building on a fine-tuned large language model (LLM) to directly translate natural language description of
buildings to established building models of various geometries, occupancy scenarios, and equipment loads.
Through fine-tuning, the LLM (i.e., T5) is customized to digest natural language and simulation demands from
users and convert human descriptions into EnergyPlus modeling files. Then, the Eplus-LLM platform realizes the
automated building modeling through invoking the API of simulation software (i.e., the EnergyPlus engine) to
simulate the auto-generated model files and output simulation results of interest. The validation process,
involving four different types of prompts, demonstrates that Eplus-LLM reduces over 95% modeling efforts and
achieves 100% accuracy in establishing BEMs while being robust to interference in usage, including but not
limited to different tones, misspells, omissions, and redundancies. Overall, this research serves as the pioneering
effort to customize LLM for auto-modeling purpose (directly build-up building models from natural language),
aiming to provide a user-friendly human-Al interface that significantly reduces building modeling efforts. This
work also further facilitates large-scale building model efforts, e.g., urban building energy modeling (UBEM), in
modeling practice.

purposes such as building retrofits, sustainability, and decarbonization
[2,3]. However, creating BEMs is time consuming, requiring skills of

1. Introduction

1.1. Background

Buildings account for about 36% of total global energy [1]. Building
energy models (BEMs) have increasingly stood as a crucial tool to
simulate building energy use and indoor environment, serving various
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software usage, especially for large and complex buildings. To build an
accurate building simulation model, building modelers have to repeat-
edly modify design parameters and debug the models, in order to ensure
validity of modeling outcomes (e.g., energy use and indoor environment
status). A user-friendly and automated building simulation platform is
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particularly beneficial for facilitating simulation-intensive applications,
e.g., calibration and urban building energy modeling (UBEM).

In recent years, pre-trained large language models (PTMs) have
found remarkable success in natural language processing (NLP). Trained
on extensive datasets, PTMs exhibit adaptability to a range of down-
stream tasks and applications through fine-tuning or context learning.
Large language models (LLMs), with billions of parameters and unique
model architectures involving the attention mechanism, have developed
a strong capability for natural language tasks. This enables them to
capture subtle nuances and contextual information within language,
performing well across various applications. Furthermore, these models
exhibit multimodal capabilities, excelling in processing diverse types of
information, including text, images, and sound. The versatility of LLMs
not only positions them as powerful tools in NLP and computer vision
(CV), but also holds the potential to open up new possibilities and op-
portunities in the fields of building and simulation. The intersection of
LLMs with building simulation is anticipated to bring about revolu-
tionary advancements and innovative solutions and will offer fresh in-
sights and prospects for future technological development.

1.2. Existing practice and development of building modeling and LLM

Engineers and researchers begin to model buildings (or calculate
building loads) using computers or computing methods ever since 19th
century. These early modeling were primarily based on simplified
methods (e.g., Degree-day method and Bin method [4]) to estimate the
energy demand of heating, ventilation, and air conditioning (HVAC)
systems for building design and operation. With development of
modeling engines, existing modeling software, such as ANSYS [5],
Dymola [6], TRNSYS [7], DeST [8], EnergyPlus [9], ISO 13790 [10],
and VDI 6007 [11], are mostly based on heat balance principles and
ordinary differential equation (ODE) in the modeling process. These
applications use building details, material properties, and climate data
as inputs to produce reliable building simulation results. Among them,
EnergyPlus, developed by the US Department of Energy (DOE), is one of
the most widely used software in the field of building simulation.
EnergyPlus adopts the physics-based modeling method, simulating the
complex interactions between various components in the building (such
as walls, windows, HVAC systems, etc.) of different physical character-
istics. The high-fidelity physics principle enables EnergyPlus to reliably
capture dynamics of building systems, providing reliable simulation
results to support various building and energy applications.

Despite the development, modeling buildings are non-trivial. Accu-
rately characterizing and creating models for complex building systems
demands substantial efforts, although graphical user interfaces (GUIs),
such as DesignBuilder [12] and OpenStudio [13], were developed to
simplify the modeling process. Users still need to grapple with a plethora
of options and parameters in modeling through GUIs. To automate the
creation and modification of building energy models, other researchers
have developed Python libraries like Eppy [14]. However, it is crucial
to recognize that using these packages for automated building modeling
also requires strong coding ability to effectively utilize these advanced
tools.

With significant advancement in computation these years, the
emergence of LLMs presents as a promising solution to overcome
complexity and accessibility of building modeling. LLMs have achieved
remarkable success in NLP, leading to a paradigm shift from supervised
learning to pre-training followed by fine-tuning [15]. As one of the
pioneering works, Peters et al. [16] proposed embeddings of language
models to learn contextual word representations using bi-directional
LSTMs, and then applied the pre-trained embeddings to downstream
tasks. This approach demonstrated dramatic improvements in a wide
range of NLP tasks. Generative Pre-Training (GPT) [17], which lever-
ages transformers [18] for language modeling, also illustrated the great
potential of PTMs to support different downstream tasks. After the
success of GPT, there has been significant interest in scaling up and
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exploring pre-trained language models, leading to the development of
numerous LLMs. Examples include BERT [19], text-to-text transfer
transformers (T5) [20], PaLM [21], and LLaMA [22].

Building on the success of PTMs described above, these models have
been increasingly used to support various downstream applications,
including but not limited to computer vision [23], speech processing
[24], etc. They have also been applied in generative tasks within do-
mains like chemistry [25], geography [26], and code generation [27] .
LLMs possess the unique ability to understand and generate human-like
text, making them well-suited for interpreting natural language de-
scriptions. In the context of building modeling, this capability holds
significant potential to facilitate user’s modeling and reduce simulation
efforts. By leveraging LLMs in automated building simulation and
design, users can describe their simulation visions and requirements in a
more intuitive manner: directly using natural language descriptions
instead of complex design with simulation software. However, adapting
LLMs for building modeling with auto-model generation is challenging
due to the following issues:

(1) Precise Model Description

Building modeling is a complex process involving numerous inputs,
simulation configurations, and closely coupled sets of equations in
calculation. Even a slight error of punctuation (e.g., missing a decimal
somewhere) or a small discrepancy of geometry (e.g., the edge of walls
defined by coordinates has 0.01 m deviations from its connected walls)
will lead to the simulation failure (the modeling engine will report se-
vere errors and terminate the simulation). Achieving this high level of
accuracy poses a significant challenge for LLMs, because general LLM
outputs typically exhibit varying degrees of randomness. Consequently,
LLMs for our building modeling task) must demonstrate remarkable
precision during generation. Given that LLMs comprise billions of pa-
rameters, training a capable foundation model to effectively and accu-
rately generate building model descriptions demands significant
computational resources and time. The current diversity in LLM archi-
tectures further complicates the selection of appropriate models and
sizes to accurately cater to the requirements of building simulation.
Blindly opting for a larger model does not necessarily equate to better
performance [28].

(2) Customization of LLM for Building Modeling Tasks

Another critical challenging lies in customizing LLMs for building
modeling. This challenge arises from (1) the need for domain-specific
knowledge to customize LLMs for building modeling. LLMs have not
been pre-trained on building modeling tasks, making it difficult to be
directly used for automated building modeling, (2) The high level of
required consistency in building modeling tasks. Unlike generic NLP
tasks, auto-creation of building modeling files requires precision and
consistency for the generated models to be valid. The necessity of un-
derstanding diverse language description formats further adds extra
complexity to maintain consistency in building modeling. Users may use
synonymous terms, varied sentence structures, or even misspellings to
convey identical building attributes, requiring LLMs to discern and
reconcile these linguistic subtleties to capture user intent accurately.

To overcome these, the “pre-training then fine-tuning” paradigm has
emerged as an effective and flexible method for creating sub-models to
customize LLMs for specific applications. This paradigm is favored
because: (1) Pre-training models involve billions of parameters,
advanced computational architectures, and large corpus datasets,
endowing LLMs with language flexibility, accuracy performance, and
long context window for downstream tasks. (2) Fine-tuning process re-
lies on self-learning and domain-specific data (e.g., building simulation
dataset), enabling the model to grasp the relevance and focal points of
content within user inputs (i.e., building modeling requirements).
Therefore, fine-tuning is an effective way for our purposes in handling
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complex and highly customized building modeling demands.

InstructGPT and ChatGPT [28] are fine-tuned with effective
prompts, aligning with user intentions on various tasks. Notably, the
1.3B InstructGPT outperforms the 175B GPT-3 despite having 100 times
fewer parameters. ChatGPT excels in various downstream tasks post
fine-tuning. The fine-tuned T5 checkpoint, Flan-t5 [29], achieves su-
perior performance in evaluation benchmarks, even when compared to
larger models. Pavlyshenko [30] fine-tuned Llama 2 for multitask
analysis of financial news. CodeT5+ [31] is an encoder-decoder family
tailored for diverse downstream code tasks. Surprisingly small and cost-
effective, Alpaca [32], fine-tuned from Meta’s Llama 7B, achieves su-
perior performance. In conclusion, the superior performance of these
fine-tuned models underscores the effectiveness of the fine-tuning
approach in customizing language models (LLMs) for specific applica-
tions. A fine-tuned model can achieve high accuracy in various down-
stream tasks with minimal additional training data. By providing
different prompts during fine-tuning, LLMs can gather more information
tailored to specific tasks, thereby guiding their generation with
precision.

1.3. New opportunities for building model design and simulation

For building simulation, despite the existence of numerous physical-
based and data-driven modeling methods, practitioners are still plagued
by challenges such as the accessibility of software or technologies, data
reliability, and technological complexity. Creating a high-fidelity
building model is typically time-consuming, even for experienced
modelers, not to mention non-tech-savvy users. The emergence of LLMs
presents new opportunities to completely automate building design and
simulation from natural language description of buildings by modelers.
LLMs are designed to comprehend natural language and generate sen-
tences through pre-training. Fine-tuning is then performed based on the
pre-trained LLM, utilizing smaller field datasets and fewer computing
resources to further enhance its performance and availability in down-
stream tasks. Integrating LLMs into building design and modeling can
significantly reduce the efforts, including knowledge, technologies,
data, hardware, manpower, and time requirements, needed to construct
physics-based building models. This will further foster the widespread
adoption of advanced building modeling in practical applications.
However, despite the great potential shown by LLMs in natural language
applications, their application with the automation of building modeling
is still limited due to the difficulty of reaching the precision re-
quirements and effectively handling customization of building modeling
tasks as mentioned above. Hence, there still lacks a customized LLM-
based platform for auto-building modeling.

In this study, we proposed Eplus-LLM as the computing platform
customized for automated building modeling tasks, capable of directly
and automatically translating natural language descriptions of modelers
into high-fidelity building models with precision (overcoming two
challenges mentioned in Section 1.2). This platform integrates the LLM
architecture, i.e., the Text-to-Text Transfer Transformer (T5), with the
physics-based modeling engine, EnergyPlus, aiming to create a user-
friendly and automated process to support modelers (e.g., from
consulting firms, architecture firms, academia, building system design
engineers, etc.) in building modeling. Using Eplus-LLM platform is able
to (1) make modeling easier with Al-empowered communication be-
tween modeling software and modelers. The developed platform aims to
reduce burdens and required efforts of modelers in building modeling.
Natural language is the natural way of humans in communications, not
only with other humans, but also with machines. LLM has demonstrated
significant potential to automate tasks under natural instruction of
humans in diverse fields. However, this automation and intelligence are
not fully leveraged in the building modeling field yet. The developed
platform aims to realize the future goal of fully automated building
modeling without significant efforts as in the current practice, and (2)
handle more flexible inputs. Our platform supports structured and
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unstructured ways of modeling inputs. For unstructured inputs, our
platform can handle natural language with different tones, grammar
errors, and omitted words. Users can also use structured data inputs, e.
g., specifying dimensions with height: xxx; width: xxx; length: xxx ...,
without worrying about deviations from expected format.

For validation of the effectiveness of our proposed framework in
auto-building modeling, we conducted a total of 152 validation in-
stances to verify the effectiveness and stability of the developed
computing platform for auto and accurate building modeling from
natural language descriptions of models, achieving 100% accuracy. We
also assessed the robustness and anti-interference ability of the platform
in generation by introducing various types of noise and unseen prompts.

The paper is organized as follows: Section 2 provides an overview,
model architecture, and training details of our proposed Eplus-LLM
platform. In Section 3, we demonstrate the effectiveness, robustness,
and versatility of our platform through validation and evaluation. Sec-
tion 4 discusses insights gained during the exploration of LLM-based
auto-building modeling, and Section 5 concludes our study.

2. Methodology
2.1. Overview of proposed Eplus-LLM platform

Fig. 1 illustrates the framework of the proposed Eplus-LLM, a fine-
tuned LLM capable of rapidly and automatedly building up building
models directly from natural language. The objective is to overcome the
complexities, necessity of specific knowledge, familiarity with software,
and challenges in human-modeling interaction of traditional building
simulation and modeling. The Eplus-LLM platform integrates physics-
based simulation software (i.e., EnergyPlus) with an LLM architecture
(i.e., T5), providing a human-AlI interface that comprehends description
of building models by natural language and perform building modeling
from dialogue.

As the core of the proposed framework, Eplus-LLM primarily consists
of three modules: Prompting, LLM Architecture, and Auto-simulation, as
shown in the Fig. 1. The Prompting module receives modeling com-
mands of users in natural language descriptions from the interface of
human-model interaction. Following tokenization, embedding, and po-
sition encoding, the natural language descriptions of specified simula-
tion demands are transformed into numerical and tokenized multi-
dimensional features (Fig. 2a). These features are then accepted and
comprehended by the LLM, with the attention module serving as its core.
By constructing Q (Query), K (Key), and V (Value) matrices (the Q
represents the specific information the model is focusing on; the K is the
features of the input, determining the content related to the Q; the V'is
used to provide the actual information content), the LLM is able to
effectively focus on the most significant information. In building
modeling tasks, Q, K, and V matrices can be understood as multi-
dimensional relationships among various building input parameters
and interconnected relationships among building sub-systems. They
facilitate the mapping of simulation instructions to model descriptions
and the generation of simulation files, i.e., EnergyPlus IDF files. After-
ward, the API of simulation software is automatically activated through
scripting, then outputting modeling results, e.g., indoor temperature and
building energy consumptions (Fig. 2 b). In Section 2.2, the foundation
model is elaborated in detail, explaining how natural language de-
scriptions are transformed into tokens recognizable by our Eplus-LLM. In
Section 2.3, the fine-tuning and customizing process for auto-building
modeling tasks are discussed in detail, highlighting our data prepara-
tion and processing, the designed prompts, without fine-tuning baseline,
and provides insights into the fine-tuning process and details.

2.2. Foundation LLM

In this work, we utilized the Flan-T5 model [29] as a foundation
model, fine-tuning it with training data derived from building modeling
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Fig. 1. The framework of our Eplus-LLM platform.

software and domain-specific knowledge (Section 2.3). Flan-T5 is an
instruction model fine-tuned on top of T5 architecture (Encoders-De-
coders), which has demonstrated advanced performance and superb
generalization capability compared to T5 [29]. T5, known as “the
transfer learning with a unified text-to-text transformer model” is
distinct from previous pre-trained models like BERT or GPT. It is
designed with the idea that all tasks are transformed into text-to-text
problems through an encoder-decoder transformer structure, enabling
it to excel across a variety of tasks. Pre-trained on a large-scale text
corpus, T5 learns the natural language representation. These pre-trained
weights are then fine-tuned for specific downstream application sce-
narios. T5 has demonstrated remarkable suitability for generation tasks;
notable T5-based code generation models include codeT5 and codeT5+
[27,31]. This performance allows us to create an LLM capable of auto-
building modeling. The Foundation T5 mainly have two parts,
prompting of natural language to tokens and encoders-decoders with
attention mechanism.

2.2.1. Prompting of natural language for building modeling tasks

Prompt engineering is to design instructions or inputs for a genera-
tive Al model to perform specific tasks. A prompt is typically in a format
of natural language sentences that describe detailed task requirements
for Al to follow [33]. It serves as a bridge for communication between
users and LLMs, determining the direction and content of model outputs.
Prompts can take various formats, depending on the user’s intentions
and task requirements. By inputting a prompt, users can guide the model
to generate task results that meet their expectations.

In the building simulation field, prompts from modelers can be
simple or complicated. A simple prompt can be a short modeling
requirement for generating a simple building model, for example,
simulate a building that is 100.00 m long, 50.00 m wide, and 8.00 m
high. If complicated, more detailed information and requirements are
specified. For example, simulate a building that is 100.00 m long, 50.00
m wide, and 8.00 m high. The window-to-wall ratio is 0.50. The occu-
pancy rate is 10.00 m?/people, the lighting level is 8.00 W/m?, and the
equipment power consumption is 5.00 W/m?2. In this case, the prompt

contains clear task directions and modeling details. The choice of
prompt directly affects building modeling outcomes. Users need to
consider the nature of the task, the desired output, and the purpose of
interacting with the model to choose the prompt appropriately.
Appropriate prompts can fully utilize the linguistic capabilities of an
LLM, which not only improves the accuracy of model generation, but
also effectively guides the LLM to generate content satisfying needs of
users. The combination of a reasonable and effective prompt design with
an appropriate LLM is the key to achieve satisfactory and accurate re-
sults in LLM-based auto building modeling.

2.2.2. Attention mechanism in LLM-based building modeling

The self-attention mechanism is at the core of LLMs. In contrast to
traditional recurrent neural network (RNN) or long-short-term memory
network (LSTM), which rely on sequential processing, the self-attention
enables models to assign different attention weights at different loca-
tions in the input sequence. This mechanism allows the model to focus
on different information while processing the input sequence. The self-
attention mechanism permits each word to adjust its importance to
the context during the encoding process. It involves the dot-product the
encoded input with matrix queries (Q) and keys (K) of dimension dg, and
matrix values (V) of dimension dy. Applying a softmax function to obtain
the weights on the values, the output of attention matrix as [18]:

. QK"
Atteention(Q, K, V) = softmax <\/d—> Vv

K
In building simulation scenarios, the Q, K, V matrices can be un-
derstood as representing the impact of different parameters on simula-
tion results in our downstream tasks (i.e., building modeling). For
example, the impact of heating, cooling, and electricity on buildings. To
further enhance the model’s capability, attention is divided into multi-
ple heads. These multi-heads are designed to capture various channels of
information in the input, especially when dealing with multiple types of
inputs and prompt formats. Each head presents a distinct type of rep-
resentation. The final outputs are obtained through concatenation or
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Fig. 2. An overview of Eplus-LLM platform to support auto-building simulation.

weighted averaging all heads. The output of the self-attention layer is
passed into a feed-forward neural network, which includes a fully con-
nected layer [34] and an activation function [35]. This helps to
introduce the capability of thoroughly capturing nonlinear dynamics in
modeling, for example, interrelationships among building system com-
ponents in building modeling. Additionally, there is a residual connec-
tion [36] around each of the two sub-layers, followed by layer
normalization [37], to reduce overfitting and gradient problems. These
are beneficial for model training.

2.3. Fine-tuning for customizing auto-building modeling tasks
2.3.1. Generating datasets for model fine-tuning

The fine-tuning dataset, utilizing to customize the LLM for auto-
building modeling, was generated through two main steps:

(1) Constructing parameters-IDF scenario pairs

The amount of data required for fine-tuning is substantial. To attain a
wide range of building modeling scenarios, we utilized a Latin

hypercube design [38] to sample diverse combinations of parameters,
e.g., different building geometries, window-to-wall ratios, and internal
load variations, and generated IDF files corresponding to different
parameter combinations, i.e., parameter-to-IDF file correspondence.
This step yielded a comprehensive dataset comprising diverse building
model descriptions of various parameter settings, as essential to support
fine-tuning processes.

(2) Constructing descriptions-IDF sentence pairs

After constructing the parameters-IDF scenario pairs, the next step is
to connect these IDF files (as targets) with corresponding natural lan-
guage descriptions (as prompts) for model fine-tuning. The prompt de-
scribes what the model should focus on or generate under user’s
simulation requirements. For example, during simulation, the prompt
includes a description of the building to be simulated, containing the
specifications of geometry, window details, and internal loads. The
target part corresponds to the building model in IDF format for Ener-
gyPlus. With a Python script, we translated the building model param-
eters to a description prompt of buildings. Four different prompt formats
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are designed to cover different descriptions of model requirements,
resulting in a total of 70,000 pairs of prompt-targets for fine-tuning.
Table 1 lists our four designed prompt formats with their simulation
requirement parameters. Fig. 3 clarifies the window position within our
prompt formats. The term “window height” refers to the vertical
dimension of the window, while the “window sill” denotes the vertical
distance between the window and the wall, influencing the window’s
vertical placement. The “window jamb” represents the horizontal dis-
tance between the window and the wall, affecting the window’s hori-
zontal placement. We maintain a constant value of 0.1 across all prompts
for the window jamb with a window-wall ratio.

To illustrate the correlation between natural language descriptions
(prompts) and IDF files, we provide a simple example (Fig. 4). The
geometric configuration of building surfaces is delineated by co-
ordinates, with interconnections among various surfaces. Due to the
extent of IDF details, presenting the entire content in the paper is un-
feasible. Therefore, we have extracted parts of geometry, window
setting, and internal load (e.g., wall, window, and electric equipment)
from the IDF and matched them with the corresponding parts in the
prompt, as shown in Fig. 4.

2.3.2. Fine-tuning and auto-simulation

After obtaining the processed dataset for fine-tuning, these dataset (i.
e., processed sentence pairs) were encoded using byte-pair encoding
[39], which has a shared source target vocabulary of ~32,000 tokens.

Sentence pairs were batched together by the same sequence length and
each training batch contained 5 sets of sentence pairs for fine-tuning.
The model weights are adjusted through back-propagation to mini-
mize the discrepancies between the generated IDF files and the actual
IDF files. Once the model achieves a satisfactory level of performance, it
can be deployed with a building energy simulation engine, EnergyPlus,
to generate building models and produce results (Fig. 2. b). This fine-
tuned LLM can automatically generate building modeling files based
on various requirements and input parameters. We fine-tuned our model
on one machine with one NVIDIA A100 80G GPU. Each training step
took ~1.5s. We trained the model for a total of 32,000 steps with ~16 h.

3. Model validation and analysis

Prior to fine-tuning, we evaluated the performance of the foundation
model (original Flan T5) using direct generation and one-shot learning
(without fine-tuning) as a baseline for our building modeling task.
Subsequently, following fine-tuning of our model, we conducted a total
of 152 validation instances to verify the effectiveness and stability of the
developed computing platform for auto and accurate building modeling
from natural language descriptions. All auto-generated models run
successfully, achieving 100% accuracy with the ground truth. In Section
3.1, we examined the performance of the foundation model using direct
generation and one-shot learning. In Section 3.2, we tested the model’s
capability to generate corresponding outputs by inputting different
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Table 1
Four types of prompt formats.
Prompt Simulation requirement Prompt
Format parameters
1 Length, weight, height “Simulate a building that is xx
meters long, xx meters wide, and xx
meters high.”
2 Length, weight, height, WWR, “Simulate a building that is xx
meters long, xx meters wide, and xx
meters high. The window-to-wall
ratio is xx.”
3 Length, weight, height, WWR, “Simulate a building that is xx
window position, meters long, xx meters wide, and xx
meters high. The window-to-wall
ratio is xx, the window sill height is
Xxx meters, the window height is xx
meters, and the window jamb width
is xx meters.”
4 Length, weight, height, WWR, “Simulate a building that is xx

window position, occupant,
lighting, equipment

meters long, xx meters wide, and xx
meters high. The window-to-wall
ratio is xx, the window sill height is
Xxx meters, the window height is xx
meters, and the window jamb width
is xx meters. The occupancy rate is
Xxx m2/people, the lighting level is xx
W/m2, and the equipment power
consumption is xx W/m2.”

Window jamb /

(constant of 0.1 m)

Window-wall ratio

Window sill { L Window height

Window jamb (0.1 m)

N
.
b ¥

Window-wall ratio

Window jamb (0.1 m)

Fig. 3. Explanation of the window position in the prompts.

types of prompts randomly and manually, ensuring its seamless inte-
gration into the simulation engine and successful execution. In Section
3.3, we compared the time efficiency of the LLM-based Eplus-LLM
platform with manual approaches. In Section 3.4, we assessed the
robustness and anti-interference ability of the model in generation by
introducing various types of noise and unseen prompts. These steps aim
to guarantee the effectiveness, robustness, and versatility of the devel-
oped platform in practical applications.

3.1. Comparison of fine-tuning, prompt tuning, and direct generation

To assess performance of the fine-tuned LLM, we compare the
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accuracy of auto-building modeling under specified prompts between
the fine-tuned LLM and two baselines without fine-tuning, i.e., direct
generation (original LLM directly generates content based on the input
prompt) and one-shot learning (original LLM is fed with one example of
prompt-IDF pair, then instructing LLM for similar auto-modeling) [40].
Four prompts were designed for comparison of auto-model generation
with-out fine-tuning and the test results are presented in Table 2. For
direct generation, we observed that regardless of the prompt complexity,
the output results are irrelevant to the task content. This is not surprising
since Flan-T5 was not trained with any knowledge of building modeling
or EnergyPlus software in the previous pre-training phase. As for the
one-shot learning, it appears that the model only generates a few initial
words with formatting errors, garbled content, and incomplete
comprehension. Furthermore, due to Flan-T5 being trained only on
sentences with a maximum length of 512 tokens during the pre-training
phase, it is insufficient to produce a complete building description files
with sufficient length. However, fine-tuning can overcome the limita-
tions of the foundation model’s token constraints. This further demon-
strates the effectiveness of our fine-tuning process in model validation
(Section 3), which enables the model to adapt to downstream tasks and
achieve 100% accuracy in auto-generation of building model
description.

3.2. Validation of Eplus-LLM generation

According to the four prompts in Section 2.4, we randomly generated
10 instances and manually generated 10 instances for four types of
prompts in this validation process to verify the output produced by the
Eplus-LLM, resulting in a total of 80 instances. The randomly and
manually generated prompt examples are presented in Table 3. The
validation of the accuracy is based on the match of the generated IDF
file, the corresponding model, and simulation results, including indoor
temperature and energy consumptions (Fig. 5). The validation results
indicate that all 80 instances can be correctly invoked by the EnergyPlus
engine. Additionally, they perfectly matched the ground truth models
and simulation results, achieving 100% accuracy. The first prompts can
only generate building models with a default WWR (i.e., WWR = 0.3).
The second prompt can generate different WWR but cannot specify the
position of the window. The third and fourth prompts allow for speci-
fying the window position.

3.3. Comparison of time efficiency between manual and LLM-based
modeling approaches

In this section, to evaluate the time efficiency of the LLM-based
modeling method, we compared the modeling time of using the Eplus-
LLM platform with two manual modeling approaches, i.e., directly
using EnergyPlus IDF Editor and through OpenStudio GUI for BEM. We
measured the time taken for modeling across 24 instances covered in
Section 3.2, which includes 8 prompts*3 instances of building models in
different complexity. Specific experiment results are shown in Table 4.

For manual modeling using EnergyPlus, users need to define model
geometry with coordinates. This necessitates users to pre-calculate po-
sition of different points on building surfaces based on the design
floorplan and determine window coordinates according to the WWR,
taking approximately 70% of the entire modeling time. Particularly
when the model precision extends to centimeters, manual calculation
not only becomes burdensome but also prone to errors, significantly
prolonging the modeling process. Additionally, inputting other required
information such as space types and thermal zones in the software to
ensure alignment with internal loads occupies ~30% of the modeling
time as remaining. Overall, depending on the model complexity, con-
structing an instance model in EnergyPlus typically takes between 35
and 56 min. To make modeling process easier, OpenStudio is the
graphical user interface that enables users to construct geometry directly
through drawing, helping reduce the modeling efforts. However, this
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Prompt: “Simulate a building that is 20 meters long, 10 meters wide, and 3
meters high. The window-to-wall ratio is 0.3, the window sill height is 7
meters, the window height is 14 meters, and the window jamb width is 0.1
meters. The occupancy rate is 10 m2/people, the lighting level is 4 W/m2,

IDF parts corresponding to the prompt:
BuildingSurface:Detailed,
Face 2, !- Name
Wall, !- Surface Type
ASHRAE 189.1-2009 ExtWall Mass ClimatgZone 4, !- Construction Name

- e B 1-
and the equipment power consumption is 5 W/m2.” Ihersal.Zoae:t, e
» Wall simulation = e T
Outdoors, getting !- OQutside Boundary Condition
» i !- Outside Boundary Condition Object
SunExposed, !- Sun Exposure
. . o WindExposed, !- Wind Exposure
Visualization Model: !- View Factor to Ground
Wall position couple with other !- Number of Vertices
wall, roof, and window position, @, 9, 3, “(‘” geometry 1- X,Y,Z Vertex 1 {m}
described by coordinates. e, 10, 3, information, !- X,Y,Z Vertex 2 {m}
Wall IDF “'”T 0, 10, o, described by !- X,Y,Z Vertex 3 {m}
= Ptk 0, 0, 9; !- X,Y,Z Vertex 4 {m}

coordinates
FenestrationSurface:Detailed,

Face 3, !- Name

Window, !- Surface Type

ASHRAE 189.1-2009 ExtWindow ClimateZong¢ 4-5, !- Construction Name

Face 2, . !- Building Surface Name
Window position couple Window simulation !- Outside Boundary Condition Object

IDF part

Building internal loads, lighting,
equipment, occupant, etc. Equip

with their wall position, setting !- View Factor to Ground
Jescribed by coordins s !- Frame and Divider Name
described by coordinates. ) !- Multiplier
Window IDF part: ) 1- Number of Vertices Window
0, 9.9, 1.95, '- X,Y,Z Vertex 1 {m} geometry
9, 9.9, 1.05, - X,Y,Z Vertex 2 {m} information,
0, 0.1, 1.05, '- X,Y,Z Vertex 3 {m} lesc
escribed by
e, 0.1, 1.95; 1- X,Y,Z Vertex 4 {m} | C5TIPCEDY
coordinates
ElectricEquipment,

Electric Equipment 1,
Thermal Zone 1,

Medium Office Bldg Equip,
Watts/Area,

Name

Zone or Zonelist or Space or Spacelist Name
Schedule Name

Design Level Calculation Method
Design Level {W}

Watts per Zone Floor Area {W/m2}
Watts per Person {W/person}
Fraction Latent

Fraction Radiant

Fraction Lost

End-Use Subcategory

Equipment

» simulation
setting and
configuration

’
5
>
’
»
>
G

eneral;

Fig. 4. An example of a specific prompt with detailed IDF.

still requires establishing a spacing grid and drawing (~30% of the time
to use OpenStudio in modeling), assigning various information such as
stories, thermal zones, space types, constructions, and windows in the
geometry interface tab (~30% of the time), and pre-setting space types,
thermal zones, and internal loads (~40% of the time). Constructing an
instance in OpenStudio takes from 11 to 20 min for different cases.
Lastly, establishing a building model in the Eplus-LLM platform only
requires users to write a natural language prompt in the platform
interface, after which Eplus-LLM automatically generates the corre-
sponding building model in IDF format for modeling (Fig. 6). This pro-
cess takes approximately 1 min, including about 30 s to write prompts
and another 30s for LLM generation.

In conclusion, utilizing Eplus-LLM for auto-modeling through natu-
ral language can significantly reduce the modeling efforts by over 95%
while ensuring modeling accuracy. Moreover, for beginners, manual
modeling of buildings using software programs has a steeper learning
curve, including initial model establishment and troubleshooting. It is
foreseeable that as building models grow in complexity, the efficiency
gains from using LLM-based auto-modeling methods is expected to
become more pronounced.

3.4. Robustness evaluation of Eplus-LLM in auto-modeling

In order to evaluate the robustness of our prompts, we introduced
four types of noises for every prompt format: user’s tone styles, spelling
mistakes, omitted words, and extra words. We conducted two tests for
each prompt under every noise condition, resulting in a total of 4*4*2 =
32 instances. Table 5 lists the examples of different noises. The test re-
sults indicate that our model exhibits high robustness, flexibility, and
resistance to the noise of user commands in practice. Even under varying
degrees of noise influence, it can still generate results that meet user
requirements with 100% accuracy in generation.

In addition, during our testing, we observed that Eplus-LLM exhibits
a certain degree of self-learning, specifically, the ability to process
previously unseen information (Table 6). Through fine-tuning in

training, Eplus-LLM acquired new concise expressions for prompts.
These new prompts were not included in the fine-tuning datasets. For
Example, for the unseen Prompt 4, Eplus-LLM learned the ability to
identify window locations. Consequently, modelers only need to specify
the window sill and window height, eliminating the need to additionally
specify the WWR and window jamb, as required previously. For the
unseen Prompt 1, 2 and 3, Eplus-LLM can adapt to new prompt struc-
tures by learning the interrelationships between various prompts
(Prompt 3 and 4). This illustrates the versatility, adaptability, and
scalability of Eplus-LLM. We conducted 10 tests for each unseen prompt.

4. Discussion and further work

4.1. Model structure and mechanism for LLM-based auto-building
modeling

While current LLMs employ various model structures, e.g., decoders-
only, encoders-only, or decoders-encoders for diverse tasks, there is no
consensus on the optimal model structure for the task of IDF generation.
Although PTMs that rely solely on decoders or encoders, such as BERT
and GPT, have achieved some success, they are suboptimal in compre-
hending tasks or processing code due to the inherent constraints and
limited flexibility associated with decoder or encoder model structures
[27,31]. The auto building modeling task to generate model description
in length with specific required structure (as the advantage of decoders).
Also, the utilized LLM needs to thoroughly comprehend the user’s
modeling description (as the advantage of encoders), ensuring a precise
understanding and reasoning of the corresponding IDF details, as even
minor errors can lead to simulation failure. The encoders-decoders
model proves to be particularly advantageous in tasks requiring intri-
cate mapping and capturing of element relationships between input and
output sequences; that is why we chose T5 with encoders-decoders
structure as the foundation model for our auto-modeling.

While the working mechanism of LLMs remains a black box, posing
challenges in understanding how distinct models excel in various
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Table 2
Baseline results without fine-tuning.
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Table 3
Examples of model generated for random and manual testing.

Prompt
format

Input prompt Output (Direct

generation)

Output (One-shot
learning)

“It will use a total
of 0.002
kilowatts.”

1 “Generate IDF using
EnergyPlus: Simulate a
building that is 20.00
meters long, 40.00
meters wide, and 4.00
meters high.”

2 “Generate IDF using
EnergyPlus: Simulate a
building that is 20.00
meters long, 40.00
meters wide, and 4.00
meters high. The
window-to-wall ratio is
0.3.”

3 “Generate IDF using
EnergyPlus: Simulate a
building that is 150.00
meters long, 50.00
meters wide, and
20.00 meters high. The
window-to-wall ratio is
0.60, the windowsill
height is 4.00 meters,
the window height is
16.00 meters, and the
window jamb width is
0.01 meters.”

4 “Generate IDF using
EnergyPlus: Simulate a
building that is 150.00
meters long, 50.00
meters wide, and
20.00 meters high. The
window-to-wall ratio is
0.60, the windowsill
height is 4.00 meters,
the window height is
16.00 meters, and the
window jamb width is
0.01 meters. The
occupancy rate is 5.00
m2/people, the lighting
level is 10.00 W/m2,
and the equipment
power consumption is
20.00 W/m2.”

“BuildingSurface:
Detailed, face 0, floor,
extslabcarpet 4in”

“The total number
of windows is.”

“BuildingSurface:
Detailed, face 0, floor,
extslabcarpet 4in”

“The total IDF for
the building is.”

“BuildingSurface:
Detailed, face 0, floor,
extslabcarpet 4in”

“The building uses
a total of.01 m3 of
energy per square
meter.”

“BuildingSurface:
Detailed, face 0, floor,
extslabcarpet 4in”

downstream tasks and the rationale behind specific outcomes, one cer-
tainty prevails: attention is the key to the success of LLMs [41]. In this
study, the Eplus-LLM utilizes attention to focus on different parts of the
user simulation command, capture complex relationships in natural
language descriptions of building models, and map these descriptions to
building model files. Improvements of attention mechanism, as listed
below, are expected to further boost the LLM applications in auto-
building modeling:

(1) Capability to Handle Longer Context in Attention

Current LLMs typically support context lengths of 2048 or 4096 to-
kens. Longer text content acceptable by LLM indicates its increasing
capability to support modeling of more complex buildings and enhance
human-AI interaction in the auto modeling process. This further in-
creases the flexibility of auto-building modeling. Block-sparse Fla-
shAttention [42], attention sink [43], and related methods expected to
serve as potential techniques for scaling up the acceptable tokens.

(2) Efficient Attention and Model Architecture

Modifying the conventional attention architecture (e.g., through the

Random input Manual input

Generated Prompt Generated Prompt

model model

-

“Simulate a building
that is 172.70 meters
long, 337.90 meters
wide, and 56.60 meters
high.”

“Simulate a building
that is 44.60 meters
long, 279.20 meters
wide, and 90.50 meters
high. The window-to-
wall ratio is 0.50.”
“Simulate a building
that is 121.90 meters
long, 44.50 meters
wide, and 42.10 meters
high. The window-to-
wadll ratio is 0.40, the
window sill height is
12.63 meters, the

“Simulate a building
that is 20.00 meters
long, 20.00 meters
wide, and 5.00 meters
high.”

“Simulate a building
that is 80.00 meters
long, 50.00 meters
wide, and 10.00 meters
high. The window-to-
wall ratio is 0.30.”
“Simulate a building
that is 200.00 meters
long, 100.00 meters
wide, and 10.00 meters
high. The window-to-
wall ratio is 0.40, the
windowsill height is
3.00 meters, the

-
-

\

/

*

window height is 29.47 window height is 7.00
meters, and the window meters, and the window
jamb width is 0.01 Jjamb width is 0.01
meters.” meters.”

“Simulate a building “Simulate a building

that is 150.00 meters
long, 50.00 meters
wide, and 20.00 meters
high. The window-to-
wall ratio is 0.60, the
windowsill height is
4.00 meters, the
window height is 16.00
meters, and the window
Jjamb width is 0.01
meters. The occupancy

that is 390.00 meters
long, 217.90 meters
wide, and 35.30 meters
high. The window-to-
wall ratio is 0.30, the
window sill height is
12.35 meters, the
window height is 22.94
meters, and the window
Jjamb width is 0.01
meters. The occupancy

rate is 25.60 m2/ rate is 5.00 m2/people,
people, the lighting level the lighting level is

is 10.50 W/m2, and 10.00 W/m2, and the
the equipment power equipment power
consumption is 5.60 consumption is 20.00
w/m2.” w/m2.”

addition or combination of diverse layers) as exemplified by approaches
such as SOLAR [44], MOE [45], and Mistral [46] is anticipated to
yield more efficient models. These modifications aim to improve
computational efficiency, ultimately facilitating an efficient and precise
inference process.

4.2. Prompts and instructions to boost LLMs

In this study, we chose Flan-T5 (encoders-decoders structure) as the
foundation model for our Eplus-LLM platform, achieving satisfactory
performance in auto-model generation. Besides the model structure, the
inherent scaling prompt and instruction process used to produce Flan-T5
is also a key factor contributing to its success. By scaling the number of
tasks, scaling the model size, and finetuning on chain-of-thought data,
the performance of the model is greatly enhanced, enabling it to attain
strong capability even compared to larger LLMs. This makes Flan-T5
more suitable for various downstream tasks that require fine-tuning,
such as auto-building modeling in this study.

With limited computational resources, using high-quality prompt
and instruction for model fine tuning is an important approach to
improve model performance [32]. By skillfully designing prompts and
instructions, we can improve model performance by directing the model
to focus on important information in the building design and simulation
task. In our study, we carefully designed four types of prompts to
enhance the flexibility, versatility, and robustness of the fine-tuned LLM
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Fig. 5. Simulation results, including indoor temperature, heating, cooling, and electricity consumptions.

Table 4
Estimated time range of manual and LLM-based modeling.

EnergyPlus OpenStudio Eplus-LLM

Modeling time 35-56 min 11-20 min 40-74 s

in auto-building modeling. Prompts usually contain information about
the context of the task, as crucial to help the LLM comprehend the re-
quirements of the task. By designing the prompt appropriately, models
can successfully focus on key information in the input sequence (e.g.,
information about the building geometry and internal loads). On the
other hand, instructions with more specific and detailed input guidance
can tell the model how to handle the task. Instruction can be designed to

emphasize specific patterns, regularities, or features that help the model
learn key information about the task. For example, in our task, in-
struction is set as “simulation” to tell the model to perform a simulation
task. Providing explicit guidance helps the model to fully utilize the pre-
train data to make the model fine-tuning converge faster, learn key as-
pects of the task, and reduce its sensitivity to noise.

Notably, by flexibly combining and designing prompts and in-
structions according to the simulation requirements, models become
better adaptable to a variety of unseen prompt types rather than being
limited to prompts from the training dataset (initial prompts). This
flexibility is essential to improve the generality and robustness of the
developed auto-modeling platform. For building design and simulation
as a downstream task, designing excellent prompts and instructions
becomes an effective means to improve model performance and

To streamline the intricacies of building design and modeling, we introduced Eplus-LLM, a platform designed to facilitate building modeling. Eplus-LLM interacts
seamlessly with natural language, eliminating the need for specific expertise. Our Lab: https://i2be.civil.utah.edu/

Enter to sent simulation demands.

Simulate a building that is 390.00 meters long, 217.90 meters wide, and 35.30 meters high. The window-to-wall ratio is 0.30, the window sill height is 12.35 meters, the window height is 22.94 meters, and the window jamb width is 0.01 meters. The

occupancy rate is 25.60 m2/people, the lighting level is 10.50 W/m2, and the equipment power consumption s 5.60 W/m2.

Clear

Fig. 6. Input a prompt to Eplus-LLM platform for automated modeling.
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Table 5

Examples of different noised prompts.
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Spelling mistakes

Omitted words

Extra words

“Simulatte a bilding that is
30.00 meteres long, 40.00
meter wide, and 3.50 meters

“Simulate aa buidling that is
33.30 meters long, 455.50
metrs wide, and 8.80 meters
high. The window-to-wll ratio

“Simullate a building that is
36.50 meters long, 326.00
meters wide, and 55.50 meters
hiegh. The window-to-wal ratio
is 0.44, the window sill hieght is
8.72 meters, the window hieght
is 49.39 metrs, and the window
Jjamb width is 0.01 meters.”

Format Initial prompt Different Tone styles
1 “Simulate a building that is “Create a model representing a
30.00 meters long, 40.00 meters  building with dimensions of
wide, and 3.50 meters high.” 30.00 meters in length, 40.00
meters in width, and a height of hi.”
3.50 meters.”
2 “Simulate a building that is “Generate a simulation for a
33.30 meters long, 455.50 structure with dimensions of
meters wide, and 8.80 meters 33.30 meters in length, 455.50
high. The window-to-wall ratiois ~ meters in width, and a height of
0.33.” 8.80 meters. The window-to-wall ~ is 0.33.”
ratio is set at 0.33.”
3 “Simulate a building that is “Develop a simulation for a
36.50 meters long, 326.00 structure with dimensions of
meters wide, and 55.50 meters 36.50 meters in length, 326.00
high. The window-to-wall ratiois ~ meters in width, and a height of
0.44, the window sill height is 55.50 meters. Integrate a
8.72 meters, the window heightis ~ window-to-wall ratio of 0.44,
49.39 meters, and the window with a window sill height of 8.72
Jjamb width is 0.01 meters.” meters, a window height of
49.39 meters, and a window
Jjamb width of 0.01 meters.”
4 “Simulate a building that is “Create a model representing a

83.50 meters long, 55.00 meters
wide, and 16.00 meters high.
The window-to-wall ratio is
0.35, the window sill height is
3.20 meters, the window height is
12.80 meters, and the window
jamb width is 0.01 meters. The
occupancy rate is 5.50 m2/
people, the lighting level is 18.00
W/m2, and the equipment power
consumption is 10.00 W/m2.”

building measuring 83.50 meters
in length, 55.00 meters in width,
and 16.00 meters in height.
Incorporate specific window
features like a window-to-wall
ratio of 0.35, a window sill
height of 3.20 meters, a window
height of 12.80 meters, and a
window jamb width of 0.01
meters. Take into account an
occupancy rate of 5.50 square
meters per person, a lighting level

“Simullate a bilding that is
83.50 meters long, 55.00 metrs
wide, and 16.00 meters hiegh.
The window-to-wll ratio is
0.35, the window sill hight is
3.20 metrs, the window hieght
is 12.80 meters, and the
window jamb widht is 0.01
metrs. The occupancy rate is
5.50 m2/people, the lightnng
level is 18.00 W/m2, and the
equipmnt power consuption is
10.00 W/m2”

“building 30.00 meters long,
40.00 meters wide, 3.50 meters
high.”

“building 33.30 meters long,
455.50 meters wide, 8.80
meters high. The window wall is
0.33.”

“building 36.50 meters long,
326.00 meters wide, 55.50
meters high. Window-wall is
0.44, the window sill is 8.72
meters, the window height is
49.39 meters, window jamb is
0.01 meters.”

“Building 83.50 meters long,
55.00 meters wide, 16.00
meters high. The window-to-
wall 0.35, the sill height is 3.20
meters, the window height is
12.80 meters, and the window
jamb is 0.01 meters.
Occupancy 5.50 m2/people,
lighting 18.00 W/m2, and
equipment is 10.00 W/m2.”

“Simulate a giraffe building that is
30.00 marshmallow meters long,
40.00 kazoo meters wide, and 3.50
trampoline meters high.”

“Simulate a pineapple trampoline
giraffe building that is 33.30 kazoo
meters long, 455.50 marshmallow
xylophone meters wide, and 8.80
sombrero meters high. The
bubblegum window-to-pickle wall
ratio is 0.33.”

“Simulate an extraordinarily
purple building that is 36.50
extremely meters long, 326.00
peculiarly meters wide, and 55.50
fascinatingly meters high. The
window-to-wall ratio is 0.44, the
astonishing window sill height is
8.72 delightfully meters, the
window height is 49.39
miysteriously meters, and the
window jamb width is 0.01
excessively meters.”

“Simulate a futuristic building that
is 83.50 meters long, 55.00 meters
wide, and 16.00 meters high. The
window-to-wall ratio, a key
element of its design, is
meticulously set at 0.35. The
window sill height gracefully
extends to 3.20 meters, while the
soaring window height reaches an
impressive 12.80 meters, with a
sleek window jamb width of 0.01
meters. The occupancy rate,
carefully calculated, stands at

of 18.00 watts per square meter,
and equipment power
consumption of 10.00 watts per
square meter.”

5.50 m2/people, ensuring a
harmonious balance within its
space. Illuminating the
surroundings, the lighting level
radiates at 18.00 W/m2, creating
a vibrant atmosphere.
Furthermore, the building’s
efficiency is evident as the
equipment power consumption is
maintained at a sustainable 10.00
w/m2.”

diversity. The key to this design lies in a profound understanding of the
relationship between simulation tasks and model predictions, ensuring
that the prompt and instruction boost the model’s reasoning ability.

4.3. Empowering the entire building life cycle with LLM

This study represents a pioneering effort to automate building model
creation directly from natural language descriptions provided by mod-
elers. This is especially useful to assist architects and modelers to assess
building design in the conceptual design stage through quick and
automated generation of building models. Furthermore, the LLMs have
the potential to support building development in its full lifecycle (such
as construction and operation), not limited to the model design phase in
this paper. For example, during the construction phase, LLM can facili-
tate interaction between construction personnel and Al to provide real-
time decision support, optimize construction schedules, and predict
potential risks. In the operation phase, LLMs-based methods will facili-
tate building control or community-level control through real-time
human-AI interaction, maximizing occupant comfort, and the poten-
tial for building energy efficiency and decarbonization. Overall, the
application of LLMs across the entire building lifecycle has the potential
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to further improve efficiency, reduce costs, enhance decision support,
and steer the building sector toward a smart and sustainable future.

5. Conclusion

In this study, we introduce and demonstrate the successful devel-
opment of Eplus-LLM as the first LLM-based automated building
modeling platform. The platform provides a user-friendly human-Al
interface, allowing users to conduct building simulation directly from
natural language, without requiring in-depth knowledge of complex
building science and simulation software. The Eplus-LLM understands
human language through tokenization and embedding techniques, and
overcomes the complexity of auto-file generation for building modeling
through self-attention. Then, it can output building models and simu-
lation results by invoking EnergyPlus as the simulation engine. This
innovation greatly reduces the modeling efforts and dependency of
software in modeling. In order to meet the simulation needs of different
users, we also designed four different prompts to make Eplus-LLM more
adaptable and versatile.

To validate the effectiveness of our developed platform in support
modeling practice, we presented a total of 152 test cases. The validation
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Table 6
Unseen types of prompt format.

Applied Energy 367 (2024) 123431

Format Initial simulation requirement Simulation requirement Unseen prompt
parameters parameters
New 1 Length, weight, height Length, “Simulate a building that is xx meters long, xx meters wide, and xx meters high. The
prompt weight, window sill height is xx meters, the window height is xx meters”
height
+
window position
2 Length, weight, height Length, “Simulate a building that is xx meters long, xx meters wide, and xx meters high. The
weight, occupancy rate is xx m2/people, the lighting level is xx W/m2, and the equipment
height power consumption is xx W/m2.”
+
lighting, occupancy,
equipment
3 Length, weight, height Length, “Simulate a building that is xx meters long, xx meters wide, and xx meters high. The
weight, window-to-wall ratio is xx. The occupancy rate is xx m2/people, the lighting level is
height xx W/m2, and the equipment power consumption is xx W/m2.”
+
WWR,
lighting, occupancy,
equipment
Concise 4 Length, weight, height, WWR, window Length, “Simulate a building that is xx meters long, xx meters wide, and xx meters high. The
prompt position, occupant, lighting, equipment weight, window sill height is xx meters, the window height is xx meters. The occupancy rate is
height, xx m2/people, the lighting level is xx W/m2, and the equipment power consumption

window position, lighting,

is xx W/m2.”

occupancy, equipment

results demonstrate that Eplus-LLM not only achieved 95% time effi-
ciency and 100% accuracy aligning with manual expert modeling, but
also exhibited robustness and adaptability to various noises and unseen
prompts in application. This robustness underscores the effectiveness of
our approach as basis for further applications, such as UBEM and cali-
bration. In the discussion section, we introduce and explore the di-
rections for model selection and attention mechanism in LLMs.
Additionally, we discuss the strategies to boost the LLM performance
through prompts and instructions. Lastly, we project the future impacts
of generative AI with LLMs to support building development for the
entire life cycle of buildings.

As to limitations, our developed platform is currently subject to
objective conditions (e.g., GPUs, training time, and LLM performance)
and is only able to handle relatively simple modeling cases under regular
settings (e.g., rectangular building shape with WWR) as representative
examples. In practical building modeling, various systems with complex
geometries, different zones, and schedules are expected, requiring a
further enhancement of the developed platform for automated
modeling. Moreover, our platform has not been able to process in-
terdependencies such as “placing this window in the xxx position of the
south wall” since it requires the LLM to obtain more semantic infor-
mation and make corresponding changes.

Future research directions will include further exploring and
applying LLMs to enhance their potential in various real-world appli-
cations. We advocate for investigations on more flexible and complex
modeling scenarios, such as buildings with complex zoning or prompts
for auto-modeling containing semantic description of buildings (e.g.,
south/north wall). These efforts will further advance the development of
auto building modeling platform, providing more powerful (AI) tools for
future building design and intelligent building management.
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