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H I G H L I G H T S  

• This study represents the pioneering effort in customizing LLM for auto-modeling. 
• A large language model is used to digest natural language descriptions for modeling. 
• Integration of four prompts enhances the flexibility and versatility of our platform. 
• Our platform provides a human-AI interface and reduces building modeling efforts.  
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A B S T R A C T   

Establishing building energy models (BEMs) for building design and analysis poses significant challenges due to 
demanding modeling efforts, expertise to use simulation software, and building science knowledge in practice. 
These make building modeling labor-intensive, hindering its widespread adoptions in building development. 
Therefore, to overcome these challenges in building modeling with enhanced automation in modeling practice, 
this paper proposes Eplus-LLM (EnergyPlus-Large Language Model) as the auto-building modeling platform, 
building on a fine-tuned large language model (LLM) to directly translate natural language description of 
buildings to established building models of various geometries, occupancy scenarios, and equipment loads. 
Through fine-tuning, the LLM (i.e., T5) is customized to digest natural language and simulation demands from 
users and convert human descriptions into EnergyPlus modeling files. Then, the Eplus-LLM platform realizes the 
automated building modeling through invoking the API of simulation software (i.e., the EnergyPlus engine) to 
simulate the auto-generated model files and output simulation results of interest. The validation process, 
involving four different types of prompts, demonstrates that Eplus-LLM reduces over 95% modeling efforts and 
achieves 100% accuracy in establishing BEMs while being robust to interference in usage, including but not 
limited to different tones, misspells, omissions, and redundancies. Overall, this research serves as the pioneering 
effort to customize LLM for auto-modeling purpose (directly build-up building models from natural language), 
aiming to provide a user-friendly human-AI interface that significantly reduces building modeling efforts. This 
work also further facilitates large-scale building model efforts, e.g., urban building energy modeling (UBEM), in 
modeling practice.   

1. Introduction 

1.1. Background 

Buildings account for about 36% of total global energy [1]. Building 
energy models (BEMs) have increasingly stood as a crucial tool to 
simulate building energy use and indoor environment, serving various 

purposes such as building retrofits, sustainability, and decarbonization 
[2,3]. However, creating BEMs is time consuming, requiring skills of 
software usage, especially for large and complex buildings. To build an 
accurate building simulation model, building modelers have to repeat
edly modify design parameters and debug the models, in order to ensure 
validity of modeling outcomes (e.g., energy use and indoor environment 
status). A user-friendly and automated building simulation platform is 
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particularly beneficial for facilitating simulation-intensive applications, 
e.g., calibration and urban building energy modeling (UBEM). 

In recent years, pre-trained large language models (PTMs) have 
found remarkable success in natural language processing (NLP). Trained 
on extensive datasets, PTMs exhibit adaptability to a range of down
stream tasks and applications through fine-tuning or context learning. 
Large language models (LLMs), with billions of parameters and unique 
model architectures involving the attention mechanism, have developed 
a strong capability for natural language tasks. This enables them to 
capture subtle nuances and contextual information within language, 
performing well across various applications. Furthermore, these models 
exhibit multimodal capabilities, excelling in processing diverse types of 
information, including text, images, and sound. The versatility of LLMs 
not only positions them as powerful tools in NLP and computer vision 
(CV), but also holds the potential to open up new possibilities and op
portunities in the fields of building and simulation. The intersection of 
LLMs with building simulation is anticipated to bring about revolu
tionary advancements and innovative solutions and will offer fresh in
sights and prospects for future technological development. 

1.2. Existing practice and development of building modeling and LLM 

Engineers and researchers begin to model buildings (or calculate 
building loads) using computers or computing methods ever since 19th 
century. These early modeling were primarily based on simplified 
methods (e.g., Degree-day method and Bin method [4]) to estimate the 
energy demand of heating, ventilation, and air conditioning (HVAC) 
systems for building design and operation. With development of 
modeling engines, existing modeling software, such as ANSYS [5], 
Dymola [6], TRNSYS [7], DeST [8], EnergyPlus [9], ISO 13790 [10], 
and VDI 6007 [11], are mostly based on heat balance principles and 
ordinary differential equation (ODE) in the modeling process. These 
applications use building details, material properties, and climate data 
as inputs to produce reliable building simulation results. Among them, 
EnergyPlus, developed by the US Department of Energy (DOE), is one of 
the most widely used software in the field of building simulation. 
EnergyPlus adopts the physics-based modeling method, simulating the 
complex interactions between various components in the building (such 
as walls, windows, HVAC systems, etc.) of different physical character
istics. The high-fidelity physics principle enables EnergyPlus to reliably 
capture dynamics of building systems, providing reliable simulation 
results to support various building and energy applications. 

Despite the development, modeling buildings are non-trivial. Accu
rately characterizing and creating models for complex building systems 
demands substantial efforts, although graphical user interfaces (GUIs), 
such as DesignBuilder [12] and OpenStudio [13], were developed to 
simplify the modeling process. Users still need to grapple with a plethora 
of options and parameters in modeling through GUIs. To automate the 
creation and modification of building energy models, other researchers 
have developed Python libraries like Eppy [14]. However, it is crucial 
to recognize that using these packages for automated building modeling 
also requires strong coding ability to effectively utilize these advanced 
tools. 

With significant advancement in computation these years, the 
emergence of LLMs presents as a promising solution to overcome 
complexity and accessibility of building modeling. LLMs have achieved 
remarkable success in NLP, leading to a paradigm shift from supervised 
learning to pre-training followed by fine-tuning [15]. As one of the 
pioneering works, Peters et al. [16] proposed embeddings of language 
models to learn contextual word representations using bi-directional 
LSTMs, and then applied the pre-trained embeddings to downstream 
tasks. This approach demonstrated dramatic improvements in a wide 
range of NLP tasks. Generative Pre-Training (GPT) [17], which lever
ages transformers [18] for language modeling, also illustrated the great 
potential of PTMs to support different downstream tasks. After the 
success of GPT, there has been significant interest in scaling up and 

exploring pre-trained language models, leading to the development of 
numerous LLMs. Examples include BERT [19], text-to-text transfer 
transformers (T5) [20], PaLM [21], and LLaMA [22]. 

Building on the success of PTMs described above, these models have 
been increasingly used to support various downstream applications, 
including but not limited to computer vision [23], speech processing 
[24], etc. They have also been applied in generative tasks within do
mains like chemistry [25], geography [26], and code generation [27]. 
LLMs possess the unique ability to understand and generate human-like 
text, making them well-suited for interpreting natural language de
scriptions. In the context of building modeling, this capability holds 
significant potential to facilitate user’s modeling and reduce simulation 
efforts. By leveraging LLMs in automated building simulation and 
design, users can describe their simulation visions and requirements in a 
more intuitive manner: directly using natural language descriptions 
instead of complex design with simulation software. However, adapting 
LLMs for building modeling with auto-model generation is challenging 
due to the following issues:  

(1) Precise Model Description 

Building modeling is a complex process involving numerous inputs, 
simulation configurations, and closely coupled sets of equations in 
calculation. Even a slight error of punctuation (e.g., missing a decimal 
somewhere) or a small discrepancy of geometry (e.g., the edge of walls 
defined by coordinates has 0.01 m deviations from its connected walls) 
will lead to the simulation failure (the modeling engine will report se
vere errors and terminate the simulation). Achieving this high level of 
accuracy poses a significant challenge for LLMs, because general LLM 
outputs typically exhibit varying degrees of randomness. Consequently, 
LLMs for our building modeling task) must demonstrate remarkable 
precision during generation. Given that LLMs comprise billions of pa
rameters, training a capable foundation model to effectively and accu
rately generate building model descriptions demands significant 
computational resources and time. The current diversity in LLM archi
tectures further complicates the selection of appropriate models and 
sizes to accurately cater to the requirements of building simulation. 
Blindly opting for a larger model does not necessarily equate to better 
performance [28].  

(2) Customization of LLM for Building Modeling Tasks 

Another critical challenging lies in customizing LLMs for building 
modeling. This challenge arises from (1) the need for domain-specific 
knowledge to customize LLMs for building modeling. LLMs have not 
been pre-trained on building modeling tasks, making it difficult to be 
directly used for automated building modeling, (2) The high level of 
required consistency in building modeling tasks. Unlike generic NLP 
tasks, auto-creation of building modeling files requires precision and 
consistency for the generated models to be valid. The necessity of un
derstanding diverse language description formats further adds extra 
complexity to maintain consistency in building modeling. Users may use 
synonymous terms, varied sentence structures, or even misspellings to 
convey identical building attributes, requiring LLMs to discern and 
reconcile these linguistic subtleties to capture user intent accurately. 

To overcome these, the “pre-training then fine-tuning” paradigm has 
emerged as an effective and flexible method for creating sub-models to 
customize LLMs for specific applications. This paradigm is favored 
because: (1) Pre-training models involve billions of parameters, 
advanced computational architectures, and large corpus datasets, 
endowing LLMs with language flexibility, accuracy performance, and 
long context window for downstream tasks. (2) Fine-tuning process re
lies on self-learning and domain-specific data (e.g., building simulation 
dataset), enabling the model to grasp the relevance and focal points of 
content within user inputs (i.e., building modeling requirements). 
Therefore, fine-tuning is an effective way for our purposes in handling 
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complex and highly customized building modeling demands. 
InstructGPT and ChatGPT [28] are fine-tuned with effective 

prompts, aligning with user intentions on various tasks. Notably, the 
1.3B InstructGPT outperforms the 175B GPT-3 despite having 100 times 
fewer parameters. ChatGPT excels in various downstream tasks post 
fine-tuning. The fine-tuned T5 checkpoint, Flan-t5 [29], achieves su
perior performance in evaluation benchmarks, even when compared to 
larger models. Pavlyshenko [30] fine-tuned Llama 2 for multitask 
analysis of financial news. CodeT5+ [31] is an encoder-decoder family 
tailored for diverse downstream code tasks. Surprisingly small and cost- 
effective, Alpaca [32], fine-tuned from Meta’s Llama 7B, achieves su
perior performance. In conclusion, the superior performance of these 
fine-tuned models underscores the effectiveness of the fine-tuning 
approach in customizing language models (LLMs) for specific applica
tions. A fine-tuned model can achieve high accuracy in various down
stream tasks with minimal additional training data. By providing 
different prompts during fine-tuning, LLMs can gather more information 
tailored to specific tasks, thereby guiding their generation with 
precision. 

1.3. New opportunities for building model design and simulation 

For building simulation, despite the existence of numerous physical- 
based and data-driven modeling methods, practitioners are still plagued 
by challenges such as the accessibility of software or technologies, data 
reliability, and technological complexity. Creating a high-fidelity 
building model is typically time-consuming, even for experienced 
modelers, not to mention non-tech-savvy users. The emergence of LLMs 
presents new opportunities to completely automate building design and 
simulation from natural language description of buildings by modelers. 
LLMs are designed to comprehend natural language and generate sen
tences through pre-training. Fine-tuning is then performed based on the 
pre-trained LLM, utilizing smaller field datasets and fewer computing 
resources to further enhance its performance and availability in down
stream tasks. Integrating LLMs into building design and modeling can 
significantly reduce the efforts, including knowledge, technologies, 
data, hardware, manpower, and time requirements, needed to construct 
physics-based building models. This will further foster the widespread 
adoption of advanced building modeling in practical applications. 
However, despite the great potential shown by LLMs in natural language 
applications, their application with the automation of building modeling 
is still limited due to the difficulty of reaching the precision re
quirements and effectively handling customization of building modeling 
tasks as mentioned above. Hence, there still lacks a customized LLM- 
based platform for auto-building modeling. 

In this study, we proposed Eplus-LLM as the computing platform 
customized for automated building modeling tasks, capable of directly 
and automatically translating natural language descriptions of modelers 
into high-fidelity building models with precision (overcoming two 
challenges mentioned in Section 1.2). This platform integrates the LLM 
architecture, i.e., the Text-to-Text Transfer Transformer (T5), with the 
physics-based modeling engine, EnergyPlus, aiming to create a user- 
friendly and automated process to support modelers (e.g., from 
consulting firms, architecture firms, academia, building system design 
engineers, etc.) in building modeling. Using Eplus-LLM platform is able 
to (1) make modeling easier with AI-empowered communication be
tween modeling software and modelers. The developed platform aims to 
reduce burdens and required efforts of modelers in building modeling. 
Natural language is the natural way of humans in communications, not 
only with other humans, but also with machines. LLM has demonstrated 
significant potential to automate tasks under natural instruction of 
humans in diverse fields. However, this automation and intelligence are 
not fully leveraged in the building modeling field yet. The developed 
platform aims to realize the future goal of fully automated building 
modeling without significant efforts as in the current practice, and (2) 
handle more flexible inputs. Our platform supports structured and 

unstructured ways of modeling inputs. For unstructured inputs, our 
platform can handle natural language with different tones, grammar 
errors, and omitted words. Users can also use structured data inputs, e. 
g., specifying dimensions with height: xxx; width: xxx; length: xxx …, 
without worrying about deviations from expected format. 

For validation of the effectiveness of our proposed framework in 
auto-building modeling, we conducted a total of 152 validation in
stances to verify the effectiveness and stability of the developed 
computing platform for auto and accurate building modeling from 
natural language descriptions of models, achieving 100% accuracy. We 
also assessed the robustness and anti-interference ability of the platform 
in generation by introducing various types of noise and unseen prompts. 

The paper is organized as follows: Section 2 provides an overview, 
model architecture, and training details of our proposed Eplus-LLM 
platform. In Section 3, we demonstrate the effectiveness, robustness, 
and versatility of our platform through validation and evaluation. Sec
tion 4 discusses insights gained during the exploration of LLM-based 
auto-building modeling, and Section 5 concludes our study. 

2. Methodology 

2.1. Overview of proposed Eplus-LLM platform 

Fig. 1 illustrates the framework of the proposed Eplus-LLM, a fine- 
tuned LLM capable of rapidly and automatedly building up building 
models directly from natural language. The objective is to overcome the 
complexities, necessity of specific knowledge, familiarity with software, 
and challenges in human-modeling interaction of traditional building 
simulation and modeling. The Eplus-LLM platform integrates physics- 
based simulation software (i.e., EnergyPlus) with an LLM architecture 
(i.e., T5), providing a human-AI interface that comprehends description 
of building models by natural language and perform building modeling 
from dialogue. 

As the core of the proposed framework, Eplus-LLM primarily consists 
of three modules: Prompting, LLM Architecture, and Auto-simulation, as 
shown in the Fig. 1. The Prompting module receives modeling com
mands of users in natural language descriptions from the interface of 
human-model interaction. Following tokenization, embedding, and po
sition encoding, the natural language descriptions of specified simula
tion demands are transformed into numerical and tokenized multi- 
dimensional features (Fig. 2a). These features are then accepted and 
comprehended by the LLM, with the attention module serving as its core. 
By constructing Q (Query), K (Key), and V (Value) matrices (the Q 
represents the specific information the model is focusing on; the K is the 
features of the input, determining the content related to the Q; the V is 
used to provide the actual information content), the LLM is able to 
effectively focus on the most significant information. In building 
modeling tasks, Q, K, and V matrices can be understood as multi- 
dimensional relationships among various building input parameters 
and interconnected relationships among building sub-systems. They 
facilitate the mapping of simulation instructions to model descriptions 
and the generation of simulation files, i.e., EnergyPlus IDF files. After
ward, the API of simulation software is automatically activated through 
scripting, then outputting modeling results, e.g., indoor temperature and 
building energy consumptions (Fig. 2 b). In Section 2.2, the foundation 
model is elaborated in detail, explaining how natural language de
scriptions are transformed into tokens recognizable by our Eplus-LLM. In 
Section 2.3, the fine-tuning and customizing process for auto-building 
modeling tasks are discussed in detail, highlighting our data prepara
tion and processing, the designed prompts, without fine-tuning baseline, 
and provides insights into the fine-tuning process and details. 

2.2. Foundation LLM 

In this work, we utilized the Flan-T5 model [29] as a foundation 
model, fine-tuning it with training data derived from building modeling 
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software and domain-specific knowledge (Section 2.3). Flan-T5 is an 
instruction model fine-tuned on top of T5 architecture (Encoders-De
coders), which has demonstrated advanced performance and superb 
generalization capability compared to T5 [29]. T5, known as “the 
transfer learning with a unified text-to-text transformer model” is 
distinct from previous pre-trained models like BERT or GPT. It is 
designed with the idea that all tasks are transformed into text-to-text 
problems through an encoder-decoder transformer structure, enabling 
it to excel across a variety of tasks. Pre-trained on a large-scale text 
corpus, T5 learns the natural language representation. These pre-trained 
weights are then fine-tuned for specific downstream application sce
narios. T5 has demonstrated remarkable suitability for generation tasks; 
notable T5-based code generation models include codeT5 and codeT5+

[27,31]. This performance allows us to create an LLM capable of auto- 
building modeling. The Foundation T5 mainly have two parts, 
prompting of natural language to tokens and encoders-decoders with 
attention mechanism. 

2.2.1. Prompting of natural language for building modeling tasks 
Prompt engineering is to design instructions or inputs for a genera

tive AI model to perform specific tasks. A prompt is typically in a format 
of natural language sentences that describe detailed task requirements 
for AI to follow [33]. It serves as a bridge for communication between 
users and LLMs, determining the direction and content of model outputs. 
Prompts can take various formats, depending on the user’s intentions 
and task requirements. By inputting a prompt, users can guide the model 
to generate task results that meet their expectations. 

In the building simulation field, prompts from modelers can be 
simple or complicated. A simple prompt can be a short modeling 
requirement for generating a simple building model, for example, 
simulate a building that is 100.00 m long, 50.00 m wide, and 8.00 m 
high. If complicated, more detailed information and requirements are 
specified. For example, simulate a building that is 100.00 m long, 50.00 
m wide, and 8.00 m high. The window-to-wall ratio is 0.50. The occu
pancy rate is 10.00 m2/people, the lighting level is 8.00 W/m2, and the 
equipment power consumption is 5.00 W/m2. In this case, the prompt 

contains clear task directions and modeling details. The choice of 
prompt directly affects building modeling outcomes. Users need to 
consider the nature of the task, the desired output, and the purpose of 
interacting with the model to choose the prompt appropriately. 
Appropriate prompts can fully utilize the linguistic capabilities of an 
LLM, which not only improves the accuracy of model generation, but 
also effectively guides the LLM to generate content satisfying needs of 
users. The combination of a reasonable and effective prompt design with 
an appropriate LLM is the key to achieve satisfactory and accurate re
sults in LLM-based auto building modeling. 

2.2.2. Attention mechanism in LLM-based building modeling 
The self-attention mechanism is at the core of LLMs. In contrast to 

traditional recurrent neural network (RNN) or long-short-term memory 
network (LSTM), which rely on sequential processing, the self-attention 
enables models to assign different attention weights at different loca
tions in the input sequence. This mechanism allows the model to focus 
on different information while processing the input sequence. The self- 
attention mechanism permits each word to adjust its importance to 
the context during the encoding process. It involves the dot-product the 
encoded input with matrix queries (Q) and keys (K) of dimension dK, and 
matrix values (V) of dimension dV. Applying a softmax function to obtain 
the weights on the values, the output of attention matrix as [18]: 

Atteention(Q, K, V) = softmax

(
QKT

̅̅̅̅̅
dK

√

)

V 

In building simulation scenarios, the Q, K, V matrices can be un
derstood as representing the impact of different parameters on simula
tion results in our downstream tasks (i.e., building modeling). For 
example, the impact of heating, cooling, and electricity on buildings. To 
further enhance the model’s capability, attention is divided into multi
ple heads. These multi-heads are designed to capture various channels of 
information in the input, especially when dealing with multiple types of 
inputs and prompt formats. Each head presents a distinct type of rep
resentation. The final outputs are obtained through concatenation or 

Fig. 1. The framework of our Eplus-LLM platform.  
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weighted averaging all heads. The output of the self-attention layer is 
passed into a feed-forward neural network, which includes a fully con
nected layer [34] and an activation function [35]. This helps to 
introduce the capability of thoroughly capturing nonlinear dynamics in 
modeling, for example, interrelationships among building system com
ponents in building modeling. Additionally, there is a residual connec
tion [36] around each of the two sub-layers, followed by layer 
normalization [37], to reduce overfitting and gradient problems. These 
are beneficial for model training. 

2.3. Fine-tuning for customizing auto-building modeling tasks 

2.3.1. Generating datasets for model fine-tuning 
The fine-tuning dataset, utilizing to customize the LLM for auto- 

building modeling, was generated through two main steps:  

(1) Constructing parameters-IDF scenario pairs 

The amount of data required for fine-tuning is substantial. To attain a 
wide range of building modeling scenarios, we utilized a Latin 

hypercube design [38] to sample diverse combinations of parameters, 
e.g., different building geometries, window-to-wall ratios, and internal 
load variations, and generated IDF files corresponding to different 
parameter combinations, i.e., parameter-to-IDF file correspondence. 
This step yielded a comprehensive dataset comprising diverse building 
model descriptions of various parameter settings, as essential to support 
fine-tuning processes.  

(2) Constructing descriptions-IDF sentence pairs 

After constructing the parameters-IDF scenario pairs, the next step is 
to connect these IDF files (as targets) with corresponding natural lan
guage descriptions (as prompts) for model fine-tuning. The prompt de
scribes what the model should focus on or generate under user’s 
simulation requirements. For example, during simulation, the prompt 
includes a description of the building to be simulated, containing the 
specifications of geometry, window details, and internal loads. The 
target part corresponds to the building model in IDF format for Ener
gyPlus. With a Python script, we translated the building model param
eters to a description prompt of buildings. Four different prompt formats 

Fig. 2. An overview of Eplus-LLM platform to support auto-building simulation.  
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are designed to cover different descriptions of model requirements, 
resulting in a total of 70,000 pairs of prompt-targets for fine-tuning. 
Table 1 lists our four designed prompt formats with their simulation 
requirement parameters. Fig. 3 clarifies the window position within our 
prompt formats. The term “window height” refers to the vertical 
dimension of the window, while the “window sill” denotes the vertical 
distance between the window and the wall, influencing the window’s 
vertical placement. The “window jamb” represents the horizontal dis
tance between the window and the wall, affecting the window’s hori
zontal placement. We maintain a constant value of 0.1 across all prompts 
for the window jamb with a window-wall ratio. 

To illustrate the correlation between natural language descriptions 
(prompts) and IDF files, we provide a simple example (Fig. 4). The 
geometric configuration of building surfaces is delineated by co
ordinates, with interconnections among various surfaces. Due to the 
extent of IDF details, presenting the entire content in the paper is un
feasible. Therefore, we have extracted parts of geometry, window 
setting, and internal load (e.g., wall, window, and electric equipment) 
from the IDF and matched them with the corresponding parts in the 
prompt, as shown in Fig. 4. 

2.3.2. Fine-tuning and auto-simulation 
After obtaining the processed dataset for fine-tuning, these dataset (i. 

e., processed sentence pairs) were encoded using byte-pair encoding 
[39], which has a shared source target vocabulary of ~32,000 tokens. 

Sentence pairs were batched together by the same sequence length and 
each training batch contained 5 sets of sentence pairs for fine-tuning. 
The model weights are adjusted through back-propagation to mini
mize the discrepancies between the generated IDF files and the actual 
IDF files. Once the model achieves a satisfactory level of performance, it 
can be deployed with a building energy simulation engine, EnergyPlus, 
to generate building models and produce results (Fig. 2. b). This fine- 
tuned LLM can automatically generate building modeling files based 
on various requirements and input parameters. We fine-tuned our model 
on one machine with one NVIDIA A100 80G GPU. Each training step 
took ~1.5 s. We trained the model for a total of 32,000 steps with ~16 h. 

3. Model validation and analysis 

Prior to fine-tuning, we evaluated the performance of the foundation 
model (original Flan T5) using direct generation and one-shot learning 
(without fine-tuning) as a baseline for our building modeling task. 
Subsequently, following fine-tuning of our model, we conducted a total 
of 152 validation instances to verify the effectiveness and stability of the 
developed computing platform for auto and accurate building modeling 
from natural language descriptions. All auto-generated models run 
successfully, achieving 100% accuracy with the ground truth. In Section 
3.1, we examined the performance of the foundation model using direct 
generation and one-shot learning. In Section 3.2, we tested the model’s 
capability to generate corresponding outputs by inputting different 

Fig. 2. (continued). 
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types of prompts randomly and manually, ensuring its seamless inte
gration into the simulation engine and successful execution. In Section 
3.3, we compared the time efficiency of the LLM-based Eplus-LLM 
platform with manual approaches. In Section 3.4, we assessed the 
robustness and anti-interference ability of the model in generation by 
introducing various types of noise and unseen prompts. These steps aim 
to guarantee the effectiveness, robustness, and versatility of the devel
oped platform in practical applications. 

3.1. Comparison of fine-tuning, prompt tuning, and direct generation 

To assess performance of the fine-tuned LLM, we compare the 

accuracy of auto-building modeling under specified prompts between 
the fine-tuned LLM and two baselines without fine-tuning, i.e., direct 
generation (original LLM directly generates content based on the input 
prompt) and one-shot learning (original LLM is fed with one example of 
prompt-IDF pair, then instructing LLM for similar auto-modeling) [40]. 
Four prompts were designed for comparison of auto-model generation 
with-out fine-tuning and the test results are presented in Table 2. For 
direct generation, we observed that regardless of the prompt complexity, 
the output results are irrelevant to the task content. This is not surprising 
since Flan-T5 was not trained with any knowledge of building modeling 
or EnergyPlus software in the previous pre-training phase. As for the 
one-shot learning, it appears that the model only generates a few initial 
words with formatting errors, garbled content, and incomplete 
comprehension. Furthermore, due to Flan-T5 being trained only on 
sentences with a maximum length of 512 tokens during the pre-training 
phase, it is insufficient to produce a complete building description files 
with sufficient length. However, fine-tuning can overcome the limita
tions of the foundation model’s token constraints. This further demon
strates the effectiveness of our fine-tuning process in model validation 
(Section 3), which enables the model to adapt to downstream tasks and 
achieve 100% accuracy in auto-generation of building model 
description. 

3.2. Validation of Eplus-LLM generation 

According to the four prompts in Section 2.4, we randomly generated 
10 instances and manually generated 10 instances for four types of 
prompts in this validation process to verify the output produced by the 
Eplus-LLM, resulting in a total of 80 instances. The randomly and 
manually generated prompt examples are presented in Table 3. The 
validation of the accuracy is based on the match of the generated IDF 
file, the corresponding model, and simulation results, including indoor 
temperature and energy consumptions (Fig. 5). The validation results 
indicate that all 80 instances can be correctly invoked by the EnergyPlus 
engine. Additionally, they perfectly matched the ground truth models 
and simulation results, achieving 100% accuracy. The first prompts can 
only generate building models with a default WWR (i.e., WWR = 0.3). 
The second prompt can generate different WWR but cannot specify the 
position of the window. The third and fourth prompts allow for speci
fying the window position. 

3.3. Comparison of time efficiency between manual and LLM-based 
modeling approaches 

In this section, to evaluate the time efficiency of the LLM-based 
modeling method, we compared the modeling time of using the Eplus- 
LLM platform with two manual modeling approaches, i.e., directly 
using EnergyPlus IDF Editor and through OpenStudio GUI for BEM. We 
measured the time taken for modeling across 24 instances covered in 
Section 3.2, which includes 8 prompts*3 instances of building models in 
different complexity. Specific experiment results are shown in Table 4. 

For manual modeling using EnergyPlus, users need to define model 
geometry with coordinates. This necessitates users to pre-calculate po
sition of different points on building surfaces based on the design 
floorplan and determine window coordinates according to the WWR, 
taking approximately 70% of the entire modeling time. Particularly 
when the model precision extends to centimeters, manual calculation 
not only becomes burdensome but also prone to errors, significantly 
prolonging the modeling process. Additionally, inputting other required 
information such as space types and thermal zones in the software to 
ensure alignment with internal loads occupies ~30% of the modeling 
time as remaining. Overall, depending on the model complexity, con
structing an instance model in EnergyPlus typically takes between 35 
and 56 min. To make modeling process easier, OpenStudio is the 
graphical user interface that enables users to construct geometry directly 
through drawing, helping reduce the modeling efforts. However, this 

Table 1 
Four types of prompt formats.  

Prompt 
Format 

Simulation requirement 
parameters 

Prompt 

1 Length, weight, height “Simulate a building that is xx 
meters long, xx meters wide, and xx 
meters high.” 

2 Length, weight, height, WWR, “Simulate a building that is xx 
meters long, xx meters wide, and xx 
meters high. The window-to-wall 
ratio is xx.” 

3 Length, weight, height, WWR, 
window position, 

“Simulate a building that is xx 
meters long, xx meters wide, and xx 
meters high. The window-to-wall 
ratio is xx, the window sill height is 
xx meters, the window height is xx 
meters, and the window jamb width 
is xx meters.” 

4 Length, weight, height, WWR, 
window position, occupant, 

lighting, equipment 

“Simulate a building that is xx 
meters long, xx meters wide, and xx 
meters high. The window-to-wall 
ratio is xx, the window sill height is 
xx meters, the window height is xx 
meters, and the window jamb width 
is xx meters. The occupancy rate is 
xx m2/people, the lighting level is xx 
W/m2, and the equipment power 
consumption is xx W/m2.”  

Fig. 3. Explanation of the window position in the prompts.  
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still requires establishing a spacing grid and drawing (~30% of the time 
to use OpenStudio in modeling), assigning various information such as 
stories, thermal zones, space types, constructions, and windows in the 
geometry interface tab (~30% of the time), and pre-setting space types, 
thermal zones, and internal loads (~40% of the time). Constructing an 
instance in OpenStudio takes from 11 to 20 min for different cases. 
Lastly, establishing a building model in the Eplus-LLM platform only 
requires users to write a natural language prompt in the platform 
interface, after which Eplus-LLM automatically generates the corre
sponding building model in IDF format for modeling (Fig. 6). This pro
cess takes approximately 1 min, including about 30 s to write prompts 
and another 30s for LLM generation. 

In conclusion, utilizing Eplus-LLM for auto-modeling through natu
ral language can significantly reduce the modeling efforts by over 95% 
while ensuring modeling accuracy. Moreover, for beginners, manual 
modeling of buildings using software programs has a steeper learning 
curve, including initial model establishment and troubleshooting. It is 
foreseeable that as building models grow in complexity, the efficiency 
gains from using LLM-based auto-modeling methods is expected to 
become more pronounced. 

3.4. Robustness evaluation of Eplus-LLM in auto-modeling 

In order to evaluate the robustness of our prompts, we introduced 
four types of noises for every prompt format: user’s tone styles, spelling 
mistakes, omitted words, and extra words. We conducted two tests for 
each prompt under every noise condition, resulting in a total of 4*4*2 =
32 instances. Table 5 lists the examples of different noises. The test re
sults indicate that our model exhibits high robustness, flexibility, and 
resistance to the noise of user commands in practice. Even under varying 
degrees of noise influence, it can still generate results that meet user 
requirements with 100% accuracy in generation. 

In addition, during our testing, we observed that Eplus-LLM exhibits 
a certain degree of self-learning, specifically, the ability to process 
previously unseen information (Table 6). Through fine-tuning in 

training, Eplus-LLM acquired new concise expressions for prompts. 
These new prompts were not included in the fine-tuning datasets. For 
Example, for the unseen Prompt 4, Eplus-LLM learned the ability to 
identify window locations. Consequently, modelers only need to specify 
the window sill and window height, eliminating the need to additionally 
specify the WWR and window jamb, as required previously. For the 
unseen Prompt 1, 2 and 3, Eplus-LLM can adapt to new prompt struc
tures by learning the interrelationships between various prompts 
(Prompt 3 and 4). This illustrates the versatility, adaptability, and 
scalability of Eplus-LLM. We conducted 10 tests for each unseen prompt. 

4. Discussion and further work 

4.1. Model structure and mechanism for LLM-based auto-building 
modeling 

While current LLMs employ various model structures, e.g., decoders- 
only, encoders-only, or decoders-encoders for diverse tasks, there is no 
consensus on the optimal model structure for the task of IDF generation. 
Although PTMs that rely solely on decoders or encoders, such as BERT 
and GPT, have achieved some success, they are suboptimal in compre
hending tasks or processing code due to the inherent constraints and 
limited flexibility associated with decoder or encoder model structures 
[27,31]. The auto building modeling task to generate model description 
in length with specific required structure (as the advantage of decoders). 
Also, the utilized LLM needs to thoroughly comprehend the user’s 
modeling description (as the advantage of encoders), ensuring a precise 
understanding and reasoning of the corresponding IDF details, as even 
minor errors can lead to simulation failure. The encoders-decoders 
model proves to be particularly advantageous in tasks requiring intri
cate mapping and capturing of element relationships between input and 
output sequences; that is why we chose T5 with encoders-decoders 
structure as the foundation model for our auto-modeling. 

While the working mechanism of LLMs remains a black box, posing 
challenges in understanding how distinct models excel in various 

Fig. 4. An example of a specific prompt with detailed IDF.  
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downstream tasks and the rationale behind specific outcomes, one cer
tainty prevails: attention is the key to the success of LLMs [41]. In this 
study, the Eplus-LLM utilizes attention to focus on different parts of the 
user simulation command, capture complex relationships in natural 
language descriptions of building models, and map these descriptions to 
building model files. Improvements of attention mechanism, as listed 
below, are expected to further boost the LLM applications in auto- 
building modeling:  

(1) Capability to Handle Longer Context in Attention 

Current LLMs typically support context lengths of 2048 or 4096 to
kens. Longer text content acceptable by LLM indicates its increasing 
capability to support modeling of more complex buildings and enhance 
human-AI interaction in the auto modeling process. This further in
creases the flexibility of auto-building modeling. Block-sparse Fla
shAttention [42], attention sink [43], and related methods expected to 
serve as potential techniques for scaling up the acceptable tokens.  

(2) Efficient Attention and Model Architecture 

Modifying the conventional attention architecture (e.g., through the 

addition or combination of diverse layers) as exemplified by approaches 
such as SOLAR [44], MOE [45], and Mistral [46] is anticipated to 
yield more efficient models. These modifications aim to improve 
computational efficiency, ultimately facilitating an efficient and precise 
inference process. 

4.2. Prompts and instructions to boost LLMs 

In this study, we chose Flan-T5 (encoders-decoders structure) as the 
foundation model for our Eplus-LLM platform, achieving satisfactory 
performance in auto-model generation. Besides the model structure, the 
inherent scaling prompt and instruction process used to produce Flan-T5 
is also a key factor contributing to its success. By scaling the number of 
tasks, scaling the model size, and finetuning on chain-of-thought data, 
the performance of the model is greatly enhanced, enabling it to attain 
strong capability even compared to larger LLMs. This makes Flan-T5 
more suitable for various downstream tasks that require fine-tuning, 
such as auto-building modeling in this study. 

With limited computational resources, using high-quality prompt 
and instruction for model fine tuning is an important approach to 
improve model performance [32]. By skillfully designing prompts and 
instructions, we can improve model performance by directing the model 
to focus on important information in the building design and simulation 
task. In our study, we carefully designed four types of prompts to 
enhance the flexibility, versatility, and robustness of the fine-tuned LLM 

Table 2 
Baseline results without fine-tuning.  

Prompt 
format 

Input prompt Output (Direct 
generation) 

Output (One-shot 
learning) 

1 “Generate IDF using 
EnergyPlus: Simulate a 
building that is 20.00 
meters long, 40.00 
meters wide, and 4.00 
meters high.” 

“It will use a total 
of 0.002 
kilowatts.” 

“BuildingSurface: 
Detailed, face 0, floor, 
extslabcarpet 4in” 

2 “Generate IDF using 
EnergyPlus: Simulate a 
building that is 20.00 
meters long, 40.00 
meters wide, and 4.00 
meters high. The 
window-to-wall ratio is 
0.3.” 

“The total number 
of windows is.” 

“BuildingSurface: 
Detailed, face 0, floor, 
extslabcarpet 4in” 

3 “Generate IDF using 
EnergyPlus: Simulate a 
building that is 150.00 
meters long, 50.00 
meters wide, and 
20.00 meters high. The 
window-to-wall ratio is 
0.60, the windowsill 
height is 4.00 meters, 
the window height is 
16.00 meters, and the 
window jamb width is 
0.01 meters.” 

“The total IDF for 
the building is.” 

“BuildingSurface: 
Detailed, face 0, floor, 
extslabcarpet 4in” 

4 “Generate IDF using 
EnergyPlus: Simulate a 
building that is 150.00 
meters long, 50.00 
meters wide, and 
20.00 meters high. The 
window-to-wall ratio is 
0.60, the windowsill 
height is 4.00 meters, 
the window height is 
16.00 meters, and the 
window jamb width is 
0.01 meters. The 
occupancy rate is 5.00 
m2/people, the lighting 
level is 10.00 W/m2, 
and the equipment 
power consumption is 
20.00 W/m2.” 

“The building uses 
a total of.01 m3 of 
energy per square 
meter.” 

“BuildingSurface: 
Detailed, face 0, floor, 
extslabcarpet 4in”  

Table 3 
Examples of model generated for random and manual testing.  

Random input Manual input 

Generated 
model 

Prompt Generated 
model 

Prompt 

“Simulate a building 
that is 172.70 meters 
long, 337.90 meters 
wide, and 56.60 meters 
high.” 

“Simulate a building 
that is 20.00 meters 
long, 20.00 meters 
wide, and 5.00 meters 
high.” 

“Simulate a building 
that is 44.60 meters 
long, 279.20 meters 
wide, and 90.50 meters 
high. The window-to- 
wall ratio is 0.50.” 

“Simulate a building 
that is 80.00 meters 
long, 50.00 meters 
wide, and 10.00 meters 
high. The window-to- 
wall ratio is 0.30.” 

“Simulate a building 
that is 121.90 meters 
long, 44.50 meters 
wide, and 42.10 meters 
high. The window-to- 
wall ratio is 0.40, the 
window sill height is 
12.63 meters, the 
window height is 29.47 
meters, and the window 
jamb width is 0.01 
meters.” 

“Simulate a building 
that is 200.00 meters 
long, 100.00 meters 
wide, and 10.00 meters 
high. The window-to- 
wall ratio is 0.40, the 
windowsill height is 
3.00 meters, the 
window height is 7.00 
meters, and the window 
jamb width is 0.01 
meters.” 

“Simulate a building 
that is 390.00 meters 
long, 217.90 meters 
wide, and 35.30 meters 
high. The window-to- 
wall ratio is 0.30, the 
window sill height is 
12.35 meters, the 
window height is 22.94 
meters, and the window 
jamb width is 0.01 
meters. The occupancy 
rate is 25.60 m2/ 
people, the lighting level 
is 10.50 W/m2, and 
the equipment power 
consumption is 5.60 
W/m2.” 

“Simulate a building 
that is 150.00 meters 
long, 50.00 meters 
wide, and 20.00 meters 
high. The window-to- 
wall ratio is 0.60, the 
windowsill height is 
4.00 meters, the 
window height is 16.00 
meters, and the window 
jamb width is 0.01 
meters. The occupancy 
rate is 5.00 m2/people, 
the lighting level is 
10.00 W/m2, and the 
equipment power 
consumption is 20.00 
W/m2.”  
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in auto-building modeling. Prompts usually contain information about 
the context of the task, as crucial to help the LLM comprehend the re
quirements of the task. By designing the prompt appropriately, models 
can successfully focus on key information in the input sequence (e.g., 
information about the building geometry and internal loads). On the 
other hand, instructions with more specific and detailed input guidance 
can tell the model how to handle the task. Instruction can be designed to 

emphasize specific patterns, regularities, or features that help the model 
learn key information about the task. For example, in our task, in
struction is set as “simulation” to tell the model to perform a simulation 
task. Providing explicit guidance helps the model to fully utilize the pre- 
train data to make the model fine-tuning converge faster, learn key as
pects of the task, and reduce its sensitivity to noise. 

Notably, by flexibly combining and designing prompts and in
structions according to the simulation requirements, models become 
better adaptable to a variety of unseen prompt types rather than being 
limited to prompts from the training dataset (initial prompts). This 
flexibility is essential to improve the generality and robustness of the 
developed auto-modeling platform. For building design and simulation 
as a downstream task, designing excellent prompts and instructions 
becomes an effective means to improve model performance and 

Fig. 5. Simulation results, including indoor temperature, heating, cooling, and electricity consumptions.  

Table 4 
Estimated time range of manual and LLM-based modeling.   

EnergyPlus OpenStudio Eplus-LLM 

Modeling time 35–56 min 11–20 min 40–74 s  

Fig. 6. Input a prompt to Eplus-LLM platform for automated modeling.  
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diversity. The key to this design lies in a profound understanding of the 
relationship between simulation tasks and model predictions, ensuring 
that the prompt and instruction boost the model’s reasoning ability. 

4.3. Empowering the entire building life cycle with LLM 

This study represents a pioneering effort to automate building model 
creation directly from natural language descriptions provided by mod
elers. This is especially useful to assist architects and modelers to assess 
building design in the conceptual design stage through quick and 
automated generation of building models. Furthermore, the LLMs have 
the potential to support building development in its full lifecycle (such 
as construction and operation), not limited to the model design phase in 
this paper. For example, during the construction phase, LLM can facili
tate interaction between construction personnel and AI to provide real- 
time decision support, optimize construction schedules, and predict 
potential risks. In the operation phase, LLMs-based methods will facili
tate building control or community-level control through real-time 
human-AI interaction, maximizing occupant comfort, and the poten
tial for building energy efficiency and decarbonization. Overall, the 
application of LLMs across the entire building lifecycle has the potential 

to further improve efficiency, reduce costs, enhance decision support, 
and steer the building sector toward a smart and sustainable future. 

5. Conclusion 

In this study, we introduce and demonstrate the successful devel
opment of Eplus-LLM as the first LLM-based automated building 
modeling platform. The platform provides a user-friendly human-AI 
interface, allowing users to conduct building simulation directly from 
natural language, without requiring in-depth knowledge of complex 
building science and simulation software. The Eplus-LLM understands 
human language through tokenization and embedding techniques, and 
overcomes the complexity of auto-file generation for building modeling 
through self-attention. Then, it can output building models and simu
lation results by invoking EnergyPlus as the simulation engine. This 
innovation greatly reduces the modeling efforts and dependency of 
software in modeling. In order to meet the simulation needs of different 
users, we also designed four different prompts to make Eplus-LLM more 
adaptable and versatile. 

To validate the effectiveness of our developed platform in support 
modeling practice, we presented a total of 152 test cases. The validation 

Table 5 
Examples of different noised prompts.  

Format Initial prompt Different Tone styles Spelling mistakes Omitted words Extra words 

1 “Simulate a building that is 
30.00 meters long, 40.00 meters 
wide, and 3.50 meters high.” 

“Create a model representing a 
building with dimensions of 
30.00 meters in length, 40.00 
meters in width, and a height of 
3.50 meters.” 

“Simulatte a bilding that is 
30.00 meteres long, 40.00 
meter wide, and 3.50 meters 
hi.” 

“building 30.00 meters long, 
40.00 meters wide, 3.50 meters 
high.” 

“Simulate a giraffe building that is 
30.00 marshmallow meters long, 
40.00 kazoo meters wide, and 3.50 
trampoline meters high.” 

2 “Simulate a building that is 
33.30 meters long, 455.50 
meters wide, and 8.80 meters 
high. The window-to-wall ratio is 
0.33.” 

“Generate a simulation for a 
structure with dimensions of 
33.30 meters in length, 455.50 
meters in width, and a height of 
8.80 meters. The window-to-wall 
ratio is set at 0.33.” 

“Simulate aa buidling that is 
33.30 meters long, 455.50 
metrs wide, and 8.80 meters 
high. The window-to-wll ratio 
is 0.33.” 

“building 33.30 meters long, 
455.50 meters wide, 8.80 
meters high. The window wall is 
0.33.” 

“Simulate a pineapple trampoline 
giraffe building that is 33.30 kazoo 
meters long, 455.50 marshmallow 
xylophone meters wide, and 8.80 
sombrero meters high. The 
bubblegum window-to-pickle wall 
ratio is 0.33.” 

3 “Simulate a building that is 
36.50 meters long, 326.00 
meters wide, and 55.50 meters 
high. The window-to-wall ratio is 
0.44, the window sill height is 
8.72 meters, the window height is 
49.39 meters, and the window 
jamb width is 0.01 meters.” 

“Develop a simulation for a 
structure with dimensions of 
36.50 meters in length, 326.00 
meters in width, and a height of 
55.50 meters. Integrate a 
window-to-wall ratio of 0.44, 
with a window sill height of 8.72 
meters, a window height of 
49.39 meters, and a window 
jamb width of 0.01 meters.” 

“Simullate a building that is 
36.50 meters long, 326.00 
meters wide, and 55.50 meters 
hiegh. The window-to-wal ratio 
is 0.44, the window sill hieght is 
8.72 meters, the window hieght 
is 49.39 metrs, and the window 
jamb width is 0.01 meters.” 

“building 36.50 meters long, 
326.00 meters wide, 55.50 
meters high. Window-wall is 
0.44, the window sill is 8.72 
meters, the window height is 
49.39 meters, window jamb is 
0.01 meters.” 

“Simulate an extraordinarily 
purple building that is 36.50 
extremely meters long, 326.00 
peculiarly meters wide, and 55.50 
fascinatingly meters high. The 
window-to-wall ratio is 0.44, the 
astonishing window sill height is 
8.72 delightfully meters, the 
window height is 49.39 
mysteriously meters, and the 
window jamb width is 0.01 
excessively meters.” 

4 “Simulate a building that is 
83.50 meters long, 55.00 meters 
wide, and 16.00 meters high. 
The window-to-wall ratio is 
0.35, the window sill height is 
3.20 meters, the window height is 
12.80 meters, and the window 
jamb width is 0.01 meters. The 
occupancy rate is 5.50 m2/ 
people, the lighting level is 18.00 
W/m2, and the equipment power 
consumption is 10.00 W/m2.” 

“Create a model representing a 
building measuring 83.50 meters 
in length, 55.00 meters in width, 
and 16.00 meters in height. 
Incorporate specific window 
features like a window-to-wall 
ratio of 0.35, a window sill 
height of 3.20 meters, a window 
height of 12.80 meters, and a 
window jamb width of 0.01 
meters. Take into account an 
occupancy rate of 5.50 square 
meters per person, a lighting level 
of 18.00 watts per square meter, 
and equipment power 
consumption of 10.00 watts per 
square meter.” 

“Simullate a bilding that is 
83.50 meters long, 55.00 metrs 
wide, and 16.00 meters hiegh. 
The window-to-wll ratio is 
0.35, the window sill hight is 
3.20 metrs, the window hieght 
is 12.80 meters, and the 
window jamb widht is 0.01 
metrs. The occupancy rate is 
5.50 m2/people, the lightnng 
level is 18.00 W/m2, and the 
equipmnt power consuption is 
10.00 W/m2” 

“Building 83.50 meters long, 
55.00 meters wide, 16.00 
meters high. The window-to- 
wall 0.35, the sill height is 3.20 
meters, the window height is 
12.80 meters, and the window 
jamb is 0.01 meters. 
Occupancy 5.50 m2/people, 
lighting 18.00 W/m2, and 
equipment is 10.00 W/m2.” 

“Simulate a futuristic building that 
is 83.50 meters long, 55.00 meters 
wide, and 16.00 meters high. The 
window-to-wall ratio, a key 
element of its design, is 
meticulously set at 0.35. The 
window sill height gracefully 
extends to 3.20 meters, while the 
soaring window height reaches an 
impressive 12.80 meters, with a 
sleek window jamb width of 0.01 
meters. The occupancy rate, 
carefully calculated, stands at 
5.50 m2/people, ensuring a 
harmonious balance within its 
space. Illuminating the 
surroundings, the lighting level 
radiates at 18.00 W/m2, creating 
a vibrant atmosphere. 
Furthermore, the building’s 
efficiency is evident as the 
equipment power consumption is 
maintained at a sustainable 10.00 
W/m2.”  
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results demonstrate that Eplus-LLM not only achieved 95% time effi
ciency and 100% accuracy aligning with manual expert modeling, but 
also exhibited robustness and adaptability to various noises and unseen 
prompts in application. This robustness underscores the effectiveness of 
our approach as basis for further applications, such as UBEM and cali
bration. In the discussion section, we introduce and explore the di
rections for model selection and attention mechanism in LLMs. 
Additionally, we discuss the strategies to boost the LLM performance 
through prompts and instructions. Lastly, we project the future impacts 
of generative AI with LLMs to support building development for the 
entire life cycle of buildings. 

As to limitations, our developed platform is currently subject to 
objective conditions (e.g., GPUs, training time, and LLM performance) 
and is only able to handle relatively simple modeling cases under regular 
settings (e.g., rectangular building shape with WWR) as representative 
examples. In practical building modeling, various systems with complex 
geometries, different zones, and schedules are expected, requiring a 
further enhancement of the developed platform for automated 
modeling. Moreover, our platform has not been able to process in
terdependencies such as “placing this window in the xxx position of the 
south wall” since it requires the LLM to obtain more semantic infor
mation and make corresponding changes. 

Future research directions will include further exploring and 
applying LLMs to enhance their potential in various real-world appli
cations. We advocate for investigations on more flexible and complex 
modeling scenarios, such as buildings with complex zoning or prompts 
for auto-modeling containing semantic description of buildings (e.g., 
south/north wall). These efforts will further advance the development of 
auto building modeling platform, providing more powerful (AI) tools for 
future building design and intelligent building management. 
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[6] Dymola. Dassault Systèmes. https://www.3ds.com/products/catia/dymola; 2023 
(accessed January 14, 2024). 

[7] Welcome | TRNSYS : Transient System Simulation Tool. n.d. https://www.trnsys. 
com/. [Accessed 14 January 2024]. 

[8] Yan D, Xia J, Tang W, Song F, Zhang X, Jiang Y. DeST — An integrated building 
simulation toolkit part I: fundamentals. Build Simul 2008;1:95–110. https://doi. 
org/10.1007/s12273-008-8118-8. 

[9] EnergyPlus. n.d. https://energyplus.net/. [Accessed 14 January 2024]. 
[10] 14:00–-17:00. ISO 13790:2008. ISO; 2024. n.d. https://www.iso.org/standard/4 

1974.html (accessed January 14, 2024) 
[11] VDI 6007 Blatt 1 - Calculation of transient thermal response of rooms and buildings 

- Modelling of rooms. 2015. 
[12] DesignBuilder Software Ltd - Home. n.d. https://designbuilder.co.uk/. [Accessed 

14 January 2024]. 
[13] OpenStudio. n.d. https://openstudio.net/; 2024 (accessed January 14, 2024) 

Table 6 
Unseen types of prompt format.   

Format Initial simulation requirement 
parameters 

Simulation requirement 
parameters 

Unseen prompt 

New 
prompt 

1 Length, weight, height Length, 
weight, 
height 

+

window position 
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