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Nature-inspired designs for disordered acoustic
bandgap materials†

Xinzhi Li a and Dapeng Bi *b

We introduce an amorphous mechanical metamaterial inspired by how cells pack in biological tissues.

The spatial heterogeneity in the local stiffness of these materials has been recently shown to impact the

mechanics of confluent biological tissues and cancer tumor invasion. Here we use this bio-inspired

structure as a design template to construct mechanical metamaterials and show that this heterogeneity

can give rise to amorphous cellular solids with large, tunable acoustic bandgaps. Unlike acoustic crystals

with periodic structures, the bandgaps here are directionally isotropic and robust to defects due to their

complete lack of positional order. Possible ways to manipulate bandgaps are explored with a combination

of the tissue-level elastic modulus and local stiffness heterogeneity of cells. To further demonstrate the

existence of bandgaps, we dynamically perturb the system with an external sinusoidal wave in the

perpendicular and horizontal directions. The transmission coefficients are calculated and show valleys that

coincide with the location of bandgaps. Experimentally this design should lead to the engineering of self-

assembled rigid acoustic structures with full bandgaps that can be controlled via mechanical tuning and

promote applications in a broad area from vibration isolations to mechanical waveguides.

1 Introduction
A number of recent studies on mechanical metamaterials1–10 with
full acoustic bandgaps have attracted intense interests. These
materials provide opportunities to precisely control propagations
of mechanical waves and have a broad range of potential applica-
tions in vibration isolation,11 acoustic cloaking,12 wave filters,13,14

waveguides15,16 and mechanical switches.4,17 Most of these stu-
dies have been devoted to the design and optimization of acoustic
crystals,1,2,5–10,18 which are periodic structural materials with full
bandgaps. However, periodicity is not necessary for the formation
of acoustic bandgaps (ABGs)19,20 and amorphous structures with
ABGs can offer many advantages over their crystalline counter-
parts. For example, amorphous acoustic materials can exhibit
bandgaps that are directionally isotropic and are more robust to
defects and errors in fabrications.19,20 Currently, there are few
existing protocols for designing amorphous acoustic materials. In
a recent work by Ronellenfitsch et al.,3 the authors investigate the
acoustic bandgaps in a 2D disordered spring network constructed
from Delanuary triangulation of randomly perturbed periodic unit
cell. They show that the bandgap can be manipulated by optimizing
distribution of stiffness of springs using machine learning

methodologies. But the design is entirely artificial and the
mechanism on how bandgaps arise is not well explored.

Biological tissue is sculpted by cell division, growth and
rearrangements rather than artificial patterning. Therefore,
biological cells naturally pack in a highly disordered manner, which
is inherently non-crystalline.21,22 Previous works have used bio-
logical structures to build amorphous photonic metamaterials23

and topological mechanical materials.24–26 Here, we propose a
design for amorphous 2D ABG materials that is inspired by how
cells pack in dense tissues in biology. We generate structures that
exhibit broad ABGs based on a simple model that has been shown
to describe cell shapes and tissue mechanical behaviors. An
advantage of this design is that the width of ABGs can be directly
tuned by single mechanical parameters. We also take advantage of
the heterogeneity that is naturally-present in biological tissues.
Based on the design protocol, we first study in-depth the static
mechanical properties of the materials and characterize their
acoustic spectrum and bandgaps. We then perform mechanical
wave perturbations on these bio-inspired structures.

1.1 Cells form a natural disordered mechanical network in
biological tissues

When epithelial and endothelial cells pack densely in 2D to
form a confluent monolayer, the structure of the resulting
tissue can be described by a polygonal tiling.27 A great variety
of cell shape structures have been observed in tissue mono-
layers, ranging from near-regular tiling of cells that resembles a
dry foam or honeycomb lattice28 to highly irregular tilings of
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elongated cells.29 Cells can interact with each other via
mechanical forces and can transmit tensions at distances much
larger than the single cell size.30,31 Cells pack in a highly
disordered way,21,22 and form tissues by growth, apoptosis
and rearrangements, which are all dynamical events. Thus
the tissue is able to maintain a homeostatic balance and the
cell shapes are largely maintained. In Fig. 1, we show a snap-
shot of primary human bronchial epithelial cells.32

2 Methods
2.1 Vertex model for generating amorphous cellular
structures

To better understand how cell shapes arise from cell-level
interactions, researchers have studied a simple vertex
model27,28 that incorporates the constraints on cell shapes
imposed by confluence. The original models focused on 2D
monolayers of cells, where the systems are coarse-grained as
networks of cellular polygons that tessellate the plane. In the
vertex model, the basic degrees of freedom are vertex positions
of the polygons. The biomechanics of the tissue is governed by
the energy function27,28,33–37

E ¼
XN

i¼1
KA Ai " Ai

0

! "2þKP Pi " Pi
0

! "2h i
(1)

where cell areas {Ai} and perimeters {Pi} are functions of the
position of vertices {ri} and the connectivity between cells. KA

and KP are the area and perimeter elasticities, respectively.
The term quadratic in cell area Ai results from cell volume

incompressibility and the monolayer’s resistance to height
fluctuations.28,33,35 Changes to cell perimeters are directly
related to the deformation of the acto-myosin cortex concen-
trated near the cell membrane.38,39 After expanding E, the term

KPPi
2 corresponds to the elastic energy associated with deform-

ing the cortex. The linear term in cell perimeter, "2KPP0Pi,
represents the effective line tension contributed by cell i which
gives rise to a ‘preferred perimeter’ P0. The value of P0 can be
decreased by up-regulating the contractile tension in the cortex
of cell i28,33,37,40 and it can be increased by up-regulating cell–
cell adhesion between cell i and its neighbors. For this work, we
will assume the individual preferred cell area A0 does not vary
from cell-to-cell and is set to be equal to the average area per

cell (i.e. A0 = %A), which also sets
ffiffiffiffi
!A

p
as the length unit. Therefore

the unit of the tissue energy would be KP %A. The tissue energy
can be non-dimensionalized by KPA0 as the unit energy scale,

e ¼
PN

i¼1
kA ai " 1ð Þ2þ pi " pi0

! "2h i
, where ai = Ai/ %A and pi ¼ Pi

. ffiffiffiffi
!A

p

are the rescaled shape functions for area and perimeter of the

ith cell. kA = KA %A/KP is the rescaled cell area elasticity, and pi0 ¼

Pi
0

. ffiffiffiffi
!A

p
is the preferred cell shape index.37

To capture the experimental heterogeneity in single-cell
properties and in cell–cell interactions,41–45 we introduce varia-
tions in the preferred shape indices {pi

0}. The majority of this
work uses a Gaussian distributed set of {pi

0} with mean m and
standard deviation s. The results are insensitive to the form of
distribution for {pi

0}.30,31 When the tissue heterogeneity s = 0,
all cells have the same preferred perimeter p0 and the system
becomes a homogeneous tissue which is well studied in pre-
vious works.37,40 The open source code CellGPU46 can be used
to generate cellular structures and implement the vertex model
simulations.

2.2 Characterizing the mechanical property of the cellular
network

In this model, the cell stiffness is determined by the tension tm

on cell–cell junctions (edges).47–53 The tension of the edge m
with length lm shared by cells i,j is given by,54,55

tm &
@E

@lm
¼ KP pi " pi0

! "
þ pj " pj0
! "$ %

: (2)

We also calculate the shear modulus56 to quantify the
rigidity on a tissue level.

To characterize the acoustic property of the system, we first

calculate the Hessian matrix Him;jn ¼
@2E

@rmi @r
n
j

and solve its

engenvalues. By plotting the density of states (DOS), we could
figure out the existence of bandgaps. To obtain the full band
structure at various wave vectors k, we calculate the eigenvalues
of the dynamical matrix, which is the Fourier transform of the
Hessian matrix. Considering a system with energy E, the
equation of motion is

mi€r
m
i ¼ "

@E

@rmi
¼ "

X

jn
Hm;n

i;j r
n
j : (3)

Here ri denotes the position of vertex i. m = x,y are cartesian
indices. We can assume periodic solutions to get the eigenvalue

Fig. 1 Snapshot of a confluent epithelial tissue composed of mature,
well-differentiated primary human bronchial epithelial cells grown in air–
liquid interface culture.32 Image Courtesy of the Park lab at the Harvard
School of Public Health.
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equations

o2rmi ðkÞ ¼
X

jn
Dm;n

i;j ðkÞr
n
j ðkÞ: (4)

Then the dynamical matrix is given by

Dm;n
i;j ðkÞ ¼

1
ffiffiffiffiffiffiffiffiffiffi
mimj
p Hm;n

i;j exp "ik ' Ra
i " Rb

j

& 'h i
: (5)

For an amorphous structure, to calculate the dynamical
matrix, the whole system is treated as a super unit cell contain-
ing multiple vertices. Ra

i denotes the position of the unit cell a
in which the ith vertex is located (see ESI,† Section II). In our

model, the unit of frequency is denoted by o0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KA

!A
(
M0

q
,

where KA is the area modulus and has dimensions of Pa/m. M0

is the mass of the typical cell, which is in the unit of kilogram.

3 Results
3.1 Band structure in homogeneous solid vs. fluid states

In a homogeneous tissue without mechanical heterogeneity, we
find that the bandgaps only exist in fluid states. As shown in
Fig. 2(a) and (b), when the shear modulus G vanishes at p0 =
3.812, the bandgap Do shows up and keeps increasing deep
into fluids. We take two typical states, solid at p0 = 3.75 and
fluid at p0 = 3.9, and calculate the full band structures. The
solid state has no bandgap (Fig. 2(c)) while the fluid has
considerable bandgap (Fig. 2(d)). However, the fluid cannot
transmit mechanical forces as a result of external perturbations
due to the presence of floppy modes. For homogeneous solid
states, increasing the cell perimeter elasticity KP could enhance
the rigidity, which means resulting in higher shear modulus
and making the tissue more rigid. But there is no impact on the
existence of bandgap (see ESI,† Fig. S1). Looking into the band
structure, we find that the appearance of the bandgaps at the
specific mode numbers is universal. The location of the band-
gaps remains between mode NE and NE + 1, where NE is the
number of edges of the system. For a triple-junctional network,
due to the Euler relation N " NE + NV = 0, the number of edges
is 3 times of the cell number NE = 3N and the number of vertices
is NV = 2N. So the bandgaps always appear between mode 3N
and 3N + 1.

To obtain insights on the existence and behavior of the
acoustic bandgaps in the vertex model, we consider the Hessian
matrix of the system,

Hm;n
i;j ¼

@2E

@rmi @r
n
j

¼
XNE

m¼1
tm

@2lm
@rmi @r

n
j

þ KP

XN

a¼1

@Pa

@rmi

@Pa

@rnj
þO Ai

) *! "
(6)

The first term sums over all NE edges where tm is the
mechanical line tension for an edge m shared by cell i and j
defined as eqn (2), and lm is the edge length. The second term is
positive definite and contributes a total count of N to rank(H).
In a recent work by Yan and Bi,54 they show that the area term

has little impact on the counting rule while makes the decom-
position of Hessian much more complicated. So we consider
the special case when KA = 0 without area contribution to the
energy. In eqn (6), all area related terms come down to the
infinitesimal part. Based on the above decomposition of the
Hessian matrix, we can understand the existence of the band-
gaps. The first NE modes are induced by the first term and NE +
1 - 2NV higher modes come from the second term. For solid
states, when upregulating KP, tensions keep increasing and
have no upper limits. Both of the two terms of eqn (6) are
increasing which leads to the fact that all eigenmodes are
shifting higher and no separation between eigenmodes
emerges. For fluid states, the tension is saturating at high KP

values which means that the first term of eqn (6) remains
almost constant while the second term keeps increasing
with KP. Therefore, the first NE modes are almost unchanged
and the NE + 1 - 2NV modes are moving higher when
increasing KP. The separation emerges between mode NE

and NE + 1. That is why the bandgaps only exist in fluids
between modes NE and NE + 1.

3.2 Heterogeneous solids could realize both rigidity and
bandgaps

Fig. 3(a) shows a typical snapshot of the heterogeneous tissue
in the simulations. Colors represent various p0 values of each
cell. In our recent work studying how the heterogeneity affects

Fig. 2 Mechanical and acoustic properties for homogeneous tissues.
We use N = 400 cell system with p0 = 3.75 : 0.01 : 3.95, KP = 1, KA = 1.
(a) Shear modulus G as a function of p0. (b) Width of acoustic bandgap
Do as a function of p0. (c) Band structure for a solid state at p0 =
3.75 indicated by blue asterisk in (a). o is in units of o0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KA

!A
(
M0

q
.

(d) Band structure for a fluid state at p0 = 3.9 indicated by blue
diamond in (a). To obtain the full band structure, the dynamical matrix

and eigenvalues are calculated along the k
-

path M ¼ p=L 1; 1=
ffiffiffi
3
p! "

! C ¼
p=Lð0; 0Þ! K ¼ p=L 1=3; 1=

ffiffiffi
3
p! "

!M ¼ p=L 1; 1=
ffiffiffi
3
p! "

. L ¼
ffiffiffiffi
N
p

is the box
size of the system.
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the rigidity of a tissue, we find a very interesting intermediate
state,30,31 the heterogeneous solid (H. Solid), which has tension
network percolation but no rigid cell contact percolation.
A percolating tension network is shown in Fig. 3(b). The
heterogeneous solids are consequences of the mechanical
heterogeneity while for the homogeneous tissue, this inter-
mediate state disappears. After the heterogeneity s is intro-
duced, the homogeneous fluids can be rigidified at some m
values. The critical value of m that the rigidity transition occurs
is determined by the strength of the heterogeneity s. The
density of states and band structure of a typical heterogeneous
state are shown in Fig. 3(c). The illuminating behavior of the
heterogeneous solids that it still has a sizable bandgap like the
fluid state attracts our curiosity about properties of acoustic
bandgaps in these systems.

As shown in Fig. 4(a), we plot the width of bandgaps Do and
scaled shear modulus G/as a function of fr. Here fr represents
the fraction of rigid cells with p0 o 3.812. For a Gaussian
distributed set of p0 with mean m and standard deviation s, the

fraction of rigid cells can be calculated fr ¼
1

2
erfc

m" 3:812ffiffiffi
2
p

s

+ ,
.

A very interesting crossover is found in Fig. 4(a) near the rigid
cell contact percolation critical point fc

r = 0.48. This behavior is
quite similar with the scaled shear modulus as a function of m
presented in our previous work.30 At the critical fc

r = 0.48 where
the contact percolation occurs, the width of the bandgaps is
constant despite various s values. The crossover separates the
bandgaps into two mechanical regimes. On the left side of fc

r,
Do is increasing with s which means heterogeneity s enhances

the bandgaps. However, when fr is larger than fc
r, Do is

decreasing with s indicating that the heterogeneity is suppres-
sing the bandgap. In the inset of Fig. 4(a), a schemed phase
diagram shows the existence of bandgaps for various hetero-
geneous tissue states. For the fluid state, there is a sizable
bandgap. However, as mentioned above in Section 3.1, the fluid
state is difficult for practical applications due to a number of
floppy modes, which localize external excitations. For a pure
rigid state at m o 3.812, there is no bandgap at all. In Fig. 4(b),
the scaled shear modulus G/s is plotted as a function of fr. By
comparison between Do and G/s, we find that the heteroge-
neous solid states at 0.21 o fr o 0.48 are optimal candidates to
obtain both rigidity and acoustic bandgaps. Now we have states
with complete acoustic bandgaps, how to control the bandgaps
and obtain gaps large enough? We will discuss these problems
in the following section.

3.3 Cell perimeter elasticity could control the size of
mechanical bandgaps

In the vertex model, KP is the cell perimeter elasticity. Inspired
by previous works3,57,58 that the contrast of spring constants
could generate mechanical band gaps in a spring network, we
are wondering if it is possible to control acoustic bandgaps by
tuning KP in the vertex model. In this section, we calculate
mechanical tensions and the width of acoustic bandgaps as a
function of cell perimeter elasticity KP at N = 100, s = 0.1, KA = 1
and various m values. Remember that the rigidity transition
occurs at m E 3.9 when the heterogeneity s = 0.1.30 As shown in
Fig. 5(a), when m o 3.812, the systems are solid states and
tensions t keep increasing with KP. In heterogeneous solids at
3.812 o m o 3.9, t also increase with KP then saturate. In
addition, increasing KP largely promotes the size of bandgaps
which can be seen in Fig. 5(b). The bandgaps Do keep mono-
tonically increasing with KP for heterogeneous solids and fluids
at various m values, showing similar power-law behaviors. As
discussed in Section 3.1, Do also exist between modes NE and
NE + 1 as the homogeneous tissues. This means that the cell
perimeter elasticity KP could change the width but not shift

Fig. 4 Characterizing properties of acoustic band structures. (a) Do as a
function of fr at N = 100,s = 0.05 : 0.01 : 0.2, KP = 10, KA = 1, m =
3.75 : 0.01 : 3.95. There is a crossover at fr E 0.48 which coincides with
the critical point of the rigid cell contact percolation. (inset)Phase diagram
on where acoustic bandgaps exist. (b) Scaled shear modulus G/s vs. fr at
N = 100, s = 0.05 : 0.01 : 0.2, KP = 10, KA = 1, m = 3.75 : 0.01 : 3.95.

Fig. 3 Tissue structure and band structure in the vertex model simula-
tions. (a) Colors represent various p0 values of single cells. (b) Tension
network of the heterogeneous solid state. Edges with finite tensions
are indicated by thick black lines while other edges have t = 0. In this
network, the tension percolation has occurred. (c) Density of states and
band structure along wave vectors k for N = 400, m = 3.87, s = 0.1, KP = 1,
KA = 1.
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mode locations of the bandgaps. Note that increasing KP and
introducing heterogeneity into solid states at m o 3.812 do not
generate bandgaps as shown in ESI,† Fig. S2.

3.4 Transmission coefficient to quantify the size and position
of bandgaps

We have used the density of states and band structure to
characterize the bands of the tissue and quantify the width of
bandgaps. They are all static properties of the system and
predictions based on linear response calculations. To further
demonstrate the existence of the acoustic bandgap and explore
the dynamical property of elastic wave transmission, we calcu-
late the transmission coefficient1,2,59,60 of the system perturbed
by a sinusoidal wave excitation at various driven frequencies.
The excitation is put at the center of the system. Both transverse
and longitude oscillations are applied to the system. In the
tissue, driven vertices evolve according to the overdamped
equation of motion under longitude perturbation,

m0
d2x

dt2
¼

"bdx
dt
þ A sin od tð Þ vertices of center cells

"bdx
dt

other vertices

8
>>><

>>>:
(7)

Here m0 = 1 is the mass of a vertex, b is the damping coefficient,
A is the amplitude of the perturbation and od is the driven
frequency. od is in the unit of o0 which has been discussed in
Section 2.2. For cells on the center, there is an external
sinusoidal driving force Asin(od t) and cells behave as driven
oscillations. Other cells undergo damping oscillations. For a
driven cell, all vertices on the cell are oscillating with the driven
force. In Langevin dynamics, the damping force on vertices is
"bv(x). Therefore, the power dissipated by the cell stripe
located at x is "bv(x)2. By integrating the damping power at a
time interval, we can get the energy dissipated by the vertices at
position x. The transmission coefficient T is defined as the ratio of
the energy dissipated by the perturbed cells at the center of the
system to the energy dissipated on boundary cells. We choose a
typical heterogeneous solid state to calculate the transmission
coefficient. The density of states and band structure are shown in

Fig. 6(a) and (b). As shown in Fig. 6(c), at frequencies within the
gaps, T drops to very low values for both transverse and longitude
waves, indicating prohibited transmission of mechanical waves
with these frequencies. In ESI,† Fig. S3, we make colormaps of
transmission coefficient T(x) for both transverse and longitude
perturbations. T(x) is the ratio of the energy dissipated at x to the
energy dissipated on the boundary. We observe that the valley of
the transmission coefficient of dynamical perturbations is con-
sistent with the bandgaps predicted by the density of states and
the band structures. This further demonstrates the existence of
the bandgaps. For the heterogeneous solid states, whether the
mechanical waves could be transmitted depends on the driven
frequency od. If the driven frequency is within the bandgap, the
propagation of mechanical waves is prohibited, so the transmis-
sion coefficient vanishes. Outside the bandgap where mechanical
waves could transmit through the system, the transmission
coefficient could be finite values.

4 Discussions
In this work, we propose a design for amorphous 2D ABG
materials that is inspired by how cells pack in dense tissues in
biology. We generate structures that exhibit broad ABGs based
on the vertex model that has been shown to describe cell shapes
and tissue mechanical behavior. An advantage of this design is
that the amorphous structure is more robust to defects and cell
rearrangement. In addition, the width of ABGs can be directly
tuned by mechanical parameter, say the cell perimeter elasticity
KP in heterogeneous solids. For a given heterogeneous solid
state, increasing KP largely enhances the width of the bandgap.
The scaling relation between the width of the bandgap Do and
KP shows a universal cluster of the bandgaps. We use both
static mechanical properties such as density of states, band
structures, and dynamical transmission coefficients to charac-
terize ABGs. The width and position of the bandgap are con-
sistent for these results. In our tissue structure, there is a
possible way to optimize the bandgaps by tuning the distribu-
tion of cell perimeter elasticity KP based on a machine learning
algorithm.3 It will be straightforward to manufacture static
acoustic materials based on this design using 3D printing or
laser etching techniques. In addition, fabrication techniques

Fig. 6 Characterization of transmission properties for a heterogeneous
solid state N = 100, m = 3.815, s = 0.1, KP = 5, KA = 1 excited by a sinusoidal
wave A sin(o0 t). The damping coefficient b = 0.8 and amplitude A = 0.1. (a)
Density of states. (b) Band structure along various wave vectors k. (c)
Transmission coefficient T on the boundary for both transverse and long-
itude perturbations at various driven frequencies od.

Fig. 5 Manipulating mechanical tensions and bandgaps. (a) Tension t as a
function of KP at N = 100, KA = 1, s = 0.1, m = 3.75, 3.77, 3.79, 3.80, 3.82,
3.83, 3.85, 3.87, 3.89, 3.90. The data is plotted at log–log scale. (b) Do as a
funciton of KP for the same state as in (a). Do is increasing with KP for
heterogeneous solids and fluids.
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such as electron beam lithography or focused ion beam milling
can also be used to precisely control the geometry and arrange-
ment of micro/nanostructures based on the scale of the system.
An even more exciting possibility is to adapt this design
protocol to self-assemble structures. Recent advances in emul-
sion droplets have demonstrated feasibility to reconfigure the
droplet network via tunable interfacial tensions and bulk
mechanical compression. Researchers have shown that the
amorphous biological tissue can be used as a template to
design photonic materials.23 Therefore, our protocol provides
the possibility to construct the metamaterial with both acoustic
and photonic bandgaps.
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and F. Jülicher, Eur. Phys. J. E: Soft Matter Biol. Phys., 2010,
33, 117–127.

Paper Soft Matter

Pu
bl

is
he

d 
on

 1
1 

O
ct

ob
er

 2
02

3.
 D

ow
nl

oa
de

d 
by

 N
or

th
ea

st
er

n 
U

ni
ve

rs
ity

 o
n 

6/
4/

20
24

 6
:1

1:
09

 P
M

. 
View Article Online

https://doi.org/10.1039/d3sm00419h


This journal is © The Royal Society of Chemistry 2023 Soft Matter, 2023, 19, 8221–8227 |  8227

34 B. Li and S. X. Sun, Biophys. J., 2014, 107, 1532–1541.
35 A. G. Fletcher, M. Osterfield, R. E. Baker and

S. Y. Shvartsman, Biophys. J., 2014, 106, 2291–2304.
36 S. Kim and S. Hilgenfeldt, Soft Matter, 2015, 11, 7270–7275.
37 D. Bi, J. H. Lopez, J. M. Schwarz and M. L. Manning, Nat.

Phys., 2015, 11, 1074–1079.
38 L. Hufnagel, A. A. Teleman, H. Rouault, S. M. Cohen and

B. I. Shraiman, Proc. Natl. Acad. Sci. U. S. A., 2007, 104,
3835–3840.

39 S. M. Zehnder, M. Suaris, M. M. Bellaire and T. E. Angelini,
Biophys. J., 2015, 108, 247–250.

40 J.-A. Park, J. H. Kim, D. Bi, J. A. Mitchel, N. T. Qazvini,
K. Tantisira, C. Y. Park, M. McGill, S.-H. Kim, B. Gweon,
J. Notbohm, R. Steward, S. Burger, S. H. Randell, A. T. Kho,
D. T. Tambe, C. Hardin, S. A. Shore, E. Israel, D. A. Weitz,
D. J. Tschumperlin, E. P. Henske, S. T. Weiss, M. Lisa
Manning, J. P. Butler, J. M. Drazen and J. J. Fredberg, Nat.
Mater., 2015, 14, 1040–1048.

41 M. Plodinec, M. Loparic, C. A. Monnier, E. C. Obermann,
R. Zanetti-Dallenbach, P. Oertle, J. T. Hyotyla, U. Aebi,
M. Bentires-Alj, R. Y. H. Lim and C.-A. Schoenenberger,
Nat. Nanotechnol., 2012, 7, 757–765.

42 Y. Fujii, Y. Ochi, M. Tuchiya, M. Kajita, Y. Fujita, Y. Ishimoto
and T. Okajima, Biophys. J., 2019, 116, 1152–1158.

43 X. Guo, K. Bonin, K. Scarpinato and M. Guthold, New
J. Phys., 2014, 16, 105002.

44 A. Fritsch, M. Höckel, T. Kiessling, K. D. Nnetu, F. Wetzel,
M. Zink and J. A. Käs, Nat. Phys., 2010, 6, 730–732.

45 G. Ciasca, T. E. Sassun, E. Minelli, M. Antonelli, M. Papi,
A. Santoro, F. Giangaspero, R. Delfini and M. De Spirito,
Nanoscale, 2016, 8, 19629–19643.

46 D. M. Sussman, Comput. Phys. Commun., 2017, 219, 400–406.
47 M. S. Hutson, Y. Tokutake, M.-S. Chang, J. W. Bloor,

S. Venakides, D. P. Kiehart and G. S. Edwards, Science,
2003, 300, 145–149.

48 M. Rauzi, P. Verant, T. Lecuit and P.-F. Lenne, Nat. Cell Biol.,
2008, 10, 1401–1410.

49 G. W. Brodland, V. Conte, P. G. Cranston, J. Veldhuis,
S. Narasimhan, M. S. Hutson, A. Jacinto, F. Ulrich,
B. Baum and M. Miodownik, Proc. Natl. Acad. Sci. U. S. A.,
2010, 107, 22111–22116.

50 K. K. Chiou, L. Hufnagel and B. I. Shraiman, PLoS Comput.
Biol., 2012, 8, 1–9.

51 S. Ishihara and K. Sugimura, J. Theor. Biol., 2012, 313, 201–211.
52 S. Ishihara, K. Sugimura, S. J. Cox, I. Bonnet, Y. Bellaı̈che

and F. Graner, Eur. Phys. J. E: Soft Matter Biol. Phys., 2013,
36, 45.

53 G. W. Brodland, J. H. Veldhuis, S. Kim, M. Perrone,
D. Mashburn and M. S. Hutson, PLoS One, 2014, 9, 1–15.

54 L. Yan and D. Bi, Phys. Rev. X, 2019, 9, 011029.
55 X. Yang, D. Bi, M. Czajkowski, M. Merkel, M. L. Manning

and M. C. Marchetti, Proc. Natl. Acad. Sci. U. S. A., 2017, 114,
12663–12668.

56 C. E. Maloney and A. Lematre, Phys. Rev. E: Stat., Nonlinear,
Soft Matter Phys., 2006, 74, 016118.

57 Y. Zhou, P. R. Bandaru and D. F. Sievenpiper, New J. Phys.,
2018, 20, 123011.

58 T. Kariyado and Y. Hatsugai, Sci. Rep., 2015, 5, 18107.
59 Z. G. Wang, S. H. Lee, C. K. Kim, C. M. Park, K. Nahm and

S. A. Nikitov, J. Appl. Phys., 2008, 103, 064907.
60 G. Gkantzounis, T. Amoah and M. Florescu, Phys. Rev. B,

2017, 95, 094120.

Soft Matter Paper

Pu
bl

is
he

d 
on

 1
1 

O
ct

ob
er

 2
02

3.
 D

ow
nl

oa
de

d 
by

 N
or

th
ea

st
er

n 
U

ni
ve

rs
ity

 o
n 

6/
4/

20
24

 6
:1

1:
09

 P
M

. 
View Article Online

https://doi.org/10.1039/d3sm00419h

