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Colloidal gels exhibit solid-like behavior at vanishingly small fractions of solids, owing
to ramified space-spanning networks that form due to particle–particle interactions.
These networks give the gel its rigidity, andwith stronger attractions the elasticity grows
as well. The emergence of rigidity can be described through a mean field approach;
nonetheless, fundamental understanding of how rigidity varies in gels of different
attractions is lacking. Moreover, recovering an accurate gelation phase diagram based
on the system’s variables has been an extremely challenging task. Understanding the
nature of colloidal clusters, and how rigidity emerges from their connections is key
to controlling and designing gels with desirable properties. Here, we employ network
analysis tools to interrogate and characterize the colloidal structures. We construct
a particle-level network, having all the spatial coordinates of colloids with different
attraction levels, and also identify polydisperse rigid fractal clusters using a Gaussian
mixture model, to form a coarse-grained cluster network that distinctly shows main
physical features of the colloidal gels. A simplemass-springmodel then is used to recover
quantitatively the elasticity of colloidal gels from these cluster networks. Interrogating
the resilience of these gel networks shows that the elasticity of a gel (a dynamic property)
is directly correlated to its cluster network’s resilience (a static measure). Finally, we
use the resilience investigations to devise [and experimentally validate] a fully resolved
phase diagram for colloidal gelation, with a clear solid–liquid phase boundary using a
single volume fraction of particles well beyond this phase boundary.

colloidal gels | network science | rigidity | soft materials

Structure formation through self-aggregation of particles is ubiquitous in natural and
industrial settings alike, with numerous examples from biological systems and living
systems, to food processing and consumer products. In case of passive attractive colloids,
this self-assembly at low and intermediate volume fractions of solid results in space-
spanning out-of-equilibrium structures (1), that are commonly referred to as “gels”
exhibiting a wide range of mechanical and rheological properties (2–4). Particle–
particle bonds formed due to attractive surface forces above a certain threshold of solid
particles eventually construct particulate networks that in turn govern the mechanical
and rheological properties of colloidal gels. Of particular interest has been emergence
of rigidity in relatively small solid fraction and a phase transition from liquid- or
even gas-like to solid-like behavior (5–9). What is clear is that the elasticity in these
arrested and disordered amorphous solids emerges from the growth of fractal clusters
of particles that eventually percolate into a single network spanning the entire sample
(10, 11). Some of the gel mechanics and their dependence of state variables can be
determined through mean field approximations (12, 13). However, large variations in
mechanical and rheological properties of gels with different attractive interactions cannot
be described nor explained by local microstructural measures of the system such as
coordination number of particles (14, 15). The global mechanics of the colloidal gelation
as a phase transition in which rigidity emerges can be described through Maxwell’s
isostatic criterion (16, 17). Colloidal gelation as a second-order phase transition can
be described through rigidity percolation with clear signatures on the cluster growth
before and after percolation (18). The exact average/global coordination number that
corresponds to emergence of rigidity in the system is however a function of particle–
particle contacts. For systems with central isotropic bonds made between individual
colloids, a value of hZicentral = 6 satisfies the isostatic criterion and results in
global rigidity (19, 20), while addition of other constraints such as bond-bending
interactions will reduce the required contact number to hZibending = 2.4 observed
in refs. 16 and 18 experimentally and analytically/computationally (21). In recent
years, very similar descriptions have been proposed to describe the shear-thickening
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in dense suspensions with different particle-level constraints as
well (22–24).While these prior studies concisely explain the onset
of rigidity in colloidal gels, similar understanding of the variations
of elasticity as a function of particle–particle interactions is largely
lacking. In other words, while increasing the strength of attraction
between particles (while retaining their central or bond-bending
nature) does not change the average or distribution of particle
contacts, it varies the elastic modulus of the gel drastically
(14, 15). In their seminal work, Zaccone et al. (25) showed
that detailed description of elasticity in these systems requires
an understanding of the hierarchical network that forms and a
cluster-level elasticity, which was later experimentally confirmed
by Whitaker et al. (26). In this multi-scale approach, linear
elasticity models can be constructed based upon contact between
clusters that are locally and internally glassy in nature, recovering
experimentally measured shear moduli of different gels (25–27).
Building upon these cluster-growth models, one can develop
kinetic models that predict gelation phase diagram based on state
variables such as particle volume fraction and attraction strength
(28), that are fully consistent with microstructural measurements
through scattering and rheological probes of the system at
the same time (29, 30). These cluster-growth models and
structural probes have been tremendously helpful in developing
an overall hierarchical picture of colloidal gelation. Nonetheless,
techniques such as scattering and oscillatory shear rheological
experiments are unable to provide a detailed view of cluster
distributions and detailed view of the mesoscale in colloidal
gels. For instance, scattering intensity is a robust measure of a
dominant lengthscale for the clusters, which screens the diversity
of cluster sizes and shapes that form within the particulate
network. As such, in both experiments, and in simulations,
it is virtually impossible to identify clusters of particles with
confidence and perform a consequent study consistent with these
mean field approximations.

Network science aims at understanding the emergent phe-
nomena often observed in complex systems by focusing on the
patterns of connections between the constituent parts of a system
instead of focusing on the individual parts (31, 32). This overall
look at the collective behavior has enabled thorough analyses of
the structural and dynamical characteristics of complex systems
despite the sparsity of data due to spatiotemporal limitations of

observing complex systems (33, 34). Thus, network science has
been providing pivotal tools for understanding the relationship
between structure and function of complex systems in various
disciplines ranging from biology, medicine, and neuroscience to
epidemiology, ecology, and social sciences (35–41). One of the
cornerstones of network science is the classification of groups of
nodes with varying size into clustered elements that are similar to
each other with respect to common attributes. The calculation of
modularity and detection of clustered structures (community
detection) can be done in various ways, unveiling hidden
characteristics in many social and biological networks (42–44).

In this work, we leverage advances in network science to
accurately identify colloidal clusters within a single giant network
of particles and recover the elastic response of the emergent gels
from a coarse-grained cluster network. By doing so, we provide
a systematic pathway to recovering mechanics of a complex net-
work, from a single snapshot of a system at quiescent conditions.
Our results clearly show a one-to-one correspondence between
“elasticity in particulate systems” and “resilience in complex
networks.” Furthermore, the analysis of the resulting networks
and their corresponding elastic moduli helps us identify phase
maps from simulations of a single volume fraction of colloidal
particles, far beyond the phase boundaries thatmake experimental
and computational studies of the phase diagram challenging.

Results and Discussion
Coarse-Graining the Particulate Network into Clusters, and
Elasticity Measurements. The overarching scheme of the net-
work analysis in colloidal gels of interest in this work is shown in
Fig. 1. Accurate large-scale dissipative particle dynamics (DPD)
simulations are used to model attractive colloidal gels at an inter-
mediate volume fraction. The DPD method has been employed
previously in order to study the structural features of colloidal gels
during the gelation, as well as their rheological characteristics in
the linear and nonlinear flow regimes (15, 45–47). The depletion
interaction between the colloidal particles leads to formation of
thermo-reversible bonds and eventually into a space-spanning
network of particles (Fig. 1A). We construct colloidal networks
fromDPD simulations, where nodes represent particles and each
particle–particle bond is represented by an edge (Fig. 1B). Two

A B C D E

F G H I J

Fig. 1. Schematic view of the clustering and coarse-graining of the colloidal network. (A) A magnified snapshot of the colloidal particles after gelation,
(B) network of interparticle bonds, (C) clustered particles after GMM algorithm with coloring as visual aid, (D) coarse-grained network, and (E) spring network
model of the coarse-grained network. Snapshots of particles after gelation for (F ) U0 = 6kBT, (G) U0 = 12kBT, and (H) U0 = 21kBT; Insets show a portion of the
interparticle networks. (I) Coordination number distribution, and (J) harmonic centrality distribution at di�erent attraction levels.
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particles are bonded if their interparticle distance (rij) is small
enough for their attraction strength to exceed 5kBT .

In the next step, we infer the spatial location of nodes
only from the network structure, ignoring the actual spatial
coordinates of particles to let the definition of particle–particle
bond drive the analysis. To allow for a natural selection of
the size, shape, and number of particle clusters as opposed to
imposing biased constraints, we identified clusters of particles
using Gaussian mixture model (GMM), a spatial clustering
method that considers each cluster as a different Gaussian
distribution (Fig. 1C ). This is done through an unsupervised
exhaustive algorithm, in which the number of clusters in the
system as well as each cluster’s individual colloids are rigorously
identified based on a Bayesian information criterion (BIC). By
doing so, we ensure that no adjustable parameters are included in
the cluster identification (a.k.a. community detection) algorithm
used. Next, we shift focus from particles to clusters by building
a cluster network, enabling us to characterize the interactions
between clusters of particles (Fig. 1D). Finally, we translate the
cluster network into a mass-spring model to calculate the elastic
moduli of the colloidal gels (Fig. 1E). Detailed description of
all algorithms developed and used throughout this study can be
found inMaterials and Methods.

Particle-Level Analysis.We simulate gels with different attrac-
tion levels from U0 = 6 � 30kBT , with a range of 0.1a (a
being the particle radius) at the volume fraction of (� = 20%),
consistent with reported experiments (6). In a series of reports,
using the same state variables, roughly an order of magnitude
increase is reported for the elastic moduli of the gels as the
attraction increases (6, 26, 48). Nonetheless, this significant rise
of elastic modulus cannot be described through particle-level
descriptors of the system such as coordination number and/or
fabric tensor (45, 49). Visual inspection of the gels as represented
in Fig. 1F–H for three different strengths of attraction (6, 12, and
21 kBT ) also does not indicate distinguishable differences in the
domain size or porosity of the resulting particulate networks. In
Fig. 1 F–H, particles are color coded based on their coordination
number (the number of a particle’s contacting neighbors). To
further quantify the microstructural features of each gel, the
distribution of contacts per particle (i.e., coordination number) at
different attraction levels are shown in Fig. 1I, indicating a rather
insignificant difference in the particle-level structure. Note that
coordination number of a particle is equivalent to the degree of
a node in network analogy.

Another quality of a network is its level of inter-connectedness
and how closely nodes within a network are connected to
one another. This feature can be quantified by calculating
the harmonic centrality of nodes in the network defined as
hci =

P
j,j 6=i 1/d(i, j), where parameter d(i, j) is the minimum

distance between nodes i and j belonging to the same network
(50). This is calculated by finding the shortest path, theminimum
number of walks along the network, that has to be taken from
node i to reach node j. Hence, higher harmonic centralities
account for higher accessibility of nodes to each other in the net-
work. The distributions of harmonic centrality do not show any
systematic differences for gels formed under varying attraction
levels (Fig. 1J ). These findings indicate that the characteristics of
particle networks alone do not reflect the variations observed in
the rigidity of the overall gels. Indeed, this is not surprising since
many studies focused on the coordination number of particles and
their spatial characteristics also failed to recover the mechanics
of colloidal gels. Following the theory developed in ref. 25,

which was subsequently experimentally and through simulations
verified by Whitaker et al. (26), where the authors found that
minimally connected gel clusters correlate with the elasticity of
the entire gel, we hypothesize that the appropriate scale describing
themechanics of gels is themesoscale cluster length scale. As such,
we shift our focus from the characteristics of individual particles
to identifying and understanding clusters of particles instead.

Cluster-Level Analysis.Considering the inadequacy of the
particle-level information, as described in the previous section,
one will critically need to identify particle clusters in gel networks.
Previous work ofWhitaker et al. (26) used a l-balanced graph the-
ory, to identify clusters of a fixed length scale (from experimental
measurement of a correlation length). Nonetheless, experimental
reports suggest that reaction-limited aggregation of colloids leads
to large polydispersity in cluster size (5). Mass-polydispersity
of clusters was also observed via confocal microscopy (51).
Topological clustering of computationally simulated gels also
results in clusters of varying sizes (52). Theoretically, seminal
work of Shih and Shih (53) had established that there exists an
average cluster size, that can be used to recover the yield stress
or limit of linearity scalings of colloidal gels through a mean
field approximation. Indeed, the work of Zaccone et al. (25)
used this single length scale for clusters in conjunction with a
mean-field description (Cauchy–Born theorem) to recover the
elasticity of colloidal gels; however, this does not mean that all
clusters within the gel structure are mono-sized. These gels are
disordered arrested structures with fractal-like topologies that
naturally bring about the polydispersity of the clusters.

On the other hand, results in Fig. 1I suggest that it is safe
to assume a Gaussian distribution for the degrees of nodes
(coordination numbers) in the network of particles. As generally
colloidal gels represent particle coordination number distribu-
tions that are similar for the smaller subsets of the structure and
the overall network structure, it is plausible to assume that each
cluster will involve a Gaussian degree distribution within itself.
While there aremany differentmethods for community detection
in networks, generality of degree distribution (coordination
number) can be used as the deciding factor in choosing the
appropriate algorithm to do so. The goal thus is to rigorously and
without any adjustable parameters identify clusters of particles
in which a Gaussian distribution is present for the number of
particle contacts. In this work, we employ GMM to identify
clusters as individual contributions to a total mixture of Gaussian
distributions with varying shapes and size.

In this approach, the optimal number of clusters is identified
by minimizing a BIC function that is recursively calculated for
all possible cluster combinations (from one cluster representing
the network, down to each cluster having only one particle in
its structure). The BIC values for different cluster numbers are
presented in SI Appendix, Fig. S3, marking the optimum number
of clusters for each attraction strength between the particles.
Additionally, the actual spatial configuration of nodes was not
considered in identification of clusters. Instead, the spatial config-
uration of nodes was converted into vectors, allowing for a series
of embedded three-dimensional coordinates using the Uniform
Manifold Approximation and Projection (UMAP)method. Such
dimension reduction and graph learning through Node2Vec are
commonly used to learn lower-dimensional embedding of the
nodes. A schematic view of the process for cluster identification
in this analysis is illustrated in SI Appendix, Fig. S1.

We use two different definitions for the cluster diameter
to ensure that identified clusters are indeed rigid assemblages
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of colloids. From the physical standpoint, we define physical
diameter of a cluster as the diameter of the sphere that contains
all individual particles in that cluster, denoted by DPhy.. From a
network perspective, diameter of the cluster can be expressed as
the length of the longest shortest path connecting two nodes (the
minimum number of walks along edges needed to connect any
two nodes within a cluster) in that cluster,DNet.. For the clusters
to remain rigid, as the physical diameter grows, so must the
network diameter at the same rate. Up to the network distance of
eight (8), the physical-distance and network-distance are almost
identical (SI Appendix, Fig. S2). This is rather consistent with
the correlation length found in ref. 26 for the cluster size and set
the largest length scale for the individual clusters identified here.
Since clusters with DNet. > 8 are assumed to no longer be rigid
in nature, we apply GMM recursively to partition those clusters
into sub-groups of particles withDNet.  8. Last, upon clustering
process, a limited number of clusters of size one and two are also
identified (referred to as orphan nodes), which are consequently
removed from the remaining analysis. This is to ensure that a
collection of cohesively connected particles are included in the
study. Note that these nodes account for 0.7% of the particle
population for different attraction strengths.

Snapshots of 40 randomly selected clusters annotated by our
approach for two different attraction strengths are shown in Fig.
2 A and B. Nodes belonging to the same cluster are colored
similarly to aid visual inspection of clusters. We observe more
compact clusters for the weak gel (U0 = 6kBT ), compared
to the strong gel (U0 = 30kBT ) which shows relatively more
elongated clusters in the final gel. This is in agreement with
previous descriptions of structural heterogeneity in clusters of
more attractive colloids (54). Considering the monodispersity
of colloidal particles in diameter, we define cluster mass as the
number of particles in a cluster. The comparison of the physical
cluster mass with the network-based cluster diameter (DNet.)
across all attraction levels also confirms the existence of more
elongated clusters in gels formed by higher attraction strengths
(Fig. 2C ). For instance, given a fixed clustermass, cluster diameter

of the gel formed atU0 = 30kBT is larger than the ones observed
in the weaker gels. This physically corresponds to slightly denser
structures within the cluster at lower attraction strengths and
less compact structures formed at higher attractions. This is
expected as particles with significantly higher attraction strengths
become significantly less mobile upon making bonds with other
neighboring colloids, which in turn hinders the consequent
coarsening of the structure.On the other hand, weaker attractions
allow for gradual exploration of deeper energy minima by the
bonded particles and denser particle domains in general. On
the other hand, the distribution of cluster mass (denoted by
MCluster) and network-based cluster diameter in Fig. 2 D and E
show attraction-independent behavior, indicating that the higher
internal cluster interconnectivity in the network of weaker gels
does not originate from the mass and diameter differences of
clusters.

From a physical perspective, stronger gels yield smaller internal
volume fractions, from �g = 0.18 forU0 = 6kBT to �g = 0.14
for U0 = 30kBT . However, clusters of stronger gels are larger in
diameter (the smallest sphere that embodies all the particles in the
cluster), and the total volume of the clusters grow significantly as
the attraction strength increases, reaching fractions of �Cluster >
0.9 (Fig. 2F ). Note that since clusters are polydisperse in nature,
the fraction of these clusters can easily surpass values measured for
glassy regime in monodisperse clusters as proposed by Whitaker
et al. (26). Clusters represent meso-scale assembled structures of
individual particles; hence, their internal microstructure can be
quantified through a nominal fractal dimension.One should note
that for depletion gels at overall volume fraction of � = 0.2, it is
not appropriate to define an overall fractal dimension, since these
gels are significantly different from fractal gels observed formed
at much lower volume fractions. Nonetheless, cluster fractal
dimension can be used as a quantitative comparison between the
network-determined characteristic of a cluster and its mean field
description that commonly use a concept of fractal dimension.
Here, we define two different measures of the fractal dimension,
based on physical measures, and network measures (Fig. 2G)

A B C D

E IF

G

H

Fig. 2. Analysis of the coarse-grained cluster network. Snapshots of 40 clusters at (A) U0 = 6kBT and (B) U0 = 30kBT. (C) Cluster mass versus cluster diameter.
Distribution of (D) cluster mass, and (E) cluster diameter (dNet.) versus attraction level. (F ) Internal (black) and external (red) cluster volume fractions versus
attraction strength. (G) Nominal fractal dimension of clusters calculated in physical (black), and network (red) dimensions. (H) Cluster coordination number (Z),
and (I) Normalized harmonic centrality versus attraction strength.
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of the annotated clusters. Mathematically, the physical fractal
dimension, dPhy.f , can be defined as dPhy.f = log(Rg)

log(MCluster)
, Rg being

the radius of gyration of the cluster, and the network fractal
dimension, dNet.f , can be written as dNet.f = log(DNet.)

log(MCluster)
.

Apart from enabling study of cluster characteristics (Fig. 2
C–G), explicit identification of clusters allows for a coarse-
grainedmesoscale network to be constructed.With the annotated
clusters of particles, we construct a cluster network of the gel, in
which nodes are clusters connected by an edge if there exists a
boundary edge or orphan particle between them. These edges
are weighted by the number of boundary edges and orphan
particles connecting two clusters given the structure of the
particle network. While the particle-level characterization of the
gel network does not indicate attraction-dependent properties
(Fig. 1 I and J ), the cluster network at different attraction levels
shows distinct features and characteristics. This unequivocally
proves that the appropriate length scale at which these gels exhibit
distinct features connected to their mechanics is the cluster-level
mesoscale. For instance, the degree (i.e., cluster coordination
number) and harmonic centrality distributions of clusters in the
cluster network show a clear shift toward larger values as the
attraction strength increases (Fig. 2 H and I ). That indicates
higher inter-connectivity in the cluster network as the attraction
strength increases between individual particles. That can be
further interrogated through harmonic centrality of the clusters
in the cluster network shown in Fig. 2I. While the harmonic
centrality measurement for the network of individual colloids in
Fig. 1J showed no visible differences between different values of
attraction strength, the samemeasure shows a clear and systematic
increase of inter-connectivity in the network of clusters.

ElasticModulusandResilienceofaGelNetwork. Themechanics
of the constructed cluster networks can be further investigated
using a simple spring network model (SI Appendix, Methods).
Each cluster (regardless of the diameter) is represented by a
mass, and edges are replicated through a spring whose constant
reflects the length of the shortest path connecting the cluster
pair. In these calculations, we assume that the cluster networks
are in mechanical equilibrium; then, their elasticity is measured
in response to an infinitesimal affine strain deformation using the
Born–Huang formulation (55). Note that more complex models,
reflecting on the size, shape, and volume fraction of cluster are
possible; however, the goal is to assess the ability of a crude cluster
network without specific particle-level information to describe
the rigidity of colloidal gels.

An important feature of the mass-spring model calculations
presented here is the spring constants used to describe the
cluster–cluster connections. In our cluster-level network, two
clusters can be immediately connected, or through a chain of
particles. In the former case, the connection stiffness simply
scales with the number of contacts between the two clusters,
and in the latter, the stiffness can be estimated from a “polymer
chain stiffness” model (56). Together, these two scenarios result
in the cluster–cluster stiffness, ij(U/kBT, dij), to be calculated
from ij(U/kBT, dij) = 0(U/kBT )Zij/d2ij , where 0(U/kBT )
is the stiffness of a single particle-level bond, Zij is the number of
connecting bonds between the two clusters, and dij is the length
of particle chain connecting the clusters. Note that one of the
quantities, Zij and dij, will always be equal to unity. The average
stiffness values calculated from this expression are consistent
with those approximated using mean field approximation
suggested by Zaccone et al. (25). Additionally, bond stiffness

values calculated here closely track experimentally measured
ones for short-ranged depletion gels by Dinsmore and Weitz
(51), as shown in SI Appendix, Fig. S4.

Fig. 3A shows the elastic shear moduli of the gels at different
attraction levels compared to the experimental measurements
of the depletion gels at similar system variables (solid fraction
and attraction range/strength) (6). Our coarse-grained spring
network model recovers the elasticity of the gels quantitatively,
strongly suggesting that i) our network-based approach identifies
particle clusters correctly, and ii) the cluster-level information
is indeed necessary and sufficient for the recovery of rigidity
in colloidal gels. Having established that the mesoscale cluster
network is reflective of the gel mechanics at the macroscopic
level, one can interrogate the cluster network’s characteristics and
their correlations with the physical properties of colloidal gels. In
particular, here, we study the resilience of cluster networks and
their correlation to the elasticity of colloidal gels.

Resilience.Used routinely as a key characteristic of many com-
plex systems, resilience is generally defined as a complex system’s
ability to retain its basic functionality upon exposure to defaults
(57–61).Definedmathematically based on changes in a particular
function over time, as an environmental change is posed,
resilience is commonly referred to the point at which nonlinear
changes in a system’s performance is observed. Here, we studied
the resilience of colloidal networks as their ability to maintain
functional properties upon loss of edges. Hence, the order by
which edges are removed from a network can significantly impact
its resilience. One approach to appropriately assess resilience in
a network is edge removal based on betweenness centrality as it
targets themost central edges in providing shortest connections in
that network. It should be noted that edge betweenness centrality
is primarily introduced in the Girvan–Newman algorithm, a
community detection technique for partitioning a network into
clusters of cohesively connected nodes (42). In this algorithm,
edges with the highest betweenness centrality are progressively
removed until no edges remain (Materials and Methods). The
number of connected components in each system against the
number of edges removed for the studied attraction strengths
is shown in Fig. 3B. Note that the algorithm is applied on the
cluster network, and thus, the total number of nodes identifies
the number of clusters in the system. For a fixed number of
removed edges, cluster networks at higher attraction strengths
consistently have a smaller number of connected components,
i.e., are more resilient to the removal of central edges. That
remains valid even when the number of connected components
and removed edges are normalized by the total number of nodes
and edges, respectively, in each cluster network (Inset of Fig. 3B).
This further suggests that even for the same number of clusters,
and the same number of edges between clusters, networks formed
at higher attraction strengths are more resilient to loss of cluster–
cluster connections.

While the number of connected components is a measure of
how a network reacts to the loss of an edge, it is the LCC within
the system that remains responsible for the elasticity of a gel.
Fig. 3C shows the size of LCCs in cluster networks normalized
by the network size, against the number of removed edges. We
observe that removal of the first 5% of connections among the
clusters does not change the size of LCCs. Afterward, LCCs in
cluster networkswith higher attractions tend to generally be larger
than the ones for the lower attractions at any given number of
removed edges, i.e., exhibit more resilient behavior. The trends
in the Inset of Fig. 3C, the size of LCCs against the percentage
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A B C

ED F

Fig. 3. Elastic modulus and network resilience against edge removal. (A) Elastic modulus, G0, of di�erent colloidal gels versus attraction strength. (B) Number
of connected components versus number of removed edges; Inset shows the number of connected components versus percentage of removed edges.
(C) The largest connected component (LCC) versus number of removed edges; Inset shows LCC versus percentage of removed edges. (D) Elastic modulus, G0,
versus number of removed edges for di�erent attraction strengths, calculated from three scenarios of edge removal: betweenness–ascending (dashed line),
betweenness–descending (solid line), and random (dotted line). (E) Elastic modulus loss (�G0 = G0 � G0

0) normalized by the initial value of the elastic modulus
before edge removal (G0

0) versus bond index. (F ) Shear modulus versus the percentage of removed edges in a betweenness–descending manner, Inset shows
shear modulus versus percentage of removed edges.

of total removed edges, further suggest that the resilience of the
stronger gels does not solely originate from their higher number
of connections.

The dynamic gel property of interest during the resilience
study is chosen to be its elasticity. While the higher resilience
of gels with higher attraction strength between the particles is
qualitatively demonstrated through results in Fig. 3 B/C, as
mentioned before, the order of bond loss (which bond is cut
from the network first) is a consequential decision to make.
To further test this hypothesis, physical resilience of the cluster
networks is studied upon removal of edges in a series of separate
simulations. One would expect that loss of different edges will
have different effects on the mechanics of the cluster network. To
show these significantly different effects on the elasticity of the
network, we also performed an exhaustive series of simulations
where one single edge is removed from the initial cluster network
in each simulation. The loss of elasticity upon each edge removal
trial is sorted in an ascending order and presented in Fig. 3E.
These clearly show that loss of elasticity upon elimination of a
single connection between clusters can vary over seven orders of
magnitude, suggesting that loss of some edges has minimal effect
on the networks modulus while other edges’ removal can result in
detriment of bulk elasticity up to 8% of its initial value. Further
analyzing the edges for which the highest levels of elasticity losses
are measured revealed that the betweenness centrality of an edge
is significantly correlated with the elasticity loss (SI Appendix,
Fig. S5). As the betweenness centrality of an edge reflects its
relative role in the transmission of stress across a system, edges
of higher betweenness centrality will be more likely to localize
stresses and play a crucial role in material failure. In other words,

edges with higher betweenness centrality contribute more to the
rigidity of a gel network.

This can be directly examined by a series of resilience studies,
in which edges are removed based on different scenarios and the
remaining structure’s elasticity is measured by the mass-spring
model. Fig. 3D shows the elastic moduli of the networks against
the number of removed springs from the system using three edge
removal approaches: 1) random, 2) ascending order of between-
ness centrality, and 3) descending order of betweenness centrality.
These results further confirm that edges with higher values of
betweenness centrality are more essential to gels’ rigidity as their
removal results in a more rapid loss of elasticity. This strongly
suggests that the edge betweenness centrality can be used as an
indicator of the failure points in the structure of colloidal gels.

Once the appropriate mode of edge removal is established
(in descending edge betweenness centrality order), a thorough
investigation of the elasticity–resilience correlation can be per-
formed on the cluster networks. In Fig. 3F, the moduli of the
gels were measured for cluster networks as they lost edges within
their structure until no elastic response could be recovered for
the system. These results once again confirm that gels formed
at higher attraction strengths are more resilient to loss of a
cluster–cluster spring, as higher elastic moduli are measured for
those with the same number of removed edges. This is valid even
when normalizing the number of removed springs to the total
number of springs in the system (Inset to Fig. 3F ).

Gelation Phase Boundary. In results presented in Fig. 3, for
each edge removal instance, the rigidity is determined by its
LCC. With the resilience measurement and the elastic moduli
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calculated from the spring network model, one can find a
threshold at which the rigidity emerges in a cluster network.
To do so, the actual volume fraction of the LCC remaining in
the system is measured upon removal of the edges. However, a
singular definition to be applied to a gel and identify whether
it can be considered “rigid” does not exist. Thus, here, and to
remain consistent with experimental measurements in refs. 6, 7,
and 26, we chose G0 = 0.1 Pa as the criterion for identifying a
network as rigid.

In Fig. 4A, we plot the gelation phase boundary, measured
from the resilience analysis, where the volume fraction, �critical ,
is the fraction of colloids in the LCC. The lower and upper
boundaries of solid fraction are the required volume fractions to
satisfy the rigidity condition, G0 = 0.1 Pa. This phase diagram
is reminiscent of what has been suggested by experiments and
theory (1, 7), clearly showing gelation at lower solid fractions
for higher attraction strengths. Our results suggest that for
strong gels (U/kBT � 15), the minimum volume fraction of
� = 0.05 is required for a rigid gel to emerge, and as soon as
a percolated network is formed. On the other hand, for weak
gels of (U/kBT < 15), percolation (the dashed red line) simply
does not result in rigidity, and significantly larger fractions of
colloids are required for an elastic gel to form. To further validate
the predicted gelation phase diagram and the phase boundaries
in Fig. 4A, we experimentally study the gelation behavior of
sterically stabilized, charge-screened poly(methyl methacrylate)
(PMMA) colloids suspended in a solvent containing polystyrene
as a short-range depletant. The experimental phase space spans
nearly the entire range of U/kBT and � values shown in Fig.
4. Representative confocal microscopy images of the PMMA
colloidal gels at three different attraction strengths and different

volume fractions are shown in Fig. 4 B–G, compared to the snap-
shots from the simulations, showing visually that the network
resilience-based reconstruction of the phase diagram is accurate
in predicting the gel–fluid states. A side-by-side comparative view
of the structure at long times, from the simulations and the
confocal imaging is provided in Video S1. To further prove
the state of particulate structure beyond a visual inspection,
microdynamical andmicrostructural data were obtained from the
confocal microscopy images, and are presented in SI Appendix,
Fig. S7. We also performed a series of simulations at the same
volume fractions as experimentally investigated to ensure that the
microstructural and microdynamical evolutions of the system
are indeed appropriately captured in our simulation scheme.
The results in SI Appendix, Fig. S7 A–D show comparison of
van Hove self correlations for three different volume fractions
and two different attraction strengths measured experimentally
and computationally, showing a close agreement between the
two. These self-correlation graphs as well as the experimentally
measured ensemble-averaged diffusion of particles show clear
differences between ungelled and gelled samples. Specifically,
colloidal gels demonstrate kinetic arrest through a significantly
reduced mean squared displacement that is independent of lag
time, while ungelled particulates and “clusters of fluids” states
exhibit mostly diffusive motion even at very long times. These
are shown clearly in SI Appendix, Fig. S7E , where the mean
squared displacement of particles is plotted against the lag time
for a number of different systems. Similarly, the van Hove
self-correlations of the particle displacement, obtained from
experimental measurements and simulations, both demarcate
the gel states from fluid clusters and freely dispersed particles.
Videos from the confocal microscopy showing the different

A

B

C

E

F

GD

Confocal 
Microscopy 

Image

Simulation 
Snapshot

Simulation 
Snapshot

Confocal 
Microscopy 

Image

Fig. 4. Gelation phase boundary. (A) The minimum and maximum solid fractions required for the emergence of elasticity. Data points are determined from
resilience analysis, and the phase boundaries (black dashed lines) show theminimum andmaximum volume fractions where G0 � 0.1 Pa. Fluid states are shown
by a cross symbol and rigid states are shown by filled circles. The red dashed line represents the percolation line where the average coordination number
of a cluster-level network exceeds the critical coordination number ZC = 2.4 (18). Red symbols indicate the experimental results for the fluid (cross) and gel
(filled circles) states. Snapshots of the particulate structures are shown for the lower bound of solid fractions that satisfy rigidity at (B) 30kBT, (C) 15kBT, and
(D) 6kBT, and also the higher bounds at (E) 30kBT, (F ) 15kBT, and (G) 6kBT, compared to experimentally observed structures from the confocal microscopy of
PMMA depletion gels at the same system variables. The scale bar in the confocal images is 10 �m.
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structures of the colloidal systems in gelled, clusters of fluid, and
diffusive states are provided in Videos S2–S4, respectively, clearly
indicating that the structures observed are indeed stable at long
times. It should be noted that gels formed at a lower volume
fraction will inevitably be different in their exact structural
features from ones that are result of resilience study and edge-
cutting procedure (due to having very different hydrodynamic
volumes, Voronoi volume distributions, and hence their different
gelation kinetics). Nonetheless, our results clearly indicate that
while clusters of particles may be different in their definition,
the load-bearing particulate network that is responsible for the
emergence of elasticity is similar in both cases. As such, resilience
study presents an effective framework for prediction of the state
variables at which the first space-spanning particulate structure
is observed.

We have shown through a series of detailed particle-level
simulations, network analyses and spring-network modeling
benchmarked and validated against experimental measurements
that the general mechanics of colloidal gels as space-spanning
networks of attractive colloids can be studied with respect to
their network characteristics. We adapted a GMMmethodology
to annotate rigid clusters formed at the mesoscale and showed
that cluster-level networks exhibit distinct features not detectable
at particle-level networks. Namely, particle clusters show an
increased number of cluster–cluster connections and harmonic
centralities as the strength of attraction between individual
particles increases. These polydispersed fractal clusters can occupy
up to 90% of the entire sample volume, with decreasing internal
volume fraction at higher strengths of attraction. The physical-
and network-based fractal dimensions of annotated clusters are
also consistent with the theoretical mean field predictions. We
then showed that a simple mass-spring model of the cluster
networks can recover elastic moduli of the gels quantitatively,
compared with the experimental measurements.

To measure elasticity of a system, one needs to study dynamic
response of that system to an applied deformation. We showed
that elasticity of a gel network is correlated with its resilience. This
is significant, as resilience of a network can be interrogated from
snapshots of a system, without a need for dynamical information.
Hence, one can use resilience of a gel network as a proxy to its
elasticity. More importantly, these resilience analyses enabled
us to construct a fully resolved phase diagram for colloidal
gelation, from a series of simulations at a single colloidal volume
fraction well beyond the solid–liquid phase boundary. Further
validation of the network-predicted phase diagram through
experiments shows that the phase boundary and the gel/fluid
states recovered from the network and resilience analysis are
indeed observed experimentally. This is further demonstrated
using detailed calculations of the mean squared displacement of
particles at different volume fractions and attraction strengths as
well as van Hove self correlations of the examined attractive
colloidal systems. In practice, this means that with very few
selected experiments/simulations resolved at the particle level,
and employing these network investigations, one can construct
detailed state diagrams without exploring the entire phase space.
Even though our results are based on short-range attractive
colloids, we believe our methodology is applicable to a wide
range of particulate systems well beyond colloidal gels.

Materials and Methods

DPD Simulations. DPD is a discrete model, formulated to simulate the motion
of a fluid through explicit pairwise interactions.

The equation of motion for the DPD method is as follows:

mi
dvi
dt

=

NpX

i, i6=j

⇣
FCij + FDij + FRij + FHij + FMij

⌘
. [1]

The background solvent particles interact through the first three terms on the
right hand side of Eq. 1, where FCij , F

D
ij , F

R
ij represent the pairwise conservative,

dissipative, and random forces, respectively, and are calculated as follows:

FRij = �ij!ij(ijij)⇥ij�t
�1/2eij, [2]

FDij = �ij!
2
ij(rij)(vij.eij)eij, [3]

FCij = aij!ij(rij)eij, [4]

!ij = (1 � rij/rc). [5]

The canonical ensemble is formed through the randomanddissipative forces
where the fluctuation–dissipation requirements are satisfied in connection with
those. The random force Eq. 2 introduces thermal fluctuations via a random
function, ⇥ij. Those fluctuations are then dissipated by the dissipative force
Eq. 3 that acts against the relative motion of particles vij = vij � vij. The
strength of dissipation is determined via �ij which is coupled with the thermal
noise,�ij. The dimensionless temperature is then determined from the random

and dissipative terms kBT = �2ij/2�ij. �t is the simulation time step and eij
is the unit vector for interparticle distance. Finally, the chemical identity of a
particle based on its chemical potential/solubility in the system is determined
through conservative force Eq. 4, where aij is the conservative parameter. The
random,dissipative, and conservative forces areexplicit functionsof interparticle
distance through a weight function (Eq. 5).

The solvent particles and colloidal particles also interact through the same
three forces. Furthermore, for the colloid–colloid interactions, the conservative
forces are excluded and two other terms are introduced instead. First, a
hydrodynamic force FH is solved for the particles of the solid phase and is
formulated as follows:

FHij = �Hij (vij · eij)eij, [6]

FH represents a short-ranged lubrication force and depends on the drag term
wherehij represents thesurface-surfacedistancebetween twocolloidalparticles.
�ij = 3⇡⌘0aiaj/2aij is the pair drag ter where a1 and a2 are the radii of the
interacting colloids. In addition to the hydrodynamic force, the interparticle
attraction between colloidal particles is modeled via a short-ranged attractive
potential (62). Specifically, Morse potential is used to induce attraction and is
calculated as follows:

UMorse = U0(2e
�hij � e

�2hij), [7]

where U0 determines the depth of attraction well and �1 is the range of
attraction.

Node Representation in Latent Space. To represent colloidal particles in a
lower-dimensional space, 3D in our study, we initially applied the node2vec
model to obtain a representation matrix for particles and then reduced their
dimensions to three by a non-parametric manifold learning technique called
UMAP. Both models are addressed in details in the following subsections.
node2vec. node2vec is a semi-supervised algorithm that utilizes a random
walk-based and stochastic gradient descent approaches to learn feature
representationofnodes inanetwork. Todoso, itdefinesanetworkneighborhood
set for every node in the network through a fixed-length second-order random
walk sampling strategy guided by two parameters p and q. These parameters
control how fast a walk explores the neighborhood of the starting node (in this
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study, p and q are set to their default values, i.e., one). Assume we attempt to
define a network neighborhood for node t in an unweighted graph. If node v
is visited in an initial random walk from t, transition probability from v is set
by the following rule which incorporates the distance of t to the neighbors of
v. Traversed nodes after limited number of iterations (controlled by walks per
node parameter) are labeled as network neighborhoods of t,

↵pq(t, x) =

8
><

>:

1
p if dtx = 0,
1 if dtx = 1,
1
q if dtx = 2.

After choosing a network neighborhood set for every node in the network,
node2vec tries to maximize the log probability of observing a neighbor for
a node conditioned on its feature vector. To do so, it implements stochastic
gradient descent in the following objective function, where f are feature
representation vectors, V is the set of nodes in the network, NS(u) is a network
neighbor set for node u, and Zu =

P
v2V exp(f(u) · f(v)),

max
f

X

u2V

�
�log Zu +

X

v2NS(u)
f(v) · f(u)

�
.

UMAP. UMAP is a manifold learning technique for dimensionality reduction
that works in two steps. In the first step, it constructs a fuzzy simplicial complex
withtheRiemanniangeometry theoretical framework.Theoutcomeisaweighted
graph describing themanifold structure of data which is then passed to a forced-
directed graph layout algorithm to generate a layout in a lower-dimensional
space. It starts by defining an open set for every data point and assigning a
weightededgebetweentwooverlappingopensets.Opensetsaren-dimensional
spheres with a radius of one concerning a local distance function tuned to
included k nearest neighbors of a point. As a result, the edge weight between
two data points xi and xj is a + b � a ⇥ b, where a is a geodesic distance of
xi on the Riemannian manifold of xj, and b is a geodesic distance of xj on the
Riemannian manifold of xi.

In the next step, UMAP applies a set of attractive (function 8) and repulsive
forces (function 9) to a sample of nodes and edges iteratively to optimize the
edgewise cross-entropy between the weighted graph in the first step and an
equivalentweightedgraphconstructed frompointsembedded in thedimension
of interest (denoted by Y ). Y is initialized by the eigenvector of the normalized
Laplacian matrix of the fuzzy graph constructed in the first step,

�2abkyi � yjk
2(b�1)
2

1 + kyi � yjk22
w(xi,xj)(yi � yj), [8]

2b

(✏ + kyi � yjk22)(1 + akyi � yjk2b2 )
(1 � w(xi,xj))(yi � yj). [9]

GMMs. GMM is the most widely used mixture model that assumes each base
distribution is a multivariate Gaussian with unknown parameters (mean and
covariance). In case of having k different distributions with mixing coefficient of
⇡i (parameters ⇡i, 8i 2 {1, ..., k} indicate contribution of every model to the
overall distribution satisfying 0  ⇡i  1 and

Pk
i=1 ⇡i = 1), the marginal

distribution of point xn is a Gaussian distribution of the following form:

p(xn) =
kX

i=1

⇡iN (xn|�i ,
P

i). [10]

With Eq. 10, conditional probability (can also be seen as responsibility) of
cluster i for explaining data point xn is computed by the following equation:

�(zni) =
p(zi = 1)p(xn|zi = 1)

Pk
j=1 p(zj = 1)p(xn|zj = 1)

=
⇡iN (xn|�i ,

P
i)Pk

j=1 ⇡jN (xn|�j ,
P

j)
.

[11]

Given Eq. 11, we use expectation–maximization algorithm to fit a mix-
ture of k Gaussians to representations of N colloidal nodes in a lower
dimensional space. This can be achieved by maximizing L(�,

P
,⇡) =PN

n=1 ln
� Pk

i=1 ⇡iN (xn|�i ,
P

i)
�
taking the following steps.

i choose initial values for �i ,
P

i , ⇡i 8i 2 {1, ..., k} and evaluate the initial
value of the objective function L(�,

P
,⇡)

ii re-estimate parameters with the following equations obtained from setting
derivatives of the objective function to zero. Note thatmi =

PN
n=1 �(zni)

estimating the number of points assigned to cluster i.
– �i = 1

mi

PN
n=1 �(zni)

–
P

i =
1
mi

PN
n=1 �(zni)(xn � �i)(xn � �i)T

– ⇡i =
mi
N

iii re-evaluate the objective function. If the convergence criterion is not met,
return to step (ii)

To choose the optimal number of clusters, we run GMM across a wide range
of values for k and select the one that minimizes the BIC function given in
Eq. 12. L?(�,

P
,⇡) is the maximum log-likelihood of the estimated GMM for

the corresponding k.

BIC(k,�,
P

,⇡) = kln(N) � 2 ⇥ L?(�,
P

,⇡). [12]

Girvan–Newman Algorithm. Edge betweenness centrality of an edge is the
sum of the fraction of all shortest paths between two nodes in the network
passing through that edge as addressed in Eq. 13. This centrality was initially
proposed in ref. 42 to identify cohesive communities by dropping most central
edges in the network. Their method is known as Girvan–Newman algorithm and
consists of the following four steps:

(i) Compute edge betweenness centrality for all edges in the network
(ii) Remove an edge with the highest betweenness centrality
(iii) Recomputeedgebetweennesscentrality for remainingedges inthenetwork
(iv) Repeat steps (ii) and (iii) until no edges remain

BC(e) =
X

s,t2V

�(s, t|e)
�(s, t)

. [13]

Calculating the Mechanical Response of a 3D Mass-Spring Network. We
consider the system as a 3D spring network under periodic boundary conditions
and introduce the potential energy functional for our networks (63, 64),

E =
X

hi,ji

 ijs
2

(Lij � L0ij)
2 +

X

hi,j,ki

 ijkb
2

(✓ijk � ✓0ijk)
2, [14]

where  ijs and 
ijk
b denote the bond-stretching and bond-bending stiffnesses,

respectively. Lij represents the edge shared by node i and j. ✓ijk is the angle
formed by the edge pair Lij and Ljk . L

0
ij is the rest length and ✓

0
ijk is the rest angle

obtained from the initial configuration; therefore, the springs are all in their rest
length and the systems are in mechanical equilibrium.

At the system level, we characterize its mechanical response by computing
the linear response elastic modulus G to an infinitesimal affine strain � via the
Born–Huang approximation (55)

G = Gaffine � Gnon-affine =
1
V

"
@2E
@�2

� ⌅i�M�1
i�j⌫⌅j⌫

#

�=0
. [15]

In Eq. 15,⌅i� is the derivative of the force on node iwith respect to strain given
by

⌅i� ⌘ @2E
@�@ ri�

, [16]
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where ri� is the position of node i and � = x, y is the Cartesian index. V is
the total volume of the system. M is the Hessian matrix given by the second
derivative of the energy E with respect to position vectors of nodes i and j

Mi�j⌫ =
@2E

@ ri�@ rj⌫
. [17]

Note that the expression given here is valid for the central bonds and cannot be
directly extended to systems in which bending stiffness/rigidity has to be also
taken into consideration. Detailed derivations of such bending–stiffnesses are
given in refs. 65 and 66 where individual bending angles as well as bending
potential are used to derive theHessian of bond-bending stiffness. Nonetheless,
since in our description of a cluster, each spring can (and does) represent more
than one single particle-level bond, the bond angles and potential are virtually
impossible to be uniformly derived. As such, and consistent with the overall
calculations of the bond-bending stiffness in refs. 65 and 66, the bending
elasticityb here is taken as a function ofs. We choose an algebraicmean ofs

of the two neighboring edges  ijkb = ↵
q
 ijs 

jk
s , to be a descriptor of bending

elasticity, where↵ is the ratio tomanipulate the relative strength between bond-
stretching and bending elasticity. The stretching elasticity s itself is calculated
based on the number of particle-level connections between the cluster pair,
described in the main text and also in SI Appendix.

Synthesis of PMMAColloidal Gels. All chemicalswerepurchased fromSigma-
Aldrich unless otherwise specified. The particles used in this experimental study
were poly12-hydroxystearic acid (PHSA) stabilized PMMA colloids prepared
using free radical polymerization based on the procedure described by Pradeep
et al. (67). The particles were dyed with fluorescent Nile Red (peak emission
wavelength �em = 635 nm, peak excitation wavelength �ex = 559 nm) for
confocal microscopy imaging. The particles were cleaned with pure hexane six
timesby centrifugation at 10,000 rpm for 15min and stored asdry particles until
further use. The particle diameter is 2a= 837 nm ± 5% based on the images
collected using scanning electron microscopy. The particles were dispersed in a
66:34 volume % mixture of cyclohexyl bromide (CHB) and decalin containing
1 �M tetrabutyl ammonium chloride (TBAC) to ensure charge screening as well
as density and refractive index-matching. To introduce attractive interactions
between colloids,we suspendedpolystyrene (molecularweightMw =900,000
g/mol, overlap concentration c⇤ = 10.8mg/mL, radius of gyration Rg = 32±
2 nm) in the CHB/decalin mixture as a non-adsorbing depletant (26). Using
this method, we prepared colloidal gels with a range of volume fractions
(0.03  �  0.20) and depletant concentrations (c/c⇤ = 0.79, 1.75,
and 3.35). To estimate the pairwise net potential U between the colloids in

the gel network, we summed the attractive contribution, computed using the
Asakura–Oosawa relation (68) and the repulsive contribution computed using
the Yukawapotential (69). The colloidal gel interactions corresponded toU =6,
15, and 30kBT.

Confocal Imaging and Image Processing. Colloidal gels were imaged using
an inverted confocal laser scanning microscope (Leica TCS SP8) equipped with
a 63⇥ oil immersion objective. The excitation wavelength of the laser was set
to 552 nm. The freshly prepared colloidal gels were placed into a glass vial and
loaded onto the microscope (waiting time t = 0). To match the diffusion time
steps used in the simulations (t = 500⌧D), we collected 2D time-series images
of the gels at t = 6 min using a resonant scanner (lag time �t = 0.047 s
for a total duration of 18.6 s). The total image resolution was 512⇥ 512 with a
pixel size of 50.01⇥ 50.01 nm2. To avoid wall effects, we imaged the gels at
a minimum of 15 �m above the coverslip. Microdynamics of the colloidal gels
were analyzed using a brightness-weighted centroid detection and trajectory
linking algorithm (70, 71). The method involves the identification of particle
centers based on the brightest pixel followed by subpixel refinement based on
the maximum of the local intensity spectra and linking of particles between
each frame in the time series. The particle trajectories were then used to obtain
the mean squared displacement (MSD) and histogram of displacements as a
function of�t. In order to limit statistical error in the dynamical parameters to
less than 3%, the MSD analysis was limited to lag times for which the number
of observations is O(103).

Data, Materials, and Software Availability. All study data are included in
the article and/or supporting information.
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