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ABSTRACT: Organisms experience environments that vary across
both space and time. Such environmental heterogeneity shapes stand-
ing genetic variation and may influence species’ capacity to adapt to
rapid environmental change. However, we know little about the kind
of genetic variation that is involved in local adaptation to environ-
mental variability. To address this gap, we sequenced the whole
genomes of 140 purple sea urchins (Strongylocentrotus purpuratus)
from seven populations that vary in their degree of pH variability.
Despite no evidence of global population structure, we found a suite
of single-nucleotide polymorphisms (SNPs) tightly correlated with
local pH variability (outlier SNPs), which were overrepresented in re-
gions putatively involved in gene regulation (long noncoding RNA and
enhancers), supporting the idea that variation in regulatory regions
is important for local adaptation to variability. In addition, outliers in
genes were found to be (i) enriched for biomineralization and ion ho-
meostasis functions related to low pH response, (ii) less central to
the protein-protein interaction network, and (iii) underrepresented
among genes highly expressed during early development. Taken to-
gether, these results suggest that loci that underlie local adaptation to
pH variability in purple sea urchins fall in regions with potentially
low pleiotropic effects (based on analyses involving regulatory re-
gions, network centrality, and expression time) involved in low pH
response (based on functional enrichment).
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Introduction

One of the major goals of evolutionary biology is to reveal
the molecular basis of adaptive evolution in natural pop-
ulations. Investigating adaptive genetic variation (differ-
ences between genomes of individuals as a result of natu-
ral selection; Holderegger et al. 2006) can lead to insights
into both past and future evolutionary and ecological pro-
cesses and can help predict species’ resilience to future
climate conditions (Conover et al. 2006; Bay et al. 2018;
Xuereb et al. 2018). One way to study adaptive genetic
variation is by examining genetic differences between
populations of the same species that experience different
selection pressures. Species with broad geographic distri-
butions are commonly distributed across heterogeneous
environments, such as discrete habitat patches, or latitu-
dinal and altitudinal gradients, which can result in local
adaptation (Savolainen et al. 2007; Schoville et al. 2012),
where individuals from a population perform better in
their local environment than individuals from nonlocal
populations (Savolainen et al. 2013). Local adaptation in
response to spatial environmental differences is the result
of adaptive genetic differentiation, as some alleles are more
beneficial in one environment than others (Kawecki and
Ebert 2004; Tiffin and Ross-Ibarra 2014).

High gene flow can hider local adaptation (Slatkin 1987).
Still, growing evidence demonstrates the existence of local
adaptation between populations experiencing high gene
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flow (Savolainen et al. 2007; Fitzpatrick et al. 2015; Moody
et al. 2015; Tigano and Friesen 2016; Hdmaéld and Savo-
lainen 2019), even in marine species (Sanford and Kelly
2011; Bernatchez 2016). Furthermore, it has been argued
that gene flow can promote local adaptation, as it can pro-
vide subpopulations with genetic diversity that can facili-
tate the search for adaptive local phenotypes (Lenormand
2002). By investigating genetic and phenotypic differences
between populations with high gene flow, potential molec-
ular mechanisms underlying adaptation to specific environ-
mental conditions can be revealed, as differences between
populations are likely to be due to selection rather than
drift (Hoban et al. 2016).

The environment organisms experience could vary at
both spatial and temporal scales. Interconnected popula-
tions that experience differences in temporal variability
provide an excellent opportunity to study local adapta-
tion to environmental variability. Different populations
experiencing different levels of environmental variabili-
ties can result in the evolution of population-specific phe-
notypic plasticity if the environmental change is frequent
and predictable (Bitter et al. 2021). Indeed, populations
experiencing higher temporal variabilities are commonly
adapted to have stronger plastic responses (Sanford and
Kelly 2011; Pespeni et al. 2013b; Franch-Gras et al. 2018;
de Villemereuil et al. 2018; Sasaki and Dam 2019).

It is hypothesized that mutations in gene regulatory re-
gions are important in adaptation to environmental var-
iability (Whitehead and Crawford 2006b; Lépez-Maury
et al. 2008), since differential gene regulation is believed
to be one of the main molecular mechanisms underlying
phenotypic plasticity (Médkinen et al. 2018). Furthermore,
some studies have found gene regulatory variation to be
important for local adaptation in general (Lasky et al
2014; Gould et al. 2018; Mack et al. 2018; Lewis and Reed
2019). However, few studies have looked at the role of gene
regulatory regions in local adaptation to environmental
variability. This is largely due to our limited knowledge
of noncoding regulatory variation in most species (Poel-
wijk et al. 2011). To address this gap in knowledge, in this
study we present results from a whole-genome population
genomics dataset from locally adapted populations experi-
encing high gene flow and differences in temporal environ-
mental variability.

The purple sea urchin (Strongylocentrotus purpuratus)
is an excellent model organism for understanding the
mechanisms of local adaptation. This species has a wide
geographic distribution across a heterogeneous seascape
that extends along the west coast of North America, from
as far south as Ensenada, Mexico, to as far north as British
Columbia, Canada (Ricketts et al. 1985). Purple urchin
larvae can travel in the ocean for hundreds of kilometers
carried by high-speed currents (Okamoto et al. 2020),

which makes sea urchin populations highly interconnected,
with little to no fixed allelic differentiation between north-
ern and southern populations (Pespeni et al. 2010; Pespeni
and Palumbi 2013). While the mean pH is similar between
populations, northern populations generally experience
much higher variation in pH. This is due to the upwelling
phenomenon in the California Current System caused by
seasonal changes in wind direction that pushes the surface
of the water offshore and high-dissolved-CO,, low pH sub-
surface waters to the surface (Chan et al. 2017).

Low pH conditions significantly affect sea urchin de-
velopment and physiology, especially at the larval life
stage, which largely coincides with the time of the year
with the strongest upwelling, April to early May (Chavez
et al. 2000). Since the pH of larval extracellular spaces is
not regulated, pH has to be maintained by active ion
transporters, which is energetically expensive (Stumpp
etal. 2012; Evans et al. 2017). Moreover, urchins need car-
bonate ions to build their skeletons; however, carbonate
ions are depleted when the concentration of CO, is high
(Stumpp et al. 2012). As a result, sea urchin larvae, which
develop at low pH, have reduced biomineralization and
body size (Pespeni et al. 2013¢; Chan et al. 2015). Accord-
ingly, transcriptomics studies have found a global down-
regulation of genes involved in biomineralization and an
upregulation of genes involved in ion homeostasis (Evans
and Watson-Wynn 2014).

Another advantage of using purple sea urchins to study
adaptation to environmental variability is the availability
of developmental and genomic resources provided by the
echinoderm scientific community (Arshinoff et al. 2022).
The reference genome and gene annotations have been
recently significantly improved, and with modern high-
throughput technologies regulatory sites have been de-
tected genome-wide (DNase-seq, ATAC-seq [Shashikant
et al. 2018], Chip-seq [Khor et al. 2019], enhancer RNA
[Khor et al. 2021], and noncoding conserved element com-
putational discovery [Tan et al. 2019]). Thus, this study
system is ideal to investigate the genetic variation important
in local adaptation to environmental variability and to spe-
cifically look at the role of mutations in regulatory regions.

In this study, we generated and analyzed the whole-
genome sequences of purple sea urchins from seven popu-
lations, three of which consistently experience a much
higher frequency of low pH events, to investigate adap-
tive genetic variation and test for signatures of selection
to environmental variability. We identify alleles associated
with pH variability and determine the types of genomic
regions and genes in which these loci lie. We consider
the function of these genes as well as the magnitude of
their expression during early development and how they
relate to one another in a protein-protein interaction net-
work (PPIN).



Methods
Data Collection

We collected, shipped, extracted DNA, and sequenced the
whole genomes of 140 purple sea urchins (Strongylocen-
trotus purpuratus), 20 from each of seven sites (fig. 1).
Coordinates for collection sites were chosen on the basis
of pH data collected by autonomous pH sensors mounted
submerged in the water at ecologically relevant depth for
this sea urchin species (Evans et al. 2017). Within a site,
we limited collections to four or five urchins collected
within a 1-m? area. Urchins were collected from low in-
tertidal areas and had 4.5-6.0-cm test diameter (the di-
ameter of the hard outer shell of sea urchins). DNA was ex-
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tracted using the Qiagen DNeasy Blood and Tissue Kit, and
sequencing libraries were prepared using Nextera DNA
Flex Small Genomes Library Prep. Paired-end sequencing
using NovaSeq S2 Flow Cell 150 x 150 bp on a single lane
resulted in high-quality reads, such that no trimming was
necessary.

From Raw Reads to Single-Nucleotide
Polymorphisms (SNPs)

The Burrows-Wheeler Alignment Tool (BWA) MEM al-
gorithm (Li 2013) was used for mapping the raw reads to
the S. purpuratus reference genome (Spur ver. 5.0, scaffold
N50 ~37 Mbp). The average coverage for each individual
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Figure 1: Seven collection sites of adult purple sea urchins (pins), 20 from each location. From north to south: Fogarty Creek (FOG), Cape
Blanco (CAP), Kibesilah Hill (KIB), Bodega Head (BOD), Terrace Point (TER), Lompoc Landing (LOM), San Diego (SAN). The inset shows
pH data gathered by autonomous pH sensors at those locations across all years and months for which the sensors were deployed (2011,
2012, and 2013, April to October). Individuals were collected in June and July 2020, within 500 m of where the pH data were measured
(Evans et al. 2017), except for SAN, for which pH data were estimated on the basis of the nearest IPACOA buoy. The red line indicates
pH 7.8, below which only FOG, CAP, and BOD had frequent measurements (sites indicated with red stars on map).
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was 6.42 = 0.78, with an average mapping rate of 81.6 *+
0.01. The Analysis of Next Generation Sequence Data
(ANGSD) program was run to calculate genotype likeli-
hoods of polymorphic sites across all populations (maxi-
mum P value: 1e—6; Korneliussen et al. 2014). The output
beagle file was then used by PCAngsd to create a covari-
ance matrix to visualize any clustering by population and
environmental factors, as well as coverage. There was no
clustering present, showing that there were no differences
in sequencing success between individuals and popula-
tions (Meisner and Albrechtsen 2018). Based on the prin-
cipal component analysis (PCA), three outlier individuals
were removed from further analysis (two from Fogarty
Creek and one from Cape Blanco).

Next, ANGSD was used to produce a variant call file
(vcf) for all high-quality polymorphic sites across all indi-
viduals filtered by sequencing read, depth, and mapping
quality, yielding 15,902,843 polymorphic sites. The vcf
file was then further filtered, leaving 994,220 biallelic SNPs
with a minimum minor allele frequency (MAF) of 0.025
to use in downstream analyses. ANGSD was also run sep-
arately for each population, this time for all sites, not just
for significantly polymorphic ones. The resulting seven
site allele frequency (saf) files were then used by realSFS
(part of the ANGSD software; methods based on Korne-
liussen et al. 2013) to calculate all 21 pairwise site frequency
spectrums (sfs) followed by per site as well as global Fs;
values. The output of realSFS was also used to calculate
per-site nucleotide diversity measures by thetaStat (win-
dow size = 1,000, step size = 1,000). PLINK version 1.9
was used to estimate linkage disequilibrium (Purcell et al.
2007).

Identification of pH Variability-Associated SNPs

pH data from Evans et al. (2017) was used to group pop-
ulations on the basis of frequency of low pH events. pH
measures (2011, 2012, and 2013, April to October) had
similar means across the populations. However, while
four of the seven populations experience low pH events
only occasionally, three populations (Bodega Head, Cape
Blanco, and Fogarty Creek) experience physiologically
relevant low pH conditions often (fig. 1, inset). When
looking at the frequency of pH events <7.8 (<2% vs. ~10%
of all data points) as well as absolute minimum pH mea-
sured (~7.75 vs. ~7.5), lowest 100 pH measures averaged
(~7.8 vs. ~7.6), or lowest first percentile of pH data (~7.8
vs. ~7.65), these populations clearly partition into the
above-mentioned two groups.

We identified SNPs where the allele frequency strongly
correlated with the frequency of low pH conditions (as a
categorical environmental variable: high or low frequency
of low pH) using three independent methods: OutFLANK,

pairwise Fsr, and LEMM2. With OutFLANK, we looked
for allele frequency differences based on regrouping of
all individuals into the above-mentioned two categories
(i.e., considering two populations instead of seven). We re-
quired a minimum heterozygosity of 0.1 with a g-value of
0.05, with default settings (Whitlock and Lotterhos 2015).
Pairwise per-site Fs; values were instead calculated by aver-
aging between populations experiencing similar frequency
of low pH conditions (within-category average Fs; [W]) as
well as between populations belonging to different catego-
ries (between-category average Fs; [B]), and then the within-
category average was subtracted from the between-category
average (B — W) to find genomic sites where on average
the Fgr between populations experiencing low and high
frequency of low pH was the greatest compared with the
average Fs between populations of the same category. Out-
liers (highest 1% Fs; values) were selected on the basis of a
standard method of bootstrapping, which involved ran-
domly sampling the distribution of Fs values with re-
placement and calculating the 99th percentile of the new
distribution 10,000 times. To get the bootstrapped cutoff
value for the top 1%, the 95th percentile of these 10,000 per-
centiles was taken. Finally, LFMM2, a method commonly
used to infer gene-environment associations using latent
factor mixed models, was run using ridge estimates and
k = 1 because of the lack of population structure shown
by both LEFMM?2 and PCAngsd PCAs (Caye et al. 2019).
Since the results from these three methods were signifi-
cantly positively correlated (fig. S2), we focused on only
one of these methods, and the results presented below

were calculated on the basis of the pairwise Fsr measures
(fig. S3).

From Candidate SNPs to Genomic Regions and Genes

SNPs were annotated using the Spur (ver. 5.0) annotation
available on NCBI RefSeq (PRJNA10736 BioProject ac-
cession number) as well as the Variant Effect Predictor
available on EnsemblMetazoa (McLaren et al. 2016). Re-
gions within 5,000 bp upstream of the transcription start
site for each gene were considered as promoter regions in
our analysis (results were unaffected by considering pro-
moters as 2,000 bp upstream). Putative enhancers were
identified by combining the following previous published
datasets: ATAC-seq and DNA-seq overlaps (Shashikant
et al. 2018), Chip-seq (Khor et al. 2019), conserved non-
coding elements with Lytechinus variegatus (Tan et al. 2019),
experimentally verified enhancers (Nam et al. 2010; Arenas-
Mena et al. 2021), and enhancer RNAs (Khor et al. 2021).
An outlier SNP was considered an enhancer SNP if it fell in
anoncoding region in addition to a region included in one
of the above-mentioned datasets. Additionally, long non-
coding RNA (IncRNA) regions were identified on the basis



of computational prediction present in the NCBI RefSeq
annotation file (gft-version 3) as well as based on a compar-
ative study by Hezroni et al. (2015). A x* test was used
to check whether the distribution of Fg; outliers between
different genomic regions was significantly different from
expectation. If a SNP fell in more than one region, all re-
gions were counted (randomly choosing one did not affect
results).

Gene Expression

Early developmental gene expression data (within 72 h
postfertilization [hpf]) was downloaded from the Echi-
nobase FTP (Arshinoff et al. 2022). Genes were catego-
rized as “highly expressed during early development” if the
sum of transcripts per million over all time steps was greater
than 700 (top 5% of data; determined on the basis of the
shape of the distribution, the point at which increasing the
threshold would result in exponential loss of data). A bino-
mial statistical test (SciPy package; Virtanen et al. 2020) was
used to test for enrichment of genes highly expressed dur-
ing early development among genes with an outlier SNP.

Protein-Protein Interaction Network

The PPIN for S. purpuratus including only physical links
(either experimentally determined or information gath-
ered from curated databases) was downloaded from the
String database (Szklarczyk et al. 2020). The network of
size 20,180 was pruned on the basis of the confidence
score of the edges (threshold = 750), leaving 5,901 nodes
(i.e., proteins). For genes with and without outlier SNPs,
both degree centrality (number of neighbors) and be-
tweenness centrality (the number of times the node of in-
terest is on the shortest path between two other nodes)
was determined using networkx (Hagberg et al. 2008). A
Mann-Whitney U test was used to compare these mea-
sures between the two groups. For network visualization
and modularity calculation, Gephi software (ver. 0.9) was
used with the Fruchterman Reingold layout (area = 10,000,
gravity = 10, speed = 1; Bastian et al. 2009).

Functional Enrichment

Gene Ontology (GO) terms for each gene with one or more
outlier SNPs in the promoter or gene body region were
accessed from UniProt (UniProt Consortium 2021). To
test for functional enrichment, we used the latest version
of topGO (Alexa and Rahnenfithrer 2022). In addition,
the set of genes with one or more outlier SNPs was tested
for significant overlap with published sets of genes, includ-
ing a previously identified list of biomineralization genes
(Evans et al. 2017) and genes with SNPs identified as
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changing in allele frequency in response to low pH condi-
tions in single-generation selection experiments (Brennan
etal. 2019). Again, significance was tested using a binomial
test (SciPy package; Virtanen et al. 2020).

To further investigate variation in biomineralization
genes, a neighbor-joining tree visualizing the hierarchical
relationship between the populations based on the pair-
wise differences of all filtered SNPs (not just outlier SNPs)
falling in biomineralization genes was made. Pairwise dif-
ferences between each pair of individuals (all 137) were
computed by counting the number of sites they differed
out of the ~1 million filtered SNPs. Then these measures
were averaged to calculate a similarity between each pair
of populations. These steps were repeated for all filtered
(including nonoutlier) SNPs as a base of comparison.
Neighbor-joining trees were generated using MEGA11
software, a neighbor-joining algorithm, and then visual-
ized using FigTree (ver. 1.4.4).

Results

Global Patterns across Populations
and the Whole Genome

The genomes of the sequenced sea urchins were highly
polymorphic. Considering the genomes of all 140 individ-
uals, we identified ~16 million high-quality SNPs and es-
timated an overall pairwise nucleotide diversity measure ()
of 0.0254.

PCA showed no clustering by population, geographic
region (north vs. south), or frequency of low pH events
(low vs. high) when looking across the first five principal
components (fig. 2). Results were the same when the anal-
ysis was repeated with only SNPs in gene bodies or exonic
regions. We also found no evidence for isolation by dis-
tance when comparing pairwise global Fs: measures to geo-
graphic distance (r* = 0.009, P = .969). Furthermore, we
found very low linkage disequilibrium among the genomic
positions (1,500 bp; fig. S1).

Distribution of SNPs Involved in Adaptation
to pH Variability

The further-filtered high-quality SNPs (MAF > 0.025 and
biallelic across all individuals; ~1 million) were distributed
evenly across all large scaffolds in the reference genome
(fig. 3A). Considering different classes of genomic regions,
the bootstrapped 1% highest Fs; SNPs between regions of
low and high pH variability (9,780 outlier SNPs) were non-
randomly distributed among genomic regions (x” test, P <
.001). Specifically, although there were fewer intronic out-
lier SNPs, there were more promoter, untranslated region
(UTR), and exonic positions with high Fs; than expected,
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Figure 2: Principal component analysis of genome-wide variation across all high-quality single-nucleotide polymorphisms identified
among 137 individuals from the seven populations (three outlier individuals were dropped). Populations in the key are ordered from north
to south (codes are as in fig. 1), and the colors of the shapes correspond to the colors on the map in figure 1.

especially in putative and experimentally confirmed non-
coding enhancer and IncRNA regions (fig. 3B). In addi-
tion, regardless of genomic location (i.e., including coding
regions), we found 99 outliers in enhancer RNAs (vs. 60 ex-
pected; P < .0001) and 13 outliers in ChIP-seq-identified
regulatory regions (vs. 7.65 expected; P < .0485). Consid-
ering outliers in exonic regions, a smaller percentage of
exonic Fsr outliers were nonsynonymous mutations than
expected (25.2% vs. 32.1%; P < .0001), while a greater per-
centage of exonic Fsr outliers were synonymous mutations
than expected (74.7% vs. 67.8%; P < .0001). We found as
many stop-loss and stop-gain variants as expected by chance
(1 for each).

Types of Genes Associated with pH Variability

To understand the potential functional consequences of
outlier SNPs, we (1) tested the prevalence of genes with
outlier SNP(s) among genes expressed highly during early
development, (2) investigated the network position of
genes with outliers in the PPIN, and (3) conducted a func-
tional enrichment analysis. Considering gene expression

during early development, we found that genes with out-
lier SNPs in the promoter region were significantly un-
derrepresented among early developmental genes highly
expressed within 24 (P = .0249), 48 (P = .00609), and
72 (P = .0294) hpf (fig. 4). On the other hand, genes with
outlier SNPs in gene bodies were not under- or overrep-
resented among genes highly expressed during early de-
velopment (fig. 4; <24 hpf, P = .15; <48 hpf, P = .67;
<72 hpf, P = .93). When looking at outlier SNPs spe-
cifically in exonic regions of these genes, they were over-
whelmingly synonymous (90.3% vs. 67.8% expected;
P <.0001). Comparing genes with outlier SNPs regard-
less of position in promoter or gene body regions to all
early development genes, we found significant underrep-
resentation of outliers among genes highly expressed
within 24 hpf (P = .03) but not beyond that (<48 hpf,
P = 23;<72 hpf, P = .68). Taken together, these results
suggest conservation of genes expressed early in develop-
ment, particularly in the promoter regions.

To explore the physical interactions of genes with out-
lier SNPs, we used network analyses of a PPIN. Genes
with outlier SNPs were on average less connected in the
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PPIN than other genes, both considering outliers in pro-
moter regions and in gene bodies (i.e., degree centrality,
average number of interacting partners 10.14 vs. 20 [P <
.0001] and 12.19 vs. 20 [P < .0001], respectively; fig. 5A).
In addition, genes with outliers had on average a lower
betweenness centrality compared with other genes (P <
.0001; again for both genes with outliers in promoter and
gene bodies), meaning that genes with outliers not only
had fewer neighbors in the network, they were also not

key nodes on the shortest path between two other nodes
(fig. 5B). Additionally, we found that while genes with out-
lier SNPs were less connected on average, there was a sig-
nificant PPIN enrichment (based on the String database
enrichment algorithm; Szklarczyk et al. 2020), suggesting
that genes with outlier SNPs were more interconnected
with each other than expected compared with a random
set of genes of the same size and degree distribution drawn
from the genome (P = .0002), indicating that these genes
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of interest share biological functions, developmental timing
of expression, and/or cell types in which they are expressed
(fig. 5B).

Last, genes with either gene body or promoter outlier
SNPs were enriched for 42 biological process GO catego-
ries, including cell surface receptor signaling, cell adhesion,
and ion transmembrane transport, as well as 55 molecular
function GO categories, including ion gated channel activ-
ity, calcium-activated cation channel activity, and carbonate
dehydratase activity (table S1). Considering the list of pre-
viously identified biomineralization-related genes, we found
more biomineralization genes with either gene body or
promoter outlier SNPs than expected (77 observed vs.
60.9 expected; x” test, P = .02529), with the pattern being
driven by gene body outliers.

To further test the importance of biomineralization
genes in adaptation to the frequency of low pH using a
method independent of finding outlier SNPs, we built a
neighbor-joining tree of the populations using all SNPs
across the genome (994,220 SNPs) and all SNPs that fall
in biomineralization genes (12,576 SNPs). We found that
when only considering SNPs in biomineralization genes,
the populations clustered into pairs on the neighbor-joining
tree on the basis of the frequency of low pH the popula-
tions experience, in contrast to considering all SNPs

(fig. 6A, 6B). Specifically, we found that Cape Blanco and
Fogarty Creek, populations experiencing low pH conditions
most frequently, and Kibesilah Hill and Terrace Point, pop-
ulations experiencing a similar low frequency of low pH
conditions, were most similar to each other. As expected,
when we repeated the same analysis using only SNPs in bio-
mineralization genes that were classified as outliers, clus-
tering of populations by pH variability becomes even stron-
ger (fig. 6C).

Discussion

In this study, we set out to test for signatures of local ad-
aptation to environmental variability in whole-genome
sequence data. While looking across the entire genomes,
we found no evidence for population structure (fig. 2); in-
dividuals collected 1,700 km away were not more geneti-
cally different from individuals collected just a few meters
away. Despite a lack of isolation by distance or any kind
of clustering by population or geographical region, we
found SNPs strongly correlated with pH variability. En-
hancers and IncRNA were particularly enriched for loci
under selection (fig. 3B). Furthermore, we confirmed pre-
vious results and found that promoter and gene body
loci under selection were enriched in genes involved in
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correlate with frequency of pH under 7.8. Colored lines show allele frequencies, and the black line shows the frequency of pH under 7.8.

biomineralization and ion homeostasis (Pespeni et al.
2013b; Evans et al. 2017). We also found that genes with
outlier loci were underrepresented among genes ex-
pressed early in development (fig. 4) and that they were
generally less connected in the physical PPIN (fig. 5).
We hypothesize that all of these results together suggest
that loci with low pleiotropic effects are important fuel
for local adaptation to environmental variability.

High gene flow between populations can hinder local
adaptation in that differences in genetic composition be-

tween populations can be reduced by the constant ex-
change of alleles due to migration, in the case of purple
sea urchins, during the larval stage of development (Endler
1977; Slatkin 1987; Galindo et al. 2010; Pespeni et al.
2012, 2013a). Indeed, in accordance with previous stud-
ies involving this species (Pespeni et al. 2010), we found
little overall genetic differentiation between the populations
under investigation (fig. 2). Despite the lack of a global
population structure, we found a suite of loci correlated
with pH variability. This apparent paradox between high



gene flow but population-specific differences at specific loci
could be explained by the high genetic diversity (7 =
0.0254) across all of the sequenced individuals in combi-
nation with a low linkage disequilibrium (fig. S1). The
combination of high genetic diversity and low linkage dis-
equilibrium enables populations to have a diverse set of al-
leles on various genomic backgrounds. These alleles can
then be subject to selection in different ecological niches
(Levene 1953; Yeaman and Jarvis 2006). In addition, hav-
ing high gene flow in the study system has its advantages.
First, any consistent difference between populations expe-
riencing low and high pH variability are more likely to be
due to selection rather than drift; and second, high gene
flow together with high fecundity and large population size
maximize the effects of natural selection (Palumbi 1992;
Hartl et al. 1997). Here, we tested for pH-associated loci,
identified the genomic regions where they most often oc-
cur, and explored how they may relate to adaptive pheno-
types by integrating with other sources of genomic data.

The Importance of Regulatory Regions

In this study, we found an overrepresentation of outlier
SNPs in regulatory regions. Regulatory regions are hy-
pothesized to be involved in local adaptation to environ-
mental variability in this species for two main reasons.
First, highly interconnected populations of purple sea ur-
chins have been experiencing different pH variabilities
due to upwelling for about 10 million years (Jacobs et al.
2004), when they radiated to this region of the Pacific
Ocean from the arctic southward (Biermann et al. 2003),
giving the populations plenty of time to adapt. Because
of these differences in variability, it is expected that indi-
viduals from different populations would have different
plastic responses in response to low pH. Indeed, previous
studies have found that transcriptional response to low pH
and consequent phenotypic changes of this species is pop-
ulation specific. Larvae from southern populations were
found to have a lower level of expression of genes within
major ATP-producing pathways and a larger decrease in
body size when exposed to low pH (Kelly et al. 2013; Evans
etal. 2017), and adults of the same population after 3 years
of common garden conditions had lower expressions of
biomineralization genes and a faster spine regrowth rate
than their northern counterparts (Pespeni et al. 2013a), in-
dicating the presence of local adaptation to pH variability
through differences in environmentally responsive as well
as constitutive gene expression. Genetic differences in reg-
ulatory regions between the populations investigated in
this study (fig. 3) could underlie the gene expression differ-
ences found by previous studies.

Second, the importance of variation in cis-regulatory
elements that control the expression of nearby genes in
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driving local adaptation is increasingly recognized now
that whole-genome sequencing is more affordable and ge-
nomes are better characterized (Juneja et al. 2016; Joshi
etal. 2021). Many studies have found locally adapted nat-
ural populations to have different gene expression pat-
terns, including research on fruit flies (Levine et al. 2011;
Zarubin et al. 2020), mummichog and gulf killifish (Olek-
siak et al. 2002; Whitehead and Crawford 2006a; Brennan
et al. 2015), and valley oak (Gugger et al. 2017). However,
only recently have we been able to find the genomic regions
underlying these differences through genome-wide scans
with studies primarily of human local adaptation. SNPs in-
fluencing gene expression were identified as targets of re-
cent natural selection contributing to human local adapta-
tion (Kudaravalli et al. 2009), regulatory regions were found
to have many signatures of local adaptation (Vernot et al.
2012), and Fraser (2013) showed that loci involved in local
adaptations are much more likely to affect gene expression
than protein structure (Fraser 2013). Additionally, regula-
tory variation was found to play a significant role in local
adaptation in natural populations of Arabidopsis thaliana
(Lasky et al. 2014), yellow monkeyflower (Gould et al. 2018),
house mice (Mack et al. 2018), stickleback fish (Jones et al.
2012), and Heliconius erato (Lewis and Reed 2019), with a
counterexample of a lack of excess of cis-regulatory varia-
tion associated with short-term response to strong selec-
tion pressures in the grain crop millet (Rhoné et al. 2017).
Mutations in gene regulatory regions have also been found
to be important in adaptation to environmental variability
(Whitehead and Crawford 2006b; Lopez-Maury et al. 2008),
in line with the hypothesis that differential gene regulation
is one of the main molecular mechanisms underlying phe-
notypic plasticity (Mikinen et al. 2018).

In addition, outliers in coding regions may also relate
to regulation. We found an excess of synonymous muta-
tions among SNPs involved in adaptation to pH variabil-
ity. Recent findings highlight the potentially important
phenotypic effects of synonymous mutations, including
translation efficiency, messenger RNA stability, and rec-
ognition by small regulatory RNAs (Kristofich et al. 2018).
Thus, similar to mutations in promoter or enhancer regions,
these mutations could influence the regulation of protein ex-
pression, but on the translation level. However, further re-
search is needed to investigate the effect of synonymous mu-
tations and their potential importance in local adaptation.

The Pleiotropic Effects of Loci Involved in Adaptation

Cis-regulatory mutations are predicted to play a large role
in local adaptation because these mutations are likely to
have fewer deleterious pleiotropic effects than mutations
causing changes to amino acid sequences (Stern and Or-
gogozo 2008). While changes in protein structures can
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have many downstream consequences in protein-protein
interactions, signaling pathways, and enzymatic reac-
tions, variation in cis-regulatory elements often only in-
fluence the level of expression of a particular gene, in a spe-
cific tissue, at a certain developmental stage or in response
to a distinct external stimulus (Hoekstra and Coyne 2007)
and are likely an import fuel to local adaptation as they en-
able fine-tuning of gene expression with lower fitness costs
(Prudhomme et al. 2007). While this hypothesis is hard to
test experimentally, a recent study did find strong evidence
that cis-regulatory mutations have smaller phenotypic and
fitness consequences than trans-regulatory mutations in
yeast (Vande Zande et al. 2022).

The hypothesis of reduced pleiotropic effect can also be
used to interpret our result that we found fewer genes
with signatures of local adaptation in their promoter that
are highly expressed during early development than expected
(fig. 4). Mutations in genes expressed highly during early
development could have large phenotypic effects, in part
because they are likely located in the highest levels of the
embryonic development gene regulatory network and thus
could have large effects on downstream gene expression
patterns and development (Yu and Gerstein 2006). Not sur-
prisingly, these genes are generally highly conserved (Erwin
and Davidson 2009). In addition, there is a negative rela-
tionship between expression level and the evolutionary
rate of a protein, although the reason for this remains largely
unknown (Drummond et al. 2005; Zhang and Yang 2015).

Differential pleiotropic effects are also a reason why
proteins less central in a protein-protein interaction, gene
coexpression, or gene regulatory network are likely the
ones involved in adaptation, based on both early theory
(Fisher 1930) and recent experimental results. Because
central genes/protein are under strong selective con-
straint (Fraser et al. 2002; Hahn and Kern 2005; Miahler
et al. 2017; Masalia et al. 2017), many studies found sig-
natures of long-term positive selection in less connected
nodes of biological networks (Kim et al. 2007; Josephs
etal. 2017). This is likely because mutations in genes with
a higher number of connections have larger pleiotropic
effects (He and Zhang 2006; Alvarez-Ponce et al. 2017),
and thus less central genes are less constrained to adapt
(Stern and Orgogozo 2008). In populations that are well
adapted to their environment, small-effect loci are more
likely to be used by positive selection and therefore in-
crease in frequency over time (Orr 1998). On the other
hand, if a population is further away from the fitness
optima—for example, because of recent environmental
change—more central positions with higher pleiotropic
effects could be involved in adaptation. Indeed, this the-
oretical prediction was observed in nature, in previous
studies involving common ragweed (Himal4 et al. 2020),
and human populations (Luisi et al. 2015). Because purple

sea urchins have experienced consistent ranges of pH var-
iability throughout their evolutionary history (Jacobs et al.
2004), we predicted that loci involved in local adaptation
would have small-effect sizes and be more on the periph-
ery of the PPIN. Indeed, this is what we found. Centrality,
computed as both degree and betweenness centrality, was
significantly lower for genes with allelic differences be-
tween the populations investigated in this study (fig. 5).

During our analysis of the PPIN, we also found that
while genes with signatures of local adaptation were on
average less connected, they were not randomly distributed
across the network, as they were more connected to each
other than expected by chance, indicating that they are in-
volved in similar biological functions and cell types. In-
deed, functional enrichment analysis showed that many
GO categories, including ion transmembrane transport as
well as carbonate dehydratase activity, were significantly
enriched, and we also found more outliers in biomineral-
ization genes than expected (fig. 6). These results are in line
with results of several previous studies that used restriction
site tiling or exome or transcriptome sequencing to find
signatures of local adaptation to low pH among these pop-
ulations (Pespeni et al. 2010, 2013b, 2013¢; Evans et al.
2017). Also, when looking only at genes with outlier SNPs
in gene bodies, we found that they significantly overlap
with genes that were previously found to be under selection
in a single-generation selection experiment in response to
pH 7.5 (P = .035; Brennan et al. 2019).

Conclusion

In conclusion, we found that purple sea urchin popula-
tions experiencing different environmental conditions
across both space and time have remarkably high genetic
variation. Interestingly, variation putatively involved in
local adaptation to temporal environmental variability,
specifically variability in low pH conditions, was found
to be in regulatory regions, proteins less connected in the
PPIN, and lacking in genes expressed highly during early
development. These results suggest that sites with lower
pleiotropic effects are involved in local adaptation to envi-
ronmental variability in the populations under investiga-
tion and perhaps in general in populations of species close
to their fitness peaks. Functionally, as expected on the basis
of the physiological effects of low pH in sea urchins, adap-
tive variation was found in genes involved in ion homeo-
stasis and biomineralization. Taken together these findings
indicate the presence of high adaptive genetic variation in
this species that likely translates into adaptive genetic var-
iation underlying diversity in plastic responses to low pH
conditions found by previous studies (Pespeni et al. 2013a;
Evans et al. 2017). Since diversity in the plastic response it-
self is crucial for resilience to sudden environmental changes



(Oostra et al. 2018), these populations have the potential to
adapt to increased ocean acidification resulting from global
climate change; however, genetic variation could become de-
pleted in the process of rapid adaptation (Lloyd et al. 2016;
Lin et .al. 2023).
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