
Systematically Detecting Packet Validation
Vulnerabilities in Embedded Network Stacks

Paschal C. Amusuo
Electrical and Computer Engineering

Purdue University
West Lafayette, USA

pamusuo@purdue.edu

Ricardo Andrés Calvo Méndez
Systems and Computer Engineering
Universidad Nacional de Colombia
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Abstract—Embedded Network Stacks (ENS) enable low-
resource devices to communicate with the outside world, fa-
cilitating the development of Internet of Things and Cyber-
Physical Systems. Some defects in ENS are thus high-severity
cybersecurity vulnerabilities: they are remotely triggerable and
can impact the physical world. While prior research has shed
light on the characteristics of defects in many classes of software
systems, no study has described the properties of ENS defects
nor identified a systematic technique to expose them. The
most common automated approach to detecting ENS defects
is feedback-driven randomized dynamic analysis (“fuzzing”), a
costly and unpredictable technique.

This paper provides the first systematic characterization of
cybersecurity vulnerabilities in ENS. We analyzed 61 vulnerabil-
ities across 6 open-source ENS. Most of these ENS defects are
concentrated in the transport and network layers of the network
stack, require reaching different states in the network protocol,
and can be triggered by only 1-2 modifications to a single packet.
We therefore propose a novel systematic testing framework that
focuses on the transport and network layers, uses seeds that cover
a network protocol’s states, and systematically modifies packet
fields. We evaluate this framework on 4 ENS and replicated 12 of
the 14 reported IP/TCP/UDP vulnerabilities. On recent versions
of these ENSs, it discovered 7 novel defects (6 assigned CVES)
during a bounded systematic test that covered all protocol states
and made up to 3 modifications per packet. We found defects in 3
of the 4 ENS we tested that had not been found by prior fuzzing
research. Our results suggest that fuzzing should be deferred
until after systematic testing is employed.

Index Terms—Automated Testing, Validation, Cybersecurity,
Embedded systems, IoT, Networking, Empirical Software Engi-
neering, Fuzzing

I. INTRODUCTION

Embedded Network Stacks (ENSs) are software components

that enable network communication on embedded systems.

There are several ENSs with varied architectures tailored to the

semantics of individual embedded operating systems, such as

Contiki-ng [1] and FreeRTOS [2]. Unlike the network stacks

used by regular operating systems, ENSs run on embedded

systems with limited or no vulnerability protections [3]. As

a result, vulnerabilities in ENSs are severe and could be

remotely exploitable. In the last five years, many critical

defects have been discovered and reported in these ENSs [4]–

[6]. Detecting cybersecurity vulnerabilities in ENSs remains

an important challenge for securing the Internet of Things.

Automated software testing techniques for network stacks

use formal methods, static analysis, and dynamic analysis to

detect vulnerabilities. Formal methods, e.g., model checking,

provide strong guarantees [7]–[12] but are costly to apply and

maintain. Static analyses efficiently find defects [13]–[17], but

must be tuned to defect patterns and generate false positives.

Dynamic analysis is promising, especially fuzzing [18]–[22].

But while fuzzing ensures no false positives, it offers limited

guarantees. No dynamic works examine the systematic testing

of ENSs and consequently provide guarantees.

Our goal was to develop a systematic dynamic testing

technique, one that could provide certain guarantees about the

security of the ENS under test. But what guarantees should be

prioritized? Several studies [23]–[25] show that defect patterns

recur in software. Thus, identifying the characteristic defects

can help prevent such defects in the future. We analyzed 61

security defects that were previously reported across 6 embed-

ded network stacks to understand defect patterns. We found

that most ENSs vulnerabilities occur because an ENS directly

used certain fields in packet headers without proper validation.

Invalid values of such fields lead to out-of-bound (OOB)

reads, buffer overflows, and integer wraparounds. We call these

packet validation vulnerabilities. Our study also revealed

that the test suites used in ENSs are inadequate to detect

this recurring class of defect. To dynamically detect packet

validation vulnerabilities, an approach must be systematic in

varying fields (many different packet fields were problematic),

able to reach different protocol states (many different protocol

states were problematic), and able to find memory errors (most

vulnerabilities involve OOB memory access).

Based on this analysis, we propose EmNetTest, an auto-
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mated and systematic framework for dynamic testing of ENSs.

EmNetTest possesses three characteristics that enable it to

uncover known vulnerability patterns in ENSs. (1) System-
atic packet generation: EmNetTest systematically generates

validly constructed packets with invalid header fields or trun-

cated headers. (2) Stateful: EmNetTest provides sequences of

packets that get the ENS to different protocol states before

packet injection. (3) Memory focused: EmNetTest uses ad-

dress sanitizers with dynamic memory poisoning to detect

all memory corruptions. We implemented EmNetTest us-

ing PACKETDRILL which provides necessary scripting support

for testing network stacks. We enhanced PACKETDRILL to

support mutating arbitrary network packets.

We evaluated EmNetTest on 4 of the 6 ENSs whose vulnera-

bilities we studied: FreeRTOS, Contiki-ng, lwIP, and PicoTCP.

We also created ENSBench, a dataset of 12 vulnerabilities

by re-introducing previously known vulnerabilities into recent

versions of the ENSs. Our evaluation showed that Em-

NetTest replicated all the 12 vulnerabilities we attempted. In

addition, EmNetTest found 7 new vulnerabilities (zero days),

which can be remotely exploited by any user and potentially

allow arbitrary code execution. We compared our framework

with fuzzing. We ran 4 fuzzers from the Poncelet et al.
benchmarks [22] on the latest version of Contiki-ng (which

contains 5 vulnerabilities) and found that within 24 hours, no

fuzzer detected any of the vulnerabilities.

Our work shows the importance and effectiveness of system-

atic testing for detecting critical software defects. We invite the

community to explore systematic testing approaches, beyond

the current trend of automated randomized testing (fuzzing).

In summary, we contribute:

1) We perform the first comprehensive study (§V) of 61

reported ENS vulnerabilities, understand their root causes,

and provide insights into the packet sequences that trigger

these vulnerabilities.

2) We designed and implemented EmNetTest (§VI), an auto-

mated systematic testing framework for ENS. Our evalu-

ation shows that EmNetTest effectively finds known and

new vulnerabilities in ENS.

3) As part of our framework, we implemented PACKET-

DRILL++, an extended version of PACKETDRILL that

facilitates adversarial testing of network stacks and can be

used independently of our testing framework.

4) ENSBENCH: A dataset of 12 recreated and 7 new vulner-

abilities, packaged into recent versions of ENSs to support

the evaluation of other defect detection tools. EmNetTest

detects all vulnerabilities in this dataset.

Our vulnerability analysis and the implementation of Em-

NetTest are available (§XI).

II. BACKGROUND

A. Embedded Network Stacks (ENS)

Embedded Network Stacks (ENSs) enable network con-

nectivity for embedded systems. ENSs are either part of an

embedded operating system (Integrated ENS) [2], [26] or

1 static void prvCheckOptions(...) {
2 const unsigned char *pucPtr = ... ;

3 const unsigned char *pucLast = pucPtr +

4 (((pxTCPHeader->ucTCPOffset >> 4) - 5) << 2);

5 while(pucPtr < pucLast){
6 ...

7 else if(( pucPtr[0] � == TCP_OPT_MSS) &&
8 (pucPtr[1] == TCP_OPT_MSS_LEN)) {
9 uxNewMSS = usChar2u16(pucPtr + 2);

10 if(pxSocket->u.xTCP.usInitMSS > uxNewMSS){
11 ...
12 pxTCPWindow->xSize.

13 ulRxWindowLength = ((uint32_t) uxNewMSS) *

14 (pxTCPWindow->xSize.ulRxWindowLength /

15 ((uint32_t) uxNewMSS �));
16 ...
17 }}
18 pucPtr += ...
19 ...
20 }}

Listing 1: CVE-2018-16523 and CVE-2018-16524: Snippet

showing a divide-by-zero defect triggered by the TCP MSS

Option (green) and an out-of-bound read (blue) triggered by

the TCP Data Offset. Both are in the FreeRTOS network stack.

EmNetTest can recreate these vulnerabilities (Table VII).

stand-alone libraries (Standalone ENS) [27], [28]. ENSs follow

a layered software architecture, each layer implementing a

specific protocol on the TCP/IP stack.

ENSs vulnerabilities pose a greater threat than those of

regular network stacks due to the absence of operating systems

and hardware vulnerability protection mechanisms. Regular

operating systems, e.g., Linux, provide more protection in

their OS design. This includes features such as Address Space

Layout Randomization (ASLR), Data Execution Prevention

(DEP), address space isolation, and Stack Canaries [29] that

prevent the exploitation of memory vulnerabilities. Also, mod-

ern processors include no-execute (Nx) regions that prevent

the unauthorized execution of codes in sensitive memory

regions [30]. Many embedded OSes and processors lack

these features [3], [31], increasing the ease of vulnerability

exploitation.

ENSs are designed for embedded systems, which are

resource-constrained, have real-time requirements, and often

lack common library support. ENSs are also tailored to

the underlying embedded operating system’s threading and

scheduling semantics. Consequently, they differ from regular

operating systems’ network stacks, which use the POSIX

standard [32] for portability. For example, the accept call

in FreeRTOS blocks until a successful TCP connection is

established or the timeout elapses. The accept call in lwIP is

non-blocking and defines a callback that would be called on

successful connection establishment. Meanwhile, Contiki-ng

has no accept syscall. Instead, it uses an event-driven callback

for all events, including a Socket connection event.
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Fig. 1: A hex representation of a TCP packet showing the TCP header length field and the TCP MSS Option Value. Listing 1

describes two CVEs associated with these fields in the FreeRTOS ENS.

B. Internet Protocols and Network Packets

In this work, we focus on Internet Protocol (IP) or TCP/IP

suite, which includes various protocols that specify how data

should be packaged, addressed, and routed [33], [34]. The

TCP/IP suite is organized into a layered architecture (Fig-

ure 2). An Internet packet has elements for each layer of this

architecture, recursively structured as headers associated with

one layer and a payload associated with the next (Figure 1).

The protocol’s implementation processes the corresponding

headers at each level and passes the payload along.

Fig. 2: Layers of the TCP/IP stack. Our tool targets layers in

the red box (specific protocols in blue). Values in parentheses

indicate number of analyzed CVEs in each layer (§V-B3).

C. ENS Vulnerabilities

ENSs are usually implemented in C/C++ for performance

and compatibility reasons. They handle complex packet struc-

tures across multiple layers. Hence, ENSs are prone to defects

that can be cybersecurity vulnerabilities. With the absence of

sufficient protection mechanisms, the vulnerabilities in an ENS

can be exploited to either disable or remotely control the entire

system. Furthermore, these vulnerabilities can be triggered

remotely by any use with network access to the system.

Listing 1 shows the snippet corresponding to two

vulnerabilities, CVE-2018-16523 and CVE-2018-16524.

CVE-2018-16523 (divide by zero) occurs because the

TCP MSS option value, uxNewMSS, is used as the divisor

to calculate RxWindowLength. A TCP packet with an

MSS value of zero will lead to a divide-by-zero error.

CVE-2018-16524 (out-of-bounds read) occurs because offset

in the header, i.e., ucTCPOffset is used to compute a pointer

address pucLast, which is later read through pucPtr. These

vulnerabilities are triggerable remotely without authorization

by sending TCP packets. Furthermore, these vulnerabilities

can be exploited to gain control of the system because of the

lack of isolation mechanisms in embedded systems.

III. RELATED WORK

a) Traditional Testing: Many ENSs incorporate test

suites that help the maintainers validate the various function-

alities they develop. As shown in §V, these test suites are

inadequate. Although automated test generation tools [35]–

[37] exist, the tests generated by them are inadequate at finding

faults [38]. Furthermore, domain knowledge is required to use

these automated test-generation tools effectively.

Research and commercial tools exist to facilitate the easy

development of test suites for network stacks. PACKET-

DRILL [39], a network stack testing tool that enables the use of

scripts to test the end-to-end correctness behavior of network

stacks. PACKETDRILL focuses on testing functionality and

always generates valid packets, i.e., has valid and well-formed

headers. However, as found in §V, most vulnerabilities occur

because of invalid values in packet headers. InterWorking Labs

has commercial testing solutions for testing network protocols

and also uses malformed packets [40]. However, access costs

over $10,000,1 limiting its adoption in open-source projects

and the low-margin embedded systems marketplace [41].

b) Formal Methods: Several tools [10]–[12] have ex-

plored formal methods for verifying network functions. Za-

ostrovnykh [10] and Pirelli [12] developed formal verification

tools to automatically prove that a network function conforms

to a provided specification. However, these techniques do not

apply to multithreaded programs such as ENS. Microsoft’s

Project Everest [42] verifies various components of HTTPs and

has provided verified implementations of some cryptographic

libraries. FreeRTOS, maintained by AWS, also verifies their

network stack implementation, FreeRTOS+TCP [43]. These

formal methods are used to verify specific correctness prop-

erties of the network protocol implementations and do not

make complete guarantees about their security. As shown by

Fonseca et al. [44], formal methods guarantees are only as

1This quote was provided to us through personal communication.
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good as their underlying assumptions. Hence, we still need to

assess the security of these systems through dynamic testing.

c) Fuzzing: Fuzzing [45] has found many software de-

fects. From a network perspective, fuzzing has been mainly

explored to find bugs in network applications. AFLNet [18],

StateAFL [19], and SnapFuzz [20] are three recent works

in this direction. These works focus on setting up a proper

communication channel with a network application and send-

ing test data to the application through well-formed network

packets. A recent work, TCPFuzz [21] uses fuzzing and

differential testing to detect semantic vulnerabilities in the

transport layer. TCPFuzz always generates valid packets and

cannot find vulnerabilities arising from invalid packets.

Poncelet et al. [22] applied several state-of-the-art fuzzing

tools to test individual functions of the Contiki-ng ENS.

They reported that testing lower-layer functions does not get

deep penetration. Conversely, directly testing upper network

layers increases the rate of false positives as some inputs

and corresponding packets are impossible as lower layers will

reject them. Furthermore, they fail to trigger code paths that

require the network stack to be in a particular state. This is

demonstrated in our evaluation (§VII) where EmNetTest found

various vulnerabilities in the well-test portions of Contiki-ng.

d) Vulnerability Studies: Several researchers have stud-

ied vulnerabilities’ characteristics in different software systems

[46]–[50]. Most of these works focus on well-provisioned

systems, e.g., desktop and web software. Few works study

vulnerabilities in embedded systems. Al-Boghdady et al. [49]

studied the characteristics of security vulnerabilities in IoT

operating systems. While they focused on characterizing the

CWEs (Common Weakness Enumeration) reported by static

analysis tools, their study does not cover how these vulnera-

bilities are triggered or detected. Similar to our work, Malik

& Pastore examined CVEs in Edge frameworks and found

that (1) the network components were a common source of

CVEs, and (2) specific values were often problematic, but

did not go into detail on ENSs nor evaluate a solution [51].

Other industry practitioners have also published reports of

security vulnerability analyses of ENSs they conducted. For

example, Zimperium [52] published a blog post containing

details of the vulnerabilities they discovered in FreeRTOS,

and Forescout published a report containing an analysis of

the 33 vulnerabilities they found and a list of observed com-

mon anti-patterns [5]. No prior work systematically analyzes

vulnerabilities in ENSs.

IV. KNOWLEDGE GAPS AND RESEARCH QUESTIONS

This work aims to fill two gaps. First, no study characterizes

cybersecurity vulnerabilities in ENSs. Second, no dynamic

system exists to systematically detect ENS cybersecurity vul-

nerabilities. We ask:

Theme 1: Vulnerability analysis
RQ1: What are the types and root causes of vulnerabilities?

RQ2: What packet sequences trigger ENS vulnerabilities?

Theme 2: State of practice for packet validation testing

RQ3: Are ENS tested for packet validation vulnerabilities?

Theme 3: Evaluating systematic testing with EmNetTest
RQ4: To what extent can bounded systematic testing uncover

packet validation vulnerabilities?

V. ENS VULNERABILITIES AND TESTING (RQ1-3)

This section presents methodology and results for RQ1-3.

To summarize our findings, ENS CVEs are typically packet
validation vulnerabilities. The studied ENS incorrectly handle

packets that are slightly malformed, sometimes from a partic-

ular protocol state. In 95% of CVEs, 1-2 fields are incorrect.

Repairs often involve a single if-statement.

A. Methodology

1) Repository Selection: We studied both integrated ENS

and standalone ENS (Table I). We selected ENSs integrated

into major open-source embedded operating systems. From

lists in survey papers [54], [55], we selected three embedded

OSes with over 1K GitHub stars: Zephyr (maintained by

Linux Foundation), Contiki-ng (Supported by Swedish Re-

search Institute), and FreeRTOS (maintained by AWS). From a

previous vulnerability study [6], we selected the top-3 actively-

maintained repositories (by GitHub stars) with reported CVEs.

These were PicoTCP, LwIP, and FNet.
2) Data Collection: We obtained vulnerability reports

(CVEs) from the National Vulnerability Database (NVD) [56].

We searched the NVD for the associated project. For in-

tegrated ENSs, we only considered vulnerabilities in the

networking stack. There were 81 total CVEs. We discarded

15 CVEs that omitted technical vulnerability details. After

preliminary analysis, we observed 61 of the remaining 66

vulnerabilities were caused by the poor validation of packets

received by ENS. We termed these packet validation (PV)
vulnerabilities. We removed the 5 non-PV vulnerabilities.

3) Data Analysis: One author analyzed each vulnerability

report and technical details, including screenshots explaining

vulnerable code, links to the vulnerability’s GitHub issue,

and the repairing pull request (PR).2 We indicate the specific

extracted features below — these are a typical set of features in

software failure analysis [57]. For soundness, a second author

analyzed a random sample of 13 vulnerabilities. We measured

interrater agreement using Cohen’s Kappa score [58]. We

obtained κ=0.82, indicating substantial agreement [59].

B. RQ1: Vulnerability Characteristics

Finding 1: Memory Out-of-Bound Read and Write are the

most common vulnerabilities (70%).

Finding 2: Missing length field validation and Missing

packet size validation are the most frequent root causes

and account for 69% of vulnerabilities.

Finding 3: The network layer contains most vulnerabilities

(41%), followed by the application layer (29%). Vulnera-

bilities are also found in every layer of the stack.

We describe CVE types, root causes, and affected components.

2During this analysis, we found 3 new CVEs (excluded from our analysis).
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Table I: Embedded network stacks (integrated and standalone) whose CVEs we examined. C/C++ LoC (source, not tests)

measured with cloc [53]; for integrated ENS we measured only the network implementation. GitHub data as of May 2023.

Name Size (LOC) GitHub stars GitHub forks # CVEs studied # CVEs recreated # new vulns.
FreeRTOS(+TCP) 42.2K 3.6K (76) 1.2k (110) 11 5/5 0

Contiki-ng 41.6K 1.1K 635 24 2/2 2
Zephyr 95.7K 7.7K 4.8K 11 Not attempted Not attempted

PicoTCP 32.7K 1K 201 12 5/7 4
LwIP 84.3K 525 249 1 Not attempted 1
FNET 18.0K 106 46 2 Not attempted Not attempted

Table II: Proportion of CVE types. “Others”: double-free, DNS

cache poisoning, division-by-zero, and infinite loops.

Type # CVEs (%)
Out-of-Bounds Read (CWE 125,126,200) 22 (36%)
Out-of-Bounds Write (CWE 120,121,122,787) 21 (34%)
Integer Overflow (CWE 191) 5 (8%)
Integer Underflow (CWE 190) 4 (7%)
Null-pointer dereference (CWE 476) 4 (7%)
Other 5 (8%)

Total 61 (100%)

Table III: Implementation-level root causes of CVEs.

Root cause # CVEs (%)
Missing length field validation 23 (38%
Missing packet size validation 19 (31%)
Missing header value validation 7 (12%)
Missing integer wraparound validation 2 (3%)
Other 10 (16%)

Total 61 (100%)

1) Vulnerability Types: First, we group CVEs according to

their Common Weakness Enumeration (CWE) [60]. Table II

shows the result by this taxonomy. Memory over-read/write

(the first two rows) comprise 70% of the vulnerabilities.

2) Implementation Root Causes: We studied code and

repairs to learn the implementation-level root causes of CVEs.

Table III groups these into several recurring patterns. Roughly

69% of CVEs in ENSs (first two rows) result from missing

checks on length fields and data packet size. Two examples:

• Missing length field validation (CVE-2018-16524):
FreeRTOS uses the TCP header length field to calculate

the size of the TCP options region. However, it fails to

validate the length value. Consequently, an invalid length

value results in arbitrary memory read.

• Missing packet size validation (CVE-2022-36054):
Contiki-ng receives a 6LoWPAN packet and after header

compression, copies the packet into a buffer. If the packet

is the first fragment of a fragmented packet, only 148 bytes

are allocated. Contiki-ng doesn’t verify the received packet

size before copying it into this buffer. Consequently, a buffer

overflow could result in a remote code execution attack.

3) Vulnerable Layers: The left column of Figure 2 shows

the distribution of CVEs across the ENS layers. The top layers

for CVEs are network (41%) and application (29%).

C. RQ2: Packet Sequences That Trigger CVEs

Finding 4: 95% of vulnerabilities depend on one or two

fields and consequently can be triggered with a maximum

of two field changes. 40 different fields contribute to these

vulnerabilities.

Finding 5: 30% of CVEs are stateful, e.g., involving an

existing connection or a specific protocol state.

Here, we study packet sequences that can trigger these

CVEs. Each packet sequence has a prefix (i.e., state prefix)

p1p2 . . . pk−1 that brings the ENS to a vulnerable state, fol-

lowed by the vulnerability-triggering packet pk. For instance,

consider a vulnerability in processing a TCP FIN packet. To

trigger the vulnerability, we first need to send packets that can

set the ENS to a state where it accepts a FIN packet. Then, we

send a FIN packet triggering the vulnerability. Understanding

both parts enables a testing scheme to uncover real CVEs.

1) Properties of the vulnerability-triggering packets (pk):
Here, we investigate two aspects: (1) Root Cause Fields
(RCf ): Which incorrectly-handled fields result in vulnerabili-

ties? (2) Dependent Fields (Df ): How many fields of a packet

does a vulnerability depend on?

For instance, consider CVE-2018-16599, which is caused by

the incorrect validation of the UDP header length field. The

vulnerability can be triggered only if the NBNS Type field

is NET BIOS (0x0020) and the NBNS Flags field indicates

a response packet (0x8000). Here, RCf = 1 (for the length

field), whereas Df = 3 (for the length, type, and flags fields).

Table IV shows RCf and the number of CVEs resulting

from it. We see that 57 (93%) of CVEs arise from fields in

the protocol headers and options that are incorrectly handled.

Table V shows the distribution of CVEs according to Df . Most

vulnerabilities (58, or 95%) have Df ≤ 2. However, it is not

just one field that is problematic — 40 different fields across

15 protocols contribute to the 61 CVEs.

2) Properties of the packet sequence prefix: We studied

the vulnerable code and execution path to identify any states

involved. Table VI shows that 70% CVEs are stateless (can be

triggered with a single packet/no prefix) and that the remaining

930
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Table IV: Distribution of CVEs based on the incorrect fields

(RCf ) in the CVE-triggering packet. These fields often in-

cluded those specifying the length of the packet or option

component (rows 1-2), or specific values of other fields or

options (rows 3-4). Often, the packet was truncated (row 5).

Type Count(%)
Header length value 8 (13%)
Option length value 8 (13%)

Header field value 24 (39%)
Option value 2 (3%)

Truncated packet 15 (25%)

Others 4 (7%)

Total 61 (100%)

Table V: Distribution of CVEs by # of dependent fields (Df ).

# Dependent Fields # CVEs
1 34 (56%)
2 24 (39%)
> 2 3 (5%)

Total 61 (100%)

30% (12 CVEs) depend on the state of the system. Of these,

13 CVEs, occurring on stateful protocols, require the protocol

to be in a specific set of states. 5 other CVEs depend on the

properties of the previously-sent packet(s).

D. RQ3: Testing Suite Characteristic

We analyzed the test suites of four ENSs to understand

why the known CVEs, which we discussed in §V-B, existed.

Based on the CVE characteristics, we looked for four aspects

of validation: (1) Unit tests involving input packet processing

operations with malformed input; (2) Capability of injecting

specific (and possibly malformed) packets; (3) Tests involving

packets with invalid headers (cf. Table IV); and (4) Tests

involving statefulness (cf. Table VI).

Table VI: Distribution of vulnerabilities based on the stateful-

ness required to expose the vulnerability.

State Required Protocol # CVEs
Stateless – 43 (70%)

Requires protocol state TCP 6 (10%)
Requires protocol state RPL 1 (2%
Requires protocol state BLE 2 (3%)
Requires protocol state MQTT 4 (7%)
Requires packet sequence 6LoWPAN 3 (5%)
Requires packet sequence 802.15.4 2 (3%)

Total All 61 (100%)

Finding 6: ENSs are validated using end-to-end simulation

tests and unit tests. The actual implementations of these

tests are unique in each ENS (no standard test framework).

Finding 7: While some ENSs include packet injection

tests, these are regression tests for specific CVEs. One ENS

provides packet seeds and a harness for stateful fuzzing.

Finding 8: None of the ENSs systematically check invalid

header or option fields, nor include unit tests for the various

operations performed on an input packet.

FreeRTOS: FreeRTOS validates its ENS with end-to-end

tests, unit tests, and formal verification. The end-to-end tests

use the sockets interface to establish network connections

and validate behaviors of the network stack. They provide

(incomplete) memory safety proofs for main packet processing

functions. Not all functions are verified and the provided

proofs depend on the corrections of some unverified functions.

FreeRTOS has some packet injection tests with invalid head-

ers, but all cases are regressions for past CVEs.

Contiki-ng: Contiki-ng is validated with network simulation

using cooja [61], a packet injection test, and fuzzing. The

network simulation tests involve various end-to-end tests under

different simulated network environments. Their packet injec-

tion tests use a fixed set of network packets. These are mostly

regression tests to check for previous defects or vulnerabilities.

Their packet injection framework is also used for fuzzing.

PicoTCP: PicoTCP validates with unit tests and end-to-end

demo applications. The provided unit tests are mostly on non-

packet related tasks, such as IP address-to-string conversion

and socket tests. The demo applications test supported proto-

cols in different network environments.

LwIP: LwIP validates with unit tests, network stress testing,

and fuzzing. Their unit tests mostly test the output operations

of the network stack, not the input packet processing functions.

Several unit tests configure the test socket to specific protocol

states. For stress, they measure the reliability of simulated

networks while increasing the number of nodes and messages

in the network. They also provide a fuzzing harness and

fuzzing seeds for the different protocols.

VI. EMNETTEST: DESIGN AND IMPLEMENTATION

A. Design Requirements

Based on our findings from Theme 1, an automated testing

framework to detect PV vulnerabilities in ENSs should have

three characteristics:

• Ability to Detect Memory Issues: Based on Finding 1, it

should detect memory corruption vulnerabilities.

• Systematic Packet Generation: Based on Findings 2 and

4, it should systematically generate valid test packets with

incorrect header values and truncated headers.

• Stateful: Based on Findings 3 and 5, it should drive the ENS

stack to different protocol states for multiple protocols.

Such a framework would improve the state of the art in ENS

testing (cf. §III and Findings 6-8).
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B. Design
EmNetTest meets these requirements. Figure 3 illustrates.
• Memory focused: Address Sanitization (ASAN) [62]

with ENS specific instrumentation.

• Systematic packet generation: An ordered generation

algorithm can systematically generate all packets but is

prioritized for packets that trigger known PV CVEs.

• Stateful: We build on the PACKETDRILL tool [39]. It pro-

vides packet sequences that cover some relevant protocols.

We extend it to additional protocols and employ a seed set

of state-covering sequences (packet sequence prefixes).

1 # Input: Num. entities N, stride S, packet pk
2 # Output: Yields next packet for this config.
3

4 # SELECTION of N fields and options
5 {f1, · · · , o1, · · ·} = nextPacketEntities(N) # Generator
6

7 # INTERPOLATION
8 valsf1 = interpolate(f1, S)
9 . . .

10 valso1 = interpolate(o1, S)
11 . . .
12

13 # GENERATION (uses Python itertools)
14 for f1 in valsf1:
15 . . .
16 for o1 in valso1:
17 . . .
18 pk.modify(f1, · · ·, oi, · · ·)
19 yield pk
20 # Caller sends prefix + |pk| and checks result

Listing 2: Systematic packet generation. The caller imposes

order by working from smaller to larger N and varying S.

1) Custom Address Sanitization with Dynamic Address Poi-
soning (DAP): Memory corruptions (i.e., out-of-bounds read

and write) in embedded systems may not lead to program

crashes [63] (SEGSEGV). ASAN is a well-known technique to

convert memory corruptions into program crashes. However,

ASAN assumes the target application is using standard mem-

ory allocation and deallocation functions (e.g., malloc/free)

— which is not the case with ENSs, as they use custom

allocators. To handle this, we use ASAN’s Dynamic Address

Poisoning (DAP) support. For each ENS, we modified its

custom allocators such that after every allocation, the corre-

sponding memory chunk will be unpoisoned (i.e., OK to use).

Similarly, we modify deallocator or release functions to poison

the corresponding memory chunk (i.e., Invalid to use).
We modify packer copying routines to detect out-of-bound

memory accesses during packet processing. Specifically, after

a packet is received and copied into the buffer, we poison the

rest of the allocated buffer that is not covered by the received

packet. Then, ASAN will detect any bytes read or written

beyond the bounds of the allocated buffer.
2) (Ordered) Systematic Packet Generation: We system-

atically generate ordered test packets. Systematic means all

packets are generated. Ordered means an ordering over the

packets such that likely-useful packets are generated early.

We describe our approach, formalized in Listing 2. We

assume a prefix sequence of packets p1p2 . . . pk−1 to reach

a desired protocol state, followed by test packet pk (§V-C).

The algorithm generates all valuations of pk.

Systematic: Packet pk is a sequence of bytes consisting

of required header fields, optional fields, and a payload. The

payload was not the cause of ENS CVEs (§V) so we exclude it.

Different subsets of the header and option fields are selected

to modify (generator on line 5). We obtain possible values

for each following an interpolation sequence from minimum

(e.g., 0x00) to maximum (e.g., 0xff) along a stride S (line

7). All combinations are explored (line 13). This ensures we

can detect vulnerabilities that either depend on the minima or

maxima, or on a range of values as determined by the stride.

To generate all pk, choose maximum N and a Stride of 1.

Ordered: We order the generation of pk starting from 0

entities (the original pk), then 1 entity, and so on, discarding

repeating packets. This order places the likely-to-be-useful

packets early in the sequence — per Table V, most CVEs

depend on at most 2 fields (i.e., Df ≤ 2). This suggests that

most of the vulnerabilities could be found with N = 2. During

ENS validation, engineers may parameterize by bounding the

maximum number of fields to select N . They may trade

exhaustiveness vs. cost via the search stride S.

Handling truncate: As reported in Table IV, 25% of the

analyzed CVEs involved a packet that was truncated to shorter

than the expected length. The caller of Listing 2 generates

these with modest post-processing: remove bytes from the end

of the packet and then update checksums in earlier layers.

3) Stateful: In our CVE study, we found that many CVEs

can only be triggered from certain states of a protocol. We

examined existing network testing tools to identify one that can

reach many states of a protocol. We chose the PACKETDRILL

tool. It is designed to drive a network stack through the state

machine for various protocols [39]. It supported two transport-

layer protocols (TCP, UDP) and two network-layer protocols

(IPv4, IPv6), with a corpus of >200 scripts that test different

functionalities of the TCP protocol.

We developed a corpus of 7 Packetdrill scripts that can reach

the 7 different TCP states where a packet can be injected

(LISTEN, SYN-SENT, ESTABLISHED, FIN-WAIT-1, FIN-

WAIT-2, LAST-ACK, CLOSE-WAIT). We had only one UDP

script as UDP has no states. We use these scripts as test

script templates. As shown in Figure 3, for each test case

and mutation instruction generated, we append the mutation

instruction to all template scripts of the protocol being tested.

This enables us to test all protocol states with the same input.

C. Implementation

Our EmNetTest implementation is 3,426 lines of C/C++ and

Python. We describe pertinent aspects of the implementation.

1) Portability: The purpose of EmNetTest is to support

many ENSs. Portability is a priority. As noted in §II, ENS

have diverse architecture and semantics. We de-coupled the

EmNetTest packet generation from the delivery and evaluation

of packets. PacketDrill generates a combination of socket
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Fig. 3: Overview of the design of EmNetTest. It systematically generates mutation instructions by repeatedly taking a protocol

header, selecting combinations of fields, and iterating through possible values (blue box �). It achieves statefulness by using

a set of test script templates that can explore different protocol states (green box �). Packetdrill++ interprets each test script

and sends the syscall and packets to the SUT (ENS). The per-ENS Test Agent maps received POSIX syscall instructions to

appropriate behavior and execute the behavior on the ENS (black box �). The SUT is instrumented with dynamic poisoning

and compiled with ASAN to aid the detection of memory corruption (red box �).

commands and network packets. As shown in Figure 3, a

per-ENS Test Agent maps POSIX socket commands to the

appropriate behavior on the ENSs. This includes both minor

naming changes (e.g., socket vs FreeRTOS socket) as well as

more substantial semantic changes (e.g., rendering the asyn-

chronous socket semantics of LwIP into synchronous POSIX

semantics). This test agent (server) on the ENS receives socket

interactions and packets and delivers them to the ENS. The rest

of the system is agnostic to the ENS under test.

2) PACKETDRILL++: We implemented the network test-

ing tool as an extension of PACKETDRILL. We extended

the PACKETDRILL grammar to support mutation instructions.

We implemented a packet mutator component in C that, given

a packet and a set of mutation instructions, mutates the packet

following the instructions. For example, the instructions might

be to change the value of a field, insert an option, and truncate

the packet. We modified PACKETDRILL so that it loads the

Packet mutator as a shared library and uses it for packet

mutation. PACKETDRILL++ also interacts with our portable

bridge component instead of directly with the network.

3) Packet Injection: EmNetTest uses a virtual network

interface (TAP [64]) to send mutated packets to Embedded

Network Stack. A virtual network interface allows us to

inject packets at the lowest layer of the network stack, which

simulates the exact same behavior as when the ENS receives

the packet from the internet, removing the possibility of false

positives. Furthermore, a virtual network interface does not

introduce the same network latency that would be introduced

by a normal network interface connected to the internet.

4) Parallelizing test execution: Once packets are generated

systematically, executing them is an embarrassingly parallel

problem. We decoupled test case generation from execution

using the producer-consumer pattern, saturating our servers.
5) Deduplicating vulnerabilities: EmNetTest systemati-

cally generates packets, which may result in many redundant

defects. Our crash monitor analyzes the observed failures and

deduplicates them based on the stack trace (line of crash).
6) Linux versions of ENSs: Although ENSs support many

boards, they also support Linux as a development environ-

ment [65]. EmNetTest uses the Linux versions of the ENSs.

This enables EmNetTest and the ENS to run on the same

machine, enhancing communication between them. This does

introduce the risk that our results mask defects in HW/SW

integration on real boards, e.g., due to layering issues [66].

VII. RQ4: SYSTEMATIC TESTING WITH EMNETTEST

We evaluate our systematic testing framework by running

EmNetTest on 4 embedded network stacks. Our evaluation

aims to understand the extent our systematic testing approach

can uncover packet validation vulnerabilities. Specifically, we

answer the following questions.
• RQ4.1: Can EmNetTest replicate known vulnerabilities?

• RQ4.2: Can EmNetTest discover new vulnerabilities?

• RQ4.3: What are EmNetTest’s performance characteristics?

• RQ4.4: How does EmNetTest compare to fuzzing?

1) Experimental Setup: We evaluated N = 1,2,3 and we

used a stride that yielded 4-6 values for each field (Listing 2).
We used the following servers for our experiments:

two 32-core machines (Ubuntu 22.04, Intel Xeon W-2295

CPU@3GHz); and one 64-core machine (Ubuntu 22.04, AMD

EPYC 7543P CPU@2.8GHz).

A. Embedded Network Stack Selection
We selected 4 ENSs for our evaluation — FreeRTOS+TCP,

Contiki-ng, PicoTCP, and LWIP. These stacks from §V had
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the highest proportion of Network and Transport layer vulner-

abilities, suiting them for EmNetTest.

B. ENSBench: Vulnerability Dataset Contruction

To enable us to answer RQ4.1, we replicated 12 known

vulnerabilities in recent versions of 3 selected ENSs —

FreeRTOS, Contiki-ng, and PicoTCP.3 These were selected out

of the 14 reported vulnerabilities that affected the IPv4, IPv6,

TCP, and UDP protocols in the selected ENSs layer protocols.

We skipped 2 vulnerabilities because Packetdrill lacked sup-

port for the features they required (IPv6 fragmentation). We

studied their fixing commits to replicate the vulnerabilities

and reverted the fix. Porting the vulnerabilities to the latest

version allowed us to have all vulnerabilities in a single build

for testing. Table VII describes the CVEs we recreated.

Table VII: CVEs EmNetTest recreates. The last column in-

dicates dependent fields and kind of changes that expose

CVE. Notation: F—set header Field; O—insert+set Option;

T—Truncate header; Rd—Read; Wr—Write.

ENS CVE-ID Type Operators
FreeRTOS 2018-16523 Div-by-zero 1 (O)

2018-16524 OOB Read 1 (F)
2018-16526 OOB Write 1 (O)
2018-16601 Integer underflow 1 (F)
2018-16603 OOB Read 1 (T)

Contiki-ng 2021-21281 OOB Read 1 (F)
2022-36053 OOB Write 2 (F, T)

PicoTCP 2020-17441 OOB Read 2 (F, F)
2020-17442 Integer Overflow 2 (F, O)
2020-17444 Integer Overflow 2 (F, O)
2020-17445 OOB Read 2 (F, O)
2020-24337 Infinite Loop 1 (O)

C. RQ4.1: Replicating Known Vulnerabilities

To evaluate EmNetTest’s ability to expose defects, we ran

EmNetTest on vulnerable versions of FreeRTOS, Contiki-ng

and PicoTCP. Our test found all vulnerabilities in the tested

stacks as listed in Table VII using a maximum of 2 mutations.

Table VII also shows the mutation types performed on the

packet that exposed each vulnerability. These vulnerabilities

were triggered by a total of 9 distinct fields. IPv6 extension

header length caused 3 while TCP data offset caused 2.

D. RQ4.2: Discovering New Vulnerabilities

To evaluate EmNetTest’s ability to discover new defects,

we ran EmNetTest on recent versions of the ENS listed in

§VII-B. For FreeRTOS and Contiki, we only ran the tests for

IPv4 and IPv6 respectively as that was the only IP version

they supported. Table I shows the count of vulnerabilities we

found in each of the selected stacks. Table VIII describes the

various vulnerabilities that we found. In our artifact, we also

3LwIP had no reported IP/TCP vulnerabilities.

included the specific scripts that exposed each vulnerability

and a detailed description and impact of each vulnerability.

Contiki-ng and PicoTCP confirmed the vulnerabilities we

reported, assigned CVE identifiers, and repaired the vulnera-

bilities. We have been unable to establish communication with

the LwIP team.

Table VIII: New vulnerabilities EmNetTest found. Notation:

Same as Table VII.

ENS CVE ID Description Config.

FreeRTOS — No vuln found

Contiki-ng 2023-34100 OOB Rd (TCP MSS) 1 (O)
2023-37459 OOB Rd (TCP flags) 1 (T)

PicoTCP 2023-35847 Div-by-zero (TCP MSS) 1 (O)
2023-35846 OOB Rd (TCP fields) 1 (T)
2023-35849 OOB Rd (IP checksum) 1 (F)
2023-35848 OOB Rd (TCP MSS) 2 (O, O)

LwIP L1 OOB Rd (TCP options) 1 (O)

We attempted to evaluate EmNetTest on commercial ENSs.

We contacted five vendors of real-time OSes and embed-

ded network stacks: WindRiver (VxWorks), Segger (emPower

OS, embOS, emNet), Green Hills Software (GHNet), Lynx

(LynxOS), and Sysgo (PikeOS). All declined to allow us to

evaluate on their systems.

E. RQ4.3: Performance Characteristics

Test Execution Duration: We measured the execution du-

ration of EmNetTest by varying the number of dependent

fields (i.e., N in Listing 2). Table IX shows the test execution

duration on PicoTCP. For each value of N , we executed tests

over all supported protocols (IPv4, IPv6, TCP, UDP) using 32

consumer instances. Our results in §VII-C and §VII-D show

that all reported and new vulnerabilities could be found with

only N=1 and N=2 tests.

Table IX: Performance results from testing on PicoTCP.

Task # Test cases Instances Time
One test case 1 1 0.5 sec
N=1 test 2,211 32 2.13 min
N=2 test 134,296 32 2.21 hr
N=3 test 5,303,604 32 63.17 hr

Coverage Analysis: We analyzed the coverage achieved by

running EmNetTest on 4 ENSs compiled with gcov.

Table X shows the line coverage achieved executing dif-

ferent tests. For the Integrated ENSs, we consider only the

coverage of the networking component. The first two rows

show the coverage for two PACKETDRILL tests with scripts

representing different TCP states. The third row represents

the coverage achieved when we ran stateful test scripts rep-

resenting all TCP states. The last row indicates the coverage
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Table X: Table showing the line coverage achieved by different

tests when executing EmNetTest on all the tested stacks.

Test FreeRTOS Contiki PicoTCP lwIP
Script 1 37.4% 25.4% 11.3% 32.6%
Script 2 34.1% 24.8% 5.9% 29.9%
All Scripts 51.3% 29.6% 12.7% 40.0%
N=1 tests 53.4% 33.4% 14.8% 43.6%

when we ran a systematic test with N=1. By using test scripts

that represent different TCP states, we achieved a significant

increase in coverage. The little coverage increase caused by

N=1 tests shows that packet validation vulnerabilities exist in

codes that are covered by normal executions. As shown in

Table VIII, this N=1 was also sufficient in detecting most of

the new vulnerabilities we found. We could not get very high

coverage as the ENSs contained protocol implementations in

other network layers that we don’t currently support.

F. RQ4.4: Fuzzing Comparison

We used the Contiki-ng fuzzing benchmark provided by

Poncelet et al. [67] to demonstrate that within a time budget,

fuzzing is not deterministic in uncovering vulnerabilities.

We selected 4 fuzzers from the benchmark (MOpt [68],

Intriguer [69], SymCC [70], and AFL). The first 3 had the best

results during Poncelet et al.’s evaluations. AFL is a standard

comparison point. To help the fuzzers, we (1) disabled check-

sums in Contiki-ng, and (2) augmented the fuzzers’ seed set

with EmNetTest’s comprehensive set of seed packets.

Table XI: Fuzzing results with the Contiki-ng fuzzing bench-

marks after 24 hours. Version 1 contains a version of Contiki-

ng used by the Poncelet et al. authors for evaluation. It

contains the vulnerabilities reported by the authors in their

paper. Version 2 is the most recent commit on Contiki-ng

on GitHub as of May 1st, 2023. This version contains 5

vulnerabilities, including 2 detected by EmNetTest. These

vulnerabilities should cause a crash in V2 if triggered.

Metrics Version 1 [22] Version 2
# paths covered 190 316
Crashes found (#) 21 0
Hangs found (#) 12 0

After 24 hours, the second column of Table XI shows none

of the fuzzers triggered any crash in vulnerable Version 2.

Comparison with other network protocol fuzzers: As noted

in §III, there are other network fuzzers, e.g., TCPFuzz [21] and

AFLNet [18]. They are not appropriate for the vulnerabilities

we studied. For example, AFLNet targets the application

layer of the network stack, while TCPFuzz is concerned with

semantic defects on legitimate input.

VIII. DISCUSSION

EmNetTest vs Fuzzing vs Static Analysis: Fuzzing is the

most used technique for detecting vulnerabilities. As a dy-

namic analysis technique, fuzzing provides a low rate of

false positives. But fuzzing requires significant computing

resources to be effective, limiting developers’ ability to detect

vulnerabilities at development time.

Like fuzzing, EmNetTest is also a dynamic analysis tech-

nique. But unlike fuzzing, it completes and provides guaran-

tees that the known patterns of packet validation vulnerabilities

do not exist in the ENS.

Static Analysis is another widely used approach that suc-

ceeds in detecting specific vulnerability patterns. Unlike dy-

namic analysis, many static analysis techniques consider only

specific code sections rather than the entire software and give

off a lot of false positives [71]. We briefly ran CodeQL

[72] on the ENSs repositories and found that it struggled

with inter-procedural cases, failing to find any known or new

vulnerabilities we detected.

Learning from Intra and Inter-product Vulnerabilities: Our

results in §VII-D show that the known vulnerability patterns

still exist in ENSs. We found cases in Contiki-ng where

they added regression tests for individual errors but failed to

generalize these tests to classes of errors. We recommend that

software engineers learn from the individual errors that occur

in their software, and prepare generalized test cases that can

detect similar errors.

We also found that the same vulnerabilities recur in dif-

ferent software implementations. For example, CVE-2023-

35847 (§VII-D) in PicoTCP is the same as CVE-2018-16523

in FreeRTOS. CVE-2023-34100 in Contiki-ng is the same

as CVE-2018-16524 in FreeRTOS. Anandayuvaraj et al. al-

ready performed preliminary studies on this phenomenon of

recurring failures in software engineering [73] and initiated

conversations towards a failure-aware software development

lifecycle [23], [74]. Our findings in this paper further em-

phasize this need for software engineers to learn from the

reported vulnerabilities and failures of other software products.

Furthermore, tools like EmNetTest can help by ensuring that

new vulnerability patterns, discovered in one software product,

can be easily detected and fixed in every other similar software

product they may exist in.

Integrating Security Protections to Embedded Firmware:
As shown in §V-B, memory corruption is the most prevalent

class of vulnerability reported in ENSs. In addition to detecting

and fixing these vulnerabilities, protection mechanisms could

also be implemented to harden the embedded devices and

mitigate the impact of exploitations. Protection techniques

such as stack canaries, Address Space Layout Randomization

(ASLR), and No-Execute (Nx) regions exist for regular op-

erating systems which makes vulnerability exploitation diffi-

cult. Unfortunately, Yu et al. [3] showed that these security

protection techniques are missing in embedded systems. Prior

research [41], [75], [76] identified cost as a factor that limits

the integration of security in embedded systems. Our work
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further illustrates the importance of integrating these security

defenses into embedded systems. Hence, we advocate for

further research in developing and deploying cost-effective

protection mechanisms in embedded systems.

Improving Testing Practices for Open-source Software: As

seen in §V-D, different ENSs employ diverse methods and

implementations for testing. While many of the test suites had

unit tests, the size and robustness of the tests varied across

different ENSs. This suggests the need for a standard test

framework for testing similar software systems such as ENSs.

Future Works: We identify the following opportunities for

research to improve this work.

• Checkpoint-based Optimization: Stateful testing involves

driving the ENS to a specific state before injecting the test

packet. This introduces significant overhead. The use of a

deferred forkserver [77] does not work on multi-threaded or

networked applications. In the future, we hope to explore the

use of process checkpointing and recovery [78] to optimize

the execution of stateful tests.

• Smart Test Case Generation: Our current EmNetTest design

depends on generating packets where all combinations of

fields, up to a value k, can be mutated at a time. We plan to

explore using program and dataflow analysis to understand

which packet fields interact or depend on each other during

packet processing and prioritize testing the combinations of

these interacting fields. This approach will build on existing

research on concolic and hybrid testing that integrates static

analysis, dynamic analysis, and symbolic execution to aid

vulnerability detection [79], [80]. This improvement will

lead to optimizations in the time to run multiple field

combinations shown in §VII-E.

• Application to Other Protocols: Our results show that vul-

nerabilities in all network protocol implementations share

similar patterns. Hence, we have two questions. Would we

find similar patterns in the implementations of other proto-

cols? Would vulnerabilities in different implementations of

the same protocols or protocol groups (e.g., cryptographic

protocols) share the same patterns?

IX. LIMITATIONS AND THREATS TO VALIDITY

Limitations of EmNetTest: While EmNetTest is effective

in discovering packet validation vulnerabilities, it has the

following limitations

• Our implementation of EmNetTest is limited to the protocols

supported by Packetdrill (TCP, UDP, IPv4, IPv6, and ICMP).

We believe EmNetTest will work for protocols in other

layers as they contain vulnerabilities with similar patterns.

• Due to the different architectures of ENSs, EmNetTest

requires a distinct Test Agent for each ENSs. We designed

a portability layer that makes it easy to implement a Test

Agent for any ENS.

Construct Validity: We studied CVEs using well-known

classifications, minimizing construct-related risks. To mitigate

further, we used inter-rater agreement as a check.

Internal Validity: We assessed the testing practices of ENSs

by looking at their test suites. The maintainers of these ENSs

may have other testing processes which we don’t know about.

External Validity: We mitigate one generalizability concern

by examining multiple ENS of both kinds (integrated and

standalone). We acknowledge that the CVEs in our study (§V)

may have been found by a small number of persons using

specific techniques. There may be other vulnerability patterns

in ENSs not detected or reported. Nevertheless, the patterns

we observed in these CVEs helped us find new vulnerabilities.

X. CONCLUSION

Embedded Network Stacks play an important role in en-

abling interconnectivity in cyber-physical systems. Vulnera-

bilities in these stacks can have severe consequences. We

conducted the first study of packet validation vulnerabilities

in ENS. We studied 61 vulnerabilities in 6 ENSs. Our results

revealed the root causes of packet validation vulnerabilities

and the packet sequences needed to trigger them. We found

that detecting many of these vulnerabilities required only

simple mutations to the test packet. We designed EmNetTest

following these findings and evaluated our implementation on

4 ENSs. We discovered 12 known and 7 new vulnerabilities.

Our results show that appropriate systematic testing techniques

can aid the timely and guaranteed detection of specific vul-

nerability classes. Other non-deterministic dynamic analysis

techniques, such as fuzzing, should be deferred until appli-

cations have been adequately tested. Furthermore, EmNetTest

will help maintainers of ENSs detect these packet validation

vulnerabilities before deploying to the public.

XI. DATA AVAILABILITY

Our artifact is available at https://doi.org/10.5281/zenodo.

8247917. In it, we provide:

1) A spreadsheet containing our analysis of known ENSs

vulnerabilities.

2) The source code of EmNetTest and subcomponents.

3) ENSBench: Dataset of PACKETDRILL scripts to trigger the

known and new vulnerabilities reported in this paper.
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