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ABSTRACT

The primary theory of software engineering is that an organiza-
tion’s Policies and Processes influence the quality of its Products.
We call this the PPP Theory. Although empirical software engineer-
ing research has grown common, it is unclear whether researchers
are trying to evaluate the PPP Theory. To assess this, we analyzed
half (33) of the empirical works published over the last two years in
three prominent software engineering conferences. In this sample,
70% focus on policies/processes or products, not both. Only 33%
provided measurements relating policy/process and products. We
make four recommendations: (1) Use PPP Theory in study design;
(2) Study feedback relationships; (3) Diversify the studied feed-
forward relationships; and (4) Disentangle policy and process. Let
us remember that research results are in the context of, and with
respect to, the relationship between software products, processes,
and policies.
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1 INTRODUCTION

Empirical software engineering research analyzes data to improve
software products and engineering processes [5, 45]. International
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Figure 1: (a) Policy-Process-Product (PPP) Theory. Organiza-
tional goals influence the policies and processes adopted by
software engineers. Policies and process influence product
development. Feedback may modify policies, processes, or
the original goals. We treat the (often overlapped) concepts
of Policy and Process as a single entity. (b) Example of the
PPP Theory for the goal of producing trustworthy software.

standards organizations [20], industry consortia [26], and profes-
sional organizations [19] all assert that the Policies and Processes of
software engineering influence the quality of the software Product
(the PPP Theory). Various studies support some of the relation-
ships predicted by the PPP Theory [34, 39]. Nevertheless, it remains
unclear which policies and processes are most effective in achiev-
ing high-quality products, and how these vary by context [17].
To address this, experts have recommended that empirical soft-
ware engineering researchers incorporate the PPP Theory, either
as contextual information in case studies or as part of a controlled
experiment [6, 24]. This could address concerns regarding the gen-
eralizability and replicability of empirical software engineering
research [13, 15, 24, 25, 27, 28, 34, 37]. However, the extent to which
the research community has taken this advice is unclear.

This reflection paper examines whether empirical software en-
gineering researchers are considering the relationship between
policies, processes, and software products. To achieve this, we re-
viewed empirical software research works published in 3 software
engineering venues (ICSE, ESEC/FSE, and ASE) in 2021 and 2022.
We identified the primary aspects of the PPP Theory considered
by each work, and the extent to which the PPP Theory was incor-
porated into the work. We report that empirical studies consider
a subset of the PPP Theory and are usually focused on individual
theoretical concepts rather than the relationships of the theory. We
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challenge the Empirical Software Engineering research community
to consciously consider the PPP Theory in their study designs.

2 BACKGROUND: THE PPP THEORY

2.1 Theoretical Constructs

Policy: Policy has many meanings, including processes, artifacts,
discourses, and bodies of knowledge about a field [4, 10, 11]. In the
software engineering literature, policy means both organizational
strategies [22, 31, 41], and technical system behaviors [14, 29, 38].
For PPP Theory, we define policy as an official statement of an
organization’s software engineering practices, derived from the orga-
nization’s goals.

Process: A process consists of the steps followed to accomplish
a task, e.g., performing code review or implementing a new fea-
ture [31, 39]. For PPP Theory, we define process as the methods
used by software engineers to accomplish their tasks.

In the software engineering literature, we found that process and
policy typically have overlapping definitions. We lump them to-
gether into a single process/policy construct as shown in Figure 1.

Product: A software product is a set of software and associated doc-
umentation, designed and developed to meet a specific set of user
needs [21, 35, 39]. For PPP Theory, we define a product as the arti-
facts produced by a software engineering process. What comprises a
product is context-dependent; some teams produce libraries, others
web services, others mobile applications, and so on.

2.2 Policy-Process-Product Relationship

Figure 1 shows the PPP Theory: these constructs and the rela-
tionships between them. Organizational goals are iteratively re-
fined into policies, processes, and finally products. This theory is
propounded by documents from international standards organiza-
tions [20], industry consortia [26], professional organizations [19],
governments [31], and the academic literature [2, 3, 22, 34, 38, 39,
41].

The PPP Theory predicts bi-directional relationships between the
three constructs. A software team’s policy informs how its processes
are defined, and a team’s process influences the quality of the
product. In the reverse direction, retrospectives and postmortems
provide feedback to modify processes and policies.

An example of the PPP Theory is demonstrated in Figure 1(b). An
organization has the goal of securing its artifact’s supply chain [32].
Organizational leaders create a policy: “Follow NIST standards” [40].
Engineering teams comply through several process elements, such
as code review (for code vulnerability inspection) and using prove-
nance certification tools (e.g., Sigstore [30]). The desired product
quality, a secure supply chain, is assessed: defects (e.g., CVEs) pro-
vide feedback to improve the process.

Some seminal works explore the relationships between the PPP
theory constructs [18, 42—44]. For example, Humphrey et al. [18]
and Wohlin et al. [42] demonstrated the impact of the Personal
Software Process (PSP) on the software product (forward direction).
In a follow-up study, Wohlin et al. showed software defects can be
utilized in the Feedback direction to improve the PSP [44].
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3 QUESTION AND METHODS

We ask: To what extent does the PPP Theory inform modern empirical
software engineering research? To answer this question, we assessed
33 papers from top software engineering research venues. This
section describes the selection of those papers, the initial assess-
ment approach used in our pilot study, and our revised assessment
approach. Our final methodology is summarized in Figure 2.

3.1 Paper Selection

We gathered recent empirical software engineering papers (2021-
2022) from all tracks of three prominent conferences (ICSE, ES-
EC/FSE, and ASE). We retrieved full-length papers, totaling 65, that
included the term "empirical” in their title or keywords. Initially, we
used the DBLP database for the title match and later cross-verified
our findings and expanded our search using the ACM digital library,
considering both the title and author’s keywords. For analysis, we
randomly selected 50% of the collected papers.

3.2 Analysis Process

Our goal was to assess the presence of PPP relationships in our se-
lected papers. We iteratively refined an analysis instrument through
a pilot study. Ultimately, we assessed two distinct aspects of each
work: its construct focus and its relationship prevalence.

3.2.1  Pilot Study. In our pilot study, we established a complex clas-
sification scheme to rate the appearance of PPP Theory in empirical
research papers. This includes a set of rating metrics and a method
for scoring each paper on those metrics.

Metrics: Our initial metrics attempted to measure the occurrence
of process-product and policy-product relationships in each paper.
Each of these section-relationship combinations was evaluated on
a four-point scale: (1) Silent (no mention of relationships), (2) Im-
plicit (acknowledges relationship without discussion of impact),
(3) Descriptive (describes extensively the relationship between pro-
cess/policy/product), and (4) Experimental (describes and controls
for these relationships in their experiment).

Analysis Process: In our initial approach, raters focused on the
Methodology, Results/Discussion, and Threats to Validity sections —
we thought any use of PPP Theory would be documented here. After
reading through a paper, raters classified the section-relationship
combinations according to our four-point scale.

Refinements: We used this approach on 13 papers in our pilot
study (20% of the available data). We identified two flaws. (1) Raters
struggled to differentiate between levels of our four-point scale.
Inter-rater disagreements were common and hard to resolve. (2)
Some PPP Theory elements were missed because the paper sections
targeted in our analysis were too specific.

3.2.2  Final Analysis Approach. First, we clarified definitions to
make categories easier to differentiate. Second, we characterized pa-
pers holistically rather than considering individual sections. Lastly,
given the relatively rare use of PPP Theory relationships in the
pilot papers, we reduced the scope of the measurement to simply
reporting whether process/product relationships were considered
at all, or actively controlled for in the papers. Our final analysis
approach is summarized in Figure 2.
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Figure 2: Our streamlined paper analysis approach. We begin by searching for full-length papers in leading software engineering
conferences, filtering based on titles and keywords, resulting in empirical studies. We randomly sample half of these studies.
This is followed by a "First Pass" analysis akin to Keshav [23] to comprehend paper content. We identify the paper’s PPP Theory
construct(s) focus and assess the presence of PPP Theory relationships.

Metrics: We assessed the use of PPP Theory with two metrics:

(1) Construct Focus: Which PPP Theory construct(s) did the pa-
per focus on?

(2) Relationship Prevalence: Did the paper identify relationships
between PPP Theory constructs?

These metrics allow us to categorize what a study is about and
whether it considers PPP Theory.

For the construct focus metric (item 1 above), we categorize each
paper into one of the following three types:

(1) Process/Policy: The paper observes or measures process/pol-
icy. For example, He et al. measures the library migration
process in the Java ecosystem [16].

(2) Product: The paper observes or measures a product. For ex-
ample, Shen et al. study root causes and symptoms of deep
learning compiler bugs [36].

(3) Both: The paper considers both. For example, Di Grazia et al.
measure the adoption and use of Python type annotations
(process) and the resulting statically-detectable type errors
in Python projects (product) [12].

For the relationship prevalence metric (item 2 above), we categorize
each paper into one of the following three types:

(1) Silent: The paper makes no mention of PPP Theory relation-
ships. For example, Shen et al. [36] report the characteristics
of deep learning compiler bugs but do not explicitly describe
how software engineering processes or policies can cause
these bugs or should be influenced by bugs.

(2) Descriptive: The paper mentions a relationship between PPP
Theory constructs. For example, He et al. [16] measure the
library migration process and describe the importance of
this process with respect to Java software products, but do
not directly measure this relationship.

(3) Experimental: The paper measures a relationship between
PPP Theory constructs. For example, Di Grazia et al. [12]
measures the relationship between using type annotations
and the resulting number of type errors.

Also, we categorized each paper based on the ownership of the
empirical data employed in the study: Public (papers involving
publicly accessible data), Private (data not accessible/proprietary),
and Both (papers incorporating both private and public data).
Analysis Process: Our raters followed a modified version of Ke-
shav’s “First Pass” to quickly assess the PPP-Theoretic content of
selected papers [23]. Raters proceeded as follows:
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o Read title, abstract, introduction, and research questions.

o Read section headings.

e Read the findings — this includes highlighted key results,
the discussion, and the Conclusion section.

After performing this “First Pass,” raters categorized the construct
focus and relationship prevalence metrics for the paper according
to the descriptions mentioned above.

Two raters evaluated each paper. Inter-rater agreement was as-
sessed using Cohen’s Kappa [9], yielding scores of 0.86, 0.67, and
0.88 for construct classifications, PPP relationships, and data accessi-
bility, respectively. Disagreements were settled through discussion.

4 RESULTS

In this section, we identify our results from assessing 33 empirical
software engineering papers. Figure 3 summarizes our findings.

CONSTRUCT FOCUS RELATIONSHIP PREVALENCE
63.6%(7)
33.3%(11)
PROCESS/POLICY A8.57%18)
N SILEN
9.1%(1)
PAPERS 36.4%(12) [ 58.3%(7)
PRODUC
18.2%(6]
25%(3) DESCRIPTIVI
16.7%(2)
20%(2)
30.3%(10) 33.3%(11)
BOTH B gn9:(s) EXPERIMENTAL

Figure 3: Distribution of analyzed papers based on Con-
struct Focus (process/policy, products, both) and Relationship
Prevalence (silent, descriptive, experimental). 30% of papers
consider multiple constructs and 49% of papers are silent
about relationships between them.
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4.1 Construct Focus

The first stage of Figure 3 divides papers by their Construct fo-
cus. Papers typically consider products (37%) or policy/processes
(33%). The former observes the actions of software engineers and
organizations, and the latter measures information about software
artifacts. The smallest set considered both policy/process and
products (30%).

4.2 Relationship Prevalence

The second stage of Figure 3 divides papers by their relationship
prevalence. Work experimenting with or measuring PPP The-
ory relationships was rare: 33% or 11 of the papers. About half
of the papers (16 papers or 49%) did not discuss relationships from
the PPP Theory, and the remaining 6 papers (18%) were descriptive.
As expected, considering the construct focus of a paper, the studies
focused on a single construct tend to be silent or descriptive, and
studies that consider both constructs tend to relate them.

4.3 Other Observations

We considered the ownership of the data used in these works. Most
papers used public data (64%), some private (24%), rarely both (12%).
We observed one trend: of the four studies that used both data types,
three experimentally showed a PPP relationship. Perhaps studies
with diverse data provide more insight into PPP relationships.

5 IMPLICATIONS FOR RESEARCH

We suggest four implications for the research community.

(1) Incorporate PPP Theory into Study Designs: A surprising
fraction of papers (49%) did not consider these PPP relationships.
‘We do not wish to criticize these works; there is value in charac-
terizing processes and in characterizing products, whether or not
relationships are demonstrated between these constructs. However,
we wonder if the Empirical Software Engineering research commu-
nity would benefit from a greater focus on the PPP-Theoretic basis
for their measurements. This was the original vision of empirical
software engineering introduced in the 1980s and 1990s [6, 8, 33].
This could provide a meaningful way to address concerns about the
interpretability and generalizability of our community’s empirical
research [15, 24, 25, 37]. As a step towards this, the SIGSOFT Em-
pirical Standards [1] could be extended to provide guidance about
epistemology (What is software engineering knowledge? [7]), not just
about methodology (How to obtain knowledge?). Some thoughtful-
ness about the PPP Theory could help authors analyze the Threats
to the Validity of their work, without resorting to vague statements
about generalizability in “other contexts”.

(2) Study the Feedback Relationship: Among the papers that
did consider a relationship between policy/process and product,
we note that there was a bias toward measuring the “forward”
direction of Figure 1. In our sample it is unusual for researchers to
characterize and measure the role of feedback in the engineering
process. Although many works have observed the opportunity for
failures to inform future engineering approaches [2, 3], this appears
to still be a gap in the literature.

(3) Study More Feed-Forward Relationships: Although the “for-
ward” direction of relationships was more commonly examined,
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there are classes of constructs whose relationships were not exam-
ined in our sample. Papers in this category considered topics like
software organizational structure, software evolution, and software
maintenance. We did not see any papers on topics such as the effect
of regulations (e.g., GDPR), cybersecurity policies (e.g., NIST 8397),
or industry standards (e.g., MISRA). Greater industry collaboration
might facilitate the study of such relationships. Empirical software
engineering research often examines open-source software — those
engineers lack the liability that motivates organizations to promote
such policies and processes.

(4) Disentangle Policy and Process: Lastly, the PPP Theory pre-
dicts separate roles of policy and process. Policy interfaces with
organizational goals, while process interfaces with the engineered
product. These constructs are generally entangled in the empirical
software engineering literature, so in our model, we combined them
in Figure 2. Considering them as separate constructs may help the
community develop a richer theory of software engineering.

6 THREATS TO VALIDITY

Construct: We rely on constructs and relationships defined by the
PPP Theory. Our specific operationalizations were derived from
literature (§2), but distinguishing these can be difficult because
they are often entangled. We addressed this concern through inter-
rater agreement, achieving reasonable Kappa scores of 0.86 for PPP
constructs and 0.67 for relationships between constructs.

Internal: We make no claims of cause and effect.

External: We sampled half of the empirical works from ICSE, ES-
EC/FSE, and ASE 2021-2022. A longer time span or alternative
venues might affect our results. Based on our understanding of the
recent research literature, we do not think time is a crucial variable.
These three venues are large general venues, so considering other
venues seems unlikely to substantially shift our result.

7 CONCLUSION

In this paper, we have investigated the degree to which current
empirical software engineering works consider the relationship be-
tween policies, processes, and software products (PPP relationship).
We have reviewed 33 published works. Our results show that: (1)
Most empirical software engineering works are focussed on single
constructs of the PPP theory model, and (2) 18% of the reviewed
works provided a description for the PPP relationships, while 49%
of the works were silent on this PPP relationship.

Consequent to our results, we have made 4 suggestions to the
software engineering research community on the significance of
adopting the PPP Theory in future empirical studies. Our recom-
mendations center on the need to further study the PPP theory
constructs, and their forward and feedback relations.
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