Reflecting on the Use of the Policy-Process-Product Theory in
Empirical Software Engineering

Kelechi G. Kalu
Purdue University, IN, USA
kalu@purdue.edu

Kyle A. Robinson
Purdue University, IN, USA
robin489@purdue.edu

ABSTRACT

The primary theory of software engineering is that an organiza-
tion’s Policies and Processes influence the quality of its Products.
We call this the PPP Theory. Although empirical software engineer-
ing research has grown common, it is unclear whether researchers
are trying to evaluate the PPP Theory. To assess this, we analyzed
half (33) of the empirical works published over the last two years in
three prominent software engineering conferences. In this sample,
70% focus on policies/processes or products, not both. Only 33%
provided measurements relating policy/process and products. We
make four recommendations: (1) Use PPP Theory in study design;
(2) Study feedback relationships; (3) Diversify the studied feed-
forward relationships; and (4) Disentangle policy and process. Let
us remember that research results are in the context of, and with
respect to, the relationship between software products, processes,
and policies.

CCS CONCEPTS

« General and reference — Empirical studies; » Software and its
engineering;

KEYWORDS

Empirical Software Engineering, Software Process and Policy

ACM Reference Format:

Kelechi G. Kalu, Taylor R. Schorlemmer, Sophie Chen, Kyle A. Robinson,
Erik Kocinare, and James C. Davis. 2023. Reflecting on the Use of the Policy-
Process-Product Theory in Empirical Software Engineering. In Proceedings
of the 31st ACM Joint European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering (ESEC/FSE ’23), December
3-9, 2023, San Francisco, CA, USA. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3611643.3613075

1 INTRODUCTION

Empirical software engineering research analyzes data to improve
software products and engineering processes [5, 45]. International

This work is licensed under a Creative Commons Attribution-
NonCommercial 4.0 International License.

ESEC/FSE °23, December 3-9, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0327-0/23/12.
https://doi.org/10.1145/3611643.3613075

Taylor R. Schorlemmer
Purdue University, IN, USA
tschorle@purdue.edu

Erik Kocinare
Purdue University, IN, USA
ekocinar@purdue.edu

2112

Sophie Chen
University of Michigan, MI, USA
sophie.cy.chen@gmail.com

James C. Davis
Purdue University, IN, USA
davisjam@purdue.edu

Feedback
a)
‘ ! |
Organizational Palicy & Process Product
Goals

[i r \
| | \ External Standards (NIST) | i Trustworthy |
| ngﬁ;’:gy P > & E—-----bi Software |
| ! 1 Organizational Practices | ' Arifact !

Focus of This Study

Figure 1: (a) Policy-Process-Product (PPP) Theory. Organiza-
tional goals influence the policies and processes adopted by
software engineers. Policies and process influence product
development. Feedback may modify policies, processes, or
the original goals. We treat the (often overlapped) concepts
of Policy and Process as a single entity. (b) Example of the
PPP Theory for the goal of producing trustworthy software.

standards organizations [20], industry consortia [26], and profes-
sional organizations [19] all assert that the Policies and Processes of
software engineering influence the quality of the software Product
(the PPP Theory). Various studies support some of the relation-
ships predicted by the PPP Theory [34, 39]. Nevertheless, it remains
unclear which policies and processes are most effective in achiev-
ing high-quality products, and how these vary by context [17].
To address this, experts have recommended that empirical soft-
ware engineering researchers incorporate the PPP Theory, either
as contextual information in case studies or as part of a controlled
experiment [6, 24]. This could address concerns regarding the gen-
eralizability and replicability of empirical software engineering
research [13, 15, 24, 25, 27, 28, 34, 37]. However, the extent to which
the research community has taken this advice is unclear.

This reflection paper examines whether empirical software en-
gineering researchers are considering the relationship between
policies, processes, and software products. To achieve this, we re-
viewed empirical software research works published in 3 software
engineering venues (ICSE, ESEC/FSE, and ASE) in 2021 and 2022.
We identified the primary aspects of the PPP Theory considered
by each work, and the extent to which the PPP Theory was incor-
porated into the work. We report that empirical studies consider
a subset of the PPP Theory and are usually focused on individual
theoretical concepts rather than the relationships of the theory. We

https://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0002-8749-9697
https://orcid.org/0000-0003-2181-5527
https://orcid.org/0009-0000-4133-4910
https://orcid.org/0009-0004-6365-6645
https://orcid.org/0009-0007-9151-5008
https://orcid.org/0000-0003-2495-686X
https://doi.org/10.1145/3611643.3613075
https://doi.org/10.1145/3611643.3613075
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3611643.3613075&domain=pdf&date_stamp=2023-11-30

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

challenge the Empirical Software Engineering research community
to consciously consider the PPP Theory in their study designs.

2 BACKGROUND: THE PPP THEORY

2.1 Theoretical Constructs

Policy: Policy has many meanings, including processes, artifacts,
discourses, and bodies of knowledge about a field [4, 10, 11]. In the
software engineering literature, policy means both organizational
strategies [22, 31, 41], and technical system behaviors [14, 29, 38].
For PPP Theory, we define policy as an official statement of an
organization’s software engineering practices, derived from the orga-
nization’s goals.

Process: A process consists of the steps followed to accomplish
a task, e.g., performing code review or implementing a new fea-
ture [31, 39]. For PPP Theory, we define process as the methods
used by software engineers to accomplish their tasks.

In the software engineering literature, we found that process and
policy typically have overlapping definitions. We lump them to-
gether into a single process/policy construct as shown in Figure 1.

Product: A software product is a set of software and associated doc-
umentation, designed and developed to meet a specific set of user
needs [21, 35, 39]. For PPP Theory, we define a product as the arti-
facts produced by a software engineering process. What comprises a
product is context-dependent; some teams produce libraries, others
web services, others mobile applications, and so on.

2.2 Policy-Process-Product Relationship

Figure 1 shows the PPP Theory: these constructs and the rela-
tionships between them. Organizational goals are iteratively re-
fined into policies, processes, and finally products. This theory is
propounded by documents from international standards organiza-
tions [20], industry consortia [26], professional organizations [19],
governments [31], and the academic literature [2, 3, 22, 34, 38, 39,
41].

The PPP Theory predicts bi-directional relationships between the
three constructs. A software team’s policy informs how its processes
are defined, and a team’s process influences the quality of the
product. In the reverse direction, retrospectives and postmortems
provide feedback to modify processes and policies.

An example of the PPP Theory is demonstrated in Figure 1(b). An
organization has the goal of securing its artifact’s supply chain [32].
Organizational leaders create a policy: “Follow NIST standards” [40].
Engineering teams comply through several process elements, such
as code review (for code vulnerability inspection) and using prove-
nance certification tools (e.g., Sigstore [30]). The desired product
quality, a secure supply chain, is assessed: defects (e.g., CVEs) pro-
vide feedback to improve the process.

Some seminal works explore the relationships between the PPP
theory constructs [18, 42—44]. For example, Humphrey et al. [18]
and Wohlin et al. [42] demonstrated the impact of the Personal
Software Process (PSP) on the software product (forward direction).
In a follow-up study, Wohlin et al. showed software defects can be
utilized in the Feedback direction to improve the PSP [44].

2113

Kelechi G. Kalu, Taylor R. Schorlemmer, Sophie Chen, Kyle A. Robinson, Erik Kocinare, and James C. Davis

3 QUESTION AND METHODS

We ask: To what extent does the PPP Theory inform modern empirical
software engineering research? To answer this question, we assessed
33 papers from top software engineering research venues. This
section describes the selection of those papers, the initial assess-
ment approach used in our pilot study, and our revised assessment
approach. Our final methodology is summarized in Figure 2.

3.1 Paper Selection

We gathered recent empirical software engineering papers (2021-
2022) from all tracks of three prominent conferences (ICSE, ES-
EC/FSE, and ASE). We retrieved full-length papers, totaling 65, that
included the term "empirical” in their title or keywords. Initially, we
used the DBLP database for the title match and later cross-verified
our findings and expanded our search using the ACM digital library,
considering both the title and author’s keywords. For analysis, we
randomly selected 50% of the collected papers.

3.2 Analysis Process

Our goal was to assess the presence of PPP relationships in our se-
lected papers. We iteratively refined an analysis instrument through
a pilot study. Ultimately, we assessed two distinct aspects of each
work: its construct focus and its relationship prevalence.

3.2.1 Pilot Study. In our pilot study, we established a complex clas-
sification scheme to rate the appearance of PPP Theory in empirical
research papers. This includes a set of rating metrics and a method
for scoring each paper on those metrics.

Metrics: Our initial metrics attempted to measure the occurrence
of process-product and policy-product relationships in each paper.
Each of these section-relationship combinations was evaluated on
a four-point scale: (1) Silent (no mention of relationships), (2) Im-
plicit (acknowledges relationship without discussion of impact),
(3) Descriptive (describes extensively the relationship between pro-
cess/policy/product), and (4) Experimental (describes and controls
for these relationships in their experiment).

Analysis Process: In our initial approach, raters focused on the
Methodology, Results/Discussion, and Threats to Validity sections —
we thought any use of PPP Theory would be documented here. After
reading through a paper, raters classified the section-relationship
combinations according to our four-point scale.

Refinements: We used this approach on 13 papers in our pilot
study (20% of the available data). We identified two flaws. (1) Raters
struggled to differentiate between levels of our four-point scale.
Inter-rater disagreements were common and hard to resolve. (2)
Some PPP Theory elements were missed because the paper sections
targeted in our analysis were too specific.

3.2.2 Final Analysis Approach. First, we clarified definitions to
make categories easier to differentiate. Second, we characterized pa-
pers holistically rather than considering individual sections. Lastly,
given the relatively rare use of PPP Theory relationships in the
pilot papers, we reduced the scope of the measurement to simply
reporting whether process/product relationships were considered
at all, or actively controlled for in the papers. Our final analysis
approach is summarized in Figure 2.

Reflecting on the Use of the Policy-Process-Product Theory in Empirical Software Engineering

ESEC/FSE 23, December 3-9, 2023, San Francisco, CA, USA

Sampled
Papers

SWEng
Papers

..... dacaan

H i
! IGSE | | :
'ESEC/FSE! | T'"; o
L oAsE o (e |

Ty P -
Modified] | construct | ProcessiPolicy |
“First Pass" | Focus [T } Product |
J | Both !
L |

Pttt bemmmmg R [T !
Abstract " . | Silent !
Intro ‘;F;?:’J:ziz:ap —————— 4 Deseriptive i

: Conclusions @ | Experimental !
R H . T

Figure 2: Our streamlined paper analysis approach. We begin by searching for full-length papers in leading software engineering
conferences, filtering based on titles and keywords, resulting in empirical studies. We randomly sample half of these studies.
This is followed by a "First Pass" analysis akin to Keshav [23] to comprehend paper content. We identify the paper’s PPP Theory
construct(s) focus and assess the presence of PPP Theory relationships.

Metrics: We assessed the use of PPP Theory with two metrics:

(1) Construct Focus: Which PPP Theory construct(s) did the pa-
per focus on?

(2) Relationship Prevalence: Did the paper identify relationships
between PPP Theory constructs?

These metrics allow us to categorize what a study is about and
whether it considers PPP Theory.

For the construct focus metric (item 1 above), we categorize each
paper into one of the following three types:

(1) Process/Policy: The paper observes or measures process/pol-
icy. For example, He et al. measures the library migration
process in the Java ecosystem [16].

(2) Product: The paper observes or measures a product. For ex-
ample, Shen et al. study root causes and symptoms of deep
learning compiler bugs [36].

(3) Both: The paper considers both. For example, Di Grazia et al.
measure the adoption and use of Python type annotations
(process) and the resulting statically-detectable type errors
in Python projects (product) [12].

For the relationship prevalence metric (item 2 above), we categorize
each paper into one of the following three types:

(1) Silent: The paper makes no mention of PPP Theory relation-
ships. For example, Shen et al. [36] report the characteristics
of deep learning compiler bugs but do not explicitly describe
how software engineering processes or policies can cause
these bugs or should be influenced by bugs.

(2) Descriptive: The paper mentions a relationship between PPP
Theory constructs. For example, He et al. [16] measure the
library migration process and describe the importance of
this process with respect to Java software products, but do
not directly measure this relationship.

(3) Experimental: The paper measures a relationship between
PPP Theory constructs. For example, Di Grazia et al. [12]
measures the relationship between using type annotations
and the resulting number of type errors.

Also, we categorized each paper based on the ownership of the
empirical data employed in the study: Public (papers involving
publicly accessible data), Private (data not accessible/proprietary),
and Both (papers incorporating both private and public data).
Analysis Process: Our raters followed a modified version of Ke-
shav’s “First Pass” to quickly assess the PPP-Theoretic content of
selected papers [23]. Raters proceeded as follows:

2114

o Read title, abstract, introduction, and research questions.

o Read section headings.

e Read the findings — this includes highlighted key results,
the discussion, and the Conclusion section.

After performing this “First Pass,” raters categorized the construct
focus and relationship prevalence metrics for the paper according
to the descriptions mentioned above.

Two raters evaluated each paper. Inter-rater agreement was as-
sessed using Cohen’s Kappa [9], yielding scores of 0.86, 0.67, and
0.88 for construct classifications, PPP relationships, and data accessi-
bility, respectively. Disagreements were settled through discussion.

4 RESULTS

In this section, we identify our results from assessing 33 empirical
software engineering papers. Figure 3 summarizes our findings.

CONSTRUCT FOCUS RELATIONSHIP PREVALENCE
63.6%(7)
33.3%(11)
PROCESS/POLICY A8.57%18)
N SILEN
9.1%(1)
PAPERS 36.4%(12) [58.3%(7)
PRODUC
18.2%(6]
25%(3) DESCRIPTIVI
16.7%(2)
20%(2)
30.3%(10) 33.3%(11)
BOTH B gn9:(s) EXPERIMENTAL

Figure 3: Distribution of analyzed papers based on Con-
struct Focus (process/policy, products, both) and Relationship
Prevalence (silent, descriptive, experimental). 30% of papers
consider multiple constructs and 49% of papers are silent
about relationships between them.

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

4.1 Construct Focus

The first stage of Figure 3 divides papers by their Construct fo-
cus. Papers typically consider products (37%) or policy/processes
(33%). The former observes the actions of software engineers and
organizations, and the latter measures information about software
artifacts. The smallest set considered both policy/process and
products (30%).

4.2 Relationship Prevalence

The second stage of Figure 3 divides papers by their relationship
prevalence. Work experimenting with or measuring PPP The-
ory relationships was rare: 33% or 11 of the papers. About half
of the papers (16 papers or 49%) did not discuss relationships from
the PPP Theory, and the remaining 6 papers (18%) were descriptive.
As expected, considering the construct focus of a paper, the studies
focused on a single construct tend to be silent or descriptive, and
studies that consider both constructs tend to relate them.

4.3 Other Observations

We considered the ownership of the data used in these works. Most
papers used public data (64%), some private (24%), rarely both (12%).
We observed one trend: of the four studies that used both data types,
three experimentally showed a PPP relationship. Perhaps studies
with diverse data provide more insight into PPP relationships.

5 IMPLICATIONS FOR RESEARCH

We suggest four implications for the research community.

(1) Incorporate PPP Theory into Study Designs: A surprising
fraction of papers (49%) did not consider these PPP relationships.
‘We do not wish to criticize these works; there is value in charac-
terizing processes and in characterizing products, whether or not
relationships are demonstrated between these constructs. However,
we wonder if the Empirical Software Engineering research commu-
nity would benefit from a greater focus on the PPP-Theoretic basis
for their measurements. This was the original vision of empirical
software engineering introduced in the 1980s and 1990s [6, 8, 33].
This could provide a meaningful way to address concerns about the
interpretability and generalizability of our community’s empirical
research [15, 24, 25, 37]. As a step towards this, the SIGSOFT Em-
pirical Standards [1] could be extended to provide guidance about
epistemology (What is software engineering knowledge? [7]), not just
about methodology (How to obtain knowledge?). Some thoughtful-
ness about the PPP Theory could help authors analyze the Threats
to the Validity of their work, without resorting to vague statements
about generalizability in “other contexts”.

(2) Study the Feedback Relationship: Among the papers that
did consider a relationship between policy/process and product,
we note that there was a bias toward measuring the “forward”
direction of Figure 1. In our sample it is unusual for researchers to
characterize and measure the role of feedback in the engineering
process. Although many works have observed the opportunity for
failures to inform future engineering approaches [2, 3], this appears
to still be a gap in the literature.

(3) Study More Feed-Forward Relationships: Although the “for-
ward” direction of relationships was more commonly examined,

2115

Kelechi G. Kalu, Taylor R. Schorlemmer, Sophie Chen, Kyle A. Robinson, Erik Kocinare, and James C. Davis

there are classes of constructs whose relationships were not exam-
ined in our sample. Papers in this category considered topics like
software organizational structure, software evolution, and software
maintenance. We did not see any papers on topics such as the effect
of regulations (e.g., GDPR), cybersecurity policies (e.g., NIST 8397),
or industry standards (e.g., MISRA). Greater industry collaboration
might facilitate the study of such relationships. Empirical software
engineering research often examines open-source software — those
engineers lack the liability that motivates organizations to promote
such policies and processes.

(4) Disentangle Policy and Process: Lastly, the PPP Theory pre-
dicts separate roles of policy and process. Policy interfaces with
organizational goals, while process interfaces with the engineered
product. These constructs are generally entangled in the empirical
software engineering literature, so in our model, we combined them
in Figure 2. Considering them as separate constructs may help the
community develop a richer theory of software engineering.

6 THREATS TO VALIDITY

Construct: We rely on constructs and relationships defined by the
PPP Theory. Our specific operationalizations were derived from
literature (§2), but distinguishing these can be difficult because
they are often entangled. We addressed this concern through inter-
rater agreement, achieving reasonable Kappa scores of 0.86 for PPP
constructs and 0.67 for relationships between constructs.

Internal: We make no claims of cause and effect.

External: We sampled half of the empirical works from ICSE, ES-
EC/FSE, and ASE 2021-2022. A longer time span or alternative
venues might affect our results. Based on our understanding of the
recent research literature, we do not think time is a crucial variable.
These three venues are large general venues, so considering other
venues seems unlikely to substantially shift our result.

7 CONCLUSION

In this paper, we have investigated the degree to which current
empirical software engineering works consider the relationship be-
tween policies, processes, and software products (PPP relationship).
We have reviewed 33 published works. Our results show that: (1)
Most empirical software engineering works are focussed on single
constructs of the PPP theory model, and (2) 18% of the reviewed
works provided a description for the PPP relationships, while 49%
of the works were silent on this PPP relationship.

Consequent to our results, we have made 4 suggestions to the
software engineering research community on the significance of
adopting the PPP Theory in future empirical studies. Our recom-
mendations center on the need to further study the PPP theory
constructs, and their forward and feedback relations.

DATA AVAILABILITY
Data is available on Zenodo: https://doi.org/10.5281/zenodo.8277429.

ACKNOWLEDGMENTS

We thank A. Kazerouni and the reviewers for their feedback. We
acknowledge financial support from NSF awards IIS-1813935, SaTC-
2135156, and POSE-2229703, as well as Cisco and Rolls Royce.

https://doi.org/10.5281/zenodo.8277429

Reflecting on the Use of the Policy-Process-Product Theory in Empirical Software Engineering

REFERENCES

[1] ACM SIGSOFT. 2021. ACM SIGSOFT Empirical Standards. https://github.com/

[2

3

[11

[12

[13

[14

[15

[16

[17

(18

[19

[20

[21

[22

—

=

]

)

]

]

]

acmsigsoft/EmpiricalStandards. Accessed: May 3, 2023.

Paschal C. Amusuo, Aishwarya Sharma, Siddharth R. Rao, Abbey Vincent, and
James C. Davis. 2022. Reflections on software failure analysis. In European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE 2022). Association for Computing Machinery, New York,
NY, USA, 1615-1620. https://doi.org/10.1145/3540250.3560879

Dharun Anandayuvaraj and James C Davis. 2022. Reflecting on Recurring Failures
in IoT Development. In 37th IEEE/ACM International Conference on Automated
Software Engineering. IEEE/ACM, 1-5.

Stephen J. Ball. 2015. What is policy? 21 years later: reflections on the possibilities
of policy research. Discourse: Studies in the Cultural Politics of Education 36, 3
(May 2015), 306-313. https://doi.org/10.1080/01596306.2015.1015279

Victor R. Basili. 2006. The Role of Empirical Study in Software Engineering. In
2006 30th Annual IEEE/NASA Software Engineering Workshop. IEEE, Columbia,
MD, USA, 3-6. https://doi.org/10.1109/SEW.2006.34

Victor R. Basili, Forrest Shull, and Filippo Lanubile. 1999. Building Knowledge
through Families of Experiments. IEEE Transactions on Software Engineering
25, 04 (July 1999), 456-473. https://doi.org/10.1109/32.799939 Publisher: IEEE
Computer Society.

Pierre Bourque, Richard E. Fairley, and IEEE Computer Society. 2023. Guide to
the Software Engineering Body of Knowledge (SWEBOK(R)): Version 4.0 (4th ed.).
IEEE Computer Society Press, Washington, DC, USA. https://doi.org/10.1109/
9781118823096

Susan S. Brilliant, John C. Knight, and Nancy G. Leveson. 1990. Analysis of faults
in an N-version software experiment. IEEE Transactions on software engineering
16, 2 (1990), 238-247.

Jacob Cohen. 1960. A coefficient of agreement for nominal scales. Educational
and psychological measurement 20, 1 (1960), 37-46.

H.XK. Colebatch. 2018. Introduction to the Handbook on Policy, Process and Gov-
erning. In Handbook on Policy, Process and Governing. Edward Elgar Publishing,
1-13. https://doi.org/10.4337/9781784714871.00005

W Alec Cram, Jeffrey G Proudfoot, and John D’arcy. 2017. Organizational infor-
mation security policies: a review and research framework. European Journal of
Information Systems 26 (2017), 605-641.

Luca Di Grazia and Michael Pradel. 2022. The evolution of type annotations
in python: an empirical study. In ESEC/FSE (ESEC/FSE 2022). Association for
Computing Machinery, New York, NY, USA, 209-220. https://doi.org/10.1145/
3540250.3549114

Bogdan Dit, Evan Moritz, Mario Linares-Vasquez, and Denys Poshyvanyk. 2013.
Supporting and Accelerating Reproducible Research in Software Maintenance
Using TraceLab Component Library. In 2013 IEEE International Conference on
Software Maintenance. IEEE, Eindhoven, Netherlands, 330-339. https://doi.org/
10.1109/ICSM.2013.44

Naranker Dulay, Emil Lupu, Morris Sloman, and N. Damianou. 2001. A policy
deployment model for the Ponder language. IEEE Press., Seattle. https://doi.org/
10.1109/INM.2001.918064 Pages: 543.

Jesus M. Gonzalez-Barahona and Gregorio Robles. 2012. On the reproducibility of
empirical software engineering studies based on data retrieved from development
repositories. Empirical Software Engineering 17, 1-2 (Feb. 2012), 75-89. https:
//doi.org/10.1007/s10664-011-9181-9

Hao He, Runzhi He, Haiqiao Gu, and Minghui Zhou. 2021. A large-scale empirical
study on Java library migrations: prevalence, trends, and rationales. In European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE) (ESEC/FSE 2021). Association for Computing Machinery,
New York, NY, USA, 478-490. https://doi.org/10.1145/3468264.3468571

Chris Hobbs. 2016. Software Development Standards. In Embedded Software
Development for Safety-Critical Systems (2nd ed.), Chris Hobbs (Ed.). Elsevier,
Chapter 3, 65-91.

W.S. Humphrey. 1996. Using a defined and measured Personal Software Process.
IEEE Software 13, 3 (May 1996), 77-88. https://doi.org/10.1109/52.493023

IEEE. 2014. IEEE Standard for Software Quality Assurance Processes. IEEE
Standards Association. https://ieeexplore.icee.org/document/6838485 IEEE Std
730-2014.

ISO. 2015. Quality management systems — Requirements. International Organiza-
tion for Standardization. https://www.iso.org/standard/62085.html ISO Standard
9001.

ISO/IEC 12207. 2017. Systems and software engineering-Software life cycle
processes. https://www.iso.org/standard/63711.html

Ozgiir Kafali, Jasmine Jones, Megan Petruso, Laurie Williams, and Munindar P.
Singh. 2017. How Good Is a Security Policy against Real Breaches? A HIPAA Case
Study. In 2017 IEEE/ACM 39th International Conference on Software Engineering
(ICSE). 530-540. https://doi.org/10.1109/ICSE.2017.55

S. Keshav. 2007. How to Read a Paper. SSGCOMM Comput. Commun. Rev. 37, 3
(jul 2007), 83-84. https://doi.org/10.1145/1273445.1273458

2116

[24

[25

[26

[28

[29

[30

=
fla

[32

[33

(34

[35

'S
S

[37

[38

(39]

[40

[41]

[42

[43

[44]

[45

ESEC/FSE 23, December 3-9, 2023, San Francisco, CA, USA

B.A. Kitchenham, S.L. Pfleeger, L.M. Pickard, PW. Jones, D.C. Hoaglin, K. El Emam,
and J. Rosenberg. 2002. Preliminary guidelines for empirical research in software
engineering. IEEE Transactions on Software Engineering 28, 8 (Aug. 2002), 721-734.
https://doi.org/10.1109/TSE.2002.1027796

Lech Madeyski and Barbara Kitchenham. 2017. Would wider adoption of re-
producible research be beneficial for empirical software engineering research?
Journal of Intelligent & Fuzzy Systems 32, 2 (Jan. 2017), 1509-1521. https:
//doi.org/10.3233/JIFS-169146

MISRA. 2013. MISRA C 2012: Guidelines for the Use of the C Language in Critical
Systems: March 2013. Motor Industry Software Research Association.

Emerson Murphy-Hill, Gail C. Murphy, and William G. Griswold. 2010. Un-
derstanding context: creating a lasting impact in experimental software en-
gineering research. In FSE/SDP workshop on Future of SWEng research (FOSER
’10). Association for Computing Machinery, New York, NY, USA, 255-258.
https://doi.org/10.1145/1882362.1882415

Meiyappan Nagappan, Thomas Zimmermann, and Christian Bird. 2013. Diversity
in software engineering research. In Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering. ACM, Saint Petersburg Russia, 466-476.
https://doi.org/10.1145/2491411.2491415

Prasad Naldurg and Roy H. Campbell. 2003. Modeling insecurity: policy engi-
neering for survivability. In ACM workshop on Survivable and self-regenerative
systems (SSRS "03). Association for Computing Machinery, New York, NY, USA,
91-98. https://doi.org/10.1145/1036921.1036931

Zachary Newman, John Speed Meyers, and Santiago Torres-Arias. 2022. Sigstore:
software signing for everybody. In Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security. 2353-2367.

NIST. [n.d.]. NIST SP 800-12: Chapter 5 - Computer Security Policy. https:
//csre.nist.rip/publications/nistpubs/800-12/800-12-html/chapter5.html
Chinenye Okafor, Taylor R Schorlemmer, Santiago Torres-Arias, and James C
Davis. 2022. Sok: Analysis of software supply chain security by establishing
secure design properties. In Proceedings of the 2022 ACM Workshop on Software
Supply Chain Offensive Research and Ecosystem Defenses. 15-24.

Alan J Perlis, Frederick Sayward, and Mary Shaw. 1981. Software metrics: an
analysis and evaluation. Vol. 5. Mit Press.

Kai Petersen and Claes Wohlin. 2009. Context in industrial software engineering
research. In 2009 3rd International Symposium on Empirical Software Engineering
and Measurement. 401-404. https://doi.org/10.1109/ESEM.2009.5316010

Roger S Pressman. 2014. Software engineering: a practitioner’s approach. McGraw-
Hill Education.

Qingchao Shen, Haoyang Ma, Junjie Chen, Yongqiang Tian, Shing-Chi Cheung,
and Xiang Chen. 2021. A comprehensive study of deep learning compiler bugs.
In ESEC/FSE (ESEC/FSE 2021). Association for Computing Machinery, New York,
NY, USA, 968-980. https://doi.org/10.1145/3468264.3468591

Janet Siegmund, Norbert Siegmund, and Sven Apel. 2015. Views on Internal
and External Validity in Empirical Software Engineering. In 2015 I[EEE/ACM
37th IEEE International Conference on Software Engineering, Vol. 1. 9-19. https:
//doi.org/10.1109/ICSE.2015.24 ISSN: 1558-1225.

Morris Sloman. 1994. Policy driven management for distributed systems. Journal
of Network and Systems Management 2, 4 (Dec. 1994), 333-360. https://doi.org/
10.1007/BF02283186

Ian Sommerville. 2011. Software engineering (9th ed ed.). Pearson, Boston. OCLC:
0cn462909026.

Murugiah Souppaya, Karen Scarfone, and Donna Dodson. 2022. Secure Software
Development Framework (SSDF) version 1.1 recommendations for mitigating the
risk of software vulnerabilities. Number NIST SP 800-218. National Institute of
Standards and Technology (U.S.), Gaithersburg, MD. NIST SP 800-218 pages.
https://doi.org/10.6028/NIST.SP.800-218

René Wies. 1995. Using a Classification of Management Policies for Policy
Specification and Policy Transformation. In Integrated Network Management IV,
Adarshpal S. Sethi, Yves Raynaud, and Fabienne Faure-Vincent (Eds.). Springer
US, Boston, MA, 44-56. https://doi.org/10.1007/978-0-387-34890-2_4

Claes Wohlin, Martin Host, and Anders Wesslén. 1999. Can the personal software
process be used for empirical studies. In Proceedings ICSE Workshop on Empirical
Studies of Software Development and Evolution.

Claes Wohlin, Per Runeson, Martin Hést, Magnus C. Ohlsson, Bjérn Regnell, and
Anders Wesslén. 2012. Experimentation in Software Engineering. Springer Berlin
Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29044-2

C. Wohlin and A. Wesslen. 1998. Understanding software defect detection in
the Personal Software Process. In Proceedings Ninth International Symposium on
Software Reliability Engineering (Cat. No.98TB100257). 49-58. https://doi.org/10.
1109/ISSRE.1998.730773

Simon Xu. 2017. Empirical research methods for software engineering: Keynote
address. In 2017 IEEE 15th International Conference on Software Engineering Re-
search, Management and Applications (SERA). 1-1. https://doi.org/10.1109/SERA.
2017.7965698

https://github.com/acmsigsoft/EmpiricalStandards
https://github.com/acmsigsoft/EmpiricalStandards
https://doi.org/10.1145/3540250.3560879
https://doi.org/10.1080/01596306.2015.1015279
https://doi.org/10.1109/SEW.2006.34
https://doi.org/10.1109/32.799939
https://doi.org/10.1109/9781118823096
https://doi.org/10.1109/9781118823096
https://doi.org/10.4337/9781784714871.00005
https://doi.org/10.1145/3540250.3549114
https://doi.org/10.1145/3540250.3549114
https://doi.org/10.1109/ICSM.2013.44
https://doi.org/10.1109/ICSM.2013.44
https://doi.org/10.1109/INM.2001.918064
https://doi.org/10.1109/INM.2001.918064
https://doi.org/10.1007/s10664-011-9181-9
https://doi.org/10.1007/s10664-011-9181-9
https://doi.org/10.1145/3468264.3468571
https://doi.org/10.1109/52.493023
https://ieeexplore.ieee.org/document/6838485
https://www.iso.org/standard/62085.html
https://www.iso.org/standard/63711.html
https://doi.org/10.1109/ICSE.2017.55
https://doi.org/10.1145/1273445.1273458
https://doi.org/10.1109/TSE.2002.1027796
https://doi.org/10.3233/JIFS-169146
https://doi.org/10.3233/JIFS-169146
https://doi.org/10.1145/1882362.1882415
https://doi.org/10.1145/2491411.2491415
https://doi.org/10.1145/1036921.1036931
https://csrc.nist.rip/publications/nistpubs/800-12/800-12-html/chapter5.html
https://csrc.nist.rip/publications/nistpubs/800-12/800-12-html/chapter5.html
https://doi.org/10.1109/ESEM.2009.5316010
https://doi.org/10.1145/3468264.3468591
https://doi.org/10.1109/ICSE.2015.24
https://doi.org/10.1109/ICSE.2015.24
https://doi.org/10.1007/BF02283186
https://doi.org/10.1007/BF02283186
https://doi.org/10.6028/NIST.SP.800-218
https://doi.org/10.1007/978-0-387-34890-2_4
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1109/ISSRE.1998.730773
https://doi.org/10.1109/ISSRE.1998.730773
https://doi.org/10.1109/SERA.2017.7965698
https://doi.org/10.1109/SERA.2017.7965698

	Abstract
	1 Introduction
	2 Background: The PPP Theory
	2.1 Theoretical Constructs
	2.2 Policy-Process-Product Relationship

	3 Question and Methods
	3.1 Paper Selection
	3.2 Analysis Process

	4 Results
	4.1 Construct Focus
	4.2 Relationship Prevalence
	4.3 Other Observations

	5 Implications for Research
	6 Threats to Validity
	7 Conclusion
	References

