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Discontinuous rigidity transition associated with
shear jamming in granular simulations†

Varghese Babu,*a H. A. Vinutha, b Dapeng Bi c and Srikanth Sastry *a

We investigate the rigidity transition associated with shear jamming in frictionless, as well as frictional,

disk packings in the quasi-static regime and at low shear rates. For frictionless disks, the transition under

quasi-static shear is discontinuous, with an instantaneous emergence of a system spanning rigid clusters

at the jamming transition. For frictional systems, the transition appears continuous for finite shear rates,

but becomes sharper for lower shear rates. In the quasi-static limit, it is discontinuous as in the

frictionless case. Thus, our results show that the rigidity transition associated with shear jamming is

discontinuous, as demonstrated in the past for isotropic jamming of frictionless particles, and therefore a

unifying feature of the jamming transition in general.

Granular materials can exist in a flowing or a solid state. The
transition between these states, called the jamming transition,
has been the subject of intense research,1–3 particularly under
isotropic compression of frictionless sphere packings. The
jamming point fJ for packings of soft particles exhibits many
characteristics of a second-order phase transition, at which
various quantities show power law scaling – with respect to the
distance from the jamming point – as one compresses beyond
the jamming point.4,5 Furthermore, the distribution of small
forces between particles just in contact, as well as the gaps
between particles nearly in contact, also exhibits power law
behavior. Exponents characterizing these are constrained by an
inequality that is saturated for configurations at the jamming
point, which are therefore ‘‘marginally stable’’.6,7 The mean-field
theory of glasses and jamming has predictions for these expo-
nents which match numerical values for dimensions D = 2 and
above.5 Extensions of this theory predict these exponents to be
the same for shear jamming, as recent numerical results indeed
confirm, along with the aforementioned aspects of criticality.8

These and related results8,9 strongly support a unified descrip-
tion of both isotropic and shear jamming.

In contrast, the manner in which the contact network
acquires rigidity is strongly discontinuous10,11 for frictionless
isotropic jamming. At the jamming point, the entire system
(barring a small percentage of rattlers, described later) acquires

rigidity discontinuously. From the Maxwell criterion for the
rigidity of networks of nodes connected by edges representing
distance constraints, the contact network of a configuration
with N particles in D dimensions can be rigid when contacts
result in at least Nc = D(N ! 1) constraints on the non-global
degrees of freedom. In general, this is a necessary but not
sufficient condition. Therefore, isotropic jamming occurs at the
isostatic point, where the system has just the minimum number

of contacts per particle, Z required, Ziso = 2D (from
NZiso

2
¼ ND).

This discontinuous rigidity transition is different from the
continuous transition observed, e.g. for sticky packings,12,13

and in random spring networks14,15 for which the rigid compo-
nent of the system grows continuously beyond rigidity percola-
tion, which does not occur at the isostatic point, and is preceded
by the presence of both rigid and over-constrained regions.

Results available for shear jamming appear to suggest that
the rigidity transition is continuous, in contrast to isotropic
jamming.16–19 Computational investigation of the rigidity transi-
tion for frictional two dimensional (2D) systems sheared at finite
rates16 revealed a broad distribution of rigid cluster sizes with
increasing mean size as the jamming transition is approached,
supporting a continuous rigidity transition, although becoming
‘‘sharper’’ as the shear rate is lowered. Similar results have been
recently reported from analysis of sheared granular packings in
experiments.18 Following the observation that sheared friction-
less packings acquire geometric characteristics associated with
jamming,20 the rigidity transition in such packings in 2D was
analysed by including constraints associated with friction.19 The
size distribution of overconstrained clusters, similar to ref. 16,
exhibits a broad distribution, supporting a continuous rigidity
transition. In addition, the rigidity transition associated with
jamming in frictional systems was studied in lattice models of
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jamming where a continuous transition was observed except in a
limiting case corresponding to infinite friction.17

These observations suggest that the nature of the rigidity
transition could be an exception to the commonality of iso-
tropic and shear jamming phenomenology outlined earlier. In
this letter, we therefore investigate carefully the nature of the
rigidity transition for both sheared frictional and frictionless
packings, under both quasi-static and at finite shear rate.
We find that the rigidity transition is unambiguously discon-
tinuous under quasi-static shear. Such a transition appears
rounded in the case of finite shear rate, but the dependence on
shear rate clearly supports an approach to a discontinuous
transition in the limit of vanishing shear rate.

1 Methods
In this section we discuss the models and methods used to
obtain the shear jammed configurations in the frictional and
frictionless case.

1.1 Frictionless shear jamming

It has previously been shown that the jamming density of a
configuration of spheres under compression depends on the
density of the initial equilibrated hard-sphere liquid21,22 with
denser hard-sphere liquids jamming at higher density. We
denote fJ as the minimum density at which isotropic jamming
can be observed and fj as the variable jamming density with
fj 4 fJ. We use bidisperse soft-disk mixtures of size ratio 1 : 1.4
in this study. For this system, in 3D, fJ E 0.648 and the
maximum fj observed in fj E 0.66.23 In 2D, fJ E 0.84; max{fj}
E 0.85. Shear jammed frictionless packings are obtained
by shearing unjammed soft-disks above fJ as described in
ref. 8 and 23–25. We equilibrate hard-disk configurations
at high density (f = 0.81) using HOOMD,26 which jam at a
density fj 4 fJ with the protocol described in ref. 4. Unjammed
configurations decompressed to a density f, with fJ o f o fj

undergoing shear jamming when subjected to athermal quasi-
static shear (AQS). AQS is carried out by applying an affine
transformation to the particle positions implementing the
strain increment Dg followed by an energy minimization using
conjugate gradient in LAMMPS.27 We chose Dg = 5 # 10!4 and
stop the energy minimization when the total force acting on any
particle is less than 10!13. We study 3 independent samples of
N = 16 384 particles at a density of f = 0.8485.

1.2 Frictional shear jamming

Quasi-static shear simulations. We use the discrete element
method (DEM)28 to simulate frictional disks, using LAMMPS,27

with linear and tangential spring dash-pot forces. The model
includes damping in both normal and tangential directions, in
addition to global viscous damping. The normal and tangential
spring constants kn and kt are set to 2.0. The normal velocity
damping Zn is set to 3.0 and the tangential damping Zt is set to
1

2
Zn. The global damping term Z is also set to E3.

Shear is applied by performing an affine transformation
of particle positions, with strain increments Dg followed by
relaxation using DEM. Because of the damping terms, the
system will eventually reach a force, torque balanced configu-
ration if one waits long enough. Quasi-static shear requires
reaching force/torque balance at each strain step. In practice,
we consider the system to have reached force/torque balance
when the total force (sum of total forces acting on the disks)
is less than 10!11 or when the total kinetic energy of the system
is less than 10!19. The simulation is stopped when the number
of timesteps reaches 2 # 109 regardless. The timescale required
to relax the system diverges at the shear jamming transition as
pointed out in ref. 29 and thus it is difficult to achieve force-
balance close to the transition.

Finite rate simulations. We implement shearing at finite
rates _g by performing DEM dynamics, after every strain step, for
Dg
_gdt

timesteps, where dt = 0.002 is the timestep used in the DEM

simulation.
We set Dg is 10!4 for finite rate shear and 10!3 for quasi-

static shear. We perform finite rate shear on a system size of
N = 16 384 particles for 10 independent samples (and 20
samples for highest and lowest shear rate), and quasi-static
shear with N = 2000 for 16 samples. The packing fraction f of
the system is 0.81. Further details of the simulations are
described in the ESI,† Section I. We describe the results for
friction coefficient m = 1 in the main text. Results with m = 0.1
can be found in the ESI,† Section V.

Definitions. The following quantities are used both in quasi-
static frictionless and frictional simulations to identify the
transition and to quantify the quality of force-balance achieved.
~fcontact
!!!

!!!
D E

is the average value of the contact force in a given

configuration. This is defined as

~fcontact
!!!

!!!
D E

¼

PNc

i¼1
~f contacti

!!!
!!!

Nc

where Nc is the total number of contacts in the system. ~ftotal
!!!

!!!
D E

is the average of total force acting on each particle in the
configuration. This is defined as

~ftotal
!!!

!!!
D E

¼

PN

i¼1
~f totali

!!!
!!!

N

where ~f totali ¼
PN i
contacts

j¼1
~f contactij , with Ni

contacts being the number of

contacts particle i has. In quasi-static simulations, ~ftotal
!!!

!!!
D E

is expected to have a value close to zero in both jammed
and unjammed configurations, as this is a measure of how good

our force-balance is. With ~ftotal
!!!

!!!
D E

being close to zero, if

~fcontact
!!!

!!!
D E

is non-zero then we can identify the configuration as

being jammed.
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We define rattlers as particles with less than the minimum
number of contacts necessary for local rigidity, = 3 for friction-
less, and 2 for frictional particles in 2D. For the rigidity
analysis, we remove rattlers recursively from the system. The
sizes of the system and rigid clusters reported in the results are
after removing rattlers, unless specified otherwise.

1.3 Generalized isostaticity in frictional systems

A major distinction between frictionless and frictional jamming
is the isostatic contact number Z at which jamming can occur in
the absence of redundant constraints, which has been shown to
range from D + 1 to 2D depending on the friction co-efficient
m19,20,30,31 with Ziso = D + 1 for m = N. This can be understood
using the generalized isostaticity condition, obtained by consid-
ering additional conditions due to the ‘‘mobilized contacts’’.30

The tangential frictional force between two particles has an
upper bound due to the Coulomb threshold: ft r mfn and the

mobilized contacts are those for which
ft
fn
$ m. nm is defined as

the number of mobilized contacts per particle, i.e. nmN is the
total number of mobilized contacts. Considering a configuration
with N particles and nmN mobilized contacts, the conditions that
the contact network at jamming has to satisfy are DN force

balance conditions,
DðD! 1Þ

2
N torque balance conditions and

nmN Coulomb conditions. The number of constraints imposed

by the contacts is
NDZ

2
(since each contact constrains one

translational and D ! 1 rotational degrees of freedom). Z is by
default computed excluding rattlers, and represented by ZNR for

clarity. Defining Zm ¼ ZNR !
2nm
D

, the generalized isostaticity

condition is

Ziso
m ¼ ZNR !

2nm
D
¼ Dþ 1: (1)

1.4 Rigidity analysis

For 2D networks arising in several contexts including jamming,
the onset of rigidity has been analysed by employing the pebble
game algorithm.14 Each node of the network represents a disk in
the present context and is assigned k pebbles (k = 2 for frictionless
disks and k = 3 for frictional disks) representing the degrees of
freedom. The constraints imposed by each contact are repre-
sented by 1 or 2 edges (2 for the frictional case, 1 for the
frictionless case, as well as for a mobilised contact). A (k,l) pebble
game (l = 2 indicates the global degrees of freedom) assigns
pebbles recursively to edges, and based on such an assignment,
decomposes the network into rigid clusters that are mutually
floppy. Rigid clusters with redundant bonds (with no assigned
pebbles) are termed over-constrained. A more detailed description
of the algorithm is provided in ESI,† Section II. We employ the
(3,2) pebble game to monitor the size of the largest rigid cluster in
the system primarily, as well as the distribution of the size of rigid
clusters. We have also verified that the character of the rigidity
transition is not affected if we perform a (3,3) pebble game
instead, considering the global degrees of freedom to be l = 3.

2 Results
2.1 Frictionless shear jamming

First, we discuss the results of the frictionless system, for which
above jamming, energy minimization cannot remove all the over-
laps in the system, resulting in finite contact forces. Note that the
total force acting on each particle remains close to zero. As
discussed in ref. 8 and 23, the configurations are isostatic
(Nc = (N ! 1) # 2 after removing rattlers) at the jamming point.
(k = 2, l = 2) pebble game analysis of isostatic configurations shows
that the whole system is made up of a single rigid cluster, as shown
in Fig. 1(b). Removing a single bond from this system leads to loss
of rigidity, as shown in Fig. 1(a). The results of this analysis are
summarized in Fig. 2. The shear jamming transition can be
identified by the presence of finite contact forces (denoted by

average contact force in the system ~fcontact
!!!

!!!
D E

) as well as by ZNR.

The average total force acting on the particles is denoted by ~ftotal
!!!

!!!
D E

and remains close to zero indicating that the particles are under
force-balance. The rigidity transition occurs at the jamming transi-
tion point and is characterized by a discontinuous jump in the size
of the largest cluster (orange curve in Fig. 2) where Nlargest is the size
of the largest cluster and N is the size of the system – both computed
after removing the rattlers. We note here that the pebble game can
be used to identify rattlers. Also, our observation of discontinuous
rigidity transition is unaffected by the presence of rattlers. However,
the average coordination number at which transition occurs will be
smaller than Ziso if we keep the rattlers. This strongly discontinuous
rigidity transition is also observed for isotropic jamming10,16 and
therefore a feature of frictionless jamming. This is in contrast with
the continuous nature of rigidity transition in bond-diluted lattice
models as discussed in ref. 10.

2.2 Finite rate shear of the frictional system

Next, we discuss the results from finite rate shear of frictional
systems for shear rates _g = 5 # 10!4, 5 # 10!5, 5 # 10!6,

Fig. 1 Rigidity transition in sheared frictionless disk packings. Pebble
game analysis on the isostatic networks yields a single rigid cluster
consisting of the whole system. (b) Removal of one bond from that
network results in a complete loss of rigidity, with the pebble game
decomposing the system into multiple small rigid clusters. Bonds that
are connected to each other and have the same color belong to the same
cluster. A single bond is the smallest ‘‘cluster’’ in the system (a).
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5 # 10!7, and 5 # 10!8. The main observation from this set of
simulations is that the rigidity transition associated with shear
jamming becomes ‘‘sharper’’ as one reduces the shear rate, an
observation also made in ref. 16. We have verified that the
system is in the quasi-static regime with the inertial number

I ¼
_gdffiffiffiffi
P

r

r o 10!332 where d is the average diameter, P is the

pressure and r is the density, for the smaller four _g except at
very small strain values.

As shown in Fig. 3(a), the increase in pressure P with strain
is noticeably sharper for smaller shear rates. To characterize
the rigidity of these configurations we follow ref. 16, 18 and 19
and use the (k = 3, l = 2) pebble game on the contact network.
Note that in the finite rate simulations, we do not simulate the
system until it achieves force balance, and therefore for jammed as
well as unjammed configurations, the net forces on the disks are
finite. We use a threshold e to identify mobilized contacts – if
~ft
!!!
!!!

~fn
!!!
!!!
4 m! e then the contact is mobilized.33 For simulations with m

= 1, very few of our contacts are sliding and the choice of e does not
significantly affect the results presented. We choose e = 10!12 for
the results in the main text. A discussion on the choice of e is
included in the ESI,† Section VI. Even though the system is not in
force balance when sheared at a finite rate, we identify rattlers as
particles with just one contact and remove them recursively. For the
remaining contact network, we perform pebble game analysis and
show in Fig. 3(b) the size of the largest rigid cluster as a function of
the average contact number Zm = ZNR! nm. The transition becomes
sharper as one reduces _g, and interestingly, the transition occurs at

Zm E 3, the isostatic value, for all shear rates. We fit the data using

the logistic function f ðxÞ ¼ 1þ e!
x!Zc
W

# $!1
(as a reasonable but

arbitrary choice) and use W as a measure of the width of the
transition region. As the top left inset in Fig. 3(b) shows, the data
can be collapsed using the fit values, with Zc E 2.99. In the lower
right inset, we show the behavior of W, whose dependence on _g can
be described by a power law that implies that the transition
becomes discontinuous at _g - 0. To our knowledge, this has not
been reported for shear jamming transition.

Next, we study the rigid cluster size distribution as shown in
Fig. 4 for the largest and the smallest _g studied. For both cases, we
divide the region studied (in Zm) into three regimes – before the
jamming transition, a regime covering the transition, and after the
transition – and compute the distribution of the rigid cluster sizes
separately for each of them. The distributions in the regime cover-
ing the transition are quantified by an exponent characterizing the
power-law distribution of the rigid clusters. For _g = 5 # 10!4, the
exponent is!1.62 and for _g = 5# 10!8, the exponent is 2.17. While
the transition in this regard appears continuous for both the shear
rates studied, the distributions become progressively narrower as
the shear rate decreases. The corresponding curves for the friction-
less and frictional quasi-static shear show a faster than power law
decay below the rigidity transition. We also calculate PN, the
probability that a given disk belongs to a system spanning (perco-
lating) rigid cluster, which is shown in the ESI,† Section IV. The PN
curves become progressively step-like with decreasing shear rate.
Thus, we conclude that the appearance of a continuous transition
is associated with the finite shear rates and absence of force/torque
balance, rather than being an indication of the intrinsic nature of
the shear jamming transition, or the presence of friction.

2.3 Quasi-static shear of frictional systems

To underscore our conclusions, we next consider quasi-static
shearing of frictional disks, which is performed by applying
an affine transformation and relaxing the system using DEM
until the system reaches force balance. As noted before, the

Fig. 2 Rigidity transition associated with shear jamming in frictionless sys-
tems. Rigidity transition can be seen as a discontinuous jump in the size of the
largest cluster divided by the system size, both calculated after removing
rattlers (orange). The transition occurs at the isostatic value of the non-rattler
contact number, ZNR = 4. This is also the point where the average contact
force (blue) becomes non-zero, while the average total force on each particle
(green) remains close to zero throughout. Inset shows pressure P (blue) vs.
strain g and the largest cluster size divided by the system size, both calculated
after removing rattlers (orange). In the main graph and the inset, the y-axis on

the right corresponds to the
Nlargest

N
data. Average total force, average contact

force, and pressure correspond to the y-axis on the left.

Fig. 3 Finite rate shear for N = 16 384 with m = 1. (a) Pressure P vs. g. (b)
Fraction of the largest rigid cluster with the total number of particles (both
quantities computed after removing rattlers) as a function of Zm. As _g is
reduced, the transition becomes ‘‘sharper’’. Inset top left: Data from
different shear rates collapse onto each other when scaled by the ‘‘width’’
W of the transition region. Inset lower right: The width of the transition
region obtained by fitting the data. Dependence of W for the three smaller
shear rates on _g can be described using a power-law suggesting that the
transition becomes discontinuous as _g - 0.
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relaxation near the jamming transition is very slow and there-
fore it is hard to generate force-balanced configurations near
the jamming transition.29,34 Given configurations that are fully
relaxed, we define rattlers as particles that do not have finite
forces acting on them. Disks with a single contact cannot
sustain a non-zero force on that contact, which we remove
recursively. In addition, given a friction co-efficient m, disks
with two contacts can be in force balance with finite forces only
if the angle y between the two contacts is large enough. If

mo tan
p
2
! y
2

% &
, these contacts cannot carry forces (see ESI,†

Section III), and are thus also removed recursively. We note
here that our result on the nature of the rigidity transition is
not affected by the removal of rattlers.

These configurations are analyzed using the (k = 3, l = 2)
pebble game, and the results are shown in Fig. 5. As Zm crosses
the isostatic value 3, the largest rigid cluster encompasses the
whole system, exhibiting a striking similarity with the behavior
found for the frictionless case (Fig. 2). This observation is even
more remarkable when one considers the behavior of the
contact forces or pressure, vs. Zm, which show a more rounded
change, as a result of the difficulty of converging to force
balanced configurations, as indicated by the non-monotonic

behavior of the net forces acting on the disks. P, ~fcontact
!!!

!!!
D E

and

~ftotal
!!!

!!!
D E

shown are average values computed from all config-

urations having a given value of Zm. Nlargest/N is a scatter plot
from all trajectories.

Before closing, we briefly compare our results and conclu-
sions with previous work mentioned earlier. While the conclu-
sions in ref. 16 differ from ours, the sharpening of the rigidity
transition has also been noted in ref. 16. In ref. 19, shear was
applied to frictionless disk assemblies before friction was
included in the rigidity analysis. While this procedure captures
many features of sheared frictional disks, like the anisotropy
and the emergence of a contact network that supports jamming
in the presence of friction, subtle but important differences in

the organization of contacts exist. Specifically, using the pro-
cedure of ref. 19, the fraction of redundant bonds rises con-
tinuously from below the isostatic contact number, as shown in
the ESI,† Section VII, whereas they are strictly zero below the
frictional jamming point. The absence of redundant bonds
before the rigidity transition is a characteristic feature of
jamming, as compared to rigidity percolation in spring net-
works and other systems.15 Frictional rigidity transition studied
on lattice models shows a continuous transition for a similar
reason.17 Bond-diluted lattice models do not ensure that the
redundant bonds do not appear until the jamming point,
unlike repulsive disk packings that reorganize the contact
network such that there are no redundant bonds until the
system reaches the jamming point. Our results differ from the
analysis of experimentally sheared disk packings in ref. 18, for
which we do not have a ready explanation, since the experi-
mental protocol should be expected to closely agree with the
quasi-static shear we employ, an inconsistency that needs to be
further investigated.

3 Conclusions
In summary, our results unambiguously demonstrate that the
rigidity transition associated with shear jamming in both
frictionless and frictional disk packings is discontinuous in
nature, when conditions of force and torque balance are met.
Thus, the nature of the emergence of rigidity is the same for
isotropic and shear jamming. Features that suggest a contin-
uous transition are associated with partial relaxation of unba-
lanced forces, as our results for finite shear rate demonstrate,
but such behavior approaches a discontinuous change as the

Fig. 4 Comparison of the rigid cluster size distribution between high and
low _g studied. (a) _g = 5 # 10!4 and (b) _g = 5 # 10!8. Comparing the
distribution of cluster sizes for the range covering 3, we see that _g = 5 #
10!4 shows a broader distribution compared to the one at _g = 5 # 10!8 as
quantified by the exponent characterizing the power law distribution,
indicating that the transition becomes discontinuous as the shear rate
vanishes. The distribution corresponding to a given region in Zm is calcu-
lated by considering the sizes of all rigid clusters in a configuration with Zm

in that region. Here we omit single bond clusters when distributions are
calculated.

Fig. 5 Rigidity analysis of quasi-statically shear jammed frictional disks.
The size of the largest rigid cluster in the system indicated by
Nlargest

N
(orange) (calculated after removing rattlers) discontinuously jumps

from nearly zero to one. The transition occurs as Zm crosses 3, the isostatic
value. The contact forces (blue) and pressure (red) show a more gradual
change, but the behavior of the net force on the disks reveals this to be a
result of incomplete convergence, as indicated by the average of the net
force of individual disks (green). Here, the y-axis on the right corresponds

to the
Nlargest

N
data. Average total force, average contact force, and pressure

correspond to the y-axis on the left.
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shear rate vanishes. Our results thus establish a key additional
element in the shared phenomenology of isotropic and shear
jamming.
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