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Ecography Species distribution and ecological niche models (hereafter SDMs) are popular tools
2023: 06992 with broad applications in ecology, biodiversity conservation, and environmental sci-
doi: 10.1111/ecoe.06992 ence. Many SDM applications require projecting models in environmental conditions

e & non-analog to those used for model training (extrapolation), giving predictions that may

Subject Editor: Miguel Aratjo be statistically unsupported and biologically meaningless. We introduce a novel method,
Editor-in-Chief: Miguel Aratjo Shape, a model-agnostic approach that calculates the extrapolation degree for a given
Accepted 17 October 2023 projection data point by its multivariate distance to the nearest training data point. Such

distances are relativized by a factor that reflects the dispersion of the training data in
environmental space. Distinct from other approaches, Shape incorporates an adjustable
threshold to control the binary discrimination between acceptable and unacceptable
extrapolation degrees. We compared Shape’s performance to five extrapolation metrics
based on their ability to detect analog environmental conditions in environmental space
and improve SDMs suitability predictions. To do so, we used 760 virtual species to
define different modeling conditions determined by species niche tolerance, distribution
equilibrium condition, sample size, and algorithm. All algorithms had trouble predict-
ing species niches. However, we found a substantial improvement in model predictions
when model projections were truncated independently of extrapolation metrics. Shape’s
performance was dependent on extrapolation threshold used to truncate models. Because
of this versatility, our approach showed similar or better performance than the previous
approaches and could better deal with all modeling conditions and algorithms. Our
extrapolation metric is simple to interpret, captures the complex shapes of the data in
environmental space, and can use any extrapolation threshold to define whether model
predictions are retained based on the extrapolation degrees. These properties make this
approach more broadly applicable than existing methods for creating and applying
SDMs. We hope this method and accompanying tools support modelers to explore,
detect, and reduce extrapolation errors to achieve more reliable models.
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Introduction

Species distribution and ecological niche models (hereafter
SDMs), used in a wide range of disciplines (Franklin 2013),
rely on ecological niche theories, wherein species distribu-
tions are determined by biotic, abiotic, and historical dis-
persal factors of the focal species (Austin 2002, Soberdén and
Peterson 2005, Peterson and Soberén 2012). The correspon-
dence of the species niche in environmental and geographic
space, known as Hutchinson’s duality, is an essential assump-
tion on which SDMs rely. According to Hutchinson’s duality,
each point in geographic space corresponds to a single point
in environmental space; however, a single point in environ-
mental space could correspond to one or more points in geo-
graphic space (Hutchinson 1957, Colwell and Rangel 2009).
This property allows SDMs to estimate different distribu-
tions corresponding to occupied, potential, or invadable areas
(Soberdén and Peterson 2005). Therefore, these models can be
used, for instance, to identify new populations of known spe-
cies (Fois et al. 2015), detect areas at risk for invasive species
(Montti et al. 2021), target habitats for species translocation
or assisted dispersal (Regan et al. 2012), evaluate the effect
of environmental change on species distributions (Calambds-
Trochez et al. 2021), or explore the distribution of species
in past periods (Bueno et al. 2016). These applications all
involve applying SDMs to projection data (environmental
data representing the predictor variables) that are temporally
or geographically different from the training data (a.k.a. cali-
bration data). When an SDM is used to make predictions
for a different time period or region from the training data,
this is referred to as projection or transferring in the SDM
literature (Aradjo et al. 2019), and often involves extrapola-
tion to environmental conditions outside those used to train
the models, e.g. non-analog conditions (Elith et al. 2010,
Rousseau and Betts 2022). Consequently, model predictions
projected to environmental conditions far from the training
conditions may be statistically unsupported and ecologically
meaningless, significantly limiting their utility (Aragjo and
Peterson 2012).

Extrapolation is a phenomenon that can affect predictive
models of all kinds, and several methods for detecting, mea-
suring, or avoiding extrapolation have been proposed for dif-
ferent research areas (Aniceto et al. 2016, Mahony etal. 2017,
Meyer and Pebesma 2021). However, the SDM field has a
unique combination of theoretical frameworks, methodolog-
ical characteristics, and attributes: 1) SDM relies on niche
theory, so it is expected that SDM can estimate the shape
and environmental suitability pattern of different niche types
(Soberén and Peterson 2005, Peterson and Soberén 2012);
2) SDM often uses categorical data types to characterize the
response variable such as species presence, absence, pseudo-
absence, and background points (Barbet-Massin et al. 2012,
Liu et al. 2019), and/or other distributional information
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(Merow et al. 2017); 3) SDM uses different modeling meth-
ods (hereafter algorithms) that range from environmental
envelope and distance-based models to machine learning
and Bayesian methods (Norberg et al. 2019), and because
of the degree of uncertainty generated by different model-
ing approaches, ensemble models are often implemented
(Thuiller et al. 2019); 4) depending on the model purpose
and amount of data, different partitioning methods are used
for model validation (Valavi et al. 2019), and 5) frequently
SDMs are constructed for rare or poorly sampled species
(Breiner et al. 2015). Such features necessitate the develop-
ment of methods to detect, quantify, and limit extrapolation
that are adapted specifically for SDMs.

To illustrate this problem, we consider different SDMs
constructed globally for the invasive species Ligustrum
lucidum (Fig. 1). It is clear that suitability values are similar
across algorithms within the ranges of environmental condi-
tions used for model training (depicted by a white polygon
in Fig. 1). However, these bivariate partial dependence plots
often exhibit different trends under environmental condi-
tions far from those used for model training (outside the
white polygon in Fig. 1). For example, unrealistic increases in
habitat suitability are predicted for extremely high precipita-
tion and temperature (for three of the model types, GAM,
RF and Maxent), and moderately high suitability is predicted
for a range of temperature and precipitation combinations far
from those conditions used in the model fitting (for GP and
SVM,; Fig. 1).

Several strategies and tools have been developed to control,
explore, and measure extrapolation. Some algorithms control
how estimations outside training conditions are made. For
instance, for generalized additive models, penalty order for
thin plate splines can be controlled, while for Maxent predic-
tions outside training conditions can be 1) freely estimated,
2) kept constant (clamping), 3) reduced based on the differ-
ence between clamped and non-clamped predictions (fade by
clamping), or 4) set to zero suitability value (no extrapolation)
(Phillips et al. 2006). However, even using these approaches
can lead to unrealistic predictions in non-analog conditions
precisely because they control estimation but do not measure
the degree of extrapolation.

Some extrapolation metrics used to estimate the degree
of extrapolation and define non-analog conditions have been
proposed in the SDM literature; for instance, the Multivariate
environmental similarity surface (MESS; Elith et al. 2010) is
perhaps the most extensively used approach because it was
first implemented in the widely-used Maxent algorithm
(Elith et al. 2011). MESS measures degree of extrapolation
based on the environmental distance between projection
data and the centroid of training data; univariate extrapo-
lation limits are then defined using a rectilinear envelope
(Elith et al. 2010). Alternatively, the Environmental overlap
(EO) approach (Zurell et al. 2012) is a binary metric that
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Figure 1. Bivariate partial dependence of Ligustrum lucidum predicted by six algorithms using annual mean temperature and annual pre-
cipitation, illustrating the differences across algorithms in environmental measurement space far from the training conditions (outside the
white polygon). White polygons depict the limits of the training data (i.e. presences and pseudo-absences). Algorithms employed: general-
ized additive model (GAM), Gaussian process (GP), generalized linear model (GLM), random forest (RF), support vector machine
(SVM), and maximum entropy (Maxent; predicted without clamping). SDMs were constructed with the same presence and pseudo-

absence data from Montti et al. (2021).

splits environmental space into a specified number of bins
based on the training data, grouping all projection data that
fall outside the unique combination of environmental predic-
tor values used in training data into a single category without
reflecting how far the values of projection data lie beyond the
range of training data. The Mobility-oriented parity approach
(MOP; Owens et al. 2013) is similar to MESS in detecting
strict extrapolation; however, MOP restricts extrapolation by
averaging environmental distance to the user-specified nearest
part of the training data. Extrapolation detection (EXDET;
Mesgaran et al. 2014) uses two metrics to measure the degree
of both univariate extrapolation (i.e. extrapolation outside
the range of training conditions) and combinatorial extrapo-
lation (i.e. extrapolation within the range of training condi-
tions). Each of these methods has limitations. For example,
none captures the complex relationships between training and
projection data in environmental space; approaches such as
MESS, MOP and EXDET discriminate between analog and

non-analog projection data based on a rectilinear envelope,

and MESS and EXDET measure extrapolation based on
environmental condition of the training data centroid (fur-
ther details about these metrics is provided under ‘Properties
of Shape in comparison with other approaches’).

Given the underlying assumption of SDMs that spe-
cies distributions are in equilibrium with environmental
conditions that represent niche dimensions (Guisan and
Zimmermann 2000) and the need to project these models
into environmental conditions beyond the training data, a
method to explore the degree of extrapolation that is model-
agnostic (i.e. it does not depend on model approach), simple
to interpret and implement, and capable of capturing the
complex relationships between training and projections data
in environmental space is called for. Furthermore, we are
unaware of research that has compared the performance of
existing methods under different modeling conditions, which
is crucial for evaluating the rigor of SDMs used to make pro-
jections under novel environmental conditions. In this paper,
we introduce a novel extrapolation metric, Shape, and explore
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the performance of this and other extrapolation metrics with
an experiment based on virtual species. Finally, tools for mea-
suring and exploring extrapolation implemented in ‘flexsdm’
R package (www.r-project.org) are provided.

Material and methods

The Shape method

As with other extrapolation metrics, Shape measures the
degree of extrapolation (i.e. environmental novelty) in envi-
ronmental space based on the relationship between the train-
ing and projection data. In the context of SDM, training data
represents the environmental conditions derived from data
used for model training or fitting (i.e. presence, presence—
absence, presence—pseudo—absence, or presence—background
points). In contrast, projection data represents the environ-
mental conditions used for model prediction (e.g. data from a
given geographical projection area, time period, or data reso-
lution). Shape is a model-agnostic approach because its calcu-
lation is based solely on the environmental distance between
training and projection data, i.e. the degree of extrapolation
is independent of model parameters and predictions.

The Shape method measures environmental distance using
Mahalanobis distance (&) based on predictor variables used in
modeling (Eq. 1):

d(p,f)=\/(p—t)TM“(p—t) (1)

Where M~ is an inverse covariance matrix based on the train-
ing data, p is a vector of a projection point, ¢ is a vector of a

» L] O Projection
- - .- [} ¥ Training

v2

v

training data point, and 7 indicates the transpose of the vec-
tor. In a conventional Mahalanobis metric (from which the
Shape method deviates), # would typically represent the cen-
troid of environmental conditions (i.e. the mean); however, ¢
represents each training data point in Shape.

Shape calculates the extrapolation metric (§) for a given
projection data point p,=(i=1, ..., r) by its multivariate dis-
tance to the nearest training data pomt, where training data
points are denoted by # (j = 1,..., m) (Eq. 2, Fig. 2A):

min’7, {d(pi,tj )}

Si:
? A

)

where 7 is the total number of training data points, and A is a
dispersion factor that relativizes this distance (Williams et al.
2007, Fitzpatrick et al. 2018, Meyer and Pebesma 2021, Fig
2B). The higher the Shape value, the greater the environmen-
tal novelty of the projection point and, consequently, the
lower the degree of reliability of a model prediction.

The factor A4 is calculated as the averaged Mahalanobis dis-
tance between training data points # and the centroid of the
training data ¢ (Eq. 3, Fig. 2B):

Z;’l (#2¢)

m

A= 3)

where m is the total number of training data points. The
quantity A reflects the dispersion of the training data in
environmental space.

Extrapolation is a continuous phenomenon that depends
on how different the projection data are from the training

v2

vi1

Figure 2. lllustration of Shape procedure to calculate degree of extrapolation in environmental space defined by two hypothetical variables,

v, and v,. In this example, », and v, are the predictor variables. (A) For each projection data point, p,

» the Mahalanobis distances to training

data, t, are calculated (gray lines), and the minimum of these distances is selected (orange line). (B) After calculating all minimum distances
from prOJectlon to training data (lines colored from yellow to black), the Shape metric (S,) for each of the 7 projection data points is derived
as the ratio of the minimum distance to the training data for that point and a factor A (depicted as the length of the purple arrow). The
higher the extrapolation degree (Shape metric), the darker the color of the projection points.
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data. Distinct from other extrapolation metrics like MOP,
this approach keeps Mahalanobis distances unbounded
but nonetheless relativized. Relativizing the extrapolation
measure by the dispersion factor A is extremely important
because it standardizes how far a projection data point is from
the training data. For instance, if a given projection datum
has a corresponding Shape value of 100, it is 100 times fur-
ther away from the nearest training datum than the magni-
tude represented by the dispersion factor. 4.

Properties of Shape in comparison with other
approaches

We compared Shape to other metrics used to measure the
degree of extrapolation commonly used in SDMs, ie.
Multivariate environmental = similaricy surface (MESS;
Elith et al. 2010), Environmental overlap (EO; Zurell et al.
2012); Mobility-oriented paricy (MOP; Owens et al. 2013),
Extrapolation detection (EXDET; Mesgaran et al. 2014), and
Area of applicability (AOA; Meyer and Pebesma 2021). This
last approach, AOA, has not been as widely used in SDM;
however, its similarity to the Shape metric and warrants
comparison.

Exploring and comparing different extrapolation metrics
in a simplified environmental space defined by two hypo-
thetical variables shows that the ‘Shape” metric measures the
degree of extrapolation by following the shape of the train-
ing data in environmental space because it considers each
training observation as a reference for its calculation (Eq. 2),
hence its name (Fig. 3A). This way of calculating the degree
of extrapolation addresses some of the limitations of previous
extrapolation detection approaches. MESS limits extrapola-
tion similarly to Bioclim, where the degree of extrapolation
is measured using rectilinear envelopes (Fig. 3B), and condi-
tions outside the rectilinear envelope encompassing the range
of training conditions are considered non-analog (Fig. 4B,
Elith et al. 2010). MESS also takes the centroid of the train-
ing data as a reference to calculate the degree of extrapolation,
rather than each training data point as in Shape; consequently,
lower extrapolation values (higher MESS values) will be near
this centroid (Fig. 3B, Elith et al. 2010), which can be a poor
reflection of the real environmental distance between the
training and all projection data (Fig. 3B). Conversely, MOP
measures the degree of combinatorial extrapolation by taking
a portion of the training data as a reference, partially solving
the problem of using centroids as a reference. However, MOP
keeps the maximum extrapolation value of 0 (strict extrapo-
lation) to limit SDM projections outside training condition
ranges, making it impossible to evaluate extrapolation degree
beyond the training conditions (Fig. 3D, Owens et al. 2013).
EO divides environmental space into a certain number of
bins based on the training data; then, projection data within
(EO=0) and outside (EO=1) the unique combination of
environmental predictor values are delimited as analogous
and non-analog, respectively (Zurell et al. 2012). EO has the
advantage over MESS and MOP in that it discriminates non-
analog conditions based not only on the environmental range

of predictors, but also on their combinations (Fig. 3C, 4C,
Zurell et al. 2012). However, EO does not continuously mea-
sure the degree of extrapolation (Fig. 3C). EXDET measures
combinatorial and univariate degree of extrapolation; for the
former (i.e. projection data inside a rectilinear envelope),
EXDET uses Mahalanobis distance between the projection
data and the centroid of the training data (Mesgaran et al.
2014); consequently, it accounts for multicollinearity but
still relies on the centroid and therefore suffers from the same
limitation as MESS. For measuring univariate extrapolation
(i.e. outside the training condition), EXDET uses Euclidean
distance; however, it relies on the minimum and maxi-
mum limits of the training data, i.e. a rectilinear envelope,
to measure extrapolation (Fig. 3E, Mesgaran et al. 2014,
Bouchet et al. 2020). An approach called Area of applicabil-
ity (AOA; Meyer and Pebesma 2021) was published recently
(during the development of our Shape method). Despite
some similarities between Shape and AOA (Fig. 2F), they
differ in how the degree of extrapolation is calculated and
the criteria for selecting an extrapolation threshold beyond
which model projections are not made or considered to be
unreliable (Supporting information). For instance, AOA
weights the variables based on their importance to a given
model, which could distort the distances between training
and projection data and render them dependent on model
type and parametrization, making this method impractical
when using many algorithms or an ensemble approach.

The threshold extrapolation value used to truncate
model predictions is another difference between Shape and
other approaches (Fig. 4). Although MESS, EO, MOP and
EXDET are calculated with different metrics, all of them
truncate model predictions in any area with non-analog con-
ditions (Fig. 4B-D). Of those three, EXDET alone measures
the degree of combinatorial extrapolation; however, it will
define as non-analog any projection data with extrapolation
values > 1 by following the shape of the ellipse defined by the
Mahalanobis distance to the training data centroid (Fig. 4D).
AOA captures the shape of the training data space in a simi-
lar way to Shape (Fig. 4E); however, in AOA, the definition
of non-analog data is affected by the environmental distance
between training and testing data, and consequently, it is
sensitive to the partition approach used for model validation
(e.g. bootstrap, k-fold, or geographically structured partition
method; Meyer and Pebesma 2021).

Extrapolation measures should be independent of the range
of environmental conditions of the projection data (e.g. differ-
ent environmental variable limits are expected for a geographic
region restricted to one country than for others encompass-
ing the whole world). This important property produces the
same extrapolation metric values regardless of the projection
conditions. Most approaches are not sensitive to the changing
ranges of projection data, i.e. the metrics values do not change
with changes in range of projection data (Supporting infor-
mation). However, MOP, which standardizes the Euclidean
distance to be bounded between 0 and 1, renders projection
data more or less non-analog based on changes in the range of
environmental variables (Supporting information).
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Figure 3. Patterns of different extrapolation metrics in environmental space defined by two hypothetical variables, », and »,. Black points
and red boxes depict hypothetical training data and limits of training conditions, respectively. The higher the Shape, EXDET, EO and AOA
values, the higher the degree of extrapolation. The lower the MOP and MESS, the higher the degree of extrapolation. AOA was calculated
using the importance values measured in a random forest model.
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Figure 4. Binary non-analog (green) and analog (white) environmental condition patterns defined by thresholds applied to different extrap-
olation metrics in the environmental space of two hypothetical variables, v, and v,. Black points and red boxes depict the training data and
limits of training conditions, respectively. The extrapolation threshold used for Shape is 100. Spatial block cross-validation defined the AOA
extrapolation threshold. The other methods assign areas outside the training range as non-analog and truncate SDM predictions regardless
of metric value.
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Testing the performance of extrapolation metrics

To compare Shape’s performance based on Mahalanobis and
Euclidean distances and to existing extrapolation detection
methods, we used a virtual species approach (Zurell et al.
2010) (see the Supporting information for details about how
the Shape metric based on Euclidean distance is calculated).
We tested extrapolation metrics under different modeling
conditions determined by species niche tolerance, distribu-
tion equilibrium condition, sample size (number of pres-
ences), and algorithm; all of these affect the ability of an
SDM to estimate species niche and, consequently, its suscep-
tibility to extrapolation uncertainty (Table 1).

The niche tolerance (or niche breadth) represents the
range of environmental conditions or resources that define
the species niche and limit species range sizes. Therefore, spe-
cies with broader niche tolerance often have larger distribu-
tion sizes than species with narrow tolerance (Slatyer et al.
2013). Models are expected to predict narrow niches bet-
ter than broader ones (Connor et al. 2018, Andrade et al.
2019). The distributional equilibrium condition describes
the extent to which a species inhabits (or not) all suitable
areas (Peterson et al. 2011). Non-equilibrium distributions
will pervasively affect the models’ ability to reconstruct spe-
cies niches because those conditions tend to underestimate
niches (Peterson et al. 2018). In the same way, sample size
directly affects the predictive performance of SDM; large
samples tend to fit better models than small ones (Wisz et al.
2008, Gaul et al. 2020). The algorithm used is one of the pri-
mary sources of uncertainty in SDM (Dormann et al. 2008,
Thuiller ecal. 2019). Differentalgorithms predict distinct suit-
ability patterns (Fig. 1), directly affecting the suitability pat-
tern near or further from the environmental condition used
for model training. In this experiment, we used six different
SDM algorithms to estimate suitability: generalized additive
model (GAM), generalized linear model (GLM), Gaussian
process (GP), maximum entropy (Maxent), random forest
(RF) and support vector machine (SVM). Niches were mod-
eled by presence-only SDM, i.e. we used presences sampled
from virtual species and pseudo—absences. We decided to use
pseudo-absences instead of real absences because this data

Table 1. Combination of factor levels used in the experiment to test
the performance of different extrapolation metrics. GAM: general-
ized additive model; GLM: generalized linear model; GP: Gaussian
process; Maxent: maximum entropy; RF: random forest; SVM: sup-
port vector machine.

Final
Niche Distribution Sample number of
tolerance  condition size species  Algorithm
Broad Equilibrium 100 100 GAM, GLM,
20 100 GP,
Non-equilibrium 100 96 Maxent,
20 100 RF and
Narrow Equilibrium 100 92 SVM
20 97
Non-equilibrium 100 84
20 91
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type is frequently used in SDMs (Guillera-Arroita et al. 2015;
further model information in the Supporting information)

We used a factorial experimental design where all levels of
evaluated factors were combined; therefore, each extrapola-
tion metric was tested by 4560 SDMs (760 virtual species X
6 algorithms; Table 1). We used the same virtual species as
Andrade et al. (2019) because their approach generates spe-
cies distributions using realistic stochastic processes based on
dispersal simulation and population dynamics at the cell level
(see the Supporting information and Andrade et al. 2019 for
details about the virtual species approach).

Extrapolation values in environmental and geographical
spaces can be used to explore the relationship between degree
of extrapolation and suitability values. However, it is com-
mon to use extrapolation metrics to truncate model predic-
tions by assuming an extrapolation threshold beyond which
projection data is assumed to be unacceptably extrapolative
(Fig. 4), and suitability values below that threshold are set to
zero (Thuiller et al. 2004, Stohlgren et al. 2011, Owens et al.
2013, Montti et al. 2021). We use truncation to measure
how modeled performance can be improved using different
extrapolation metrics. The improvement in SDM predic-
tion was measured by root mean square error (RMSE) using
worldwide cells (n =584 521) and comparing the values of the
known niche of each virtual species with suitability predicted
by SDMs before and after model truncation (i.e. projection
data assumed to be unacceptably extrapolative were assigned
a suitability value of 0). The lower the RMSE value, the better
the method performance (Supporting information).

The extrapolation distance threshold used to truncate a
model varies depending on the modeling approach: MESS
<=0, EO=1,MOP=0, and EXDET combinatorial extrap-
olation >=1 and EXDET univariate extrapolation < 0 are
assumed to be unacceptably extrapolative projection data
(Fig. 3—4). The AOA metric weights variables by their impor-
tance in a given model to calculate degree of extrapolation;
therefore, we extracted the variables’ importance from each
algorithm for weighting. The AOA extrapolation threshold
is derived by identifying the maximum dissimilarity of the
training data via cross-validation (Meyer and Pebesma 2021).
Because this threshold selection method is sensitive to the
validation partitioning approach, and following the recom-
mendation of Meyer and Pebesma (2021), we used spatial
cross-validation (band and block). The Shape approach does
not assume a default threshold, so we tested values ranging
from 20 to 300%. The higher the threshold values, the less
restrictive a model is. Exploring a range of Shape thresholds
combined with broad modeling conditions defined in our
experiment is important to determining when lower or higher
threshold values are needed and how our new approach per-
forms in comparison with other methods.

Data analysis

We used two approaches to analyze the RMSE arising from
the experiment results. First, using generalized additive
models for location, scale and shape (GAMLSS; Rigby et al.
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2019), we performed a post hoc test comparing mean per-
formance among extrapolation metrics under different mod-
eling conditions for each algorithm separately (Supporting
information). We also counted the number of cases in which
a given extrapolation metric had the top performance (i.c. the
lowest RMSE) for each combination of the niche tolerance,
distribution condition, and sample size for each algorithm
separately to detect which method performed best most fre-
quently under different modeling conditions.

We used the R packages ‘ecospat’ (www.r-project.org, Di
Cola et al. 2017), ‘kuenm’ (Cobos et al. 2019), ‘dsmextra’
(Bouchet et al. 2020), and ‘CAST’ (Meyer et al. 2022) for
calculating MESS, MOPR, EXDET, AOA, respectively. Codes
available in Zurell et al. (2012) were used to calculate EO.
We implemented codes for calculating the Shape metric in
‘flexsdm’ R package (Velazco et al. 2022). The ‘flexsdm’ pack-
age was used to construct SDMs, and the ‘caret’ (Kuhn 2008)
package was used to extract variables’ importance. GAMLSS
models were fitted with ‘gamlss’ (Rigby and Stasinopoulos
2005) and ‘emmeans (Lenth 2022) and ‘multcomp’
(Hothorn et al. 2008) were used for the post hoc analysis.

Results

In most cases, the Shape metric based on Mahalanobis and
Euclidean distance performed similarly in terms of mean
RMSE (Supporting information). The performance of Shape
based on both distances varied regarding the algorithm, niche
tolerance, and distribution conditions (Supporting informa-
tion). However, because Mahalanobis distance has the advan-
tage of incorporating correlation structure into the metrics
(by the covariance matrix) and accounting for the scaling of
variables, we found it more appropriate than Euclidean dis-
tance. Therefore, in the following results, we reported com-
parisons between Shape based on Mahalanobis distance and
the other extrapolation metrics.

Although all the SDMs were constructed with the same
environmental variables used to define species niches, and
despite the simplicity of niche shapes, all models had trouble
predicting species niches (mean RMSE for algorithms, niche
tolerances, distribution conditions, and sample sizes was
0.248 + 0.182, Supporting information). Modeling condi-
tions characterized by broad niches, non-equilibrium distri-
bution, and few occurrences showed the worst performance
for most algorithms (Supporting information). However, we
found a substantial improvement in model predictions (i.e.
mean RMSE for algorithms, niche tolerances, distribution
conditions, sample sizes, and extrapolation metrics was 0.119
+ 0.086) when model projections were truncated, indepen-
dent of the extrapolation metric used (Fig. 5, Supporting
information). MESS, EO, MOP and EXDET showed similar
improvement for all algorithms, while AOA performed simi-
larly to or worse than those three metrics (Fig. 5, Supporting
information). Shape performance was dependent on the
degree of extrapolation threshold used to truncate mod-
els. Because of this flexibility, our approach showed similar

or better performance than the other approaches for some
threshold values and can better deal with all modeling condi-
tions and algorithms (Fig. 5, Supporting information).

The frequency of the highest performance of each extrapo-
lation metric (i.e. the lowest RSME) shows that Shape gener-
ally outperforms other methods independently of algorithm
(Fig. 6, Supporting information). However, Shape’s perfor-
mance depends on niche tolerance and threshold value; we
found that lower threshold values are preferable when model-
ing species with narrower niches, and higher extrapolation
thresholds are effective for broader niches (Fig. 6, Supporting
information). Even higher extrapolation thresholds improved
models for species with both broad niches and non-equilib-
rium distributions (Fig. 6, Supporting information). Whereas
AOA methods resulted in the lowest RMSEs of all the extrap-
olation metrics when Maxent was applied to narrow niches
(Supporting information).

Discussion

Our novel extrapolation metric Shape is flexible enough to be
used under different modeling situations because it considers
the shape of training conditions when determining the degree
of extrapolation to novel conditions. It is also possible to use
any extrapolation threshold with Shape to define whether
projection data are considered to be unacceptably extrapo-
lative and model projections unreliable by flagging or trun-
cating model predictions beyond the threshold. These two
properties make our approach more broadly applicable than
existing extrapolation metrics applied to SDM projections.
Frequently, non-analog environmental conditions,
under which model projections are considered unreliable,
are defined in a binary way using values of environmental
predictors in the projection data that are beyond the range
of the training data (Elith et al. 2010, Peterson et al. 2011,
Briscoe et al. 2019). However, environmental novelty is a
continuous phenomenon with a complex shape occurring
any time a model is projected with data distinct from training
data (Yates et al. 2018). As seen here, some metrics assume
straight boundaries as limits of the training conditions (e.g.
MESS, MOP, EXDET; Fig. 4), offering too simplistic a solu-
tion for controlling model extrapolation. For instance, the
degree of extrapolation of projection data within rectilinear
training conditions could be as great as projection data out-
side those limits (Supporting information). In the field of
SDM, limits based on the range of the training data could be
more problematic in cases where a species niche extends out-
side the training conditions because occurrences define only
a portion of the fundamental niche (e.g. undersampled spe-
cies or biased occurrence data), a portion of the fundamental
niche is available for a species in the geographical space for a
given time (i.e. existing niche), or as a consequence of niche
truncation (Owens et al. 2013, Soberén and Arroyo-Pefia
2017, Qiao et al. 2019, Sales et al. 2019). Therefore, it is
important to measure the degree of extrapolation continu-
ously and independently of the rectilinear limits of training
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Figure 5. Average RMSE and confidence intervals for Gaussian process (GP) predictions and the effect of extrapolation metrics for different
niche tolerances (Broad and Narrow), distribution conditions (Equilibrium and Non-equilibrium), and sample sizes (20 and 100), and for
different percent thresholds for the Shape metric (from 20 to 300). Average RMSEs with same letters within each panel are not significantly
different according to the HDS Tukey test (p < 0.05; see results for other SDM algorithms in the Supporting information).

data; this approach is consistent with Meyer and Pebesma
(2021); therefore, we advise species distribution modelers to
use extrapolation metrics like Shape or AOA.

Unpredictable model behavior in novel projection condi-
tions affects SDM outcomes, highlighting that extrapolation
is a severe problem that should be evaluated and addressed.
We found that most algorithms examined, except GLM
and GP, show a higher error when modeling species with
broader niches, few occurrences, and at non-equilibrium
(Supporting information). Such findings align with previ-
ous research showing that model transferabilicy was worst
for species with larger geographic distributions (Rousseau
and Betts 2022), and that model accuracy increases with
sample size (Gaul et al. 2020). All algorithms used in our
experiment are frequently employed in SDMs and com-
monly have good model performance (e.g. Maxent, RE
SVM; Elith et al. 2006, Lorena et al. 2011, Qiao etal. 2015,
Norberg et al. 2019, Valavi et al. 2022). However, we found
that they all have large extrapolation errors, thus failing to
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predict species niches when projected globally. It has recently
been found that most SDM algorithms have low transfer-
ability when evaluated in non-analog environmental condi-
tions (Jiménez et al. 2019, Norberg et al. 2019, Qiao et al.
2019, Charney et al. 2021, Rousseau and Betts 2022). We
highlight that our experiment imposed very favorable con-
ditions for modeling, such as the simplicity of niche shape
(i.e. multivariate Gaussian distribution) and using the
same predictors for defining species niches and model fit-
ting. Nevertheless, under real modeling conditions, species
could have niche shapes that are different from a multivari-
ate normal distribution (Austin and Gaywood 1994), and,
in most cases, modelers simply infer which environmental
variables affect species distributions. These typical modeling
conditions could prevent the SDM from correctly describing
the species niches and, consequently, predict unrealistically
under novel projection conditions. We recommend new and
expanded experiments using the virtual species approach
to understand which niche features and model workflow
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Figure 6. Frequency of the highest performance (i.e. the lowest RMSE across all metrics) for each extrapolation metric applied to random
forests (RF) projections under different niche tolerances (Broad and Narrow), distribution conditions (Equilibrium and Non-equilibrium),
and sample sizes (20 and 100), and for different percent thresholds for the Shape metric (from 20 to 300). Colors refer to extrapolation
metric as indicated in the x-axis labels. See other algorithm results in the Supporting information.

decisions most hamper the SDMs predictive ability in
non-analog conditions (e.g. training area size or number of
psecudo-absences).

Extrapolation metrics can be used to explore the rela-
tionship between the degree of model extrapolation and
predicted suitability in geographical or environmental space
to reveal the degree of environmental novelty of projection
data. This exploratory use is essential to limit the interpreta-
tion of a model to non-analog environmental conditions.
However, extrapolation distance metrics can be binarized
based on a threshold chosen to define where model pro-
jections are assumed to be unreliable and used for model
truncation. Model truncation is extremely important when
habitat suitability projected by SDMs is used in spatial deci-
sion support (e.g. for calculating proportion of invasive
species ranges within and outside a protected area, or for
performing spatial conservation prioritization with future
conditions). Model truncation can help reduce the effect of
extrapolation in problematic scenarios where extrapolation

leads to an increase in model overprediction that would
change an assessment result. All previous SDM extrapola-
tion metrics use a default threshold to limit extrapolation
(Elith et al. 2010, Engler and Rédder 2012, Zurell et al.
2012, Owens et al. 2013, Mesgaran et al. 2014). Our experi-
ment showed that a flexible extrapolation distance threshold
is necessary to deal with different modeling conditions. Based
on our experiment, we can recommend that lower extrapola-
tion thresholds are preferable for species with narrow niches
and higher extrapolation thresholds for species with broad
niches and in non-equilibrium (Fig. 5, Supporting informa-
tion). Further research is necessary to develop new methods
other than simple model truncation using an extrapolation
distance threshold, such as down-weighting suitability val-
ues with higher extrapolation values.

While a flexible extrapolation distance threshold is an
advantage of Shape, the choice of a threshold is subjec-
tive. Therefore, we recommend that modelers thoroughly
explore the patterns of suitability and degree of extrapolation
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Table 2. Tools for measuring and exploring extrapolation distance patterns for species distribution models available as a function in ‘flexsdm’
R package (https://sjevelazco.github.io/flexsdm/articles/vO6_Extrapolation_example.html, Velazco et al. 2022).

Function Description

extra_eval()

measure extrapolation distance based on Shape method by comparing environmental data used for model

training and projection conditions. It also calculates univariate and combinatorial extrapolation

extra_truncate()

truncate suitability predictions based on one or more extrapolation values

p_pdp0) partial dependence plot (a.k.a. response curves)
p_bpdp() bBivariate partial dependence plot (i.e. bivariate response curves)
p_extra() plot extrapolation distance in geographical and environmental space

in geographical and environmental space to decide which
threshold best fits a given model by 1) measuring extrapola-
tion with a metric that captures the shape of training data
realistically in environmental space (e.g. Shape and AOA), 2)
constructing univariate or bivariate partial dependence plots
to inspect algorithm behavior on average conditions (Fig. 1),
3) exploring degree of extrapolation and suitability pattern
in environmental and geographical space, 4) exploring the
relationship between extrapolation distance and suitability
and 5) whenever possible, combining such explorations with
knowledge of the organism’s ecology (e.g. altitude range, envi-
ronmental condition tolerances, detection of regions with
environmental conditions unlikely for species existence). We
provide tools in the ‘flexsdm’ R package (www.r-project.org)
to facilitate such exploration (Table 2, Velazco et al. 2022).
Figure 7 shows extrapolation distance patterns of projection
data measured with Shape using training data in geographic

601

tmx

space and in environmental space for pair-wise combination
of variables used in model construction, illustrated for a vir-
tual species dataset in a portion of California, USA.

In summary, we have introduced the novel method
Shape to measure the degree of extrapolation and explored
its properties relative to other previously published meth-
ods. Based on a virtual species experiment, we showed that
Shape has similar or better performance than other extrapo-
lation metrics and, due to its versatility, this new metric
can be used in different modeling scenarios commonly
encountered in SDM applications. We recommend using
Shape when a model is projected for other time periods and
geographical regions than the training data, or even in cur-
rent environmental conditions and large training areas. We
hope our method and tools support modelers to explore,
detect, and reduce uncertainty in extrapolation to achieve
more reliable results.
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Figure 7. Example of extrapolation distance patterns of projection data measured with Shape (colors range between yellow and blue) using
training data (circles and triangles depict absences and presences, respectively) in environmental (left six figures) and geographic (right)
space where environmental space is shown for pair-wise combination of variables used in model construction, illustrated for a species dataset
in a portion of California, USA. Geographical coordinates are NAD83 datum. Environmental variables shown are actual evapotranspiration
(AET), climatic water deficit (CWD), maximum temperature of the warmest month (TMX), and minimum temperature of the coldest
month (TMN). Plots were produced using the functions p_extra described in Table 2.
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