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Species distribution and ecological niche models (hereafter SDMs) are popular tools 
with broad applications in ecology, biodiversity conservation, and environmental sci-
ence. Many SDM applications require projecting models in environmental conditions 
non-analog to those used for model training (extrapolation), giving predictions that may 
be statistically unsupported and biologically meaningless. We introduce a novel method, 
Shape, a model-agnostic approach that calculates the extrapolation degree for a given 
projection data point by its multivariate distance to the nearest training data point. Such 
distances are relativized by a factor that reflects the dispersion of the training data in 
environmental space. Distinct from other approaches, Shape incorporates an adjustable 
threshold to control the binary discrimination between acceptable and unacceptable 
extrapolation degrees. We compared Shape’s performance to five extrapolation metrics 
based on their ability to detect analog environmental conditions in environmental space 
and improve SDMs suitability predictions. To do so, we used 760 virtual species to 
define different modeling conditions determined by species niche tolerance, distribution 
equilibrium condition, sample size, and algorithm. All algorithms had trouble predict-
ing species niches. However, we found a substantial improvement in model predictions 
when model projections were truncated independently of extrapolation metrics. Shape’s 
performance was dependent on extrapolation threshold used to truncate models. Because 
of this versatility, our approach showed similar or better performance than the previous 
approaches and could better deal with all modeling conditions and algorithms. Our 
extrapolation metric is simple to interpret, captures the complex shapes of the data in 
environmental space, and can use any extrapolation threshold to define whether model 
predictions are retained based on the extrapolation degrees. These properties make this 
approach more broadly applicable than existing methods for creating and applying 
SDMs. We hope this method and accompanying tools support modelers to explore, 
detect, and reduce extrapolation errors to achieve more reliable models.
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Introduction

Species distribution and ecological niche models (hereafter 
SDMs), used in a wide range of disciplines (Franklin 2013), 
rely on ecological niche theories, wherein species distribu-
tions are determined by biotic, abiotic, and historical dis-
persal factors of the focal species (Austin 2002, Soberón and 
Peterson 2005, Peterson and Soberón 2012). The correspon-
dence of the species niche in environmental and geographic 
space, known as Hutchinson’s duality, is an essential assump-
tion on which SDMs rely. According to Hutchinson’s duality, 
each point in geographic space corresponds to a single point 
in environmental space; however, a single point in environ-
mental space could correspond to one or more points in geo-
graphic space (Hutchinson 1957, Colwell and Rangel 2009). 
This property allows SDMs to estimate different distribu-
tions corresponding to occupied, potential, or invadable areas 
(Soberón and Peterson 2005). Therefore, these models can be 
used, for instance, to identify new populations of known spe-
cies (Fois et al. 2015), detect areas at risk for invasive species 
(Montti et al. 2021), target habitats for species translocation 
or assisted dispersal (Regan et al. 2012), evaluate the effect 
of environmental change on species distributions (Calambás-
Trochez  et  al. 2021), or explore the distribution of species 
in past periods (Bueno  et  al. 2016). These applications all 
involve applying SDMs to projection data (environmental 
data representing the predictor variables) that are temporally 
or geographically different from the training data (a.k.a. cali-
bration data). When an SDM is used to make predictions 
for a different time period or region from the training data, 
this is referred to as projection or transferring in the SDM 
literature (Araújo et al. 2019), and often involves extrapola-
tion to environmental conditions outside those used to train 
the models, e.g. non-analog conditions (Elith  et  al. 2010, 
Rousseau and Betts 2022). Consequently, model predictions 
projected to environmental conditions far from the training 
conditions may be statistically unsupported and ecologically 
meaningless, significantly limiting their utility (Araújo and 
Peterson 2012).

Extrapolation is a phenomenon that can affect predictive 
models of all kinds, and several methods for detecting, mea-
suring, or avoiding extrapolation have been proposed for dif-
ferent research areas (Aniceto et al. 2016, Mahony et al. 2017, 
Meyer and Pebesma 2021). However, the SDM field has a 
unique combination of theoretical frameworks, methodolog-
ical characteristics, and attributes: 1) SDM relies on niche 
theory, so it is expected that SDM can estimate the shape 
and environmental suitability pattern of different niche types 
(Soberón and Peterson 2005, Peterson and Soberón 2012); 
2) SDM often uses categorical data types to characterize the 
response variable such as species presence, absence, pseudo-
absence, and background points (Barbet-Massin et al. 2012, 
Liu  et  al. 2019), and/or other distributional information 

(Merow et al. 2017); 3) SDM uses different modeling meth-
ods (hereafter algorithms) that range from environmental 
envelope and distance-based models to machine learning 
and Bayesian methods (Norberg  et  al. 2019), and because 
of the degree of uncertainty generated by different model-
ing approaches, ensemble models are often implemented 
(Thuiller  et  al. 2019); 4) depending on the model purpose 
and amount of data, different partitioning methods are used 
for model validation (Valavi et al. 2019), and 5) frequently 
SDMs are constructed for rare or poorly sampled species 
(Breiner et al. 2015). Such features necessitate the develop-
ment of methods to detect, quantify, and limit extrapolation 
that are adapted specifically for SDMs.

To illustrate this problem, we consider different SDMs 
constructed globally for the invasive species Ligustrum 
lucidum (Fig. 1). It is clear that suitability values are similar 
across algorithms within the ranges of environmental condi-
tions used for model training (depicted by a white polygon 
in Fig. 1). However, these bivariate partial dependence plots 
often exhibit different trends under environmental condi-
tions far from those used for model training (outside the 
white polygon in Fig. 1). For example, unrealistic increases in 
habitat suitability are predicted for extremely high precipita-
tion and temperature (for three of the model types, GAM, 
RF and Maxent), and moderately high suitability is predicted 
for a range of temperature and precipitation combinations far 
from those conditions used in the model fitting (for GP and 
SVM; Fig. 1).

Several strategies and tools have been developed to control, 
explore, and measure extrapolation. Some algorithms control 
how estimations outside training conditions are made. For 
instance, for generalized additive models, penalty order for 
thin plate splines can be controlled, while for Maxent predic-
tions outside training conditions can be 1) freely estimated, 
2) kept constant (clamping), 3) reduced based on the differ-
ence between clamped and non-clamped predictions (fade by 
clamping), or 4) set to zero suitability value (no extrapolation) 
(Phillips et al. 2006). However, even using these approaches 
can lead to unrealistic predictions in non-analog conditions 
precisely because they control estimation but do not measure 
the degree of extrapolation.

Some extrapolation metrics used to estimate the degree 
of extrapolation and define non-analog conditions have been 
proposed in the SDM literature; for instance, the Multivariate 
environmental similarity surface (MESS; Elith et al. 2010) is 
perhaps the most extensively used approach because it was 
first implemented in the widely-used Maxent algorithm 
(Elith et al. 2011). MESS measures degree of extrapolation 
based on the environmental distance between projection 
data and the centroid of training data; univariate extrapo-
lation limits are then defined using a rectilinear envelope 
(Elith et al. 2010). Alternatively, the Environmental overlap 
(EO) approach (Zurell  et  al. 2012) is a binary metric that 
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splits environmental space into a specified number of bins 
based on the training data, grouping all projection data that 
fall outside the unique combination of environmental predic-
tor values used in training data into a single category without 
reflecting how far the values of projection data lie beyond the 
range of training data. The Mobility-oriented parity approach 
(MOP; Owens et al. 2013) is similar to MESS in detecting 
strict extrapolation; however, MOP restricts extrapolation by 
averaging environmental distance to the user-specified nearest 
part of the training data. Extrapolation detection (EXDET; 
Mesgaran et al. 2014) uses two metrics to measure the degree 
of both univariate extrapolation (i.e. extrapolation outside 
the range of training conditions) and combinatorial extrapo-
lation (i.e. extrapolation within the range of training condi-
tions). Each of these methods has limitations. For example, 
none captures the complex relationships between training and 
projection data in environmental space; approaches such as 
MESS, MOP and EXDET discriminate between analog and 
non-analog projection data based on a rectilinear envelope, 

and MESS and EXDET measure extrapolation based on 
environmental condition of the training data centroid (fur-
ther details about these metrics is provided under ‘Properties 
of Shape in comparison with other approaches’).

Given the underlying assumption of SDMs that spe-
cies distributions are in equilibrium with environmental 
conditions that represent niche dimensions (Guisan and 
Zimmermann 2000) and the need to project these models 
into environmental conditions beyond the training data, a 
method to explore the degree of extrapolation that is model-
agnostic (i.e. it does not depend on model approach), simple 
to interpret and implement, and capable of capturing the 
complex relationships between training and projections data 
in environmental space is called for. Furthermore, we are 
unaware of research that has compared the performance of 
existing methods under different modeling conditions, which 
is crucial for evaluating the rigor of SDMs used to make pro-
jections under novel environmental conditions. In this paper, 
we introduce a novel extrapolation metric, Shape, and explore 

Figure 1. Bivariate partial dependence of Ligustrum lucidum predicted by six algorithms using annual mean temperature and annual pre-
cipitation, illustrating the differences across algorithms in environmental measurement space far from the training conditions (outside the 
white polygon). White polygons depict the limits of the training data (i.e. presences and pseudo-absences). Algorithms employed: general-
ized additive model (GAM), Gaussian process (GP), generalized linear model (GLM), random forest (RF), support vector machine 
(SVM), and maximum entropy (Maxent; predicted without clamping). SDMs were constructed with the same presence and pseudo-
absence data from Montti et al. (2021).
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the performance of this and other extrapolation metrics with 
an experiment based on virtual species. Finally, tools for mea-
suring and exploring extrapolation implemented in ‘flexsdm’ 
R package (www.r-project.org) are provided.

Material and methods

The Shape method

As with other extrapolation metrics, Shape measures the 
degree of extrapolation (i.e. environmental novelty) in envi-
ronmental space based on the relationship between the train-
ing and projection data. In the context of SDM, training data 
represents the environmental conditions derived from data 
used for model training or fitting (i.e. presence, presence–
absence, presence–pseudo–absence, or presence–background 
points). In contrast, projection data represents the environ-
mental conditions used for model prediction (e.g. data from a 
given geographical projection area, time period, or data reso-
lution). Shape is a model-agnostic approach because its calcu-
lation is based solely on the environmental distance between 
training and projection data, i.e. the degree of extrapolation 
is independent of model parameters and predictions.

The Shape method measures environmental distance using 
Mahalanobis distance (d) based on predictor variables used in 
modeling (Eq. 1):

d p t p t M p tT,� � � �� � �� ��1 	  (1)

Where M−1 is an inverse covariance matrix based on the train-
ing data, p is a vector of a projection point, t is a vector of a 

training data point, and T indicates the transpose of the vec-
tor. In a conventional Mahalanobis metric (from which the 
Shape method deviates), t would typically represent the cen-
troid of environmental conditions (i.e. the mean); however, t 
represents each training data point in Shape.

Shape calculates the extrapolation metric (Spi) for a given 
projection data point pi = (i = 1, …, r) by its multivariate dis-
tance to the nearest training data point, where training data 
points are denoted by tj (j = 1,…, m) (Eq. 2, Fig. 2A):

S
d p t

Api
j
m

i j
�

� �� ��min 1 ,
	  (2)

where m is the total number of training data points, and A is a 
dispersion factor that relativizes this distance (Williams et al. 
2007, Fitzpatrick et al. 2018, Meyer and Pebesma 2021, Fig 
2B). The higher the Shape value, the greater the environmen-
tal novelty of the projection point and, consequently, the 
lower the degree of reliability of a model prediction.

The factor A is calculated as the averaged Mahalanobis dis-
tance between training data points tj and the centroid of the 
training data c (Eq. 3, Fig. 2B):

A
d t c

m
j

m

j

�
� �

�� 1
,

	  (3)

where m  is the total number of training data points. The 
quantity A  reflects the dispersion of the training data in 
environmental space.

Extrapolation is a continuous phenomenon that depends 
on how different the projection data are from the training 

Figure 2. Illustration of Shape procedure to calculate degree of extrapolation in environmental space defined by two hypothetical variables, 
v1 and v2. In this example, v1 and v1 are the predictor variables. (A) For each projection data point, pi, the Mahalanobis distances to training 
data, tj, are calculated (gray lines), and the minimum of these distances is selected (orange line). (B) After calculating all minimum distances 
from projection to training data (lines colored from yellow to black), the Shape metric (Spi) for each of the r projection data points is derived 
as the ratio of the minimum distance to the training data for that point and a factor A (depicted as the length of the purple arrow). The 
higher the extrapolation degree (Shape metric), the darker the color of the projection points.
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data. Distinct from other extrapolation metrics like MOP, 
this approach keeps Mahalanobis distances unbounded 
but nonetheless relativized. Relativizing the extrapolation 
measure by the dispersion factor A  is extremely important 
because it standardizes how far a projection data point is from 
the training data. For instance, if a given projection datum 
has a corresponding Shape value of 100, it is 100 times fur-
ther away from the nearest training datum than the magni-
tude represented by the dispersion factor. A .

Properties of Shape in comparison with other 
approaches

We compared Shape to other metrics used to measure the 
degree of extrapolation commonly used in SDMs, i.e. 
Multivariate environmental similarity surface (MESS; 
Elith et al. 2010), Environmental overlap (EO; Zurell et al. 
2012); Mobility-oriented parity (MOP; Owens et al. 2013), 
Extrapolation detection (EXDET; Mesgaran et al. 2014), and 
Area of applicability (AOA; Meyer and Pebesma 2021). This 
last approach, AOA, has not been as widely used in SDM; 
however, its similarity to the Shape metric and warrants 
comparison.

Exploring and comparing different extrapolation metrics 
in a simplified environmental space defined by two hypo-
thetical variables shows that the ‘Shape’ metric measures the 
degree of extrapolation by following the shape of the train-
ing data in environmental space because it considers each 
training observation as a reference for its calculation (Eq. 2), 
hence its name (Fig. 3A). This way of calculating the degree 
of extrapolation addresses some of the limitations of previous 
extrapolation detection approaches. MESS limits extrapola-
tion similarly to Bioclim, where the degree of extrapolation 
is measured using rectilinear envelopes (Fig. 3B), and condi-
tions outside the rectilinear envelope encompassing the range 
of training conditions are considered non-analog (Fig. 4B, 
Elith et al. 2010). MESS also takes the centroid of the train-
ing data as a reference to calculate the degree of extrapolation, 
rather than each training data point as in Shape; consequently, 
lower extrapolation values (higher MESS values) will be near 
this centroid (Fig. 3B, Elith et al. 2010), which can be a poor 
reflection of the real environmental distance between the 
training and all projection data (Fig. 3B). Conversely, MOP 
measures the degree of combinatorial extrapolation by taking 
a portion of the training data as a reference, partially solving 
the problem of using centroids as a reference. However, MOP 
keeps the maximum extrapolation value of 0 (strict extrapo-
lation) to limit SDM projections outside training condition 
ranges, making it impossible to evaluate extrapolation degree 
beyond the training conditions (Fig. 3D, Owens et al. 2013). 
EO divides environmental space into a certain number of 
bins based on the training data; then, projection data within 
(EO = 0) and outside (EO = 1) the unique combination of 
environmental predictor values are delimited as analogous 
and non-analog, respectively (Zurell et al. 2012). EO has the 
advantage over MESS and MOP in that it discriminates non-
analog conditions based not only on the environmental range 

of predictors, but also on their combinations (Fig. 3C, 4C, 
Zurell et al. 2012). However, EO does not continuously mea-
sure the degree of extrapolation (Fig. 3C). EXDET measures 
combinatorial and univariate degree of extrapolation; for the 
former (i.e. projection data inside a rectilinear envelope), 
EXDET uses Mahalanobis distance between the projection 
data and the centroid of the training data (Mesgaran et al. 
2014); consequently, it accounts for multicollinearity but 
still relies on the centroid and therefore suffers from the same 
limitation as MESS. For measuring univariate extrapolation 
(i.e. outside the training condition), EXDET uses Euclidean 
distance; however, it relies on the minimum and maxi-
mum limits of the training data, i.e. a rectilinear envelope, 
to measure extrapolation (Fig. 3E, Mesgaran  et  al. 2014,  
Bouchet et al. 2020). An approach called Area of applicabil-
ity (AOA; Meyer and Pebesma 2021) was published recently 
(during the development of our Shape method). Despite 
some similarities between Shape and AOA (Fig. 2F), they 
differ in how the degree of extrapolation is calculated and 
the criteria for selecting an extrapolation threshold beyond 
which model projections are not made or considered to be 
unreliable (Supporting information). For instance, AOA 
weights the variables based on their importance to a given 
model, which could distort the distances between training 
and projection data and render them dependent on model 
type and parametrization, making this method impractical 
when using many algorithms or an ensemble approach.

The threshold extrapolation value used to truncate 
model predictions is another difference between Shape and 
other approaches (Fig. 4). Although MESS, EO, MOP and 
EXDET are calculated with different metrics, all of them 
truncate model predictions in any area with non-analog con-
ditions (Fig. 4B–D). Of those three, EXDET alone measures 
the degree of combinatorial extrapolation; however, it will 
define as non-analog any projection data with extrapolation 
values > 1 by following the shape of the ellipse defined by the 
Mahalanobis distance to the training data centroid (Fig. 4D). 
AOA captures the shape of the training data space in a simi-
lar way to Shape (Fig. 4E); however, in AOA, the definition 
of non-analog data is affected by the environmental distance 
between training and testing data, and consequently, it is 
sensitive to the partition approach used for model validation 
(e.g. bootstrap, k-fold, or geographically structured partition 
method; Meyer and Pebesma 2021).

Extrapolation measures should be independent of the range 
of environmental conditions of the projection data (e.g. differ-
ent environmental variable limits are expected for a geographic 
region restricted to one country than for others encompass-
ing the whole world). This important property produces the 
same extrapolation metric values regardless of the projection 
conditions. Most approaches are not sensitive to the changing 
ranges of projection data, i.e. the metrics values do not change 
with changes in range of projection data (Supporting infor-
mation). However, MOP, which standardizes the Euclidean 
distance to be bounded between 0 and 1, renders projection 
data more or less non-analog based on changes in the range of 
environmental variables (Supporting information).

 16000587, 2024, 3, D
ow

nloaded from
 https://nsojournals.onlinelibrary.w

iley.com
/doi/10.1111/ecog.06992 by U

niversity O
f C

alifornia, W
iley O

nline Library on [11/06/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



Page 6 of 15

Figure 3. Patterns of different extrapolation metrics in environmental space defined by two hypothetical variables, v1 and v2. Black points 
and red boxes depict hypothetical training data and limits of training conditions, respectively. The higher the Shape, EXDET, EO and AOA 
values, the higher the degree of extrapolation. The lower the MOP and MESS, the higher the degree of extrapolation. AOA was calculated 
using the importance values measured in a random forest model.
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Figure 4. Binary non-analog (green) and analog (white) environmental condition patterns defined by thresholds applied to different extrap-
olation metrics in the environmental space of two hypothetical variables, v1 and v2. Black points and red boxes depict the training data and 
limits of training conditions, respectively. The extrapolation threshold used for Shape is 100. Spatial block cross-validation defined the AOA 
extrapolation threshold. The other methods assign areas outside the training range as non-analog and truncate SDM predictions regardless 
of metric value.
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Testing the performance of extrapolation metrics

To compare Shape’s performance based on Mahalanobis and 
Euclidean distances and to existing extrapolation detection 
methods, we used a virtual species approach (Zurell  et  al. 
2010) (see the Supporting information for details about how 
the Shape metric based on Euclidean distance is calculated). 
We tested extrapolation metrics under different modeling 
conditions determined by species niche tolerance, distribu-
tion equilibrium condition, sample size (number of pres-
ences), and algorithm; all of these affect the ability of an 
SDM to estimate species niche and, consequently, its suscep-
tibility to extrapolation uncertainty (Table 1).

The niche tolerance (or niche breadth) represents the 
range of environmental conditions or resources that define 
the species niche and limit species range sizes. Therefore, spe-
cies with broader niche tolerance often have larger distribu-
tion sizes than species with narrow tolerance (Slatyer  et  al. 
2013). Models are expected to predict narrow niches bet-
ter than broader ones (Connor  et  al. 2018, Andrade  et  al. 
2019). The distributional equilibrium condition describes 
the extent to which a species inhabits (or not) all suitable 
areas (Peterson  et  al. 2011). Non-equilibrium distributions 
will pervasively affect the models’ ability to reconstruct spe-
cies niches because those conditions tend to underestimate 
niches (Peterson et al. 2018). In the same way, sample size 
directly affects the predictive performance of SDM; large 
samples tend to fit better models than small ones (Wisz et al. 
2008, Gaul et al. 2020). The algorithm used is one of the pri-
mary sources of uncertainty in SDM (Dormann et al. 2008, 
Thuiller et al. 2019). Different algorithms predict distinct suit-
ability patterns (Fig. 1), directly affecting the suitability pat-
tern near or further from the environmental condition used 
for model training. In this experiment, we used six different 
SDM algorithms to estimate suitability: generalized additive 
model (GAM), generalized linear model (GLM), Gaussian 
process (GP), maximum entropy (Maxent), random forest 
(RF) and support vector machine (SVM). Niches were mod-
eled by presence-only SDM, i.e. we used presences sampled 
from virtual species and pseudo–absences. We decided to use 
pseudo-absences instead of real absences because this data 

type is frequently used in SDMs (Guillera-Arroita et al. 2015; 
further model information in the Supporting information)

We used a factorial experimental design where all levels of 
evaluated factors were combined; therefore, each extrapola-
tion metric was tested by 4560 SDMs (760 virtual species × 
6 algorithms; Table 1). We used the same virtual species as 
Andrade et al. (2019) because their approach generates spe-
cies distributions using realistic stochastic processes based on 
dispersal simulation and population dynamics at the cell level 
(see the Supporting information and Andrade et al. 2019 for 
details about the virtual species approach).

Extrapolation values in environmental and geographical 
spaces can be used to explore the relationship between degree 
of extrapolation and suitability values. However, it is com-
mon to use extrapolation metrics to truncate model predic-
tions by assuming an extrapolation threshold beyond which 
projection data is assumed to be unacceptably extrapolative 
(Fig. 4), and suitability values below that threshold are set to 
zero (Thuiller et al. 2004, Stohlgren et al. 2011, Owens et al. 
2013, Montti  et  al. 2021). We use truncation to measure 
how modeled performance can be improved using different 
extrapolation metrics. The improvement in SDM predic-
tion was measured by root mean square error (RMSE) using 
worldwide cells (n = 584 521) and comparing the values of the 
known niche of each virtual species with suitability predicted 
by SDMs before and after model truncation (i.e. projection 
data assumed to be unacceptably extrapolative were assigned 
a suitability value of 0). The lower the RMSE value, the better 
the method performance (Supporting information).

The extrapolation distance threshold used to truncate a 
model varies depending on the modeling approach: MESS 
<= 0, EO = 1, MOP = 0, and EXDET combinatorial extrap-
olation > = 1 and EXDET univariate extrapolation < 0 are 
assumed to be unacceptably extrapolative projection data 
(Fig. 3–4). The AOA metric weights variables by their impor-
tance in a given model to calculate degree of extrapolation; 
therefore, we extracted the variables’ importance from each 
algorithm for weighting. The AOA extrapolation threshold 
is derived by identifying the maximum dissimilarity of the 
training data via cross-validation (Meyer and Pebesma 2021). 
Because this threshold selection method is sensitive to the 
validation partitioning approach, and following the recom-
mendation of Meyer and Pebesma (2021), we used spatial 
cross-validation (band and block). The Shape approach does 
not assume a default threshold, so we tested values ranging 
from 20 to 300%. The higher the threshold values, the less 
restrictive a model is. Exploring a range of Shape thresholds 
combined with broad modeling conditions defined in our 
experiment is important to determining when lower or higher 
threshold values are needed and how our new approach per-
forms in comparison with other methods.

Data analysis

We used two approaches to analyze the RMSE arising from 
the experiment results. First, using generalized additive 
models for location, scale and shape (GAMLSS; Rigby et al. 

Table 1. Combination of factor levels used in the experiment to test 
the performance of different extrapolation metrics. GAM: general-
ized additive model; GLM: generalized linear model; GP: Gaussian 
process; Maxent: maximum entropy; RF: random forest; SVM: sup-
port vector machine.

Niche 
tolerance

Distribution 
condition

Sample 
size

Final 
number of 

species Algorithm

Broad Equilibrium 100 100 GAM, GLM, 
GP, 
Maxent, 
RF and 
SVM

20 100
Non-equilibrium 100 96

20 100
Narrow Equilibrium 100 92

20 97
Non-equilibrium 100 84

20 91
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2019), we performed a post hoc test comparing mean per-
formance among extrapolation metrics under different mod-
eling conditions for each algorithm separately (Supporting 
information). We also counted the number of cases in which 
a given extrapolation metric had the top performance (i.e. the 
lowest RMSE) for each combination of the niche tolerance, 
distribution condition, and sample size for each algorithm 
separately to detect which method performed best most fre-
quently under different modeling conditions.

We used the R packages ‘ecospat’ (www.r-project.org, Di 
Cola  et  al. 2017), ‘kuenm’ (Cobos  et  al. 2019), ‘dsmextra’ 
(Bouchet et al. 2020), and ‘CAST’ (Meyer et al. 2022) for 
calculating MESS, MOP, EXDET, AOA, respectively. Codes 
available in Zurell et al. (2012) were used to calculate EO. 
We implemented codes for calculating the Shape metric in 
‘flexsdm’ R package (Velazco et al. 2022). The ‘flexsdm’ pack-
age was used to construct SDMs, and the ‘caret’ (Kuhn 2008) 
package was used to extract variables’ importance. GAMLSS 
models were fitted with ‘gamlss’ (Rigby and Stasinopoulos 
2005) and ‘emmeans’ (Lenth 2022) and ‘multcomp’ 
(Hothorn et al. 2008) were used for the post hoc analysis.

Results

In most cases, the Shape metric based on Mahalanobis and 
Euclidean distance performed similarly in terms of mean 
RMSE (Supporting information). The performance of Shape 
based on both distances varied regarding the algorithm, niche 
tolerance, and distribution conditions (Supporting informa-
tion). However, because Mahalanobis distance has the advan-
tage of incorporating correlation structure into the metrics 
(by the covariance matrix) and accounting for the scaling of 
variables, we found it more appropriate than Euclidean dis-
tance. Therefore, in the following results, we reported com-
parisons between Shape based on Mahalanobis distance and 
the other extrapolation metrics.

Although all the SDMs were constructed with the same 
environmental variables used to define species niches, and 
despite the simplicity of niche shapes, all models had trouble 
predicting species niches (mean RMSE for algorithms, niche 
tolerances, distribution conditions, and sample sizes was 
0.248 ± 0.182, Supporting information). Modeling condi-
tions characterized by broad niches, non-equilibrium distri-
bution, and few occurrences showed the worst performance 
for most algorithms (Supporting information). However, we 
found a substantial improvement in model predictions (i.e. 
mean RMSE for algorithms, niche tolerances, distribution 
conditions, sample sizes, and extrapolation metrics was 0.119 
± 0.086) when model projections were truncated, indepen-
dent of the extrapolation metric used (Fig. 5, Supporting 
information). MESS, EO, MOP and EXDET showed similar 
improvement for all algorithms, while AOA performed simi-
larly to or worse than those three metrics (Fig. 5, Supporting 
information). Shape performance was dependent on the 
degree of extrapolation threshold used to truncate mod-
els. Because of this flexibility, our approach showed similar 

or better performance than the other approaches for some 
threshold values and can better deal with all modeling condi-
tions and algorithms (Fig. 5, Supporting information).

The frequency of the highest performance of each extrapo-
lation metric (i.e. the lowest RSME) shows that Shape gener-
ally outperforms other methods independently of algorithm 
(Fig. 6, Supporting information). However, Shape’s perfor-
mance depends on niche tolerance and threshold value; we 
found that lower threshold values are preferable when model-
ing species with narrower niches, and higher extrapolation 
thresholds are effective for broader niches (Fig. 6, Supporting 
information). Even higher extrapolation thresholds improved 
models for species with both broad niches and non-equilib-
rium distributions (Fig. 6, Supporting information). Whereas 
AOA methods resulted in the lowest RMSEs of all the extrap-
olation metrics when Maxent was applied to narrow niches 
(Supporting information).

Discussion

Our novel extrapolation metric Shape is flexible enough to be 
used under different modeling situations because it considers 
the shape of training conditions when determining the degree 
of extrapolation to novel conditions. It is also possible to use 
any extrapolation threshold with Shape to define whether 
projection data are considered to be unacceptably extrapo-
lative and model projections unreliable by flagging or trun-
cating model predictions beyond the threshold. These two 
properties make our approach more broadly applicable than 
existing extrapolation metrics applied to SDM projections.

Frequently, non-analog environmental conditions, 
under which model projections are considered unreliable, 
are defined in a binary way using values of environmental 
predictors in the projection data that are beyond the range 
of the training data (Elith et al. 2010, Peterson et al. 2011, 
Briscoe  et  al. 2019). However, environmental novelty is a 
continuous phenomenon with a complex shape occurring 
any time a model is projected with data distinct from training 
data (Yates et al. 2018). As seen here, some metrics assume 
straight boundaries as limits of the training conditions (e.g. 
MESS, MOP, EXDET; Fig. 4), offering too simplistic a solu-
tion for controlling model extrapolation. For instance, the 
degree of extrapolation of projection data within rectilinear 
training conditions could be as great as projection data out-
side those limits (Supporting information). In the field of 
SDM, limits based on the range of the training data could be 
more problematic in cases where a species niche extends out-
side the training conditions because occurrences define only 
a portion of the fundamental niche (e.g. undersampled spe-
cies or biased occurrence data), a portion of the fundamental 
niche is available for a species in the geographical space for a 
given time (i.e. existing niche), or as a consequence of niche 
truncation (Owens  et  al. 2013, Soberón and Arroyo-Peña 
2017, Qiao  et  al. 2019, Sales  et  al. 2019). Therefore, it is 
important to measure the degree of extrapolation continu-
ously and independently of the rectilinear limits of training 
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data; this approach is consistent with Meyer and Pebesma 
(2021); therefore, we advise species distribution modelers to 
use extrapolation metrics like Shape or AOA.

Unpredictable model behavior in novel projection condi-
tions affects SDM outcomes, highlighting that extrapolation 
is a severe problem that should be evaluated and addressed. 
We found that most algorithms examined, except GLM 
and GP, show a higher error when modeling species with 
broader niches, few occurrences, and at non-equilibrium 
(Supporting information). Such findings align with previ-
ous research showing that model transferability was worst 
for species with larger geographic distributions (Rousseau 
and Betts 2022), and that model accuracy increases with 
sample size (Gaul  et  al. 2020). All algorithms used in our 
experiment are frequently employed in SDMs and com-
monly have good model performance (e.g. Maxent, RF, 
SVM; Elith et al. 2006, Lorena et al. 2011, Qiao et al. 2015, 
Norberg et al. 2019, Valavi et al. 2022). However, we found 
that they all have large extrapolation errors, thus failing to 

predict species niches when projected globally. It has recently 
been found that most SDM algorithms have low transfer-
ability when evaluated in non-analog environmental condi-
tions (Jiménez et al. 2019, Norberg et al. 2019, Qiao et al. 
2019, Charney et al. 2021, Rousseau and Betts 2022). We 
highlight that our experiment imposed very favorable con-
ditions for modeling, such as the simplicity of niche shape 
(i.e. multivariate Gaussian distribution) and using the 
same predictors for defining species niches and model fit-
ting. Nevertheless, under real modeling conditions, species 
could have niche shapes that are different from a multivari-
ate normal distribution (Austin and Gaywood 1994), and, 
in most cases, modelers simply infer which environmental 
variables affect species distributions. These typical modeling 
conditions could prevent the SDM from correctly describing 
the species niches and, consequently, predict unrealistically 
under novel projection conditions. We recommend new and 
expanded experiments using the virtual species approach 
to understand which niche features and model workflow 

Figure 5. Average RMSE and confidence intervals for Gaussian process (GP) predictions and the effect of extrapolation metrics for different 
niche tolerances (Broad and Narrow), distribution conditions (Equilibrium and Non-equilibrium), and sample sizes (20 and 100), and for 
different percent thresholds for the Shape metric (from 20 to 300). Average RMSEs with same letters within each panel are not significantly 
different according to the HDS Tukey test (p < 0.05; see results for other SDM algorithms in the Supporting information).
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decisions most hamper the SDMs predictive ability in 
non-analog conditions (e.g. training area size or number of 
pseudo-absences).

Extrapolation metrics can be used to explore the rela-
tionship between the degree of model extrapolation and 
predicted suitability in geographical or environmental space 
to reveal the degree of environmental novelty of projection 
data. This exploratory use is essential to limit the interpreta-
tion of a model to non-analog environmental conditions. 
However, extrapolation distance metrics can be binarized 
based on a threshold chosen to define where model pro-
jections are assumed to be unreliable and used for model 
truncation. Model truncation is extremely important when 
habitat suitability projected by SDMs is used in spatial deci-
sion support (e.g. for calculating proportion of invasive 
species ranges within and outside a protected area, or for 
performing spatial conservation prioritization with future 
conditions). Model truncation can help reduce the effect of 
extrapolation in problematic scenarios where extrapolation 

leads to an increase in model overprediction that would 
change an assessment result. All previous SDM extrapola-
tion metrics use a default threshold to limit extrapolation 
(Elith  et  al. 2010, Engler and Rödder 2012, Zurell  et  al. 
2012, Owens et al. 2013, Mesgaran et al. 2014). Our experi-
ment showed that a flexible extrapolation distance threshold 
is necessary to deal with different modeling conditions. Based 
on our experiment, we can recommend that lower extrapola-
tion thresholds are preferable for species with narrow niches 
and higher extrapolation thresholds for species with broad 
niches and in non-equilibrium (Fig. 5, Supporting informa-
tion). Further research is necessary to develop new methods 
other than simple model truncation using an extrapolation 
distance threshold, such as down-weighting suitability val-
ues with higher extrapolation values.

While a flexible extrapolation distance threshold is an 
advantage of Shape, the choice of a threshold is subjec-
tive. Therefore, we recommend that modelers thoroughly 
explore the patterns of suitability and degree of extrapolation 

Figure 6. Frequency of the highest performance (i.e. the lowest RMSE across all metrics) for each extrapolation metric applied to random 
forests (RF) projections under different niche tolerances (Broad and Narrow), distribution conditions (Equilibrium and Non-equilibrium), 
and sample sizes (20 and 100), and for different percent thresholds for the Shape metric (from 20 to 300). Colors refer to extrapolation 
metric as indicated in the x-axis labels. See other algorithm results in the Supporting information.

 16000587, 2024, 3, D
ow

nloaded from
 https://nsojournals.onlinelibrary.w

iley.com
/doi/10.1111/ecog.06992 by U

niversity O
f C

alifornia, W
iley O

nline Library on [11/06/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



Page 12 of 15

in geographical and environmental space to decide which 
threshold best fits a given model by 1) measuring extrapola-
tion with a metric that captures the shape of training data 
realistically in environmental space (e.g. Shape and AOA), 2) 
constructing univariate or bivariate partial dependence plots 
to inspect algorithm behavior on average conditions (Fig. 1), 
3) exploring degree of extrapolation and suitability pattern 
in environmental and geographical space, 4) exploring the 
relationship between extrapolation distance and suitability 
and 5) whenever possible, combining such explorations with 
knowledge of the organism’s ecology (e.g. altitude range, envi-
ronmental condition tolerances, detection of regions with 
environmental conditions unlikely for species existence). We 
provide tools in the ‘flexsdm’ R package (www.r-project.org) 
to facilitate such exploration (Table 2, Velazco et al. 2022). 
Figure 7 shows extrapolation distance patterns of projection 
data measured with Shape using training data in geographic 

space and in environmental space for pair-wise combination 
of variables used in model construction, illustrated for a vir-
tual species dataset in a portion of California, USA.

In summary, we have introduced the novel method 
Shape to measure the degree of extrapolation and explored 
its properties relative to other previously published meth-
ods. Based on a virtual species experiment, we showed that 
Shape has similar or better performance than other extrapo-
lation metrics and, due to its versatility, this new metric 
can be used in different modeling scenarios commonly 
encountered in SDM applications. We recommend using 
Shape when a model is projected for other time periods and 
geographical regions than the training data, or even in cur-
rent environmental conditions and large training areas. We 
hope our method and tools support modelers to explore, 
detect, and reduce uncertainty in extrapolation to achieve 
more reliable results.

Table 2. Tools for measuring and exploring extrapolation distance patterns for species distribution models available as a function in ‘flexsdm’ 
R package (https://sjevelazco.github.io/flexsdm/articles/v06_Extrapolation_example.html, Velazco et al. 2022).

Function Description

extra_eval() measure extrapolation distance based on Shape method by comparing environmental data used for model 
training and projection conditions. It also calculates univariate and combinatorial extrapolation

extra_truncate() truncate suitability predictions based on one or more extrapolation values
p_pdp() partial dependence plot (a.k.a. response curves)
p_bpdp() bBivariate partial dependence plot (i.e. bivariate response curves)
p_extra() plot extrapolation distance in geographical and environmental space

Figure 7. Example of extrapolation distance patterns of projection data measured with Shape (colors range between yellow and blue) using 
training data (circles and triangles depict absences and presences, respectively) in environmental (left six figures) and geographic (right) 
space where environmental space is shown for pair-wise combination of variables used in model construction, illustrated for a species dataset 
in a portion of California, USA. Geographical coordinates are NAD83 datum. Environmental variables shown are actual evapotranspiration 
(AET), climatic water deficit (CWD), maximum temperature of the warmest month (TMX), and minimum temperature of the coldest 
month (TMN). Plots were produced using the functions p_extra described in Table 2.
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