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PATCHES

INWON KIM AND JONA LELMI

ABSTRACT. In this paper, we study a tumor growth model with nutrients. The contact
inhibition for the tumor cells, presented in the model, results in the evolution of a con-
gested tumor patch. We study the regularity of the tumor patch as the nutrients’ diffusion
strength D diminishes. In particular, we show that for small D > 0 the boundary of the
tumor patch stays in a small neighborhood of the smooth tumor patch boundary obtained
with D = 0, uniformly with respect to the Hausdorff distance.
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1. INTRODUCTION

We consider a basic model that describes tumor growth with nutrients, given by the
following system of PDEs, set in @ := R x [0, 00):

Opr —div (pVp) =(n—0b)p, p<1, pé€ Px(p),
on — DAn =—pn, n—c>0as|z| = oo,

(1)

Here D, b, ¢ are nonnegative constants, and P, denotes the Hele-Shaw graph, given by

0 if p< 1,

Feolp) = {[O,—i—oo) itp=1.

This system has been actively studied in recent literature: see for instance |11} [12} 2} 7} [6].
Here p and n each denote the density of tumor cells and the nutrients. The tumor cells grow
by the nutrients which are supplied by the external environment, while also dying at rate
b. The condition p € P (p) implies that the pressure variable p is the Lagrange multiplier
for the constraint p < 1, which represents the contact inhibition in cells. In the region
n > b, the cells only grow within the constraints, so the solution features time-evolving
patches of congested cell region {p = 1}. In this paper we will only consider the model
with no death (b = 0), and only solutions with initial density given as a characteristic
function xq(), which then will evolve as a characteristic function p(-,t) = xq)- In this
paper, we consider the model with no death term (b = 0). Moreover, for the Hausdorff
convergence of the boundaries (Theorem, we consider only solutions with initial density
given as a characteristic function xq(g), which then will evolve as a characteristic function
p(+st) = Xq(t)- Our focus is on the regularity properties of the patch boundary 9€(t).
1
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While the system is well-posed, it presents rather curious instability of patch bound-
aries. When D > 0, the tumor patch appears to generate growing fingers, as observed
by numerical experiments [10, [11} [13]. (Also see the recent instability analysis in [4] for a
closely related model). See Figure [1] for a numerical simulation. (Figure [1|and Figure
contain snapshots of simulations run by Wonjun Lee. The time evolution is from left to
right, and the white set corresponds to the tumor patch. The implementation is based on
the numerical scheme in [8], which is consistent with the scheme we discuss in this paper.)

FIGURE 1. Numerical solution with constant initial nutrient, b = 0,
D = 107%. Thanks to Wonjun Lee for running the simulation.

The growth of oscillation on the patch boundary appears to be caused by the competitive
(prey-predator) nature of the density and the nutrient. One could further conjecture that
the irregularity may get worse as D decreases since less diffusion would make the nutrients
less averaged and irregular. It is thus surprising that the nutrient diffusion is indeed
essential in this de-regularizing phenomenon: when D = 0 it was shown in [7] that the patch
boundary becomes smooth in finite time when there is a sufficient amount of nutrients at
the initial time.

In view of the above discussion, it is natural to ask whether some information is lost
between the model with a small choice of D and with D = 0. In this paper we focus on this
question: we show that within finite time the answer is no, at least in terms of Hausdorff
distance. Namely, we will show that, for any given finite time interval, the patch boundary
for small D lies in a small neighborhood of the smooth patch boundary for D = 0. While
our results do not rule out small-scale irregularities that vanish as D tends to zero, we
can at least say that there are no persisting irregularities at a fixed scale in the diffusion
zero limit (see Theorem 1). We should emphasize though that this convergence only holds
within a fixed finite time interval: we in fact conjecture that as D tends to zero, the finger
growth will slow down and only be significant after a long time. The role of nutrient
diffusion in this exhibition of instability remains to be understood.

There are many open questions that remain to be investigated. For instance, we suspect
that a stronger mode of convergence holds true for the patch boundary. For example,
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we conjecture that the perimeters of the tumor patches converge as well in our setting,
however, we are not able to verify it. The effect of the cell death rate (b > 0) is also yet to
be studied. With a positive death rate, the tumor patch develops a necrotic core, where
the density falls below one. In this case, the fingers growth on the outer boundary of the
set {p = 1} was observed even when D = 0, see Figure

. @

FIGURE 2. Numerical solution with constant initial nutrient, b = 0.2,
D = 0.

It would be interesting to understand if our analysis can be extended to b > 0 when
this parameter is assumed to converge to zero. In this case, the non-monotone nature of
the patch evolution poses a challenge. On the other hand, the main technical result of
our work, namely the H! convergence of the pressure variable (Proposition , may be
suitably extended to this setting.

The main step in our analysis is improving the L!-convergence of the tumor patches
(proved in Theorem to the Hausdorff convergence of their boundaries. This is done by
using both (i) the monotone-expanding property of the tumor patches, and (ii) the strong
H' convergence of the pressure variables, proved in Proposition @ The latter is based
on a variational characterization of the pressure variable, following ideas similar to that of
[9], where the authors prove it in a Keller-Segel model for chemotaxis.

The rest of the paper is organized as follows: in Section [2| we state our main results,
namely, Theorem and Proposition In Section [3| we recall the definition of weak
solution for the system , and its corresponding existence and uniqueness. In Section
we recall the approximation scheme used to construct weak solutions to and a slight
variant of it that ensures a stronger convergence of the nutrient variable. In Section [5] we
present the proofs of our results.

2. MAIN RESULTS

In this section, we state the main results of this paper. Here and in the rest of the paper
we will always assume that there is no death term, i.e. we set b =0 in (1).
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Notation. Given an open subset Q C R? we denote by M(f2) the Banach space of
Radon measures with finite total variation on €2, endowed with the total variation norm,
which we denote by || - | pm()- Given a map p : 22 — R, we say that p € Mo (Q) if
ploa € M(Q) for every Q cC Q. We also warn the reader that for a map u : 22 — R
we will write p € M(Q) to say, with a slight abuse of notation, u; € M() for every
i=1,...,d. A similar abuse of notation will be made when, for a vector field v : Q — R¢,
we will write v € LP(Q2), to mean that v; € LP(Q) for every i = 1, ..., d.

Given ng € L>®(R%) such that Vng € M,.(R?) and pg € BV (R?) such that 0 < py < 1
a.e., we denote by (np, pp, pp) the unique weak solution to (1) in the sense of Deﬁnition
with D > 0 and initial value (ng, po). Similarly (n,p,p) denotes the weak solution with
same initial value and D = 0. We also define, for t > 0

Ip(t) :==0{pp(t) >0}, T(t):=0{p(t) > 0}.
When the initial value pg is a characteristic function, for £ > 0 and D > 0 we will denote by

dir(Tp(t),I'(t)) the Hausdorff distance between I'p(t) and I'(¢), which we recall is defined
as

dg(Tp(t),I(t)) :=max | sup d(z,I'p(t)), sup d(z,I'(t))].
zel(t) z€lp(t)
Roughly speaking, Theorem says that we have stability in the D parameter provided
the solution to the system without nutrients diffusion is sufficiently regular.

Theorem 2.1 (Hausdorff convergence of the tumor patches). Let ng : RY — [\, C] for
some 0 < A < C < oo such that Vng € L2 _(R?). Consider the initial density py € BV (R%)

loc
which takes value of 0 or 1. For these choices of (no, po), assume that either

(i) ng > 1 or
(i3) there exist t > 0 such that T'(t) is uniformly C* for every t > {.

Then for every t > t we have
lim dg (I'p(t),I'(t)) = 0.

The strict positivity of ng ensures that the tumor continues to expand over time. The
regularity assumption (ii), shown in many cases in [7] (see the remark below), is to ensure
that there is a stable direction of propagation for the pressure as D tends to zero. These
assumptions are likely not sharp, but we keep them in place to clarify our analysis.

Remark 2.2. Tt is shown that a sufficient amount of nutrients leads to the regularity of
['(t), namely that (i) implies in the above theorem: see Theorem 2.7 of [7]. When (i)
does not hold still holds if the tumor manages to grow out of the convex hull of its
initial support Qg: See [7, Lemma 4.6 and Theorem 2.7] for the precise conditions that
ensure that is satisfied.

One of the main ingredients in the proof is the following result about the strong H'
convergence of the pressure variables, which is of independent interest. We will use the
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following notation: if p is a measurable function such that 0 < p < 1 almost everywhere,
we define

2) H,:= {{eHl(Rd): £>0, 5(1—p):0a.e.}.

Proposition 2.3 (Strong convergence of Vpp). Let ng € L=(R%) with Vny € L2 _(RY).

Let pg € LY(R?) be compactly supported and such that 0 < py < 1. Then for Lebesque
point t > 0 of pp we have

(3) /Rd Vop(z,t) - (Vpp(x,t) — VE(z)) dx < /Rd(pp(:r,t) — &(@))np(z, t)pp(a, t)de,

for all§ € H,, ). In particular, for any T >0, Vpp — Vp in L?*((0,T) x R%) as D — 0.

Remark 2.4. Let us point out the following:

(1) By Definition [3.1| for every D > 0 the map [0,T] >t — pp(t) € L'(R?) is continu-
ous, in particular pp(t) € L*(RY) as well as the set H,, (1) are well-defined for each
t > 0.

(2) By Propositionwe know that for every T' > 0, Vpp — Vpin L2((0,T), L>(R%))
as D — 0. By the Sobolev embedding theorem this implies that pp — p in
L%((0,T), L¥ (R%)) as D — 0. Using Lemmain Section we infer that pp — p
in LI((0,T) x R?) for every 1 < ¢ < 2.

3. PRELIMINARIES

3.1. Existence of weak solutions. Here, we give the definition of weak solution to (|1).
Our definition is a slightly modified version of |7, Definition 2.1]

Definition 3.1. Let ng € L>®°(RY) such that Vng € M.(R%) and py € BV (RY) such
that pg € [0,1]. Fix T > 0 and denote Qr := R x [0,T). Non-negative functions
p € C([0,T), LYRI))NL>([0,T], BV(RY)), p € L2([0, T], H*(R?)), and n € L>®°(Q7) such
that Vn € L®([0, T], Mi.(R?)) are said to form a weak solution to in Qr, if they
satisfy:

(i) p e [0,1] and p(1 - p) = 0 in Qr.

(ii) For any ¢ € C°(Qr) we have

T T
/0 /Rd(V1/; -Vp — popp)dzdt = /Rd Y(x,0)podx + /0 " P(n — b)pdxdt.
(iii) For every ¢ € C°(Qr) we have

T T
/ / (DVn - Vi — ndyp)dxdt = Y(x,0)nodr — / Yondxdt.
0 R4 Rd 0 R4

Remark 3.2. The difference between Definition and |7, Definition 2.1] is that here we
allow the initial nutrient ng to be such that Vng € Mloc(Rd) instead of requiring Vng €
M(R?). Correspondingly, we require Vn € L ([0, T], Mjo.(R%)) instead of requiring Vn €
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L>=([0,T], M(RY)). Also, the class of test functions for items and in Definition
is now restricted to C°(Qr).

The following well-posedness result is proved in |7, Theorem 2.2] for the original defi-
nition of weak solution |7, Definition 2.1], but it can be proved in a completely analogous
way with our definition.

Theorem 3.3 (Theorem 2.2 in [7]). Let ng € L®°(R%) with Vng € Mo(R?). Let py €
BV (R®) be compactly supported and such that 0 < py < 1. Then for given D,b > 0 and
any T > 0 there exists a unique weak solution (n,p,p) to in Qr := R4 x [0,T) in the
sense of Definition [3.1]

4. CONSTRUCTION OF WEAK SOLUTIONS

In [7], the authors provide a numerical scheme for constructing weak solutions. This
is based on Wasserstein’s projections, which we recall below. We also describe a slight
modification of the scheme that ensures a stronger convergence for the nutrient variable:
such convergence will be needed in the proof of Proposition

Given a non-negative function f € L'(R%) we denote by

My={pe I'®RY: 0<p <1, Iollams = Ifllima ) -

(I) Scheme 1. Let ng, pp be as in Definition and let D > 0. Fix a parameter 7 > 0,
define p%T = po, p%T =0 and n(l))’T = ng. We then define inductively for every k € N
£ . k+1,7 k+1,7 d k+1,7

unctions pp ', pp and np,

following way:

— provided p%T, pIBT and nIBT are defined — in the

1
P = argmin—W2(p, ph™ (1 + m057)),
peMpk,‘r 27
D

nlfjﬂ’T = eTDA(nIBT(l — Tp’lg;l’T))

p’g’—l’T = argmax/ pCTpIBT(l + TnIBT)da: — / pdx,
p>0 JRd R4

where the ¢, -transform of p is defined as
Ccr : 1 2
p(z) = inf p(y)+ —lz—yl"
yeRd 2T
For future reference we also define
,u]BT = pIBT(l + T?IIBT).

We then define p7,, pT,, n7, and p7, as the piecewise constant in time, right-continuous
interpolations of the above-defined functions, for example

pp(x,t) == pIBH’T(m) z e R t e[k, (k+1)7).

When D = 0, we will sometimes drop the subscript D in the above notation.
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(IT) Scheme II. Let ng, pg be as in Deﬁnitionand let D > 0. Fix a parameter 7 > 0,

define p%T = po, p%T = 0 and define n}, |y -y as the solution to

omT, — DAnT, = —nTpy  on R x (0,7),
nT,(0) = ng on R

We then define inductively for every k € N functions plz-)H’T,kaH’T and np,| [(k+1)7,(k4+2)7)

— provided pIBT, p’BT and np|(kr,(k+1)r) are defined — in the following way:
1
2T

the function n7p|((k41)r,(k+2)r) is defined as the solution of

k+1,7

. k, T
Pp = argmlnpeMPk,T sz(ﬂa PDT(l + mnp(k7))),
D

)

onTy, — DAnT, = —nh,pk7 on R® x ((k+ 1)1, (k +2)7),
np((k+1)7) = limgg41)- np(s) on RY.

while

pIBH’T = argmax/ pCTpIBT(l +np(kT))dx — / pdzx,
p>0 R4 R4

where the ¢, -transform of p is defined as

, 1
p(z) = inf p(y)+ —lz —y|*.
yeRd 2T

For future reference we also define

= T (14 T (k7).
We then define pp,,pp, and up, as the piecewise constant in time, right-continuous
interpolations of the above-defined functions, for example

ph(x,t) = phittT(x) zeRY, te [kr, (k+1)7).
When D = 0, we will sometimes drop the subscript D in the above notation.

After choosing one of the schemes above, one obtains a family {(n7,, p]), p])) }+>0 of approx-
imate solutions to . The convergence of the first scheme is proved in [7, Proposition 3.6].
We will prove the convergence of the second scheme in Theorem The advantage of the
first scheme is that the needed estimates in the proof of its convergence are independent
of D > 0, in particular, this will allow us to prove the convergence of (np,pp,pp) to
(n,p,p) as D — 0 (cf. Theorem {4.1). The advantage of the second scheme is that for a
fized D > 0 one has better convergence properties of nf, to np as 7 — 0, which we will
need in Proposition

Theorem 4.1. Let ng € L¥(R%) with Vng € M,.(R?). Let pg € BV(R?) be such that
0 < po <1 and supp(pg) C Br. Let (np,pp,pp) be the unique weak solution to in
the sense of Deﬁm’tionfor D > 0, and denote by (n, p,p) the unique weak solution for
D = 0. Then the following holds for t € [0,T]:
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(i) llop( ) 1 mey < B(t) = etHno||L°°”P0”Ll(Rd)~

.. d+4 1/2
(ii) Ipoll2(rixion) < CB® 5 [noll /2 g

d+2 1/2
(iii) VD || 2t o) < CBE) T [noll /2 gy

(iv) For R(t) given in (6) of Lemma[5.2,

Vool merey

VoD (s Ol Ly mey + ||V”D('7t)”M(BR(T)) < 6(2"0”L°°(Rd)+1)t(

+ HVTLO\M(BR(T)))

Moreover, for every t,s > 0 such thatt+s < T,

(4) lpp (st +8) — pp (-, Ol L1 mey < slinoll e raylloDll Loo (jo,77,21 (R4))-
In particular, the following holds as D — 0:

(a) For every t € [0,T], pp(-,t) — p(-,t) in L*(R?).

(b) pp — p and Vpp — Vp weakly in L*((0,T), L>*(R%)).

(c) np converges weakly-x to n in L=((0,T) x R%).

Theorem 4.2. Fiz D > 0. Let ng € L>=(R%) with Vng € L2 (R?). Let py € BV (RY) be
compactly supported, such that py € [0,1]. Let {(n}), pp,Pp)}r>0 be the family of approxi-
mate solutions generated by Scheme[Il. Then the following holds as T — 0:
(i) pT, — pp in L*((0,T) x RY).
(ii) pT, — pp weakly in L*((0,T) x RY).
(iii) VpT, — Vpp weakly in L2((0,T) x R?).
(iv) nfy — np in L2 ((0,T) x RY).

5. PROOFS

5.1. Convergence of the numerical schemes. Before proving Theorem and The-
orem [4.2] we state the following comparison principle, which will allow us to control the
size of the support of p7, when the initial value is compactly supported.

Proposition 5.1. Let f € L¥(R%), f > 0, assume that po1,po2 € L'(R?) are such that
0 < po1 < po2 < 1. For a given 7> 0 and any A > || f|| oo (ra) define

o1 - .
p1 = argmin 2—W22(P7 po1f)
pEMp, 1 f

1
2T

p2 1= argmin
PEMpy o2

W22 (ﬁa ﬁO,Q)\)-

Then it holds

p1 < po  almost everywhere on R%.
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Lemma 5.2. Let pg € L'(RY) such that 0 < po < 1 and such that supp(po) C Bg, then,
regardless of the choice of the approximation scheme, we have that for every D > 0 and
every T > 0

(5) supp(pp(t)) C Br),
where

1
(6) R(t)=R <6tHn0||LOO(Rd)> .

Proof of Proposition[5.1, By an application of |1, Theorem 5.1] with m = 0,® = 0 and

_ porf .
pPoL =" P02 = o2,

we get that
p1 < p2, almost everywhere on Rd,
where
. 1. 9
p1 = argillyeny,, | §W2 (pspo,1)

, 1
pa = argmingepy, ;sz (p: P0,2)-

The proof is then completed by observing that
p1L = p1A, P2 = p2A. O
Proof of Lemmal5.2. First, we show that for any 1 < k < [ﬂ we have

k,T
(7) supp(pp ) C B k-
R<1+T||7’L0||L00(Rd))

The proof of is then concluded by observing that
(1 +T||n0||Loo(Rd))k < ek"'”"OHLoo(Rd)'

To show we proceed by induction. We assume that

k=1
(8) supp(p%_l’T) CBgr, ,, Rrk-1:=R <1 + THnoHLoo(Rd)> ¢
We let A =1+ 7{[ngl| Lo (re) and we let py be defined as
- o1 -
p1:= argmin EW;(p,IBRk_l)\).
'DGMMBR,CA

Then an application of Proposition yields
k -
pp < pr.
By symmetry considerations we have py = Byi/ap, , = Bp,. This yields

kT
supp(pp ) C B,



10 INWON KIM AND JONA LELMI

Since holds true for £ = 1 by assumption, this concludes the proof of . O

Proof of Theorem [{.1. We prove Theorem in three steps.

Step 1. For each fixed D > 0 estimates , , and in Theorem follow
from the corresponding estimates |7, Lemma 3.4] for the approximations {(n}), p5, Pp) }r>0
obtained by using Scheme
To see this, observe that the estimates for the approximations are proved in [7, Lemma 3.4]
and the constants in the bounds are independent of D. Moreover, all those estimates pass
to the limit as 7 — 0 because the following items hold true as 7 — 0 (see [7, Proposition
3.6]):

pD — PD strongly in L*((0,T) x R%),

Pp — PD weakly in L2((0,T) x R%),
Vpp — Vpp weakly in L2((0,T) x R%),

nh = np weakly- in L°((0,T) x R%).

Estimate in Theorem follows from the analogous estimate at the level of the ap-
proximation [7, Lemma 3.5], and the fact that p7,(t) converges for almost every t € [0, 7]
strongly in L'(R%), this yields in Theorem almost everywhere. To upgrade to every
time ¢ € [0, T] one has just to recall that pp € C([0,T], L}(R%)).

Step 2. We show that for any sequence D, converging to zero as j — 400, there exists
a triple (i, p, p) such that over a non-relabeled subsequence, as j — +o0,

pPD; = P strongly in L*((0,T) x R%),
np, = i weakly- in L°°((0,T) x R%),
Vnp, L Vn weakly-# in Mjoc((0,T) x R?),
pp; =P weakly in L2((0,T) x R%),
Vpp, = Vp weakly- in L?((0,T) x RY).

To do so, pick a sequence D; such that D; — 0 as j converges to infinity. Using estimate

in Theorem and items ({i) and in Theorem we can apply Kolmogorov-Riesz-
Fischer’s theorem to infer that the sequence pp, is precompact in L'((0,T) x R%), so that

we can assume without loss of generality limj_ o pp, = p in L*((0,T) x RY) for some
p € LY((0,T) x RY) — observe also that because of () in Theoremwe get that pp,(-,t)
converges to (-, ¢) in L'(R%) for every ¢ € [0,T]. From the bound on the L> norm of np,
we get that, up to extracting a subsequence, np, converges weakly-+ in L>((0,T) x R%)

to a function 7 € L>=((0,T) x RY). From the bound on the gradient of np, (Item in
Theorem we also obtain that Vnp, converges weakly-* in the sense of Radon measures
to Vn. From items (fii) and in Theorem we infer that, up to a subsequence, there
exists p € H'((0,T) x R?) such that pp, converges weakly to p in L?((0,T) x R%) and
Vpp, converges weakly to Vp in L?((0,T)) x RY).
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Step 3. We claim that for any limit point (n, p,p) as in Step 2 we have

9) (7, p,p) = (n, p, ).

This says that the limit point is unique, and thus proves items @, @, (c) in Theorem
To verify @ observe that thanks to the uniqueness result of Theorem we just need
to show that (7, p,p) is a weak solution to in the sense of Definition with D =0
and initial value (ng, pp). We have to check items @, and in Definition For
Item (f) in Definition we pick a function ¢ € C.((0,7) x R?) and, using the fact that
pp,;(1—pp,;) = 0, we obtain

T T
/ / p(1 — p)edxdt = lim / / pp, (1 — pp.)pdzdt = 0,
0 JRrd jotoe Jo Jre ’

and by the arbitrary choice of ¢ we conclude that p(1 — p) = 0 almost everywhere on Q7.
For Item @ in Definition we pick ¢ € C°(Qr) and, using Item in Definition
for (np,, pp,,pp,), we obtain

T T
/0 Ld(vw-vp—p8tw)dxdt= lim /O /Rd(vw‘vppj — pp,Opp)dadt

J—>+oo

T
= lim @b(x,O)podaz+/ / Ymp,pp,drdt
0 Rd

j——+oo Rd

T
:/ U(x, O)podx—l—/ Ynpdxdt,
Rd 0 R4

which gives Item in Definition for (n, p,p). The last item in Definition is checked
analogously. Thus (7, p, p) is a weak solution of in the sense of Definition and the
proof is complete. O

Proof of Theorem[{.2. We divide the proof into five steps.
Step 1. Spacial gradient bound on p7,. We claim that for every D > 0 and every
t € (0,T) we have

(10) Vb (s Ol ey <IVoollLr@way + lInoll L= IV oD 1 (0.0, MBRw) )
+ Z THVnTD(kT)”M(BR(t))’
k<[£]

where R(t) is as in (5) in Lemma
To show this, let £ € N such that k& < [£] — 1 and observe that by definition of plgrl’T, by
[3, Theorem 1.1] and by in Lemma [5.2| we have

IV ey < IV (571 + 705 (k)L re)

k,T T
< (L +7lnoll e ma) IVeR lamway + TIIVRD (BTl A(B ) -

Iterating the last inequality clearly yields .
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Step 2. We prove that for every 1 > D > 0 the family {n],},~0 is bounded in
H} ((0,T) x R%). More precisely, we show that for every R > 0 and for every 1> D >0
there exists a constant C' = C(D, R, T, ng) such that for every 7 > 0

(11) max, 10D () 1725, + R V2D ()2 (5, + 195D 17207y % By < C-

This is proved in [11, Lemma 3.5 when Vng € L?(R%). We include a proof for the sake of
completeness. Fix R > 0 and a cut-off function € C>°(R?) such that 1p,, <71 < 1p,,.
We first multiply the equation for n7, on each interval [k7,(k + 1)7) by nT,n? and we
integrate in space to get that on (0,7)
d1 T 2 T 2,2 T T
£§|’”D77‘|L2(Rd) + D/Rd |Vnp|*n“dz + 2D /Rd npnVnp - Vndz < 0.

Using the Cauchy-Schwarz inequality we obtain
a1, . D -
£§||HD7]H%2(R<1) + 5 /1{d |VnD|2n2dl’ S C’DHnoH%w(Rd)

Integrating the inequality in time we obtain
T 2 D g o 2n2dedt < C 2 2
sup HnD(t)nHL2(Rd) + 5 |Vnp|[*n dzdt < HnOHLoo(Rd) + ||”077||L2(Rd)'
te[0,T) 0o JRd

Thus we have that

(12) sup_[Inp(D)l|72(5,p) + V2Dl 7201y x By < C-
t€[0,T]

We now take another cut-off function € C2°(R9) such that 15, <7 < 1p,,, we multiply
the equation for nf, by atn;ﬂﬂ and we integrate in space to get, after using Young’s
inequality,

1 d1l
- 8T22d D/ v722d
1 Jomb itz D5 g [ 9ot

< Clubliao +C [ [Vl
Bar

By first applying Gronwall’s inequality and then integrating the previous inequality in
time, we obtain, using also ((12])

T
/ / oy, [2n?dx + max/ |Vn(s)|?dx
0 R4 s€[0,T] Jrd

< C (lInol2 e ray + 01253, + V0]l 2251 ) -

Recalling that 1p, < n, the previous inequality together with and the fact that
Vng € L2 (RY) yields (TI).
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Step 3. We claim that there exists a constant C = C(D, T, ng, pg, R) such that for every
D > 0 we have

(13) sup sup [[Vpp (1)L me < C.
0<r<1 ¢€[0,T]

To see this we denote by B the ball Br(r) appearing in Lemma We distinguish two
cases. If D > 0 we observe that by Holder’s inequality and by (L1)) we have that there
exists a constant C' such that

Vg (k)| mesy < |BIY2C.
Thus reads as
IVep (D)l Lwaey IVl may + Inollz= IV ob |l L0, M(Br )
+|B|'2C,

and an application of Gronwall’s inequality yields (L3).
If D = 0 the explicit expression for the approximate nutrient variable is

(14) n"(z,t) = noe~Jo PT6=Ts o e R ¢ € (0,T),
and from this we also get an expression for its gradient
t
(15) Vn'(z,t) =e” Jo P (@s=7)ds (Vno(x) - / Vo' (x,s— T)dS) .
0

In particular, we can compute
(V7 (2, 8)] < [Vno(@)]| + lInoll o gy V" (. £ = 7)1,
which, together with , gives
VR (D)l sy <IIVro(@) sy + 1m0l Lo mey [V ol L1 (may
(16) + [110[17 00 gy IV 07 | 1 10,0 xR

+ 1m0l oo (rey VR [| L1 (0,6 x B)-

+ ol poeray | D TIVAT (R amaemy — IVRT 1oy x B
k<[7]
Observe that the last term in is o(1) as 7 — 0, this follows from the continuity of
the map ¢ — ||Vn' (z,t)|| pm(p), which follows from (L5). Summing and and using
Gronwall’s inequality we obtain the claim for D = 0.
Step 4. Precompactness of {n7,},~0 in L2 ((0,7) x R%).

For D > 0, the precompactness of {n],},~¢ in L? ((0,T) x RY) is a consequence of Step
3 and the compact Sobolev embedding. For D = 0 we use the explicit expression for the
nutrient variable and the bound to infer that

sup [|Vn' || L1 o,mx By < 00
o<1
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It is also clear from the equation
on™ =—n"p" L te (kr,(k+1)1),k €N,
that

sup [|0n” || 1 (0,1)xB) < 00
o<1
In particular, {n"} is bounded in BVj,.((0,T) x RY), and thus precompact in the space
L} ((0,T) x R?) by the compact Sobolev embedding. The precompactness in L2 ((0,T) x
RY) follows from the precompactness in L}, ((0,7) x R%) and the bound 7] Lo (may <
10| oo (ma)- We also observe that in both cases D > 0 and D = 0 the gradients Vnp, are
weakly-* precompact in L>((0,T), Mi,.(R%)).
Step 5. Conclusion.

Following the arguments for |7, Lemma 3.4] and [7, Lemma 3.5] we obtain, for each D > 0,
the precompactness of {pT,}r~¢ in L' ((0,7) x R?) and the weak precompactness of {pT,}~0
and {Vph},~0 in L2((0,7) x RY). The only difference is that the needed bounds may
depend on D. We now fix D > 0, we take a sequence 7; — 0 and, by what we just
proved, we can assume that there exist 5 € L'((0,7) x RY), p € H'((0,T) x R?%) and
i € L>=((0,T) x RY) N L2((0,T), L3, .(RY)) with Vi € L>®((0,T), Mio.(RY)) such that, as
j— +o0

pg —p strongly in Ll((O,T) X Rd)
i = weakly in L2((0,T) x RY)
VPl — Vp weakly in L2((0,T) x R%)
ny — i strongly in L((0,7), Lj,.(R?))
Vng — Vi in the sense of distributions in [0,7") x R%.

Arguing as in [7, Proposition 3.6] one can show that the triple (i, g, p) is a weak solution
to in the sense of Definition In particular, by the uniqueness part of Theorem |3.3
we infer that (7, p,p) = (np, pp,PD)- O

5.2. Strong convergence of Vpp. Before entering the proof of Proposition we need
two results: Lemma improves the convergence of the nutrients np to strong conver-
gence in L2((0,T), L3 (R%)), while Lemma gives a variational interpretation for the
approximate pressure variable obtained by using Scheme [[T.

Lemma 5.3. Let ng € L®(R?) such that Vng € L2 (R%), and let py € BV (R?). For any
D > 0 denote by (np, pp,pp) the unique weak solution to in the sense of Deﬁmtion
with initial values (ng, po). Denote by (n, p,p) the unique weak solution to with D =0

and same initial values. Then for every T > 0 and every R > 0 we have

lim [[np = nflr20,r)xBr) = 0.
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Remark 5.4. Before entering the proof of Lemma let us recall the following version
of Gronwall’s inequality: if « € W11((0,7)) is a non-negative function satisfying for a.e.
te(0,7)

G(t) < ca(t) + B(1),
for a constant ¢ > 0 and an integrable function 8 € L'((0,T)), then for every t € (0,T)

t
aft) < e (a(O) +/ ecsﬁ(s)ds> .
0
Note that § can also assume negative values.

Proof of Lemmal5.5. We fix T > 0 and R > 0 as in the statements. We need to prove that

lim np =n, in L*((0,T) x Bg).
D—0

To this aim, we pick a sequence of diffusion parameters {D;};en such that D; — 0 as
J — +oo and we show that, up to the extraction of a subsequence,

(17) lim np, =n, in L*((0,T) x Bg).

Jj—+oo
Step 1. We claim that

sup IV DiVnp; |2 (0,1)x Bag) < +00-

j€
To show this we pick a cut-off function n € C(R%) with 1p5,,, < n < 1p,,,we multiply
the np, equation by np, n? and we integrate in space to get

d1
£§H”Dﬂ7Hi2(34R) +/ ’\/ DjV”DjP??Zd@’ < CHHOHLOO(Rd)/ |VnDj|d$-
Bsr B

8R

Thanks to Item in Theorem the right-hand side of the previous inequality is
bounded by a constant C non depending on j, thus integrating in time we obtain

T
/0 /Bm \\/DjVnD].|2dxdt <CT+ ||n0||2L2(BSR)7

Step 2. We claim that
DjAnp, — 0 weakly in L?(Bsp).

In view of Step 1, it is easy to see that D;Anp, converges to zero in the sense of distribu-
tions. To conclude, it is thus sufficient to show that the sequence {D;Anp, }jen is bounded
in L?(Bsg). To show this, we let € C°(R?) such that 1p,, <71 < 1p,,. We multiply
the equation for np, by 8tnD].772 and we integrate in space to get for a.e. t € (0,7

HatnDjnH%Q(B43) +/ D]vnDjatvnDJHde = - / ijnDjatnDjUQdm
Bir Bayr

-2 D;Vnp,omp,Vindz
Byr
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1
§§”3t”Dj77||%2(B4R) + CHijnDj ||%2(B4R)

+C|ID;Vnp, 172, )

where in the second line we used Young’s inequality twice. We can thus rearrange terms
so that

1 2 d 2 2
M0np; 2 (g, + IV D3 VD 128, <Cllop,n;ll12(5,,)
2
+ ClID;Vnp; 1125, -
Integrating the previous inequality in time we obtain

1 [T 1
2/0 100,072, 4t + 1/ D Vo, (T)nl 725, 0 §§||\/DjV”0||%2(B4R)

T
+ C’/O |D;Vnp, |’%2(B4R)dt.

In view of Step 1 and recalling that 1p,, < n we thus get

T

2

sup/ omnp. |52 dt < 400,

ien Jo H ]HL (BZR)

which yields the claim by exploiting that D;An D; = omn D; + pD;ND;-
Step 3. We prove that

im | max [[np; (1) = n(, &)l 22 = 0,

which clearly implies .

For this we subtract the n equation from the np, equation, and we multiply the resulting
equation by (nD]. —n)n?, where n € C°(RY) is a cut-off function such that 1p, <n<1p,,.
We then integrate in space to get

1d 2 2, 2 2
5%”(nDJ _n)nHL2(BQR) = — D] /BQR ‘VHDJ‘ n d:x — Ban D]AnDjnn dﬂ,’

— / pp,(np, —n)*n*de + / n(pp; — p)(np; — n)n’de
Baor Bar

+ 2 D;jVnp,; - Vnnnp,dx
Bar

< - ; DjAnDjnn2d:c + [[(np,; — n)ﬁ||2L2(32R)
2R

+C [ lpp; = pldz + C\/Dy(I/DiVnp, |12 (g, +1)-

Bar
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We now apply Gronwall’s inequality in the form of Remark with the choices o =

2dt”(np — )nH%Q (Bar)' € = = 2 and 8 = _fBQR DjAnDjnn2dx + CfBQR \ij — pldz +
C\/Dj(ll\/D;jVnp, HLQ (Ban) +1) to get
T
s 1, =) g <= [ [ D, (ot

+Ce2T/ / lpp; — pldxdt
Bar

+CETV D5 (/D3 Vo, oy + 7)

We conclude by observing that by what we proved in Step 1 and Step 2, and by Item
@ in Theorem the right-hand side of the previous inequality converges to zero as
J — +oo. O

Lemma 5.5. Let ng € L*(R%) with Vng € L2, (R?) and let pg € BV(R?) be compactly
supported with 0 < pg < 1. For D >0, let {(n], p, ph) }r>0 be the family of approxzimate
solutions obtained using Scheme[] with initial values (ng, po). Then we have for all T > 0,
for all D >0 and allt >0

(1) [ V&-rplatdr < [ enpla.t = rloblo.t = bl t =)o VE € Hyp,

where HPB(t) is defined as in i Section @
Proof. For ease of notation, for every kK € N we define
nyT = nl (k).
We let k € N such that t € [k7, (k+ 1)7), then by definition we have Vp},(t) = VpIBT. We
also recall that 7% : R* — R¢ defined by
TF .= (Id + VpiytT)

is the optimal transport map from ,o D L7 to I D’ . We define the interpolation maps T} :=

tT* + (1 — t)Id and we define y; := (Tt)#plg“l’T. Then +; is a measure on R%, absolutely
continuous with respect to the Lebesgue measure, with density

k+1,7 —1 k+1,7 k+1,7

pp ~oTy Pp Pp -1
19 - < (¢ 1t T
(19) T T det v © ( et v e ¢ )ydet1d|>o t

where in the inequality we used the fact that |det M|~! is convex on the space of positive-
definite matrices. Observe that
k+1,7

PD _ kT ok k. ok k. ok
Do) = 5 (1) < (1wl (T (140 ).
In particular, inserting back into this yields
(@) < 1+l (T% 0 T (@)l (T o T ().
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We now take £ € H o7 (1) and evaluate
| (6T — oty (@)da
< [ €@ ey (T o T @l (T o T @) — [ ol (@)
R4 Rd

k,T — k, — k+1,7
<tr [ el (T o T @)l (T o T @)k
where in the last line we used that £(1— plgrl’T) = 0. We now divide the previous inequality
by ¢ and let ¢ — 0 to obtain

k+1,7 k+1,7 k71 k7 kT
/ Vg.VpDJr pD+ dx </ §pp np pp dx.
R4 R4
Using again that {(1 — plz)H’T) = 0 yields the claim. O

Proof of Proposition[2.3. We first claim that for every ¢ € H'(R?) and every § > 0 we
have

t+96
(20) [ [ 5o (b0~ Veydss
t R4

t+6
< /Rd(PD(t +6) — pp(t))&dz + /t /Rd nppp(pppp — §)dxds.

To prove we can assume that & € C®(RY), because C°(R?) is dense in H'(R4).
We let (n],, p]),pp,) be the approximations obtained by using the Scheme E For ease of
notation for every k € N we define

np = nh(kr).

We fix £ € N and we recall that Tk(x) =+ TVkaH is the optimal transport map

between kaH and ,uBk. We observe that by definition of T%, by a Taylor expansion of &

and using the fact that p7F+! e pr,kﬂ
D

/Rd(kaJrl . Mgk)gdx = / (f(l‘) _ S(Tk(x)))pl;;l,rdm

Rd
= | Ve()- (z - THa)pl do
Rd
L0 (”ngum [~ Tk<x>12p’]3+“dw)
Rd
=—7 / Ve - Vi da
Rd

0 (1D [ o= THRsl s )
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We rewrite the previous identity as
k41 1 k41 y
(21) - [ Ve s = [ (o~ s
Rd T JRd
1 k+1,7 k,
+0 (1D TWEGH ) ).
We now use with & = plf;l’T to get
(22) vaB—i—l,T ) vpch+l,de < / pIICD—I—l,TnIBTPIBTM/Bde.
R4 R4
We now sum and to get, using also the definition of ;LIBT
k+1 k+1, 1 k+17 K
LV O = veds <2 [ = i eda
Rd T JRd
— / pIBTnIBdex
R
k+1,7 k7o k7 k7T
"’/ pp Ty pp g de
Rd
1 ko K+l
0 (10l Ly ).
In other words, if we fix ¢ > 0 and we integrate over (¢,t + d) we obtain

t+6
| [ b (0 - Ve)dads
t R4

t+6
< / (Pt + 8) — p () + / / W (t — Tt — ) Wit — 7) — E)dads
R4 t R4
(23)
+0 | |1D%|p > WEHTT, i)

o<k<(1]

Now observe that

T k+1,712 1 2 k+1,7 k7
§HVPD ;

L2Rd) ~ 5 "2 \PD 2 HD
in particular, this yields
1 k1, k
> Wi () = o).
o<k=[Z]

We now let 7 — 0 in : for the left hand side we use the weak convergence of Vp7,
to Vpp in L2((t,t + 0) x RY) (Item in Theorem , for the first right hand side
term we use the pointwise L!'(RY) convergence of p7,(-) (Item (i) in Theorem . For
the second right hand side term we use the weak convergence of pT, in L2((t,t + §) x R%)



20 INWON KIM AND JONA LELMI

(Item @ in Theorem , and the strong convergences of p}, and n}, (items and

in Theorem . We thus obtain .
Now, if we additionally assume that £ € H;D (1) We must have that (pp(t+06)—pp(t))E =

(pp(t+6) = 1)¢ <0, thus

t+6 46
/ Vpp - (Vpp — V&)dxds < / / nppp(pppp — &)dxds.
t R4 t R4

We divide the previous inequality by ¢ and let § to zero to obtain .

It remains to prove that Vpp converges strongly to Vp in L2((0,T) x RY) as D —
0. By Item (]g@ in Theorem |4.1) we already know that Vpp converges to Vp weakly in
L2((0,T) x R%). Since this is a Hilbert space, the strong convergence follows once we prove
that

T T
. 2 _ 2
lim /O IVpD () l72raydt = /O VPOl 22 (Ra)dt-

To show this, we preliminary observe that

T T
(24) lim/ / pDnDdea:dt:/ / pnpdzxdt.
D—0 Jg Rd 0 RA

Indeed, this follows from the weak L%((0,7) x RY) convergence of pp (Item (b) in Theo-

rem , the strong L'((0,T) x R?%) convergence of pp to p (Item Theorem , the

strong L2((0,T),L? (R%)) convergence of the nutrients in Lemma [5.3| and the fact that,

loc

thanks to Lemma [5.2] and Theorem we have

U U suplpn(t) € Brery,

D>00<t<T

where R(T) is as in (6)) in Lemma We now choose £ = 2p(z,t) in (18) for D = 0 and
27)

we get, using also the weak lower-semicontinuity of the L?-norm and (

T T
N 2 2
han_l)Blf/O vaD(t)’LQ(Rd)dtZ/(; HVp(t)HH(Rd)dt

T
> / / pnpdxdt
0 JRd

T
:limsup/ / ppnpppdxdt
D—0 Jo JR4

T
> limsup/ HVPD(t)”%Q(Rd)dt’
D—0 0

where in the last line we used with & = 0. O
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5.3. Hausdorff convergence of the tumor patches: Proof of Theorem [2.1. The
purpose of this subsection is to give a proof of Theorem [2.1] Recalling the definition of
Hausdorff distance, we need to show, under the assumptions of Theorem that the
following two statements hold true

~

(25) lim sup d(z,I'p(t)) =0, te(tT),
D=0 zer(t)

(26) lim sup d(z,I(t)) =0, te(tT).
D=0zerp(t)

We first show that holds true, this is the content of the following proposition. We
warn the reader that hereafter wy is a constant denoting the Lebesgue measure of the unit
ball in RY.

Proposition 5.6. Under the assumptions of Theorem we have that for everyt € [t,T)

lim sup d(z,I'p(t)) =0.
D=0 zer(t) (@ Lo(t))

Proof of Proposition[5.6, Fix t € [t,T] and take an arbitrary ¢ > 0, we have to show that
for D sufficiently small and for every x € I'(¢)

(27) d(z,Tp(t)) < e.

To this aim, fix 6 < 1 to be determined later. We observe that by [7, Lemma 4.6] we have
{p(t) = 1} = {p(t) > 0}. Since ng > X > 0, it is also easy to see that Int{p(t) = 1} =
Int{p(t) > 0}. In particular, T'(t) = d{p(t) = 1}. We observe that since the boundary
{p(t) = 1} is C! uniformly in time, there exist o € (0, %] and 3 > 0 such that for every
t € [t,T) the set {p(t) = 1} satisfies the uniform exterior cone property with parameters a
and (3. This means that for every point z € 9{p(t) = 1} we may find a unit vector v such
that

z+ Kq(v) N Bg(z) C R4 \ {p(t) > 0},

where K,(v) := {z € R?: z-v > |z|cos(a)}. In particular, for any 2 € d{p(t) = 1}, if
6 < 8 we have
@ d
= <(1-= .
(28) {p(t) = 131 Bs(a)| < (1= 5= ) wad
We now assume that § < 8. We define

co = inf ][ p(t, z)dz.
y€{p(t)>0},d(y,I'(t)) <6/ Bs(y)
We observe that ¢y > 0, because the function

Y p(t, z)dz
Bs(y)
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is continuous and the set {y € {p(t) > 0} : d(y,I'(t)) < 0} is compact. By Item in
Remark |2.4{and by Item @ in Theorem (4.1{ we can select D > 0 such that for every D < D

5d
(29) lpD = pllLi 0.1y xme) < COways
(0%
(30) lop(t) = p()] L1 ey < Wdﬂ(sd-

Let z € T'(t). For each D < D we distinguish three cases:
(1) If x € I'p(t) then by definition d(z,I'p(t)) = 0 and holds trivially.
(2) If x € {pp(t) > 0}, using and we have
o d
leo® sy < (1= 1) wad.
Since pp(t) € {0,1} this implies that there exists z € Bs(y) \ {pp(t) > 0}. Define
re:=sup{re(0,1]: z+r(x—2) & {pp(t) > 0}},
it follows that z + r(z — 2) € I'p(¢) and
e — (z4+r(x—2))| < |1 —7||lz— 2z < 20.
Thus d(z,I'p(t)) < 26 < € provided we choose § small enough.
(3) If z & {pp(t) > 0}, then using we get
][ pp(t, z)dz > SIS 0,
Bs(y) 2

thus there exists z € Bs(y)N{pp(t) > 0} and a similar reasoning as in the previous
case yields if  is small enough. O

We will now consider the harder part . The first step is Proposition which allows
us to control the growth of the fingers — or better, tubes — of the D > 0 patch inside the
D = 0 patch. Before stating the result, let us introduce some notation. For a given s > 0
and for any time ¢ > 0 we define

Us(t) :=A{x € {p(t) > 0} : d(z,I(t)) > s}.
We then have the following result.

Proposition 5.7. With the assumptions in Theorem[2.1] and T, as defined above, there
exists g > 0 such that the following holds: for every § < gy there exists Dy(d) > 0 such
that whenever D < Dy we have

Uss(t) € {pp(t+V8) > 0} fort € [{, T — V3.

Proof. The proof is divided into five steps.
Step 1. We define

kr = inf inf |Vp(t,v)],
I<t<T vENKY
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and we claim that if § is small enough

31 inf inf p(t, 2 —
(31) tE[E,T]yEUg(t)p( y) 2

To show this, let y € Us(t), and let € 9{p(t) > 0} be any point on d{p(t) > 0} such that
ly — x| = d(y,{p(t) > 0}). Since the boundary of {p(t) > 0} is C' we have that y — z is
parallel to the inner normal ‘g—;(t, x) at x, thus, using also that p(t,z) =0

p(t,y) = p(t,z) + Vp(t,z) - (y — x) + 0(0)
=0+ |Vp(t, 2)|ly — x| + 0(9)
> [Vp(t, m(y,t))]0 + o(6).

We have, if § is chosen small enough,

Ls.

Plt,y) > K76 + 0(3) 2 0.

which is .
Step 2. We claim that for every D > 0
(32) inf  np(t,z) >e LA,

x€Rt€[0,T)

where )\ is defined as in the statement of Theorem [2.1]
To prove we work with the approximate nutrient variables {n7],},~o obtained by using
Scheme Il Recall that for every k € N, and every 7 > 0, we have

n]li?;!‘lﬂ' — CTDA(TLIBT(]_ p]li‘)-‘rl T))
If we assume inductively that n’” > (1 — 7)¥ (which is true for k& = 0 by assumption),
then we easily get nk”Jrl T > X1 —7)¥*L Thus for every k € N
n’BT > A1 — 1)k
For 7 sufficiently small, the right-hand side is bounded from below by Ae™*7. Thus for
k< [2)
k,T -T
np >e A
We now pick any ¢ € L'((0,T) x R%),¢ > 0, and observe that by the previous inequality

and by using the weak-* convergence of nl, to np in L%®°(R?) (which is proved in [7,
Proposition 3.6]) we obtain

/ / (np —e " N)dzdt = lim / / e~ T \)dzdt > 0.
Rd 7—0 Rd

Since ¢ € L1((0,T) x RY) was arbitrary we infer ([32).
Step 3. Fix v = v/6. We claim that for every D > ( the function

1 t+y
wp(t.2) =~ / pp(s,2)ds,
t
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solves for every t > 0

(33) —Awp(t) > ! on R%
v

To see that holds, we integrate in time the pp equation from ¢ to t + v to get

dup(®) = oo+ [ potomos)is — Lopii+y) 2 -
—Awpl(l) = —pPD - pp(s)np(s)as — —pp Y)Z ——-
v v Ji 8 g
Step 4. We claim that there exists a constant c¢; depending only on the dimension d

such that for every ¢ € [f,T] and for every D > 0, if 29 € Uss(t) is such that

K
(39 b ol ~ ultldy < cd"s
Bas(z0)
then, provided § is small enough, we have
35 inf wp(t, ) > co,
(35) st p(t,") = co

where we define ¢y = %. In particular, we have that

(36) Bs(zo) C {pp(t+V?) > 0}.

We first show that inclusion follows from . Indeed, observe that for any = € R,
since the set {pp(t,-) = 1} is expanding in time, we have

1 [t

wp(t,z)(1 —pp(t+v,2)) = V/t pp(s,2)(1 — pp(t +,2))ds
t+

< i/t Vpp(s,x)(l—pp(s,x))ds:o.

This implies that Bs(xo) C {wp(t,:) > 0} C Int{pp(t +,-) = 1}. In particular, we have
—App(t+v)=np on Bs(xp).
By what we proved in Step 2, we have that
—App(t+7) > e TX on Bs(x),

so that the maximum principle implies that pp(t + ) is strictly positive on Bs(zp).

To show we use the weak Harnack’s inequality [5, Theorem 8.18] with ¢ = d+1. Since
wp satisfies , we have that there exists a constant c; depending only on the dimension
d such that

62_ﬁ+ﬁ
inf wp(t, )+ ——> Cd][ wp(t,z)dx.
B5(x0) Y 325(1‘0)

In other words

inf wp(t,-) > cd][ wp(t,z)dr — 52,
Bs (o) Bas(wo)
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Now we observe that due to and we have

1 t+y
][ wp(t, x)dx —][ / pp(s, x)dsdx
Bas(zg) Bas(zo) 7 Jt

1 t+y
:][ / p(s, z)dsdx +][ (wp(t, ) — w(t,z))ds
Bas(wo) T Jt Bas(z0)

K K
> —T(S — Cdl(s.

-2 4
In particular, we get
0
inf wp(t,:) > CdrT ,
Bs(z0) 8

provided ¢ is small enough, the smallness depending only on the dimension d.
Step 5. Conclusion. By Item in Remark we can find Dy(6) > 0 such that for
D < Dy

wacgkpdttly

(37) P —pollLr(0,1) xR < 1

We now fix D < Dy and we observe that if z € Uss(t) then
K
£ ol - wltidy < caL
Bas (o)
Indeed, by (37) we get

1 t+y
][ o (t,y) — w(t,y)| dy < - / ][ 1pp(s,y) — pls,y)ldyds
Bas(xo) Y Jt Bas(zo)
K
SchTd

Since z € Uss(t), we infer from Step 3 that z € {pp(t + v/§) > 0}. Since z € Uss(t) was
arbitrary we get the claim. O

The second step in the proof of Theorem is the following proposition which allows
us to control the growth of fingers outside the smooth patch. Hereafter, for zo € R% and
0 < r1 < rg, we denote by A, ,,(zo) the annulus given by

AT’I,T'2 (z0) := Br,(0) \ By, (20)
Proposition 5.8. Assume that ng € L®(R?) is such that Vng € L? (RY), and that

loc
po = X, € BV(R?). For every D > 0 let (np, pp,pp) be the unique weak solution to
in the sense of Definition with initial values (ng, po). Let (n,p,p) be the unique weak
solution to with D = 0 in the sense of Deﬁm’tz’on with same initial values. Suppose
that Br(xzo) C {p(t1) = 0} for some R < 1 and some t; € (0,T]. Then there exists
do = 0o(R,d,[|nollpee(mey) and a constant ¢ = c(d, ||nol| oo (rae)) such that the following
holds:
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FicUure 3. Illustration of the barrier construction. The darker annulus
represents Ar p(zo). The continuous line entering it represents the zone
2 )

where the pressure pp is positive at the initial time ¢3. As time goes on,
this region expands but stays in the annulus delimited by the outermost
circle and the dashed inner circle of radius r(t) > .

For every 6 < dg there exists Do = Dy(0,T) > 0 such that if D < Dy then
Br(zo) N {pp(to) > 0} C Ag,R(xo) implies Br(xo) N{pp(t1) > 0} C A%R(%%

as long as tg satisfies

R¥ d d
O<t;—tg<—, k=4+—-+—.
shThs Ry Tar1te
Proof. Let &y to be fixed later, let § < dg. Let Dg > 0 to be fixed later. Let D < Dy and

assume that Bgr(xzo) N {pp(to) > 0} C A%R(xo). Let r : [to, t1] — [%, %] a non-increasing

function to be defined later. We construct a barrier (see Figure3) ¢ : [to, 1] X Br(xzo) = R
by requiring that for every ¢ € [tg, 1]

—Ad(t) = pp(t)np(t)  on A,y r(20),
o(t) = pp(t) on OBRr(x),
o(t) =0 on 9B, (o).
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Step 1. We claim that there exists a constant ¢ = ¢(d, ||nol| L~ (rq)) depending only on d
and |[no| zoo(ray such that for every t € [to, 1]

cq
38 t < —F——F— 0+ t) — t .
(38) 16Oer (s ) e vl CR L OB UL ALY

To prove we start by observing that by the Sobolev embedding theorem there exists
a constant C,.) g such that

t <C t .
||¢( )Hcl (Ar(t),47“?£t) (IO)) = T(t),RH¢( )Hw2,d+1 (AT(t)74TT(t> (1'0))
Using a scaling argument, and the bounds % <r(t), R<1 we get
Cd
t < — t .
||¢( )HC1 (Ar(t),‘“"(t) (IO)) = R%+1 ||¢)( )||W2,d+l (Ar(t),h(t) (:vo))

Using [5, Theorem 9.13] with p = d 4+ 1 and a scaling argument we obtain that

190 001

c
<
o) M(mo)) = R2 <H¢(t)||LdH(AT(t> 50 () (ﬂﬂo))
. o

+ |Inp(t t
HD<mm>mM%ﬂW%Qm»>

We now observe that by assumption Br(zo) C {p(t1) = 0}. By Item (f)) in Theorem
we can thus select Dy(d) > 0 such that

oDl Lat1(Brzo)) < IPDED) Lat1(Brae)) <0 VD < Dy.

In particular, using also that ||npl|pema) < [|noll oo (re) We obtain

C
< = oo .
‘|¢(t)Hw2,d+l (Ar(t),“T(t)(ajo)) = R2 <H¢(t)”l‘d+1(’4r(t),5r3(t)(900)) + HnOHL (Rd)(5>

To estimate [|¢(t)[| La+1(a
()

so(o) (20)) W€ observe that clearly, using also R <1,
r(6), g

901001 < call o)l

(1),5m() (mo)) 5r(t) (Jfo))
>3 >3

r(t)
By using the fact that ¢(t) = 0 on 0B, (7o), the weak Harnack’s inequality for the

subsolution ¢ implies that there exists a constant ¢y depending only on the dimension d
such that

Cd
”qb(t)HL‘x’ (A 5r(t) (5”0)) s g <”¢(t)”L2 (Ar(t),Qr(t)(xO)) + Hn0||Loo(Rd)5> '

(), =5
Observe now that by the maximum principle we have pp(t) > ¢(t) on Br(z¢), in particular,
using also the assumption that p(t) = 0 on Bg(zo)

I9(0) ] < Ipo(®)la .

Ar(t),zr(t)(xo)) %R(Io))
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= t) — t .
Hp( ) pD( )||L2(A§7R($O))
Putting things together we thus obtain

Cd
< - ° —
16Oer (4 o) = 359 (64 Ip(t) = po®)ll 2 )

which is .
Step 2. We now choose

_R t Cd

r(t) R (5 + [Ip(s) —pD(S)HL2(Rd)> ds,

and we define, for s € [tg,t1] and x € A,y r(0)

t
q(t,x) = [ o4 (s,x)ds.

to

We claim that for every t € [to, t1]

t
(39) Xaw) — Aq(t) > xXaw) +/ pp(s)np(s)xasds on Br(xo),

to
where we set A(t) := A, r(70)-
To prove we pick p € C°(Bgr(z0)), > 0 and we compute, using the fact that
Voi(s) = Volysso

t
(40) / Vq(t) - Vpdr = / / Voi(s) - Vdrds
BR(:L‘Q) to BR(xO)
t
=/ / Vo(s) - Vodzds
to Ar(s),R(wo)
t
—/ / Vo(s) - v(s)pH (dz)ds
to aAr(s),R(IO)

t
—/ / A¢(s)pdrds,
to Ar(s),R(xO)

where we denoted by v(s) the outer unit normal to A, () r(zo). We continue by observing
that Vo(s) - v(s) = —|V(s)|. We also observe that by what we proved in Step 1 and by
our choice of r(t) we have —|V¢(s)| > 7(s) on 9B, (s (70). We denote by V (s, r) the normal
velocity of a point x € 9A, (s r(70). We compute, using also that ¢ = 0 on dBg(wo),

¢ t
/ / Vé(s) - v(s)pH T (dx)ds = —/ / Vo (s)|eH ! (dx)ds
to JOA(s),r(Z0) to JOA(s),r(20)

t
> / / 7(s)pdxds
to 8A7’(s),R(zU)
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t
—/ / V(s,z)p(x)dxds
to 8‘47'(5 R(IO
x)dzds
/to ds ‘/'r(s) r(z0)

= / X A(to) PdT — / XA(t)pd.
Bpr(zo) Br(zo)

Inserting back into we obtain

IR CCRLTEY / pp()nD () A dspda
Br(=o) Br(z
_|_

/ X A(to) PdT — / XA(t)pd,
Br(zo) Br(zo)

which is the weak formulation for .
Step 3. We now define

vp(t,x) ::/ pp(s,x)ds,

to
and we observe that

(41) po(®) = Bup(t) = po(to) + | pols)up(s)ds.
We claim that
(42) vp(t,z) < q(t,z) fort € [ty,t1],x € Br(xo).

This of course implies that for every t € [to, 1] we have {pp(t) > 0} N Bgr(xo) C Ay, r(Z0)-

To prove we subtract from and we test the resulting inequality with
(vp(t) — q(t))+ (which is an admissible test function because vp(t) = ¢(t) on dBr(xp)).
We obtain, using also that at the initial time ¢y we have by assumption that x a(,) > pp (to)
in the ball Bg(zo),

(43) /B o 00 = xa) 00 a(0) e + /B V(0 g0 Pas

< /BR(xo)(pD(tO) — XA(tO)(.CCO))(UD(t) — q(t))4dz
<0.

Observe that both terms on the left-hand side of are non-negative. Indeed, if for some
x € Bgr(zo) we have vp(t,x) > q(t, x), then clearly pp(t,z) = 1. We thus infer that there
exists ¢(t) € [0, +00) such that

(vp(t) —q(t))+ = c(t) on Bg(xo),
and since vp(t) = q(t) on OBgr(xg) we have ¢(t) = 0. In other words holds.
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Step 4. Conclusion.
Because of Item in Remarkwe can assume that Dy is so small that for every D < Dy
1P = pollL2((0,2t) xR < 6

In particular, this yields

’I"(tl) Z

e B0~ 10) +0).

d d
Rzitat3

We need r(t1) > %, which is satisfied provided

(44) 12 0 ) 1),
We define
RSt ah
% := 8¢
then for 4 < dg we have that is satisfied provided
4pd 4 d

Proof of Theorem [2.1. We will prove the following: for every ¢ € (,T), given € > 0 there
exists D > 0 such that for every D < D

di(Tp(t),T(1)) < e.

Because of Proposition it suffices to show that there exists D > 0 such that for every
D<D

(45) sup d(z,T'(t)) <e.
z€l'p(¢)

To prove we proceed in three steps.
Step 1. Exterior fingers control. Define € = {p(¢) = 1}. We claim that we can select
D1 > 0 such that for D < D,

(46) 0f = {2 e RY 1 d(w,9) < e} STpt)\ {p(t) = 1}..
To prove , we can apply Proposition with R = §, t; = t, {p = 0 and J small enough
to find that there exists Dy > 0 such that for every zg € 9Q7? and for every D < Dy

B; ($0) N {pD(t) > O} C Agé(l’o).

In particular we infer T'p(¢) \ {p(t) = 1} C Qf.
Step 2. Interior fingers control.
By the smoothness of p on [¢t,T] we can find a constant C' > 0 such that |Vp(s,z)| < C
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for every s € [t,T] and every = € d{p(s) = 1}. We let v = min (1, 55,t — ). We apply
Proposition with § < ? Then there exists Dy > 0 such that for D < Do

Uy (t =) C {pp(t) > 0}.
We now take z € I'p(t) N{p(t) = 1}. By what we just showed we have z € R4\ U2(t — ).

In particular there exists y € OI'(t — ) such that |z —y| < 72. Let now ¥ : [t —7,t] — R?
be the curve defined by

{y<s> = —Vp(s,y(s))  fors€[t—n,1]
y(t =) =y.
Then y(t) € I'(t) and
d(z,I'(t)) < [z —y(t)]
<z =yt =)+ lyt =) —y(@)]

t
<7+ / V(s y(s)lds <%+ Cy <e.
t—y

Step 3. Conclusion. B
Take D = min(D;, D3) then for any D < D and any x € I'p(t) we have

(1) If z € R\ {p(t) = 1} then, by what we proved in Step 1 we have z € €, thus

d(z,I'(t)) <e.

(2) Otherwise we apply what we proved in Step 2 to infer that d(z,['(t)) < e.

We thus have that

sup d(z,T'(t)) <e,

z€lp(t)
and the proof of Theorem [2.1] is concluded. O
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