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THE SHARP INTERFACE LIMIT OF AN ISING GAME

William M. Feldman1 , Inwon C. Kim2 and Aaron Zeff Palmer2,*

Abstract. The Ising model of statistical physics has served as a keystone example of phase transi-

tions, thermodynamic limits, scaling laws, and many other phenomena and mathematical methods. We

introduce and explore an Ising game, a variant of the Ising model that features competing agents influ-

encing the behavior of the spins. With long-range interactions, we consider a mean-field limit resulting

in a nonlocal potential game at the mesoscopic scale. This game exhibits a phase transition and multi-

ple constant Nash-equilibria in the supercritical regime. Our analysis focuses on a sharp interface limit

for which potential minimizing solutions to the Ising game concentrate on two of the constant Nash-

equilibria. We show that the mesoscopic problem can be recast as a mixed local/nonlocal space-time

Allen-Cahn type minimization problem. We prove, using a �-convergence argument, that the limiting

interface minimizes a space-time anisotropic perimeter type energy functional. This macroscopic scale

problem could also be viewed as a problem of optimal control of interface motion. Sharp interface

limits of Allen-Cahn type functionals have been well studied. We build on that literature with new

techniques to handle a mixture of local derivative terms and nonlocal interactions. The boundary con-

ditions imposed by the game theoretic considerations also appear as novel terms and require special

treatment.
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1. Introduction

This article develops an Ising game as a model example for spin games and the phenomenon of phase transi-
tions in mean-field games. Game theoretic models incorporate rational agent behavior, introducing additional
complexity to the particle models of statistical physics. These models are suited to applications including social
dynamics, economics, and neural networks.

We begin with first introducing our framework. To put our work into context, we survey a series of results
in the literature, including the passage from the discrete spin games to continuous mean-field games. Our main
result, stated in Section 1.5, focuses on a mesoscopic to macroscopic scaling limit for the Ising game.

1.1. Motivation

In economics, the study of games has been used to form insights into phenomena that arise when the players
exhibit free will and decision-making in their choice of actions. Beyond the original applications to economics
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and finance [1], game theoretic models have been used in evolutionary biology [2] and opinion dynamics [3].
Mean field games were introduced in [4, 5] to study many player games through the statistical mean-field limit.
Mean field games have been employed for many applications, including economic models of income distribution
[6] and price formation [7] and biological models for flocking behavior [8] and decision-making of honeybees [9].
Along with games, one can consider distributed optimization problems – where many individual agents take
actions with a collective objective – for example, arising from the management of a smart energy grid [10],
charging of electric vehicles [11], or training weights of a neural network [12].

Phase transitions have been proposed to be important phenomena in understanding biological systems [13],
[14], neural dynamics [15, 16], and social behavior [17]. A mean field game model with phase transitions was
recently introduced to study the synchronization of agent behavior [18]. Many frameworks exist to model such
systems. In this work, we consider an intersection between the frameworks of dynamic games and spin systems
that allows for both concrete calculations and general mathematical analysis.

There are many interesting aspects that arise in phase transitions, including mesoscopic and macroscopic
scaling limits and interface dynamics [19], fluctuations in the mesoscopic limit and universality classes [20],
and spontaneous phase separation [21]. All of these aspects have been studied at length for many di↵er-
ent particle models. In this work, we first briefly review the mesoscopic limit. We then focus our technical
analysis on the macroscopic limit and interface dynamics, where we find novel features that require new
techniques.

1.2. Spin games

Spin systems arise in the analysis of the magnetization of solid-state materials where the spin represents
the magnetic moment of a particle. Another common application of spin systems is that of the grand canon-
ical ensemble of particles interacting as a fluid. In these models, the spin is interpreted as a discretization
of the particle density. In this way, spin systems can be used generally as a discretization of models with
continuous state variables. Spin systems have been considered in connection with the mean-field behavior of
populations in [22, 23], and [24]. An Ising game with discrete player actions was studied in [25] played on
graphs, where a dynamic evolution was considered that behaves similarly to the Ising model in the mean-field
limit.

We combine the concept of spin systems with a multiplayer game, where each agent controls their own spin
in an optimal manner. The Ising game is a prototypical example of such a spin game that mixes a discrete state
variable with a continuous state position. A fundamental distinction with models of statistical physics (as well
as the evolution considered in [25]) is that players will look ahead, and their prediction of the future influences
their control decisions. The spin game models provide an ideal environment to study the phenomenon of phase
transitions with the addition of rational behavior. The potential game structure relates Nash equilibria to
critical points of a global cost analogous to the free energy in statistical physics.

The combination of discrete and continuous state variables has recently been treated in [26]. A general
treatment of finite-state mean-field games is given in [27] and [28]. Phase transitions were observed in [29] as
a bifurcation of the ergodic mean-field game system. The solution to the master equation is analyzed in [30]
and [31]. Phase transitions and related segregation phenomena in continuous space mean-field games have been
studied using bifurcation analysis in [8, 32]. Further analysis of the fluctuations about equilibria was undertaken
in [31]. The more general study of nonuniqueness in mean field games has been covered in [33, 34].

We find that the Ising game with nonlocal interactions undergoes a phase transition as the strength
of player interactions changes. When the interaction strength is small, the players do not deviate from
a ‘rest’ behavior that results in independent spins with zero mean. Above a critical interaction strength,
the players will instead exert their control to align more closely with their neighbors, resulting in a
nonzero mean.

The phase transition corresponds to a bifurcation of solutions to the mean-field game system. When we include
the nonlocal interactions of continuous spatial variables, we find new dynamics that we can best understand by
considering a macroscopic limit.
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1.3. Mesoscopic limit

An initial step is to understand passing from a lattice spin game to the mean-field game on the mesoscopic
scale. We discuss this in detail, albeit formally, in Section 2. Passage to the limit has been studied rigorously
for continuous mean field games in [35, 36] and for discrete mean field games in [31]. Results for semi-discrete
mean-field optimal control problems have been obtained in [26].

The resulting terms in the mean-field game will be discussed momentarily, and we motivate them by the
dynamics of the spin game. Each player has a position on the torus and a spin in {�1, 1}. In the mean-field
limit, the spins are aggregated in local neighborhoods to obtain a spin field on the torus. The players choose
a rate to flip their spins, which at the mesoscopic level corresponds to controlling the rate of change of the
spin field. The cost of applying a given rate can be reinterpreted in the mean-field game as a Lagrangian cost
function of the rate of change. The spatial interaction costs are through a kernel J , which we assume to have a
mesoscopic length scale, yielding a non-local interaction for the mean-field game. The combination of local and
non-local terms is a novel feature of this model and a significant challenge in our technical analysis. A boundary
condition is given at the initial time, and at the end time a terminal cost is added so the players prioritize a
target spin.

At the mesoscopic scale, we observe a potential structure where critical points of an energy functional provide
Nash equilibria for the mean-field game. In the main results of our paper, we will focus on characterizing the
minimizing Nash equilibria by analyzing the macroscopic behavior on long-time and length scales. A simple
consequence for the mesoscopic problem stated as Corollary 4.2 is the nonuniqueness of Nash equilibrium for
su�ciently large scales. Prior work on the long-time limits (without scaling space) of potential mean field games
have found connections with weak KAM theory [37, 38]. Analysis of the long-time limit for the mean field game
with a synchronization phase transition (introduced in [18]) has been done recently in [39].

1.4. Macroscopic limit

The literature on the Ising model and other macroscopic limits of phase transition models is vast. For a
treatment of the analogous results in the Ising model, see [19, 40, 41]. Novel mathematical tools were developed
in [42, 43]. Our approach is more akin to the study of sharp interface limits of the Van der Waals-Allen-Cahn-

Hilliard model of gradient phase transitions [44]. Additional tools for similar models are developed in [45–48]. As
in these works our approach is based on the notion of � convergence and is appropriate for the Nash equilibria
corresponding to global minimizers of the potential energy. See below in Section 1.6 for discussion of more
general Nash equilibria.

We establish a surprising equivalence between the mesoscopic spin field optimal control problem and a mix-
ture of the local and nonlocal Van der Waals–Allen–Cahn–Hilliard models. The resulting macroscale interface
minimizes a cost functional, which takes the form of an anisotropic space-time area. Alternatively, the resulting
interface evolves in time with controlled propagation speed. Closely related macroscopic models of distributed
optimal control are considered in [49, 50].

While we use many tools from the related phase transition models, combining them in this new way introduces
many novel aspects of the analysis. The boundary conditions imposed by the game theoretic considerations also
appear as novel terms and require special treatment.

1.5. Main result and outline

Our contributions consist of both the introduction and the analysis of spin game models. More precisely,
we start with introducing and motivating a class of spin game models at the microscopic, mesoscopic, and
macroscopic scales. Next, we focus on the mesoscopic to macroscopic scaling limit. We reduce the study of
equilibria in the Ising game to critical points of an energy functional that combines a kinetic energy term, a
double-well potential, and a nonlocal energy in the spatial directions. We introduce an analysis of the “e↵ective
surface tension” and initial and terminal time boundary layer costs associated with this model. Finally, we
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use new analytical techniques, within the established context of the sharp interface limit theory of phase field
models, to handle the mix of local and nonlocal interaction costs and the additional boundary layer terms.

After expressing a more general framework, our analysis focuses on a more specific Ising game, which consists
of the following elements:

A spin field on the space-time domain, s : [0, T ]⇥ Td
! [�1, 1], that represents the mean spin. The spin

field is determined by selecting control policies, a± : [0, T ]⇥Td
! R+, that represent the rates of flipping

from +1 to �1 and from �1 to +1. The evolution equation for the spin field is given by

� @⌧s(⌧, z) = a�(⌧, z)
1� s(⌧, z)

2
� a+(⌧, z)

1 + s(⌧, z)

2
, (1.1)

where the small parameter � > 0 corresponds to a mesoscopic scale.
A Lagrangian cost function, L : [0, 1]⇥ (R+)2 ! R, of the local mean spin and controls, which is a local
running cost density associated with a player controlling the rate at which their spin flips. From the
structure of the spin game, we get the form

L(s, a±) = l(a+)
1 + s

2
+ l(a�)

1� s

2
.

We choose to work with a cost function of the form

l(a) = ��1 a
�
log(a)� 1

�

that closely resembles an entropic term in the Ising model, although our analysis could be modified for
other convex coercive functions, a 7! l(a). The parameter ��1 > 0 has an interpretation as a cost coe�cient
and appears analogous to the temperature. The convex Lagrangian L enforces that the flipping rates are
positive and encourages a± to coincide at a neutral value. Consequently, L encourages the mean spin s to
rest at zero. The derivation of this form of Lagrangian from a microscopic model is covered in Section 2
for further motivation.
An interaction running potential cost density of the form

�
1

2
s(⌧, z)

�
J�

⇤ s(⌧, ·)
�
(z),

where J�(z) = ��dJ(��1 z) is a nonnegative, rescaled interaction kernel that encourages players to align
their spins with their neighbors at a length scale of �. The strength of the interaction is given by
Ĵ =

R
Rd J(x)dx. As explained in Section 2, minimizing the total potential cost (C� below) corresponds to

Nash equilibrium strategies. The competition of the Lagrangian and the interaction energy results in a
phase transition where, when � Ĵ > 1, players prefer to organize themselves at a constant Nash equilib-
rium with mean spin s > 0 or �s. We denote the corresponding running cost density of the constant Nash
equilibria by ⇤.
An initial spin configuration s0 : Td

! [�1, 1], and a terminal cost of the form

Z

Td

g(z) s(T, z)dz.

These initial and terminal conditions cause solutions to deviate from the constant Nash equilibria.
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Our specific problem is now to minimize and to study the sharp interface limit � ! 0 of the averaged rescaled
cost (in the macroscopic (⌧, z) coordinates), under the constraint (1.1) and the initial data s(·, 0) = s0,

C
�
�
s, a±

�
= ��1

Z
T

0

Z

Td

h
L
�
s(⌧, z), a±(⌧, z)

�
�

1

2
s(⌧, z) (J�

⇤ s(⌧, ·))(z)�⇤
i
dz d⌧

+

Z

Td

g(z) s(T, z)dz.

As � ! 0, the mean spin concentrates on the set {�s, s}, except on an interface ⌃ and the boundary layers
at ⌧ = 0 and ⌧ = T . The contribution of the asymptotic behavior at the mesoscopic �-scale of C� allows us to
characterize the interface between the equilibrium states as a local minimizer of the macroscopic energy, as we
will see in the context of the �-convergence.

Our analysis begins with the illuminating observation that the cost can be decomposed, up to a total derivative
(�0), into the sum of a double-well potential (W�), a Dirichlet-like strictly convex function ( ) of @⌧s, and a
nonlocal interaction cost (J�). The integrand of the space-time integral of C� becomes

1

�
W�(s(⌧, z)) +

1

2�
@⌧s(⌧, z)�

0(s(⌧, z)) +
1

2��
 (s(⌧, z),�@⌧s(⌧, z)) +

1

4�

Z

Td

J�(z � w)|s(⌧, z)� s(⌧, w)|2dw

(see Cor. 3.4). Using this decomposition, we show that the rescaled spin variable converges to one of the stable
equilibrium states �s or s, with a transition interface ⌃ in between the states. Moreover, we show that the cost
in the macroscopic limit, in �-convergence sense, is given by the sum of initial and terminal time boundary
layers, and the space-time integral of an anisotropic interfacial energy with “e↵ective surface tension” L̄,

Z

⌃
L̄
�
⌫(⌧, z)

�
dHd,

where H
d is the d-dimensional Hausdor↵ measure on the space-time interface ⌃ = @⇤{s = ±s} between the

{�s, s} and ⌫ is the space-time normal on ⌃ pointing toward the s-region.
Our main result, which is stated in full below in Theorem 4.1, is summarized by:

Theorem 1.1. The mesoscopic scale cost functionals C
�
converge as � ! 0, in the sense of �-convergence on

appropriate spaces, to the macroscopic scale cost

V̄ (s̄) =

Z

Td

V init
�
s0(z), s̄(0, z)

�
dz +

Z

Td

V end
�
s̄(T, z), g(z)

�
dz +

Z

⌃
L̄
�
⌫(⌧, z)

�
dHd

among BV functions s̄ : Td
! {±s} with ⌃ = ⌃(s̄) as the discontinuity set, and ⌫ = ⌫(s̄) as the measure-theoretic

normal vector field on ⌃, pointing toward the s-region.
In particular, sequences of minimizers for C

�
are precompact in L1

and any subsequential limit as � ! 0
minimizes V̄ .

See Figure 1 for an illustration of a macroscopic limit s̄.
The initial and terminal time costs can be represented by a one-dimensional problem, showing that the

solutions are locally constant in space near the boundary layer. A remarkable relation appears between the
initial and end times that

V end(s̄, g) = inf
s0

n
V init(s0, s̄) + g s0 +

1

�
�(s0)

o
, (1.2)



6 W. M. FELDMAN ET AL.

Figure 1. Schematic diagram showing a cross section of s solution in d � 2 (in d = 1 such
catenoidal type solution would not occur). Boundary layers at scale � are displayed around the
phase interface and initial and final times.

(see Rem. 3.9). The � term contains all of the asymmetry between the initial and final time as the remaining
terms in the decomposition of Corollary 3.4 obey a time-reversal invariance as s(⌧, z) goes to s(�⌧, z). This
relation also shows that without an end cost g it is advantageous to relax back closer to 0 from the equilibria
±s near the terminal time. This feature is intimately connected with the forward-looking nature of control
problems: the agents anticipate the end time and turn o↵ their controls to save costs.

The key element of the analysis is various quantitative versions of patching estimates (see Sect. 4.2), which we
use to localize the profile of the spin variable near the transition interface. The other essential ingredient is the
elegant idea introduced in [46] to study a nonlocal interaction energy, where the patching lemmas are applied
to polyhedral regions to construct a recovery sequence for the � convergence of the cost. While this approach
does not readily yield quantitative error estimates, for our purpose it provides a relatively simple alternative of
perturbing smooth surfaces to compare it with hyperplanes.

1.6. Open questions

There are interesting open questions that arise from our analysis. For instance, we can question the shape of
the minimizer for V̄ as well as the regularity or geometry of the interface. We suspect that our limit Lagrangian
L̄ is at least continuous with respect to ⌫ when the interaction kernel J is isotropic, but it is not easy to check
this due to the anisotropy created by the time variable. Even with a regular L̄, the shape of the minimizing
interface is not necessarily regular in higher dimensions, as we see from [51, 52]. It is also natural to ask whether
L̄ can be obtained by only considering planar traveling wave solutions. This is true in the case of the nonlocal
interaction energy studied in [46], see [53]. We answer this question positively for the boundary layer costs, but
it remains open for the interfacial cost.

Another natural question is on the asymptotic behavior of phase transition near s = 0 when the “inverse
temperature” � approaches the critical value where the local parts of the cost dominate and the double-well
structure disappears via ±s converging to zero.

The boundary layer terms appearing in the macroscopic cost is a novel feature in our problem that merits
further study: for instance, there is an apparent symmetry between the initial and terminal cost (see Rem. 3.9
and (1.2)).
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While we specialize our model with a specific Lagrangian, for which calculation is convenient, we expect that
our analysis extends directly to a more general class. For example, we can consider the Lagrangian functions
that have the form

L(s, a±) = l(a+)
1 + s

2
+ l(a�)

1� s

2
,

where l(a) is convex and satisfies l0(a) ! �1 as a !
+ 0 and l0(a) ! +1 as a ! +1.

A more interesting and di�cult open question is whether one can obtain similar results for nearest-neighbor
interaction costs, analogous to what was achieved for the three-dimensional nearest-neighbor Ising model
in [40].

It would also be interesting to study more general locally stable Nash equilibria. There are results on the
sharp interface limit of locally stable solutions in the context of the Van der Waals-Allen-Cahn-Hilliard model,
see for example [54, 55]. However we are not aware of any such results for non-local or anisotropic models that
arise in our work.

2. Spin games

In this section, we introduce and provide a non-rigorous exposition on spin games: N -player games, mean-field
control, and mean-field games. In particular, we derive the novel terms that arise in the mean-field spin game
from their microscopic counterparts. The formal derivations discussed in this section are meant as motivation
and contextualization for the rigorous mathematical work that we conduct later in the paper, which considers
a mesoscopic to macroscopic limit.

In the length scale spectrum considered in this work, the N -player game is a microscopic model, and the
mean-field control and game problems are mesoscopic models. To distinguish phase transition phenomena from
other sources of non-uniqueness, it is necessary to consider both the N -player and mesoscopic levels. We observe
that, at least for the global control problem with N players, there are unique solutions. However, in the Ising
game of Section 3, we obtain non-unique solutions of the mean field game system.

2.1. N-player spin games

We consider N players with fixed positions on a uniform square lattice, xN,i
2 Td. The collection of all

positions is denoted as xN
2 TdN . Each player has a discrete spin state �N,i

2 S = {�1, 1}, and the player
controls the rate at which their spin flips according to the control AN,i

t
2 R+. We denote the collection of all

spins as �N
2 SN and of all controls as AN

t
2 (R+)N . When determining their optimal strategy, each player

may consider the states of all other players, which we encode into the empirical spin measure m�N ,xN 2 M(Td),
a finite variation signed measure on Td,

m�N ,xN =
1

N

NX

i=1

�N,i �xN,i .

We let P(SN ) denote the space of probability measures on spin configurations. We will consider the evolution
of state distributions µN

t
2 P(SN ).

To ease the notation we drop N when it can be inferred from the context.
The problem consists of specifying the following:

A Lagrangian cost function on the control space, l : R+
! R, which is the cost associated with a player

flipping their spin.
An individual running player cost on the state and empirical measure space, f̃ : S ⇥ Td

⇥M(Td) ! R.
We also consider the case of a global running cost that is a function only of the empirical measure
f̄ : M(Td) ! R.
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A terminal cost on the state and empirical measure space, g̃ : S ⇥ Td
⇥M(Td) ! R, and the analogous

case of global terminal cost ḡ : M(Td) ! R.
An initial distribution of states µN

0 2 P(SN ). For example, �i are independent with mean s0(xi) for
s0 : Td

! [�1, 1].

An important aspect of game theoretic problems is the information available to the players. We work here
assuming full information, i.e., closed loop, where each player may choose their control as a function of the state
of all the other players

(t,�) 7! Ai

t
(�).

Given A, we define the joint distribution µA
t

2 P(SN ) as the joint distribution of all players with spin i
flipping at rate Ai

t
(�), that is µA

t
is the solution of

d

dt
µA
t
(�) =

1

2

NX

i=1

⇣
Ai

t
(ti�)µN

t
(ti�)�Ai

t
(�)µN

t
(�)
⌘
, (2.1)

where ti� denotes the collections of spins with the ith component flipped to be ��i.
Global control problem. We define the global cost to be

CN (A) =

Z
T

0

X

�2SN

h 1
N

NX

i=1

l
�
Ai

t
(�)
�
+ f̄

�
m�,x

�i
µA
t
(�)dt

+
X

�2SN
ḡ(m�,x)µ

A
T
(�)

and the control problem is

inf
A:[0,t]⇥SN!(R+)N

CN
�
A
�
.

This has the form of either a standard optimal control problem with states in P(SN ) or as a continuous time
Markov decision process with discrete states in SN . We let V N : [0, T ] ⇥ SN ! R be the value function that
solves, for x fixed and m�,x the empirical measure introduced above,

V N

T
(�) = �ḡ

�
m�,x

�
,

and

@

@t
V N

t
(�) +

1

N

NX

i=1

h
�N
2
@iV N

t
(�)
�
= f̄(m�,x),

where h is the Legendre transform of a 7! l(a) and the discrete finite gradient is

@iV N

t
(�) = V N

t
(ti�)� V N

t
(�).
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By standard theory, the value function V N is the unique solution to these equations and the optimal control is
given by

Ai

t
(�) = h0�N

2
@iV N

t
(�)
�
.

N -player game. We define the individual costs to be

cN,i(A) =

Z
T

0

X

�2SN

h
l
�
Ai

t
(�)
�
+ f̃

�
�i, xi,m�,x

�i
µA
t
(�)dt

+
X

�2SN
g̃(�i, xi,m�,x)µ

A
T
(�).

We consider the di↵erential game played by the N players. A Nash equilibrium is collection of controls A such
that for each i we have

cN,i(A)  inf
B

cN,i
�
(. . . , Ai�1, B,Ai+1, . . .)

�
.

We look for coupled solutions vN,i

t
with

vN,i

T
(�) = �g̃(�i, xi,m�,x),

and

0 =
@

@t
vN,i

t
(�) +

1

2

X

1jN

j 6=i

Aj

t
(�)@jvN,i

t
(�)

+ h
�1
2
@ivN,i

t
(�)
�
� f̃

�
�i, xi,m�,x

�
,

with

Aj

t
(�) = h0�1

2
@jvN,j

t
(�)
�
.

2.2. Mean-field spin games

Since the dependence of each player’s costs on the other players is only in terms of the empirical spin
measure, one expects the system to limit to a mean-field game as N ! 1. Specifically, the random empirical
spin measures, m�,x, concentrate on a flow of deterministic spin fields s(t, x) corresponding to the mean of
�i for xi near x. We follow this concept in order to, non-rigorously, derive the corresponding mean-field game
system in the infinite-player limit.

For the mean-field version, we consider control policies a±(t, x). We work in terms of the spin field s(t, x),
which represents the average state of the players near x at time t. We note that the density of players in state
±1 can be recovered as 1±s(t,x)

2 . The evolution of the spin field is given by

@

@t
s(t, x) = a�(t, x)

1� s(t, x)

2
� a+(t, x)

1 + s(t, x)

2
(2.2)

s(0, x) = s0(x).
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We assume that f̃(�, x,m) = �f̃(��, x,m), and when s(x)dx = m(dx), i.e., m is absolutely continuous with
respect to the Lebesgue measure and its Radon-Nikodym derivative is s, we write f(x, s) = f̃(+1, x,m). When
m�,x concentrates at s(t, x) under the probability measure µt(�), we have

X

�2SN

1

N

NX

i=1

f̃(�i, xi,m�,x)µt(�) ⇡
X

�2S

Z

Td

�f
�
x, s(t, ·)

�1 + � s(t, x)

2
dx =

Z

Td

f
�
x, s(t, ·)

�
s(t, x)dx,

and we do the same for g̃ and g. We also abuse notation slightly, to write f̄(s) = f̄(m) when s(x)dx = m(dx).
We now consider the state space to consist of the spin fields s(t, ·), denoted by

X = {s0 2 L2(Td) : �1  s0(x)  1 a.e. x 2 Td
}.

The global cost is given by

C(s, a) =

Z
T

0

h Z

Td

L
�
s(t, x), a±(t, x)

�
dx+ f̄

�
s(t, ·)

�i
dt+ ḡ

�
s(T, ·)

�
,

where

L(s, a±) =
X

�2S
l(a�)

1 + � s

2
.

Mean-field global control. The global optimal control problem is

inf
s,a±

n
C(s, a); (s, a) solves (2.2)

o
.

The value function is defined for s0 2 X to be

Vt0(s0) = sup
s,a±

n
�

Z
T

t0

h Z

Td

L
�
s(t, x), a±(t, x)

�
dx+ f̄

�
s(t, ·)

�i
dt� ḡ

�
s(T, ·)

�
; (2.3)

@

@t
s(t, x) = a�(t, x)

1� s(t, x)

2
� a+(t, x)

1 + s(t, x)

2
on (t, T ]⇥ Td,

s(t0, ·) = s0
o
.

The McKean-Vlasov equation (2.2) can be expressed as, for all � 2 C1
�
[0, T ]⇥ L2(Td)

�
,

�T

�
s(T, ·)

�
� �0(s(0, ·)

�

=

Z
T

0

h @
@t

�t(s(t, ·)
�
+
X

�2S

Z

Td

D�t(s(t, ·)
�
(x)(��)a�(t, x)

1 + � s(t, x)

2
dx
i
dt,

where D�(r) is a Frechét derivative we can view in L2(Td).
Let the Hamiltonian be

H(s, p) =
X

�2S
h(�� p)

1 + � s

2
.
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Formally, following the normal derivation using the McKean-Vlasov equation, one arrives at the Hamilton-
Jacobi-Bellman equation on the spin-field space

@

@t
Vt(s) +

Z

Td

H
�
s(x), DVt(s)(x)

�
dx = f̄(s), (2.4)

with

VT (s) = �ḡ(s).

Mean-field spin game. For the mean-field game, we fix a flow of spin-fields r(t, ·) 2 X, and we consider the
cost

C(s, a±; r) =

Z
T

0

Z

Td

h
L
�
s(t, x), a±(t, x)

�
+ f

�
x, r(t, ·)

�
s(t, x)

i
dx dt

+

Z

Td

g
�
x, r(T, ·)

�
s(T, x)dx.

We are looking for Nash equilibria, i.e. (s, a±) that satisfy (2.2) such that

C(s, a±; s)  C(s0, a0±; s)

for all (s0, a0±) that satisfy (2.2). We can equivalently consider the set-valued map

�(r) =
n
s : (s, a±) satisfy (2.2) and minimize C(s, a±; r)

o
,

and we want to find a fixed point s 2 �(s).
In the game case, the value function vt(x, s) solves

0 =
@

@t
vt(x, s) +

X

�2S

Z

Td

At

�
�, y, s

�
(��)

1 + � s(y)

2
Dvt(x, s)(y)dy (2.5)

+
X

�2S

�

2
h(�� vt(x, s)

�
� f(x, s),

with

vt(x, s) = �g(x, s),

and

At

�
�, y, s

�
= h0�

� � vt(y, s)
�
.

2.3. Survey of results

We now list a few standard results, which are common in either finite-state mean-field games or continuous
mean-field games [27, 28]. The proofs can all be adapted to spin games.

Potential games. A potential game occurs when the costs, f(x, s) and g(x, s) are derived from potential
costs as f(x, s) = Df̄(s)(x) and g(x, s) = Dḡ(s)(x). In this case, the Nash equilibria for the mean-field game
correspond to critical points of the global control problem.
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Proposition 2.1. We suppose that f(x, s) = Df̄(s)(x) and g(x, s) = Dḡ(s)(x). If V is a solution to (2.4) on

[0, T ]⇥X then vt(x, s) = DVt(s)(x) solves (2.5).

Proof. Equation (2.5) is obtained by di↵erentiating (2.4) with respect to the field argument, s. In particular,
we have

D

Z

Td

H
�
s(y), DVt(s)(y)

�
dy(x)

=
X

�2S

�

2
h
�
� � v(x, s)

�
+

Z

Td

X

�2S
(��)@ph

�
� �DVt(s)(y)

�1 + � s(y)

2
D2Vt(s)(y, x)dy

=
X

�2S

�

2
h
�
� �DVt(s)(x)

�
+

Z

Td

X

�2S
(��)At(�, y, s)

1 + � s(y)

2
Dv(x, s)(y)dy.

Mean-field Nash System. In either the game or global case we have the mean-field Nash system, which is

@

@t
s(t, x) = a�(t, x)

1� s(t, x)

2
� a+(t, x)

1 + s(t, x)

2
(2.6)

�
@

@t
p(t, x) =

X

�2S

�

2
h
�
� � p(t, x)

�
� f

�
x, s(t, ·)

�

a�(t, x) = h0�
� � p(t, x)

�
.

With s(0, x) = s0(x) and p(T, x) = �g
�
x, s(T, ·)

�
.

Monotonicity. If f and g are monotone, i.e.,

⇣
f(x, s1)� f(x, s2)

⌘⇣
s1(x)� s2(x)

⌘
� 0, and,

⇣
g(x, s1)� g(x, s2)

⌘⇣
s1(x)� s2(x)

⌘
� 0,

then the solution to (2.6) is unique. This is analogous to the Lasry-Lions monotonicity condition that is common
in the study of continuous state mean field games. We will be interested in the phenomena that arise without
this property.

Proposition 2.2. Suppose that (s1, p1) and (s2, p2) are two solutions to (2.6). If f and g are monotone, then

s1 = s2 and p1 = p2.

Proof. The proof follows exactly the same idea as the monotonicity argument for continuous games as in, for
example, Proposition 3.2 of [35], by showing that the quantity

X

�2S

�
� p1(t, x)� � p2(t, x)

�1 + � s1(t, x)

2
�

X

�2S

�
� p1(t, x)� � p2(t, x)

�1 + � s2(t, x)

2

decreases along the flow, and is nonnegative at the end-time due to the monotonicity of g.

Convergence of N -player games. Solutions of the N -player game / global control problem converge to the
solutions of the mean-field game / global control problem when the interactions are in a mean-field form.
Without the uniqueness of solutions, it is often necessary to consider a weaker randomized notion of solutions.
On the other hand, classical solutions to the master equation (2.5) construct approximate solutions to the
N -player problem, but without the Lasry-Lions monotonicity condition (or a similar condition), such classical
solutions do not always exist. Results on the convergence of continuous games can be found in [35] and [36].
The well-posedness of the master equation was extended under the assumption of displacement monotonicity
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in [56]. The convergence problem for finite state games has been analyzed in [31] and [28]. The master equation
has also been used to determine the fluctuations about the mean and a large deviations principle [31, 57]. We
expect the results for the framework of spin games to follow similar trends from these works, although we do not
pursue them in detail here. Without a monotonicity assumption that guarantees the uniqueness of solutions,
much less is known, and to better understand the convergence remains an important research area.

A remarkable aspect of these results is that the resulting mean-field game system (2.6) does not depend on the
information structure of the players, or even whether the problem originated as a game or as a global distributed
optimal control problem. We focus on this system as the starting point for our macroscopic convergence analysis.

3. Ising game and macroscopic limit

We now specify a problem formulation for which we consider in depth the question of a macroscopic scaling
limit. The problem, modeled after the statistical Ising model, exhibits a phase transition, where in the ‘ordered’
phase two stable stationary equilibria solutions are present. In the macroscopic limit, all equilibria will concen-
trate on these two solutions except on a codimension-one interface in space-time. We consider only the case
of a potential game, in which case the global optimizers correspond to Nash equilibria. In contrast with the
Ising model, the interface is ‘controlled’, to minimize an inhomogeneous space-time surface area, which can
also be viewed as a minimization of the speed of propagation along the front. See the discussion at the end of
Section 3.4.

We work on the ‘mesoscopic’ domain [0,��1 T ] ⇥ ��1Td, where ��1Td is the d-dimensional torus of width
��1 that can be associated with [0,��1]d ⇢ Rd. We recall that in the discussion in Section 2 we have already
passed from a ‘microscopic’ scale, which appears in the mesoscopic scale as a length scale of order ��1 N�1/d

(so we are e↵ectively considering that N >> ��d >> 1).
The interaction will be determined by a kernel satisfying the following assumptions:

(A1) J : Rd
! R is non-negative and has finite total mass

Ĵ :=

Z

Rd

J(x)dx.

(A2) Finite first moment
Z

Rd

|h|J(h)dh < +1.

The interaction acts at a distance of order one on the mesoscopic scale where we use (t, x), which will appear
as a distance of order � on the macroscopic scale where we use (⌧, z) = (� t,�x). We consider the convolution
on a torus, for ⌘ 2 L2(��1 Td), J ⇤ ⌘ 2 L2(��1 Td) as

(J ⇤ ⌘)(x) =

Z

Rd

J(x� y) ⌘(y) dy,

where we have used the periodic extension of ⌘ to Rd.

3.1. Problem statement and macroscopic scaling

We rescale the cost by subtracting the cost of the stationary equilibria, ⇤, and multiplying by �d to capture
the costs on a co-dimension one region. We consider the asymptotics as � !

+ 0 of the problem to minimize

C
�
�
s, a±

�
:= �d

Z
�
�1

T

0

Z

��1Td

h
L
�
s(t, x), a±(t, x)

�
+ f

�
x, s(t, ·)

�
�⇤

i
dx dt (3.1)

+ �d

Z

��1Td

g(�x) s(��1 T, x)dx
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where we define, inspired from the microscopic problem with l(a) = ��1 a (log(a)� 1),

L(s, a±) := ��1 a+
�
log(a+)� 1

�1 + s

2
+ ��1 a�

�
log(a�)� 1

�1� s

2
, (3.2)

and

f(x, s) := �
1

2
s(x) (J ⇤ s)(x), (3.3)

subject to the constraint

@ts(t, x) = a�(t, x)
1� s(t, x)

2
� a+(t, x)

1 + s(t, x)

2
, (3.4)

s(0, x) = s0(�, x).

The Lagrangian incentivizes the neutral strategy, a± = 1, where the spin switching rate is always 1. With this
strategy, the mean spin would lie at rest at s = 0. The parameter � has the same e↵ect as the inverse temperature
in the Ising model, although the interpretation here is a control penalty and not inherently statistical. In the
same fashion as the Ising model, the interaction incentivizes agreeing with nearby spins when Ĵ > 0.

The constant, ⇤ that corresponds to the cost of the stationary equilibria, is given by

⇤ := �
Ĵ

2
�

1

2�2 Ĵ
.

Remark 3.1. We assume that g does not depend on the spin field for simplicity, although our techniques would
allow such dependence. In particular, it is natural to allow g to depend on s(x) locally, which is slightly di↵erent
from the terminal cost in Section 2, where it was assumed that g was defined over the empirical measures. This
local form meshes naturally with our macroscopic analysis and could be the limiting result of a slightly more
complicated microscopic problem.

We introduce the costate p(t, x), so that a± maximizes the Hamiltonian,

H(s, p) := max
a±

⇢�
a�

1� s

2
� a+

1 + s

2

�
p� L(s, a±)

�

= ��1 cosh(� p)� ��1 s sinh
�
� p),

where the maximum occurs at

a� = e� p, a+ = e�� p.

The optimality equations, equivalent to (2.6), are

@ts(t, x) = sinh
�
� p(t, x)

�
� s(t, x) cosh

�
� p(t, x)

�
(3.5)

�@tp(t, x) = � ��1 sinh
�
� p(t, x)

�
+
�
J ⇤ s(t, ·)

�
(x),

with

s(0, x) = s0(�x)

�p(��1 T, x) = g
�
�x).
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Because we work directly with the energy, which we will view as a function of (s, @ts), we mostly will not refer
to (3.5) nor the costate p.

We note that the problem can also be posed in the macroscopic coordinates of

(⌧, z) := (�x,� t).

In the new variables the cost can be now written as

C
�
�
s, a±

�
= ��1

Z
T

0

Z

Td

h
L
�
ŝ(⌧, z), â±(⌧, z)

�
+ f�

�
z, ŝ(⌧, ·)

�
�⇤

i
dz d⌧ +

Z

Td

g(z) ŝ(T, z)dz

with ŝ(⌧, z) = s(��1 ⌧,��1 z) moving with the ‘fast’ dynamics

� @⌧ ŝ(⌧, z) = â�(⌧, z)
1� ŝ(⌧, z)

2
� â+(⌧, z)

1 + ŝ(⌧, z)

2
,

and with the ‘short’ range interaction

f�(z, ŝ) := �
1

2
ŝ(z) (J�

⇤ ŝ)(z),

with

J�(z) := ��dJ(��1 z).

The corresponding optimality equations are

� @⌧ ŝ(⌧, z) = sinh
�
� p̂(⌧, z)

�
� ŝ(⌧, z) cosh

�
� p̂(⌧, z)

�

�� @⌧ p̂(⌧, z) = � ��1 sinh
�
� p̂(⌧, z)

�
+
�
J�

⇤ ŝ(⌧, ·)
�
(z),

with

ŝ(0, z) = s0(z)

�p̂(T, z) = g(z).

We remark that, in this form, the system can be easily simulated using forward-backward iteration: see Figure 2
for some results from simulations.

In the following, we will primarily work in the macroscopic coordinates and drop the hat from the notation
for s, a, and p.

3.2. Alternate parameterization and appearance of a double-well potential

In order to pass to the macroscopic limit, it is helpful to decompose the cost functional (3.1) into terms that
resemble more closely what has been studied in the literature. The interaction cost (3.3) will be split as a local
term and a nonlocal gradient penalization in (3.6). An identical nonlocal term has been studied in [46] alongside
a double-well potential, and we use this work as a primary guide for our analysis. The local part of interaction
cost combines with the Lagrangian cost (3.2), and then further decomposes as a double-well potential, W� , and
a local penalization of the time gradient,  , that is similar to kinetic energy. The local terms closely relate to
the gradient penalizations with double-well potentials that were studied in [44] and many other works, except
that we only have the time gradient and no spatial derivatives. The Ising game can thus be seen as a mixture
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Figure 2. A spatial slice and a time slice of a 2D simulation, with ��1 = 0.9, Ĵ = 1. T = 1.5,
where J is a standard Gaussian and � = 1/40. Numerics were implemented using a simple
forward-backward iteration of (3.5) with 802 spatial grid points and 300 time grid points. We
observe numerical convergence despite the lack of convexity of the problem.

of the local and nonlocal phase transition models, which is local in the time component and nonlocal in the
spatial component. This mixture introduces many new challenges. However, using the decomposition detailed
below, many of the techniques of both the local and nonlocal theory can be adapted for our analysis.

We expand the interaction cost as

Z

Td

f�(z, s) s(z) dz = �
1

2

Z

Td

Ĵ s(z)2 dz +
1

4

Z

Td

Z

Td

J�(w � z)
�
s(w)� s(z)

�2
dw dz. (3.6)

The first term may now be combined with the local control cost. To put this into a more standard form, we
express the local running cost terms as a function of the spin field and velocity,

W (S, V ) := inf
A±

n
L(S,A±)�

1

2
Ĵ S2

�⇤;V = A�
1� S

2
�A+

1 + S

2

o
. (3.7)

Our first main goal is to decompose the local running cost W (S, V ) as a sum of simpler and easier-to-understand
components: see Proposition 3.2 below. The local energy W will be written as the sum of a double-well potential
(W� analogous to the double-well (1�S2)2 as would appear in Allen-Cahn) and a convex ‘Dirichlet’-like kinetic
energy ( (S, V ) analogous to V 2 as would appear in Allen-Cahn) that is quadratic near V = 0 and grows
superlinearly like |V | log |V | as |V | ! 1. An additional term � appears in the form of a total time derivative,
which can be integrated out of the cost and incorporated into the boundary conditions. Surprisingly, the total
time derivative term encapsulates all of the time asymmetry of the problem. This term does not have any
analogue in typical local or non-local Allen-Cahn energies, and is related to the anticipatory nature of the
control problem.

At zero velocity, we denote W�(S) := W (S, 0). When � Ĵ > 1, this is a double-well potential

W�(S) = �
1

�

p
1� S2 �

1

2
Ĵ S2

�⇤

with minimizers at

S = ±s := ±

q
1� ��2Ĵ�2
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S

W�(S)

1�1�s +s

S

W�(S)

1�1 �s +s

S

W�(S)

1�1

Figure 3. Plots of W� for Ĵ = 1 and for varying values of ��1
2 {.66, .9, 1.1} crossing the

critical value at �Ĵ = 1.

(see Fig. 3). These minimizers ±s correspond to the stationary equilibria of the Ising game. Recall that we have
normalized by the stationary cost ⇤ so that W�(s) = W�(�s) = 0.

In the next theorem, we use the notation A ⇠ B to mean A  CB and B  CA for some constant C.

Proposition 3.2. The potential W (S, V ) decomposes as

W (S, V ) = W�(S) +
1

2�
V �0(S) +

1

2�
 (S, V )

where

 (S, V ) :=
1

2

Z
V

0

(V � Z)p
Z2 + (1� S)(1 + S)

dz

and

�(S) := (1 + S) log(1 + S) + (1� S) log(1� S).

The decomposition satisfies

1.  (S, ·) is even, strictly convex,  (S, 0) = 0, monotone increasing on V 2 [0,1), has the bounds

 (S, V ) ⇠ |V |k

✓
Vp

(1+S)(1�S)

◆
with k(r) = min{|r|, log(2 + |r|)}. (3.8)

The derivative @V (S, V ) is concave on V 2 [0,1), zero at V = 0, hence V 7! @V (S, V ) is subadditive,

and satisfies the bounds

@V (S, V ) ⇠ k

✓
Vp

(1+S)(1�S)

◆
for V � 0. (3.9)

In particular if we define  0(V ) :=  (0, V ) then  (S, V ) ⇠ @V 0(V ) and @V (S, V ) ⇠  0(V ) for S in

compact subsets of (�1, 1).
2. (double-well coercivity/upper bounds) For �Ĵ > 1 the potential W�(S) � 0 is smooth, symmetric with

respect to 0, and has three critical points in (�1, 1) at ±s and 0 which are, respectively, non-degenerate

local minima and a local maximum. In particular, we have the explicit coercivity with respect to the potential

minima

W�(S) ⇠ (S ± s)2 for S near ⌥s.
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See Section 3.6 for the proof.

Remark 3.3. In view of the decomposition of Proposition 3.2 it is natural to consider the function space for
the spin field s to be

W 1,1
�
(0, T );L1(Td)

�
.

This is su�cient to make sense of the initial condition and terminal cost in the sense of L1 trace. Due to the
slightly stronger than L1 growth of the time derivative energy, it is straightforward to obtain the existence of
minimizers in this space. Also, since the spin field exists in (�1, 1) (which will soon be improved to (�s, s)) the
functions are also L1.

Later, in Proposition 4.3, we find that asymptotically the energy also bounds a gradient in the spatial
directions, making the natural space for the macroscopic fields s that of bounded variation functions on
(0, T )⇥ Td.

3.3. Localized energies and defects

Based on the decomposition of Section 3.2, we now introduce a handful of localized quantities. We denote
the quantities at a time-slice with the capital letters G,N, F and the time-integrated counterparts with G,N ,F .
The role of G is to localize the total cost C�(s, a±) on open subsets A ⇢ Td

⇥ [0, T ]. This localization incurs an
error based on the discrepancy of nonlocal terms, which we handle as N . The closely related quantity F is a
partially localized energy which counts the non-local influence of all of Td on a region A, which proves to be
useful in identifying the correct nature of the ‘cell problem’ introduced in Section 3.4

We first localize the energy by defining, for A ⇢ Td open,

G�(s, v;A) := ��1

Z

A

h
W�

�
s(z)

�
+

1

2�
 
�
s(z),� v(z)

�
+

1

4

Z

A

J�(z � w)
�
s(z)� s(w)

�2
dw
i
dz (3.10)

We also denote just the local terms in the energy as

G�

loc
(s, v;A) := ��1

Z

A


W�

�
s(z)

�
+

1

2�
 
�
s(z),� v(z)

��
dz. (3.11)

When comparing localized energies, we must consider the locality defect, as in [46], corresponding to the
discrepancy in nonlocal terms. For A,A0

⇢ Td,

N�(s;A,A0) :=
1

4�

Z

A

Z

A0
J�(z � w)

�
s(z)� s(w)

�2
dz dw. (3.12)

When defining the macroscopic costs, it is useful to consider a cost where the nonlocal term is integrated over
all of Rd (where if s is defined on Td it can be extended periodically). That is

F�(s, v;A) := ��1

Z

A

h
W�

�
s(z)

�
+

1

2�
 
�
s(z),� v(z)

�
+

1

4

Z

Rd

J�(z � w)
�
s(z)� s(w)

�2
dw
i
dz.

Clearly, we have

F�(s, v;A) = G�(s, v;A) +N�(s;A,Rd
\A). (3.13)

We also consider time-integrated versions of the above quantities. We will take the convention of naming the
time-integrated energies with calligraphic font. If A ⇢ Rd+1 we let A⌧ denote the time slices of A and ⌧1 and ⌧2
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be the lower and upper bounds in time. Then

G
�(s;A) :=

Z
⌧2

⌧1

G�
�
s(⌧, ·),�@⌧s(⌧, ·);A⌧

�
d⌧ (3.14)

G
�

loc
(s;A) :=

Z
⌧2

⌧1

G�

loc

�
s(⌧, ·),�@⌧s(⌧, ·);A⌧

�
d⌧

N
�(s;A,A0) :=

Z
⌧2

⌧1

N�
�
s(t, ·);A⌧ , A

0
⌧

�
d⌧

F
�(s;A) :=

Z
⌧2

⌧1

F�
�
s(⌧, ·),�@⌧s(⌧, ·);A⌧

�
d⌧.

In terms of these definitions, we can reformulate the cost only in terms of the spin field s.

Corollary 3.4. Assuming that the controls a± are optimal given @ts(t, x), we can write

C
�
�
s, a±) = G

�(ŝ; (0, T )⇥ Td) +

Z

Td

h
g(z) ŝ(T, z) +

1

2�
�
�
ŝ(T, z)

�
�

1

2�
�
�
ŝ(0, z)

�i
dz. (3.15)

3.4. Asymptotic heuristics and preliminary results

We assume that �Ĵ > 1, for which there are two stable long time equilibria, s =
p

1� ��2J�2 and �s,

with cost ⇤ = �
Ĵ

2 �
1

2 �2 Ĵ
. These equilibria may be viewed either as stationary solutions of (3.5) or as mini-

mizers of S 7! W (S, 0). Corresponding to each equilibrium, there are unique controls given by the constrained
minimization procedure of Proposition 3.2 at zero velocity, A±(s, 0) and A±(�s, 0).

The stable equilibria correspond to the leading asymptotic term of the cost that is canceled by the ⇤ in the
definition (3.1) of C�.

These results are summarized by the following proposition.

Proposition 3.5. Assume that J(x) � 0 for all x 2 Rd
and � Ĵ > 1. Then the constant solutions (s, A±(s, 0))

and (�s, A±(�s, 0)) are globally optimal in the sense that if s(0, x) = s(��1T, x) = s for all x 2 ��1Td
, then

C
�
�
s, a±) � C

�
�
s, A±(s, 0)

�
,

and the same holds with (s, A±(s, 0)) replaced by (�s, A±(�s, 0)). Equivalently,

G
�
�
ŝ; (0, T )⇥ Td

�
� 0.

See Section 3.5 for the proof, which follows directly from Proposition 3.2.
The spin fields may be restricted to take values in the interval [�s, s]. We assume that the initial and final

data s0 and g respect this condition as well. This assumption is probably not truly required, since the solution
should be approximately in the interval [�s, s] outside of some initial/final layers.

Lemma 3.6. Assume that J(x) � 0 for all x 2 Rd
and � Ĵ > 1. In addition, suppose that s(0, z) 2 [�s, s] for

all z 2 Td
and that |g(z)|  1

2��
0(s). Then the cut-o↵ function

sb(⌧, z) := max
�
min

�
s(⌧, z), s

 
,�s

 
in [0, T ]⇥ Td
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satisfies

G
�
�
sb; (0, T )⇥ Td

�
+

Z

Td

h
sb(T, z) g(z) +

1

2�
�
�
sb(T, z)

�i
dz

 G
�
�
s; (0, T )⇥ Td

�
+

Z

Td

h
s(T, z) g(z) +

1

2�
�
�
s(T, z)

�i
dz.

We refer again to Section 3.5 for the proof of the above lemma.

3.5. Macroscopic energy

Let s̄ denote a macroscopic field defined in (0, T ) ⇥ Td, which takes values in the equilibria {�s, s} almost
everywhere with a discontinuity along some d� 1 dimensional interface. In the next section, we will prove that
for minimizers (s�, a�±)

lim
�!+0

C
�
�
s�, a�±

�
= inf

s̄2BV ((0,T )⇥Td)

n
V̄ (s0, g, s̄)

o
, (3.16)

where V̄ is the e↵ective cost which we will make precise shortly. This result follows from a more general result in
the framework of �-convergence, and helps to characterize asymptotically the minimizers (s�, a�±) in the sense
that, passing to a subsequence,

lim
�!0+

ŝ� = s̄ 2 argmin
s̄2BV ((0,T )⇥Td)

n
V̄ (s0, g, s̄)

o
.

The time scale (in the macroscopic scale) of convergence to the equilibrium is O(�), and the boundary layer
terms at the initial and final times correspond to solutions to ‘infinite time horizon’ problems where the spatial
interactions are small. There is also a boundary layer coming from the deviation from the long-time equilibria,
{�s, s}, in a distance O(�) from an interface of d � 1 dimensions, corresponding to solutions of a ‘traveling
wave’-type cell problem. See Figure 1.

The energy V̄ will be interfacial, i.e. V̄ (s0, g, s̄) = +1 unless s̄(⌧, z) 2 {±s} for almost every (⌧, z). We
denote by BV ((0, T ) ⇥ Td; {±s}) the set of bounded variation functions that take values in {±s}. The initial
and final values s̄(0, ·) and s̄(T, ·) can be understood in the sense of BV trace, and both take values in {±s} (see
for example Thm. 5.6 of [58] and consider that the traces at time �i > 0 converge in L1 as �i !+ 0 implying
that the limit trace will take values in {±s}). Let @⇤{s = s}\ {0 < ⌧ < T} denote the essential boundary of the
positive phase region in (0, T ), i.e. the phase interface. On the interface, let ⌫(⌧, z) denote the measure theoretic
unit normal pointing from where s̄ = �s to where s̄ = s, i.e. ⌫ = Ds̄/|Ds̄| the Radon-Nikodym derivative.

The macroscopic cost V̄ is defined as

V̄ (s0, g, s̄) :=

Z

Td

V init
�
s0(z), s̄(0, z)

�
dz +

Z

Td

V end
�
s̄(T, z), g(z)

�
dz +

Z

⌃
L̄
�
⌫(⌧, z)

�
dHd. (3.17)

The cost term V init incorporates the initial condition s0 and is plotted in Figure 4, along with solutions in time
that approximately achieve the cost. The initial and terminal boundary layer reduces to an optimization on the
mixed scale that is microscopic in time and macroscopic in space.

We now proceed to define formally the macroscopic energy in the interior. In this section, we will further
characterize the initial and end costs and characterize heuristically the interfacial cost.
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Figure 4. A plot of V init on the interval [�s, s], with � = 0.9�1 and Ĵ = 1 on the left. On the
right, three of one-dimensional solutions for the mean spin field.

Following the general proof of [46], we consider the localized unscaled energy functional, F1, defined in (3.14).
We define the rescaling R(⌧,z),r of s to be

R(⌧,z),rs(t, x) := s(⌧ + r t, z + r x). (3.18)

Recall that we can decompose F
� to

F
�(s;A) =

Z
⌧2

⌧1

⇣
G�
�
s(⌧, ·),�@⌧s(⌧, ·);A⌧

�
+N�

�
s(⌧, ·);A⌧ ,Rd

\A⌧

�⌘
d⌧,

where G� and N� are defined in (3.10) and (3.12). Both F� and G� satisfy the following scaling identity:

Lemma 3.7. For every set A 2 Rd
, we set z + r A = {z + r x : x 2 A}, and we have

G�
�
s(⌧, ·),�@⌧s(⌧, ·); z + r A

�
= rd�1G�/r

�
R(0,z),rs(⌧/r, ·),�@⌧R(0,z),rs(⌧/r, ·);A) (3.19)

and for every set B 2 Rd+1
, we set (⌧, z) + r B = {(⌧, z) + r (t, x) : (t, x) 2 B}, and we have

F
�
�
s; (⌧, z) + r B

�
= rdF�/r

�
R(⌧,z),rs;B). (3.20)

Proof. We calculate directly

G�
�
s(⌧, ·),�@⌧s(⌧, ·); z + r A

�

=

Z

r A

h 1
�
W
�
s(⌧, z + x),�@⌧s(⌧, z + x)

�
+

1

4�

Z

r A

J�(x� y)
�
s(⌧, z + x)� s(⌧, z + y)

�2
dy
i
dx

= rd�1

Z

A

h r
�
W
�
s(⌧, z + r x̃),

�

r
r @⌧s(⌧, z + rx̃)

�
+

r

4�

Z

A

J
�
r (x̃� ỹ)

�
s(⌧, z + r x̃)� s(⌧, z + r ỹ)

�2
dỹ
i
dx̃

= rd�1G�/r
�
R(0,z),rs(⌧/r, ·),�@⌧R(0,z),rs(⌧/r, ·);A).

Including the time variable, (3.20) follows with the additional factor of r from the time integral.

We now use the unscaled energy F
1 to identify the form of the macroscopic costs by a “cell problem”, namely

with test functions as periodic functions on the tangential plane of a normal direction ⌫. We follow nearly the
same definitions as [46] for L̄(⌫), but here we have space-time normal ⌫ in contrast to the spatial setting in
[46]. Another new feature is the addition of a width parameter R 2 R+ in the function class, that corresponds
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essentially to compactly supported variation from function values of {�s, s}. This compactness is helpful to
restrict our arguments to near the interface, e.g., within a distance �R that will become small as � !

+ 0; it
was not needed in [46] due to the simpler nature of patching in their problem. We then extend these definitions
to also apply to the initial and end times, where we impose the additional initial condition as a constraint and
the terminal cost in the energy.

For a unit-normal vector ⌫ in Rd+1 we define ⌅⌫ to be the set of all d-dimensional cubes centered at the origin
and orthogonal to ⌫. For ⇤ 2 ⌅⌫ , we let ⇤⇥R ⌫ denote the strip ⇤⇥R ⌫ := {(t, x) + ⇠ ⌫; (t, x) 2 ⇤, ⇠ 2 R}. We
say that s : Rd+1

! R is ⇤-periodic if s((t, x) + r !) = s(t, x) when r 2 R is the sidelength of ⇤ and ! 2 Rd+1

is a unit-normal vector along an axis of ⇤. Finally, with R > 0, we introduce the function class

XR(⇤) :=
�
s : Rd+1

! (�1, 1) : s is C1, ⇤-periodic, and satisfy (3.22)
 

(3.21)

where

s(t, x) =

(
s (t, x) · ⌫ � R

�s (t, x) · ⌫  �R
. (3.22)

Now we define the interfacial energy with normal ⌫ with width R to be

L̄R(⌫) := inf
�
|⇤|

�1
F

1(s;⇤⇥ R ⌫);⇤ 2 ⌅⌫ , s 2 XR(⇤)
 
. (3.23)

The assumption that s is C1 is significant here as discontinuities in the time direction across the cell boundary
could result in extra, unaccounted for, energy. We will show later in Lemma 4.13 that the condition s 2 C1 can
be replaced by a finite energy condition without changing the value of L̄R.

With the above definitions, we finally define the interfacial energy to be

L̄(⌫) := lim inf
R!+1

L̄R(⌫). (3.24)

The limit exists since L̄R(⌫) is monotone decreasing in R and nonnegative from Proposition 3.5.

For the initial time we restrict ⌫ to be oriented in the positive t direction, and for ⇤ 2 ⌅⌫ we consider the
half-strip ⇤⇥ R+ ⌫ := {(t, x) + ⇠ ⌫; (t, x) 2 ⇤, ⇠ 2 R+

}. For R > 0 and s0 2 (�1, 1), we denote

X
init

R
(s0, s̄,⇤) :=

�
s : Rd+1

! (�1, 1) : s is C1, ⇤-periodic, and satisfy (3.26)
 

(3.25)

where

s(t, x) = s̄ for t � R and s(0, x) = s0. (3.26)

Note that, although the definition above makes sense for any s0 2 (�1, 1), in our main results we restrict to the
case s0 2 [�s, s] which is easier.

We then define

V init

R
(s0, s̄) := inf

�
|⇤|

�1
F

1(s;⇤⇥ R+ ⌫);⇤ 2 ⌅⌫ , s 2 X
init

R
(s0, s̄,⇤)

 
�

1

2�
�(s0). (3.27)

and

V init(s0, s̄) := lim inf
R!+1

V init

R
(s0, s̄). (3.28)
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The terminal energy is constructed similarly. We restrict ⌫ to be oriented in the negative t direction. For
R > 0 and ⇤ 2 ⌅⌫ we denote

X
end

R
(s̄,⇤) :=

�
s : Rd+1

! (�1, 1) : s is C1, ⇤-periodic, and satisfy (3.30)
 

(3.29)

where

s(t, x) = s̄ for t  �R. (3.30)

We then define, for g 2 R (which will later be restricted to |g|  1
2��(s̄)),

V end

R
(s̄, g) := inf

�
|⇤|

�1
⇣
F

1(s;⇤⇥ R+ ⌫) +

Z

⇤

h
g s(0, x) +

1

2�
�
�
s(0, x)

�i
dx
⌘
;⇤ 2 ⌅⌫ , s 2 X

end

R
(s̄,⇤)

 
,

(3.31)

and

V end(s̄, g) := lim inf
R!+1

V end

R
(s̄, g). (3.32)

Note that the limits in (3.28) and (3.32) exist due to monotonicity, although one can easily see that it is +1

unless s̄ 2 {�s, s}.

For the remainder of this subsection, we discuss a further characterization of the macroscopic energy terms
L̄(⌫), V init(s0, s̄), and V end(s̄, g). Heuristically, when J is radial and monotonically decreasing in the radial
direction, the simplest form of a solution is given by the one-dimensional traveling wave, namely

s(t, x) = q
�
⌫ · (t, x)

�
.

We prove that this is indeed the case for V init and V end where the nonlocal term does not participate. It remains
as a conjecture for L̄.

Theorem 3.8. The macroscopic initial energy is given by the one-dimensional reduction

V init(s0, s̄) = lim inf
R!1

inf
s̃2C1([0,R])

nZ R

0

⇣
W�

�
s̃(t)

�
+

1

2�
 
�
s̃(t), s̃0(t)

�⌘
dt; s̃(0) = s0, s̃(R) = s̄

o
�

1

2�
�(s0).

(3.33)

Similarly, the macroscopic terminal energy is given by

V end(s̄, g) = lim inf
R!1

inf
s̃2C1([�R,0])

nZ 0

�R

⇣
W�

�
s̃(t)

�
+

1

2�
 
�
s̃(t), s̃0(t)

�⌘
dt+ g s̃(0) +

1

2�
�
�
s̃(0)

�
; s̃(�R) = s̄

o
.

(3.34)

Proof. The inequality  for both (3.33) and (3.34) is immediate as the one-dimensional solutions may be used
in the definition of V init(s,s̄) and V end(s̄, g) by extending as constants in space and incur the same cost.

For other direction we consider s 2 X
init

R
(s0, s̄,⇤). We may find a regular value for x such that q(t) = s(t, x)

satisfies q(0) = s0 and

1

|⇤|

Z
R

0

Z

⇤

⇣
W�

�
s(t, x)

�
+ 

�
s(t, x), @ts(t, x)

�⌘
dx dt �

Z
R

0

⇣
W�

�
q(t)

�
+

1

2�
 
�
q(t), q0(t)

�⌘
dt.
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The inequality � in (3.33) follows as the nonlocal term is nonnegative.
Similarly, for (3.34) we consider s 2 X

end

R
(s̄,⇤), and find a regular value of x such that q(t) = s(t, x) and

1

|⇤|

Z 0

�R

Z

⇤

⇣
W�

�
s(t, x)

�
+ 

�
s(t, x), @ts(t, x)

�⌘
dx dt+

1

|⇤|

Z

⇤

h
g s(0, x) +

1

2�
�
�
s(0, x)

�i
dx

�

Z 0

�R

⇣
W�

�
q(t)

�
+

1

2�
 
�
q(t), q0(t)

�⌘
dt+ g q(0) +

1

2�
�
�
q(0)

�
.

The result follows.

Remark 3.9. The decomposed energy has a symmetry, s̃(t) = �s̃(�t), by evenness of W� and  . This
interesting observation, not obvious from the original formulation, yields in particular that

V end(s̄, g) = inf
s0

n
V init(s0, s̄) + g s0 +

1

�
�(s0)

o
for g 2 R, s̄ 2 {±s}.

So long as �s < s0 < s the solution for V init(s0, s̄) is a time translation of the same ‘heteroclinic’ solution.
When s0  �s and s̄ = s the solution for s̃ in the definition of V init, (3.33), does not exist, although the infimum
is still well defined.

Remark 3.10. (Controlled front propagation). We may also relate the macroscopic problem to a problem of
the optimal control of the propagation front, which has been studied in [50], [49]. Consider that the unit normal
⌫ = (⌫t, ⌫x), and when |⌫x| 6= 0 the front speed may be expressed as c = ⌫t

|⌫x| . We let ⌫̂x = ⌫x
|⌫x| denote the spatial

unit-normal. The anisotropic minimal surface problem for ⌃, may now be converted into a problem of controlled
front propagation where the cost rate to propagate the front with velocity c with spatial unit-normal ⌫̂x is
given by

L̃(c; ⌫̂x) :=
p

1 + c2L̄(⌫),

where clearly ⌫ can be recovered from c and ⌫̂x as ⌫ = (c, ⌫̂x)/
p
1 + c2. By an application of Fubini’s theorem

and the coarea formula, we may express

Z

⌃
L̄
�
⌫(⌧, z)

�
dHd =

Z
T

0

Z

⌃⌧

L̃
�
c(⌧, z); ⌫̂x(⌧, z)

�
dHd�1 d⌧.

Thus the macroscopic problem is reinterpreted as controlling the wave speed of the evolving front ⌃t. This
formulation recovers some optimal control structure of the problem. A more rigorous expression of the controlled
front problem is given in [49].

A partial result holds for the interfacial energy, reducing the problem to the directions (t,! ⌫̂x) when |⌫x| 6= 0.
For a unit-normal e, we let

Je(r) :=

Z

Rd�1

J(r e+ y)dy,

where the integral is taken over the subspace orthogonal to e. Given ⇠ 2 Rd and a unit-vector e 2 Rd we set
⇠?e = ⇠ � (⇠ · e)e.

Proposition 3.11. Given a unit vector ⌫ with |⌫x| 6= 0, assume that the Fourier transform FJ(⇠) is maximized

at FJ(⇠?⌫̂x).
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Then the macroscopic interfacial energy L̄(⌫) is given by the two-dimensional reduction where we limit the

dependence of functions in XR(⇤) to only (t, x · ⌫̂x).

The assumption on FJ is satisfied for instance when J is a Gaussian centered at zero.

Proof. We extend s to Rd+1 by zero, and the Plancherel/Parseval theorem and convolution formula states that
Z

Rd

s(t, x)(J ⇤ s)(t, x)dx

=

Z

Rd

(FJ)(⇠)
⇣
(Fs)(t, ⇠)

⌘2
d⇠



Z

Rd

(FJ)(⇠?⌫̂x)
⇣
(Fs)(t, ⇠)

⌘2
d⇠

by our assumption on FJ .
The inverse Fourier transform FJ(⇠?⌫̂x) in all variables is formally �?⌫̂xJ(x) where �?⌫̂x is the d�1 Hausdor↵

measure on the subspace orthogonal to ⌫̂x, and

�
(�?⌫̂xJ) ⇤ s

�
(t, x) =

Z

R
J ⌫̂x(⌫̂x · x� !0)s(t, x?⌫̂x + !0 ⌫̂x)d!

0,

so
Z

Rd

s(t, x)(J ⇤ s)(t, x)dx



Z

Rd

s(t, x)(�x?⌫̂x
J ⇤ s)(t, x)dx

=

Z

R

Z

Rd�1

Z

R
J ⌫̂x(! � !0)s(t, x?⌫̂x + !⌫̂x)s(t, x?⌫̂x + !0⌫̂x)d!

0 dx?⌫̂x d!.

Equality above holds when s does not depend on x?⌫̂x . The problem for L̄(⌫) is then equivalent to minimizing
over s that only depend on t and ! = x · ⌫̂x.

Conjecture

We suspect that, under the assumptions of Proposition 3.11, the limit cost can be characterized entirely in
terms of the travelling wave solutions. Potential lack of regularity and topology of the interface associated with
the limiting cost makes it di�cult to verify our ansatz. More precisely we conjecture that the interfacial cost
L̄ can be characterized using the front speed c = ⌫t/|⌫x| (the ratio of the size of normal in the time and the
spatial direction). Indeed we expect that (recall L̄(⌫) = 1p

1+c2
L̃(c)) we have

L̃(c) = inf
q2C1(R)

nZ

R

⇣
W�

�
q(⇠)

�
+

1

2�
 
�
q(⇠), c q0(⇠)

�
+

1

4

Z

R

�
Je(⇠ � ⌘)q(⇠)� q(⌘)

�2
d⌘
⌘
d⇠; (3.35)

lim
⇠!�1

q(⇠) = �s, lim
⇠!+1

q(⇠) = s
o
.

A minimizer of (3.35), would then construct travelling wave solutions of the form s(t, x) = q(c t� ⌫̂x · x). The
cost function L̃(c) and approximate traveling wave solutions are plotted in Figure 5.

Remark 3.12. If the conjecture holds, then it follows that

lim
c!1

1
p
1 + c2

L̃(c) = V init(�s, s),
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Figure 5. On the left, a plot of L̃(c). On the right, a spatial slice of three solutions to the cell
problem with di↵erent front speeds c. Parameters are � = 0.9�1 and Ĵ = 1.

as the infinite speed transition is equivalent to the microscopic in time switching from �s to s.

3.6. Proofs

Here we present some of the longer proofs from earlier in this section that we postponed: the decomposition
formula (Prop. 3.2), optimality of the constant solutions (Prop. 3.5), and the improvement of cost for states
bounded between the equilibria (Lem. 3.6).

3.6.1. Proof of Proposition 3.2

First we compute the optimal controls, A±, as a function of V . Changing A± while preserving the equality

V = A�
1� S

2
�A+

1 + S

2

only a↵ects the term L(S,A±) in the energy so by Lagrange multipliers there is B 2 R

@L

@A±
(S,A±) = ±B

1± S

2

or

1± S

2
logA± = ±B

1± S

2

and so

logA+A� = B �B = 0.

Plugging this back into the constraint ODE we find the quadratic equation

A2
�
1� S

2
� V A� �

1 + S

2
= 0

so taking the positive root of this equation and then using the constraint A+A� = 1 we find

(1± S)A±(S, V ) =
p
V 2 + (1� S)(1 + S)⌥ V.
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These are strictly positive, monotone, and convex in V .
Note that

(1± S)
@

@V
A±(S, V ) =

Vp
V 2 + (1� S)(1 + S)

⌥ 1 =
⌥(1± S)A±p

V 2 + (1� S)(1 + S)
(3.36)

and, in particular,

(1± S)
@

@V
A±(S, 0) = ⌥1.

Di↵erentiating (3.36) again we note that

@2

@V 2


1 + S

2
A+(S, V )

�
=

@2

@V 2


1� S

2
A�(S, V )

�
. (3.37)

Now plugging this into the definition of W (S, V )

W (S, V ) = L(S,A±(S, V ))�
1

2
ĴS2

�⇤

we see the desired properties of W are a matter of calculus. First, compute

D2
A±L(S,A±) =

"
1+S

2�
1

A+
0

0 1�S

2�
1

A�

#
.

So computing directly

@V W (S, V ) =
1

2�

X

±
(1± S) logA±

@E±
@V

(3.38)

and, in particular,

@V W (S, 0) =
1

2�

X

±
⌥ log

r
1⌥ S

1± S
=

1

2�
log

1 + S

1� S
.

For the second derivative we continue computing

@2
V
W (S, V ) =

1

2�

X

±

1

1± S

1

A±

✓
(1± S)

@A±
@V

◆2

+
1

�

X

±

1± S

2
(logA± � 1)

@A±
@V 2

.

Using (3.37) and log(A+A�) = 1 we see that the second term above vanishes and so

@2
V
W (S, V ) =

1

2�

X

±

1

1± S

1

A±

✓
(1± S)

@A±
@V

◆2

=
1

2�

X

±

(1± S)A±
V 2 + (1� S)(1 + S)
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=
1

2�

1p
V 2 + (1� S)(1 + S)

where we have used (3.36) to get the second equality. This gives the convexity in the V variable and we can go
a bit further to make a strict convexity estimate.

Then by the fundamental theorem of calculus

W (S, V ) = W (S, 0) + @V W (S, 0)V +
1

4�

Z
V

0

(V � Z)p
Z2 + (1� S)(1 + S)

dz.

We have the formula @V W (S, 0) = 1
2� log 1+S

1�S
from above, which we express as @V W (S, 0) = 1

2��
0(S).

For the remainder term we define, as in the statement of the theorem,

 (S, V ) =

Z
V

0

(V � Z)p
Z2 + (1� S)(1 + S)

dz.

We note that, for 0  Z  V 

p
(1� S)(1 + S),

1p
2(1� S)(1 + S)


1p

Z2 + (1� S)(1 + S)


1p
(1� S)(1 + S)

(3.39)

so

1
p
2
p
(1� S)(1 + S)

V 2
  (V ) 

1p
(1� S)(1 + S)

V 2.

Note that the upper bound is true for arbitrary V .
While for V �

p
(1� S)(1 + S)

 (S, V ) �

Z
V

1
3

p
(1�S)(1+S)

V � Z

2Z
dz

=
1

4


V (logZ � 1)

�V

1
a

p
(1�S)(1+S)

=
1

4
V log

3Vp
(1� S)(1 + S)

�
1

4
V log

 
2 +

Vp
(1� S)(1 + S)

!
.

The corresponding upper bound will not be used anywhere so we omit the proof.

Next, we discuss the properties of @V (S, V ). Note that

@2
V
 (S, V ) = 4� @2

V
W (S, V ) = 2

1p
V 2 + (1� S)(1 + S)

which implies the convexity of  and the concavity of @V .
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For V 

p
(1� S)(1 + S) we use again (3.39) to find

@V (S, V ) ⇠
1p

(1� S)(1 + S)
V for 0 < V 

p
(1� S)(1 + S)

For V �

p
(1� S)(1 + S) we use @2

V
 (S, V ) ⇠ V �1 to find

@V (S, V ) ⇠ log

 
2 +

Vp
(1� S)(1 + S)

!
.

Double-well potential. Lastly, we consider the double/single well nature of the potential

W�(S) = L
�
S,A±(S, 0)

�
�

1

2
ĴS2

� ⇤

=
1

2�

X

±
(1± S)A±(S, 0)

⇣
log
�
A±(S, 0)

�
� 1
⌘
�

1

2
ĴS2

� ⇤

=
1

2�

p
(1 + S)(1� S)(logA+A� � 2)

= �
1

�

p
(1 + S)(1� S)�

1

2
ĴS2

� ⇤.

Note that W� always has a critical point at S = 0 and

W
00
�
(0) =

1

�
� Ĵ

so we can see again the critical value at �Ĵ = 1. When �Ĵ > 1 the critical point at the origin is a local maximum
and there are two local minima at

s =

q
1� ��2Ĵ�2

and �s. ⇤

3.6.2. Proof of Proposition 3.5

Proof. The proposition also follows from Proposition 3.2 as we have  (V, S) � 0 with equality when V = 0,

1

4

Z

Td

Z

Td

J�(w � z)
�
s(w)� s(z)

�2
dw dz � 0

with equality when s is constant, and W�(S) � 0 with equality when S 2 {�s, s}. From the proof of Proposi-
tion 3.2 we see that the case S = s corresponds exactly with A = A±(s, 0), and the case S = �s corresponds
exactly with A = A±(�s, 0).

3.6.3. Proof of Lemma 3.6.

We first show the result for sb�(⌧, z) = min{s(⌧, z), s} and then restricting to s(⌧, z) � �s is similar.
Consider the set ⌦ = {(⌧, z) : s(⌧, z) > s}. We also define sb+(⌧, z) = max{s(⌧, z), s}.
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We first note that for each z 2 Td, sb+ and sb� are weakly di↵erentiable in time with

@⌧s
b+(⌧, z) =

(
@⌧s(⌧, z) (⌧, z) 2 ⌦

0 otherwise,

and

@⌧s
b�(⌧, z) =

(
0 (⌧, z) 2 ⌦

@⌧s(⌧, z) otherwise.

The local part of the cost separates into the two domains, that is,

W�

�
s(⌧, z)

�
+

1

2�
 
�
s(⌧, z),�@⌧s(⌧, z)

�
= W�

�
sb�(⌧, z)

�
+

1

2�
 
�
sb�(⌧, z),�@⌧s

b�(⌧, z)
�

+W�

�
sb+(⌧, z)

�
+

1

2�
 
�
sb+(⌧, z),�@⌧s

b+(⌧, z)
�

For the nonlocal part, we will use that for (⌧, z) 2 [0, T ]⇥ Td,

sb�(⌧, z) + sb+(⌧, z) = s(⌧, z) + s,

and sb�(⌧, z)  s(⌧, z), and sb+(⌧, z) � s(⌧, z). By nonnegativity of J� we also have that

(J�
⇤ sb�)(⌧, z)  (J�

⇤ s)(⌧, z), (J�
⇤ sb+)(⌧, z) � (J�

⇤ s)(⌧, z).

For (⌧, z) 2 ⌦, we have s(⌧, z) = sb+(⌧, z) and sb�(⌧, z) = s and (dropping the dependence on (⌧, z) for ease
of notation)

s J�
⇤ s  s J�

⇤ s+ (s� s) (J�
⇤ s� J�

⇤ sb+)

= s (J�
⇤ s� J�

⇤ sb+) + s J�
⇤ sb+

= s (J�
⇤ sb� � Ĵ� s) + sb+ J�

⇤ sb+

= sb� J�
⇤ sb� + sb+ J�

⇤ sb+ � Ĵ�s2.

Similarly, for (t, x) 2 ⌦c, we have s(t, x) = sb�(t, x) and sb+(t, x) = s and

s J�
⇤ s  s J�

⇤ s+ (s� s) (J�
⇤ s� J�

⇤ sb�)

= s (J�
⇤ s� J�

⇤ sb�) + s J�
⇤ sb�

= s (J�
⇤ sb+ � Ĵ s) + sb� J�

⇤ sb�

= sb� J�
⇤ sb� + sb+ J�

⇤ sb+ � Ĵs2.

This implies that

G
�
�
s; [0, T ]⇥ Td

�
� G

�
�
sb�; [0, T ]⇥ Td

�
+ G

�
�
sb+; [0, T ]⇥ Td

�
� G

�
�
s; [0, T ]⇥ Td

�
,

and, by Proposition 3.5,

G
�
�
sb+; [0, T ]⇥ Td

�
� G

�
�
s; [0, T ]⇥ Td

�
= 0.
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We conclude

G
�
�
s; [0, T ]⇥ Td

�
� G

�
�
sb�; [0, T ]⇥ Td

�
.

Observing that � is convex and |g(z)|  1
2��

0(s), we have

sb�(T, z) g(z) +
1

2�
�
�
sb�(T, z)

�
 s(T, z) g(z) +

1

2�
�
�
s(T, z)

�
,

which finishes the proof. ⇤

4. Main result

Our main result is a type of Gamma-convergence, akin to Theorem 1.4 of [46] which addresses nonlocal
Allen-Cahn equation. In addition to the previous assumption Assumption (A1) and Assumption (A2) on J we
will always assume in this section

(A3) (Super-criticality)

�Ĵ > 1.

Under this assumptionW� is a double-well potential with two distinct minimizers±s. In the critical or subcritical
case the asymptotic behavior will be completely di↵erent.

Theorem 4.1. Consider the initial data s0 2 L1(Td) with |s0|  s and terminal data g 2 L1(Td) with |g(z)| 
1
2��

0(s), where � is given in Proposition 3.4. Then the following holds:

(i) For every sequence (s�, a�) with ŝ�(0, ·) = s0 and uniformly bounded cost, there is a convergent subsequence

in macroscopic variables, ŝ� ! s̄ in L1([0, T ]⇥ Td). Moreover ŝ� ! s̄ 2 BV ((0, T )⇥ Td; {�s, s}) and

lim inf
�!+0

C
�(s�, a�) � V̄ (s0, g, s̄).

(ii) For every s̄ 2 BV ((0, T ) ⇥ Td; {�s, s}), there exists a sequence (s�, a�) such that ŝ� ! s̄ in L1([0, T ] ⇥
Td), ŝ�(0, ·) = s0, and

lim sup
�!+0

C
�(s�, a�)  V̄ (s0, g, s̄).

Let us briefly outline the strategy carried out in this section to prove the above convergence result.

In Section 4.1, we show that, in an appropriate sense, the cost C� asymptotically controls the BV norm and
so sequences s� with bounded cost C� satisfy appropriate compactness properties. The argument combines ideas
for local and nonlocal Allen-Cahn problems in a slightly delicate, but largely standard, way. Note that in this
stage we are yet to characterize the macroscopic cost V̄ .

In Section 4.2, we prove several technical “patching” results which are key to the later �-convergence argu-
ments. These are quantitative versions of localization results that are naturally needed to ensure that our
macroscopic Lagrangian depends locally only on the normal directions of the interface between the state �s
and s. More precisely, we show that sequences of test minimizers defined in disjoint domains can be patched
along a joint boundary without increasing the energy too much as long as an appropriate notion of trace matches
along this joint boundary. The ideas in this section are inspired by [46], but the argument is technically more
di�cult because the cost functional requires some microscopic regularity in the temporal direction.

Then in Sections 4.3 and 4.4 we carry out the typical two part �-convergence argument.
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The argument for the lower bound inequality in Section 4.3 follows a classical general technique introduced by
Fonseca and Müller [59]: the problem can be reduced to establishing a pointwise lower bound on the densities
for a subsequential limit of the particular test minimizer sequence s�. In technical terms the patching and
compactness lemmas play a key role here.

For the upper bound inequality in Section 4.4 we follow a beautiful idea introduced by Alberti and Bellettini
[46] of induction on polyhedral regions. By approximating with polyhedral regions instead of smooth sets,
Alberti and Bellettini reduced the entire di�culty of controlling lower order terms related to the “bending”
hyperplanes to a relatively simple patching argument where polyhedral test regions meet transversally to the
interface. This argument adapts nicely to our setting because we have also established a technique for patching
local test minimizes.

A consequence of Theorem 4.1 for the problem at the mesoscopic level is that the Nash equilibria are not
unique.

Corollary 4.2. Suppose that s0 = 0 and g = 0. For su�ciently small �, the system (3.5) has at least two

distinct, nonzero solutions.

This follows, as the trivial zero solution does not converge to the values {�s, s}, and the system is invariant
under the change of sign. Our result does not necessarily describe all the solutions of (3.5) as it only captures
the solutions corresponding to minimizers of the global cost C�.

4.1. Compactness

In this section we show that sequences with bounded G
� are precompact in L1 and all cluster points are

indicator functions of sets of bounded variation. As we have explained, the energy G
� is understood to measure

the space-time surface area of the interface between the ±s phases. Thus a BV -like compactness result is to
be expected. We note that the estimates we obtain are not uniform as � Ĵ !+ 1, i.e., s !+ 0, reflecting the
possibility of some more complex phenomena occurring near the critical parameter values.

Of course this type of result is well known for Allen-Cahn [44] and nonlocal Allen-Cahn functionals [46].
Our functional is a mix of the two, and with some technical tricks inspired by the two cases we can prove the
compactness.

Our first step is to really make a decomposition into a typical local Allen-Cahn type functional measuring
the temporal variations, and a nonlocal Allen-Cahn functional measuring the spatial variations:

G�(ŝ;A0) = Y �(ŝ;A0) +X�(ŝ;A0)

where

Y �(ŝ;A0) :=

Z

A0

h 1

2�
W�

�
ŝ(⌧, z)

�
+

1

2� �
 
�
ŝ(⌧, z),�@⌧ ŝ(⌧, z)

�i
dz

and

X�(ŝ;A0) :=

Z

A0

1

2�
W�

�
ŝ(⌧, z)

�
dz +

1

4�

Z

A0

Z

A0
J�(z � w)

�
ŝ(⌧, z)� ŝ(⌧, w)

�2
dw dz.

The space-time energy splits analogously

G
�(ŝ, A) = Y

�(ŝ;A) + X
�(ŝ;A) for A ⇢ Rd+1

where X
� and Y

� are naturally defined as temporal integrals of X� and Y � as was done for G� in (3.14).
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Proposition 4.3. Let ⌦ ⇢ (0, T )⇥ Td
be a polyhedral space-time region and ŝ� : ⌦! [�s, s] be a sequence as

� !
+ 0 with

sup
�>0

G
�
�
ŝ�;⌦) < +1.

We assume that � Ĵ > 1. Then ŝ� is relatively compact in L1(⌦) and each of its cluster points belongs to

BV (⌦; {�s, s}).

The proof is a combination of the compactness arguments for local and nonlocal Allen-Cahn.

Proof. By Proposition 4.11 we can extend ŝ� to be equal to s in (0, T ) ⇥ Td and then replace this extension
by an L1(⌦) equivalent sequence defined on the entire (0, T ) ⇥ Td and with G

�(ŝ�; (0, T ) ⇥ Td)  CG
�
�
ŝ�;⌦)

where the constant depends on the domain ⌦.
Note that both Y

�(ŝ�; (0, T ) ⇥ Td) � 0 and X
�(ŝ�; (0, T ) ⇥ Td) � 0 so both are bounded by M :=

sup
�>0 G

�(ŝ�; (0, T )⇥ Td).
First we estimate the time derivative using the bound on Y

� and following a standard argument for local
Allen-Cahn functionals. From the Young’s inequality,

q
2��1��2W�(ŝ) (ŝ,�@⌧ ŝ)  ��1

W�(ŝ) +
1

2�
��1 (ŝ,�@⌧ ŝ)

Using above with (3.8) for the set |�@⌧ ŝ|  1 and using the  bound with (3.8) for the rest, we arrive at

ZZ

(0,T )⇥Td

h
W�

�
ŝ�(⌧, z)

�1/2
|@⌧ ŝ

�(⌧, z)|�{|@⌧ ŝ(⌧, z)|  ��1
}+ |@⌧ ŝ(⌧, z)|�{|@⌧ ŝ(⌧, z)| � ��1

}

i
dz d⌧

 C Y
�
�
ŝ�; (0, T )⇥ Td

�
 CM,

Call W(s) :=
R
s

0 W�(s)1/2ds so that we have proved

ZZ

(0,T )⇥Td

�� d
d⌧

W
�
ŝ(⌧, z)

���dz d⌧  CM. (4.1)

Next, we use the bound on X
� to obtain a uniform bound for the spatial gradient of (a mollification of)

s̃�(t, z) := '
�
ŝ�(⌧, z)

�
,

where ' is the cut-o↵ function

'(s) :=

8
><

>:

s s > s/2

2s s 2 [�s/2, s/2]

�s s < �s/2.

(4.2)

The point of this cut-o↵ is that it is (i) Lipschitz so it doesn’t a↵ect the temporal energy Y
� too much, (ii)

it simplifies the computation of the nonlocal part of the energy essentially concentrating the energy on the
interface without changing the L1 limit of the sequence (an idea of [46]).
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Next we mollify at scale � by ��(z) := c��d�(z/�), where � is a nonnegative (not identically zero) smooth
function with compact support and total mass c�1 that satisfies

�  J ⇤ J and |r�|  J ⇤ J.

The proof of the bound on |rz(��
⇤ s̃�)| follows closely that of Theorem 3.1 in [46]. First, the inequality

Z

Td

Z

Td

(J�
⇤ J�)(z � w)|s̃(⌧, z)� s̃(⌧, w)|dw dz  2Ĵ

Z

Td

Z

Td

J�(z � w)|s̃�(⌧, z)� s̃�(⌧, w)|dz dw

is established by direct computation with a change of variables argument. The right hand side is decomposed
using the set H�

⌧
= {z : ŝ�(⌧, z) 2 [�s/2, s/2]}. On (0, T )⇥ Td

\H�

⌧
⇥ (0, T )⇥ Td

\H�

⌧
we have that

|s̃�(⌧, z)� s̃�(⌧, w)| 
4

s
|ŝ�(⌧, z)� ŝ�(⌧, w)|2,

using the fact that s̃� 2 {±s} away from H�

⌧
.

Whereas in H�

⌧
we simply bound |s̃�(⌧, z) � s̃�(⌧, w)|  2 s. The area of H�

⌧
can be bounded by a con-

stant times the integral of W�(ŝ), since there is ⇢ > 0 such that W�(s) � ⇢ when s 2 [�s/2, s/2]. Along with
nonnegativity of the nonlocal term, we have

|H�

⌧
| 

1

⇢

ZZ

(0,T )⇥Td

W�

�
ŝ�
�
d⌧dz 

2�

⇢
M. (4.3)

Therefore

2Ĵ

Z

Td

Z

Td

J�(z � w)|s̃�(⌧, z)� s̃�(⌧, w)|dz dw

 2Ĵ
⇣Z

Td\H�
⌧

Z

Td\H�
⌧

4

s
J�(z � w)|s̃�(⌧, z)� s̃�(⌧, w)|2 dz dw + 2

Z

Td

Z

H�
⌧

2 sdz dw
⌘
d⌧

 �C X�
�
ŝ(⌧, ·);Td

�
.

We use this to estimate the error in mollification

Z
T

0

Z

Td

��(��
⇤ s̃�(⌧, ·))(z)� s̃�(⌧, z)

��dz d⌧

=

Z
T

0

Z

Td

���
Z

Td

��(z � w)
�
s̃�(⌧, w)� s̃�(⌧, z)

�
dw
���dz d⌧



Z
T

0

Z

Td

Z

Td

��(z � w)
��s̃�(⌧, w)� s̃�(⌧, z)

��dw dz d⌧


1

c

Z
T

0

Z

Td

Z

Td

(J�
⇤ J�)(z � w)

��s̃�(⌧, w)� s̃�(⌧, z)
��dw dz d⌧

 �C 0
X

�
�
ŝ; [0, T ]⇥ Td

�
.

Using, for the final inequality, the estimates from the previous paragraph. Thus we obtained

Z
T

0

Z

Td

��(��
⇤ s̃�(⌧, ·))(z)� ŝ�(⌧, z)

��dz d⌧  CM�. (4.4)
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By similar computations

Z
T

0

Z

Td

��r(��
⇤ s̃�(⌧, ·))(z)

��dz d⌧

=

Z
T

0

Z

Td

���
Z

Td

(r��)(z � w)
�
s̃�(⌧, w)� s̃�(⌧, z)

�
dw
��� dz d⌧


1

c�

Z
⌧

0

Z

Td

Z

Td

(J�
⇤ J�)(z � w)

��s̃�(⌧, w)� s̃�(⌧, z)
��dw dz d⌧  CX

�
�
ŝ�; (0, T )⇥ Td

�
.

Let us now put together above bounds to obtain the global bound. Since W is invertible on [�s/2, s/2], by
definition (4.2) it follows that ' �W�1 is Lipschitz. So using the previous inequality and (4.1) it follows that

ZZ

(0,T )⇥Td

��Dt,z�
�
⇤ s̃�(⌧, z)

��dz d⌧ 

ZZ

(0,T )⇥Td

⇣��r��
⇤ s̃�(⌧, z)

��+
����

⇤
d

d⌧

⇥
(' �W�1)(W(ŝ�(⌧, z)))

⇤ ��
⌘
dz d⌧

 CM.

By standard BV compactness results there is a subsequence so that ��
⇤ s̃ ! s̄ strongly in L1 and s̄ 2

BV ((0, T )⇥ Td) with

ZZ

(0,T )⇥Td

|D⌧,z s̄|  lim inf
�!0

ZZ

(0,T )⇥Td

��Dt,z�
�
⇤ s̃�(⌧, z)

��  CM.

Finally, we show the convergence of ŝ�. Let K� := {(⌧, z) : ŝ�(⌧, z) 2 [�s+ �, s� �]}. As in (4.3)we have

|K�|  C(�)�M,

and, from (4.4) and, since either |ŝ� s̃| = 0 outside of K� and otherwise |ŝ� s̃|  2,

Z
T

0

Z

Td

|ŝ�(⌧, z)� ��
⇤ s̃�(⌧, z)|dz d⌧



Z
T

0

Z

Td

⇣
|ŝ�(⌧, z)� s̃�(⌧, z)|+ |s̃�(⌧, z)� ��

⇤ s̃�(⌧, z)|
⌘
dz d⌧

 � T + 2|K�|+ C 0 �.

Since � is arbitrary, the sequence ŝ� is equivalent to ��
⇤ s̃ in L1 and thus is relatively compact with all of its

cluster points in BV ((0, T )⇥ Td; {�s, s}).

4.2. Patching lemma

In this section, we develop a technical tool which will be essential in the proof of � convergence. Roughly
speaking we look for a way to “patch” test minimizers which are defined in disjoint domains to be a test
minimizer in the union without increasing the total energy too much. To this end we will need to control the
increase of the nonlocal “Dirichlet” energy and the increase of the local “Dirichlet” energy for the cost in the
form (3.15). For the nonlocal part of the energy we will follow the ideas in [46], Section 2. However, in [46]
the actual patching can be done in a straightforward way, simply defining a new, possibly discontinuous, test
minimizer piecewise. We cannot do this because the local energy penalizes large time derivatives by the term
��1 (u,�@tu) in the energy. Thus the presence of the local energy necessitates a smoother notion of patching.
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We introduce a notion of “trace” on d � 1-dimensional surfaces, imitating the notions introduced in [46].
Define an auxiliary potential

J̃(h) :=

Z 1

0
J

✓
h

t

◆ ����
h

t

����
dt

td

and note that from (A2)

Z

Rd

J̃(h)dh =

Z

Rd

|h|J(h) dh < +1.

We also recall the notion of �-trace error as in [46]. Note that finite energy fields do not necessarily have
a true trace on space-like d-dimensional surfaces, the nonlocal energy only gives large scale not micro-scale
regularity. The notion of trace error circumvents this technical di�culty.

Definition 4.4. For an open set A0 in Rd, a function u : A0
! [�1, 1], a Lipschitz surface ⌃0 contained in a

finite union of d� 1-dimensional a�ne hyperplanes, and a function v : ⌃! [�1, 1], we define the spatial �-trace
error from A0 onto ⌃0 as

tr�(u, v,A
0,⌃0) :=

Z

⌃0

Z

z+�h2A0
J̃(h)|u(z + �h)� v(z)|dh dHd�1.

Similarly, for an open set A in Rd+1, a function u : A ! [�1, 1], a d-dimensional Lipschitz surface ⌃ contained
in a finite union of d-dimensional a�ne hyperplanes, with normal vector field ⌫, and a function v : ⌃! [�1, 1],
we define the �-trace error from A onto ⌃ as

Tr�(u, v, A,⌃) :=

Z
T

0
tr�(u, v, A⌧ ,⌃⌧ )d⌧ =

Z

⌃

Z

z+�h2A⌧

J̃(h)|u(z + �h)� v(z)|dh|⌫x|dH
d,

where A⌧ = {z : (⌧, z) 2 A}.

This leads to a notion of convergence of traces imitating [46][Definition 2.1]. Note that we need to add some
additional terms to our notion of trace convergence to deal with the temporal part of the energy. First we define
the distance to a space-time surface ⌃ in the pure temporal variable

t((⌧, z),⌃) = inf{|�| : (⌧ + �, z) 2 ⌃}. (4.5)

Definition 4.5. Consider (as in Def. 4.4) an open set A in Rd+1, a family of functions u� : A ! [�1, 1�], a
d-dimensional Lipschitz surface ⌃ contained in a finite union of d-dimensional a�ne hyperplanes, with normal
vector field ⌫, and a function v : ⌃! [�1, 1]. We say that the �-traces from A onto ⌃ of u� converge to v if

lim
�!+0

"Z

⌃
|u�

� v||⌫t|dH
d +

Z

A\{t((⌧,z),⌃)�}

1

�
 0

�
� @⌧u

�(⌧, z)
�
d⌧ dz +Tr�(u

�, v, A,⌃)

#
= 0.

We note that on (A[⌃)o where |⌫t| 6= 0 the traces of u� from above (in the ⌫t direction) u�

+ and from below u�

�
are defined |⌫t|Hd-almost everywhere due to the superlinear energy bound on @⌧u. Recall from Proposition 3.2
that  0(V ) =  (0, V ).

Remark 4.6. Note that the energy bound sup
�
G
�(u�;A) < +1 morally is a uniform BV -norm bound and is

not enough to show that the traces of u� on a hypersurface ⌃ lie in a strongly compact subset of L1(⌃,Hd).
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Also, as mentioned earlier, the energy bound is not su�ciently regular to give a notion of trace for u� on parts
of ⌃ where |⌫t| = 0.

Thus, as remarked in [46], the convergence of �-traces is not so easy to verify for a specific surface. On the
other hand, if we take a foliation by Lipschitz hypersurfaces we can get convergence of the �-traces on almost
every surface in the foliation as we show in Lemma 4.7.

Lemma 4.7. Suppose that A, ⌃, and u�
are as in Definition 4.5 and

sup
�>0

Z

A

1

�
 0(� @⌧u

�) d⌧ dz < +1.

Let g : A ! R be a continuous and piecewise-linear function with |r⌧,zg| = 1 a.e. and ⌃a be the a-level set of
g. Suppose that u�

! u0 in L1(A). Then, along a subsequence, the � traces of u�
on ⌃a relative to A converge

to u0 for a.e. a 2 R.

Proof. This proof is a slight generalization of [46][Proposition 2.5]. We may suppose that u� and u0 are defined
on Rd+1, extended by 0 away from A. Define

��(⌧, z) :=

Z

Rd

J̃(h)|u�(⌧, z + �h)� u0(⌧, z)|dh+

(Z
�

��

1

�
 0(�@⌧u

�(⌧ + �, z))1(⌧+�,z)2A ds+ |u�
� u0|

)
|@⌧ g|

(4.6)
and

Q�(a) :=

Z

⌃a

��(⌧, z) dH
d, M := sup

�>0

Z

A

1

�
 0(� @⌧u

�) d⌧ dz.

By the co-area formula

Z

R
Q�(a)da =

Z

A

��(⌧, z)|rg|d⌧ dz



Z

Rd+1

Z

Rd

J̃(h)|u�(⌧, z + �h)� u0(⌧, z)|dh d⌧ dz

+

Z
�

��

Z

A

1

�
 0(� @⌧u

�(⌧ + �, z))1(⌧+�,z)2A d⌧ dz d� + ku�
� u0kL1



Z

Rd+1

Z

Rd

J̃(h)|u�(⌧, z + �h)� u�(⌧, z)|dh d⌧ dz +

Z

Rd+1

Z

Rd

J̃(h)|u�(⌧, z)� u0(⌧, z)|dh d⌧ dz

+ 2�M + ku�
� u0kL1



Z

Rd

J̃(h)ku0(·+ �h)� u0kL1 dh+ 2M�+ Cku�
� u0kL1 .

Each term on the right converges to zero as � ! 0. Note that ku0(·+ �h)� u0kL1(A) ! 0 for each fixed h and

the integrand is dominated by 2ku0kL1(A)J̃(h).
Since Q�(a) � 0 it converges to zero in L1 and so, up to a subsequence, it converges to zero pointwise a.e.

a 2 R.

We will also use another criterion for trace convergence, modified from [46]:
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Lemma 4.8. Suppose that A, ⌃, u�
, and v are as in Definition 4.5. If for almost every (t, x) 2 ⌃ the sequence

u�(⌧, z + �h) converges to v(⌧, z) locally uniformly on h 2 ��1(A⌧ � z), i.e.

lim
�!0

sup
h2K\��1(A⌧�z)

|u�(⌧, z + �h)� v(⌧, z)| = 0 for all K ⇢ Rd
compact

then

lim
�!0

Z

⌃
|u�

� v||⌫t|dH
d +Tr�(u

�, v, A,⌃)

�
= 0.

Now, we move forward to prove a bound on the patching error in terms of the tracial quantities we have
defined. First, we recall a definition from [46] which was used for the nonlocal energy control.

Definition 4.9. We say ⌃ strongly divides A� and A+ if ⌃ is the Lipschitz boundary of some open set ⌦ with
A+ ⇢ ⌦ and A� ⇢ Rd+1

\ ⌦.

We recall a localization Lemma of [46].

Lemma 4.10. Suppose u, A±, ⌃, and v± are as in Definition 4.5 where A± are disjoint open subsets of Rd+1

that are strongly divided by ⌃. Suppose further that

lim
�!0

Tr�(u, v+, A+,⌃) = lim
�!0

Tr�(u, v�, A�,⌃) = 0.

Then the discrepancy cost N
�
defined in (3.14) satisfies

lim sup
�!0+

N
�(u�;A+, A�) 

Ĵ

2

Z

⌃
|v+ � v�||⌫x|dH

d.

Proof. For every time-slice, ⌦t := ⌦\ {⌧ = t} is a relatively open set with A+,t ⇢ ⌦t and A�,t ⇢ Rd
⇥ {⌧ = t} \

⌦t. Furthermore, @⌦t is contained in a finite union of d� 1 dimensional a�ne hyperplanes. Note that @⌦t ⇢ ⌃t

with equality except at finitely many values of t. Specifically, @⌦t is contained in the original hyperplanes
containing ⌃, which had normal direction with nontrivial ⌫x component. Thus, @⌦t is a Lipschitz boundary
that strongly divides A±,t. In such a scenario, the following inequality is proved in Lemma 2.7 (specifically Eq.
(2.10)) of [46],

N�(u�(t, ·);A+,t, A�,t) 
Ĵ

2

Z

@⌦t

|v+,t � v�,t|dH
d�1 + tr�(u, v�,t, A�,t, @⌦t) + tr�(u, v+,t, A+,t, @⌦t).

We have defined the �-trace error tr� exactly for this estimate. The result is then obtained by integrating in
time and using the co-area formula and the definitions of Tr� and N�.

The next result shows how to patch test minimizers across a regular (polyhedral) boundary. As in [46]
patching creates extra nonlocal energy due to the nonlocal defect. However now we also have a local term in the
energy ��1 (u,�@⌧u) which grows superlinearly in the @⌧u variable. This means that we cannot simply patch
discontinuously, we need to make a regularization at the � length scale across the patching boundary. The next
proposition shows that such a regularization can be made, at an additional energy cost which is controlled by
a trace error of the type introduced in Definition 4.5. This result addresses the temporal Dirichlet type energy
which is not present in [46].

Proposition 4.11 (Defect estimate). Let u, A, and ⌃ be as in Definition 4.5 with u : A ! [�s, s] and

G
�(u;A) < +1. Let u± be the respective traces of u on (A [ ⌃)o \ {|⌫t| > 0}.
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Then there is ũ : (A [ ⌃)o ! [�s, s] such that ũ = u outside of a � neighborhood of ⌃ and for every � > 0
and for any subregion B ⇢ A

G
�

loc
(ũ; (A [ ⌃)o)� G

�

loc
(u;A) + |N

�(ũ;B,B)�N
�(u;B,B)|

 C

Z

⌃
{|u+ � u�|+ �+ �} |⌫t|dH

d + C��1

"
1

�

Z

A\{0<t((⌧,z),⌃)�}
 0(� @⌧u) d⌧ dz.

#
(4.7)

Here G
�

loc
is defined in (3.14) and the constants C depend on ⌃.

Proof. We will first assume that ⌃ is a subset of a single a�ne d-plane, at the end of the proof we will explain
how to extend to the general case of a finite union of a�ne pieces.

In the single plane case there is a single normal direction ⌫ constant on ⌃. Note that if ⌫t = 0 no argument
is needed, simply take ũ = u so we can assume ⌫t 6= 0. We may further assume that 0 2 ⌃. Define

A± := A \ {±⌫ · (⌧, z) > 0} and r⇤(⌧, z) := argmin
�
{|⌧ � �| : (�, z) 2 ⌃}.

If z is not in the projection of ⌃ onto Td then we define r⇤(⌧, z) := ⌥1 in A±. So we have ±(⌧ � r⇤(⌧, z)) 2
[0,+1] in A± respectively.

Also, in the typical style of a priori estimates, we can assume that u is C1 individually in A± (but not their
union) so that the computations below are justified, but then the estimate obtained will not depend on the C1

norm so we can remove that assumption in the end.
Now we proceed in several steps.
Step 1: First we introduce ũ which essentially averages u in a temporal neighborhood of ⌃ of size O(�). This

is the exact scale at which we must perform the regularization, smaller scales would have too large temporal
“Dirichlet” energy and larger scales would magnify the energy of transitions from �s to s too much. The energy
error of the regularization will be related to the trace di↵erence which needs to be traversed over the � scale.

Let ⇣ be a cut-o↵ function that satisfies

⇣(⌧, z) =

(
1 |⌧ � r⇤(⌧, z)|  �/4

0 |⌧ � r⇤(⌧, z)| � �/2
and |@⌧ ⇣|  C��1.

Define

ũ := ⇣û+ (1� ⇣)u with û(⌧, z) =
1

�

Z
�/2

��/2
u(⌧ + �, z) d�.

We make a few computations relating û � u and @⌧ û to the traces on ⌃. When ⇣(⌧, z) > 0 then r⇤(⌧, z) 2
[⌧ � �/2, ⌧ + �/2]. We use this to write, on {⇣ > 0},

u(⌧, z) = u±(r⇤(⌧, z), z) +

Z
⌧

r⇤(⌧,z)
@⌧u(�, z) d� if (⌧, z) 2 A±.

Then we can use this decomposition in û as well. By definition we have

û(⌧, z) = µ(⌧, z)u+(r⇤(⌧, z), z) + (1� µ(⌧, z))u�(r⇤(⌧, z), z) + �K(⌧, z), (4.8)
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where µ(⌧, z) 2 (0, 1) is defined as the fraction of � 2 [��/2,�/2] so that (⌧ + �, z) 2 A+ and

K(⌧, z) =
1

�2

Z
r⇤(⌧,z)

��/2

Z
r⇤(⌧,z)

⌧+�

@⌧u(k, z) dk d� +
1

�2

Z
�/2

r⇤(⌧,z)

Z
⌧+�

r⇤(⌧,z)
@⌧u(k, z)dk d�.

The appearance of this type of error term motivates the following definition on A± \ {⇣ > 0},

avg±(|@⌧u|)(⌧, z) :=
1

�

Z

[r⇤(⌧,z)±�,r⇤(⌧,z)]
|@⌧u(�, z)| d� +

2

�2

Z

[r⇤(⌧,z)±�,r⇤(⌧,z)]

Z

[�,r⇤(⌧,z)]
|@⌧u(k, z)| dk d�

Note that avg±(|@⌧u|) are, respectively, integral averages of @⌧u purely on A± respectively, they do not see the
discontinuity across ⌃. Recall that we have reduced, for convenience, to the case where ⌃ is a graph over the t
direction and ±(⌧ � r⇤(⌧, z)) > 0 on A±.

One particular consequence of these computations is that on {⇣ > 0},

|û(⌧, z)� u(⌧, z)|  |u+(r⇤(⌧, z), z)� u�(r⇤(⌧, z), ⌧)|+ �
X

±
avg±(|@⌧u|)(⌧, z). (4.9)

We can also make a similar decomposition for @⌧ û. Note

@⌧ û =
1

�
[u(⌧ + �

2 , z)� u(⌧ �
�

2 , z)].

When ⇣(⌧, z) > 0 then r⇤(⌧, z) 2 [⌧ � �/2, t+ �/2] so we can write

1

�
|u(⌧ + �

2 , z)� u(⌧ �
�

2 , z)| =
1

�
|u+(r⇤(⌧, z), z)� u�(r⇤(⌧, z), z)|

+
1

�

�����

(Z
r⇤(⌧,z)

r⇤(⌧,z)��/2
+

Z
r⇤(⌧,z)+�/2

r⇤(⌧,z)

)
@⌧u(�, z) d�

�����


1

�
|u+(r⇤(⌧, z), z)� u�(r⇤(⌧, z), z)|+

X

±
avg±(|@⌧u|)(⌧, z).

Step 2. Next we make a general comment on integrals of the type

1

�

Z

{⇣>0}
h(r⇤(⌧, z), z) d⌧ dz

for a function h 2 L1(⌃, dHd
|⌃). By the co-area formula

1

�

Z

{⇣>0}
h(r⇤(⌧, z), z) d⌧ dz =

1

�

Z
�/2

��/2

Z

⌃+(⌧,0)
h(r⇤(⌧, z), z)|Ds⇤|

�1dHdd⌧.

Note that, since ⌫t 6= 0, |@⌧r⇤(⌧, z)| = 1 and |Dxr⇤(⌧, z)| =
|⌫x|
|⌫t| (r⇤(⌧, z), z), so |Dt,xr⇤(⌧, z)| = |⌫t|(r⇤(⌧, z), z)�1.

Thus we obtain the change of variables formula

1

�

Z

{⇣>0}
h(r⇤(⌧, z), z) d⌧ dz =

Z

⌃
h|⌫t|dH

d. (4.10)
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Step 3. Using above formula, here we will see that error terms of type avg±(|@⌧u|) can be controlled by the
energy in a � - temporal neighborhood of ⌃.

The following formulae will be applied below with f = |@⌧u| or other related functions in later steps. We use
the change of variables formula, applied to h(⌧, x) := f(⌧ + �, z), twice to compute

1

�

Z

{⇣>0}
�
1

�

Z

[±�,0]
|f(r⇤(⌧, z) + �, z)| d� d⌧ dz =

Z

⌃

Z

[±�,0]
|f(⌧ + �, z)| d�|⌫t|dH

d(⌧, z)

=

Z

{0<±(⌧�r⇤(⌧,z))<�}
|f(⌧, z)|d⌧ dz.

Similarly,

1

�

Z

{⇣>0}
�
2

�2

Z

[±�,0]

Z

[�,0]
|f(r⇤(⌧, z) + k, z)| dk d� d⌧ dz

=

Z

⌃

2

�

Z

[±�,0]

Z

[�,0]
|f(⌧ + k, z)| dk d�|⌫t|dH

d(⌧, z)

=
2

�

Z

[±�,0]

Z

[�,0]

Z

⌃
|f(⌧ + k, z)||⌫t(⌧, z)|dH

d(⌧, z)dk d�

=
2

�

Z

[±�,0]

Z

[�,0]

Z

⌃
|f(⌧ + k, z)||⌫t(⌧, z)|dH

d(⌧, z)dk d�

=
2

�

Z

[±�,0]

Z

{0<±(⌧�r⇤(⌧,z))<�}
|f(⌧, z)|d⌧ dz d�

 2

Z

{0<±(⌧�r⇤(⌧,z))<�}
|f(⌧, z)|d⌧ dz.

Combining the above we find

1

�

Z

{⇣>0}
�avg±(|f |)d⌧ dz  3

Z

{0<±(⌧�r⇤(⌧,z))<�}
|f(⌧, z)|d⌧ dz. (4.11)

Now, since we will often take f = |@⌧u| or similar below, we need to explain how to estimate the right hand side
in (4.11) with that choice of f . For the below we use the version of Young’s inequality |V |  � + C��1 0(V )
for arbitrary 1 > � > 0:

Z

{0<±(⌧�r⇤(⌧,z))<�}
|@⌧u(⌧, z)|d⌧ dz = ��1

Z

{0<±(⌧�r⇤(⌧,z))<�}
�|@⌧u(⌧, z)|d⌧ dz



Z

{0<±(⌧�r⇤(⌧,z))<�}
���1 + C��1��1 0(� @⌧u))d⌧ dz



Z

⌃
�|⌫t|dH

d + C��1 1

�

Z

A±\{t((⌧,z),⌃)�}
 0(� @⌧u) d⌧ dz (4.12)

where we used (4.10) at the last step with h ⌘ 1.

Step 4. In this step, we work to estimate the local terms in the energy, with the first focus on the “Dirichlet”
type term. We aim to estimate from above the di↵erence

Z

A+[A�

��1 (ũ,�@⌧ ũ)d⌧ dz �
X

±

Z

A±

��1 (u,�@⌧u)d⌧ dz.
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We define

v := ⇣ @⌧ û+ (1� ⇣)@⌧u so that @⌧ ũ = v + @⌧ ⇣(û� u).

As part of estimating the previous energy di↵erence we will estimate

 (ũ,�@⌧ ũ)� (ũ,�v).

Using abstract variables a = �v and h = � @⌧ ⇣(û� u) and dropping the ũ dependence because it is the same in
each term

 (a+ h)� (a) =

Z
a+h

a

 0(k)dk

 (| 0(a)|+ | 0(a+ h)|)|h|

 2 0(|a|+ |h|)|h|

 2 0(|a|)|h|+ 2 0(|h|)|h|

  0(|a|)21{|h|>0} + |h|2 + C (|h|)

 C (|a|)1{|h|>0} + |h|2 + C (|h|).

Where we used in order, from Proposition 3.2, that  0 is monotone increasing, odd symmetric, subadditive on
[0,1), and for the remaining inequalities we used the bounds (3.8) and (3.9).

Applying this we arrive at

Z

A+[A�

1

�
 (ũ,�@⌧ ũ) d⌧ dz


C

�

Z

A+[A�

⇥
 (ũ,�v) + (ũ,�|v|)1{|@⌧⇣|>0} + |� @⌧ ⇣|

2
|û� u|2 + 2 (ũ,�|@⌧ ⇣||û� u|)

⇤
d⌧ dz.

For the first term on the right we use non-negativity of  

Z

A+[A�

1

�
 (ũ,� v) d⌧ dz 

Z

A+[A�

1

�
 (u,�@⌧u)d⌧ dz +

Z

{⇣>0}

1

�
 (ũ,�v)d⌧ dz.

Since we can bound  (ũ, ·)  C 0(·) it remains for us to bound the error terms (using even symmetry of  )

(I) :=

Z

{⇣>0}

1

�
 0(�v)d⌧ dz, (II) :=

1

�

Z

{⇣>0}
|� @⌧ ⇣|

2
|û�u|2 d⌧ dz, and (III) :=

1

�

Z

{⇣>0}
 0(�|@⌧ ⇣||û�u|)d⌧ dz.

Note that |� @⌧ ⇣|  C and | 0(P )|  C|P |
2 so

(II), (III)  C
1

�

Z

{⇣>0}
|û� u|2 d⌧ dz  C

1

�

Z

{⇣>0}
|û� u| d⌧ dz.

At the last step we used |û� u|  2 to bound the L2 norm by L1. Then, applying (4.9) and (4.11) this becomes

1

�

Z

{⇣>0}
|û� u| d⌧ dz 

1

�

Z

{⇣>0}
|u+(r⇤(⌧ z), z)� u�(r⇤(⌧, z), z)|+ �

X

±
avg±(|@⌧u|)(⌧, z)d⌧ dz
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=

Z

⌃
|u+

� u�
|dHd + 3

Z

{0<±(⌧�r⇤(⌧,z))<�}
|@⌧u(⌧, z)|d⌧ dz

The second term can be estimated by the discussion in Step 3, in particular (4.12).
It remains to discuss the error term (I), relying on the convexity of  0. Observe first that

(I) =

Z

{⇣>0}

1

�
 0(�v)d⌧ dz 

C

�

Z

{⇣>0}
⇣ 0(� @⌧ û) + (1� ⇣) 0(� @⌧u) d⌧ dz.

The second term is already one of the claimed error terms in the statement. The first term is bounded by using
formula (4.9) to relate with the traces on ⌃:

Z

A+[A�

1

�
⇣ 0(� @⌧ û) d⌧ dz  C

Z

{⇣>0}

1

�
 0(� @⌧ û) d⌧ dz

 C
1

�

Z

{⇣>0}
 0(|u

+(r⇤(⌧, z), z)� u�(r⇤(⌧, z), z)|) + C 0(�
X

±
avg±(|@⌧u|)) d⌧ dz.

The last line using that  0(A + B)  C( 0(A) +  0(B)). It follows by again convexity of  0 and Jensen’s
inequality

 0(�avg±(|@⌧u|))  avg±( 0(�|@⌧u|)).

Now (4.11) yields

1

�

Z

{⇣>0}
 0(�

X

±
avg±(|@⌧u|))d⌧ dz  C

X

±

Z

{0<±(⌧�r⇤(⌧,z))<�}
��1 0(�|@⌧u|)d⌧ dz.

This type of term appears on the right hand side of the claimed estimate so we are done estimating term (I).

Next we deal with the double-well term
Z

A+[A�

1

�
W�(ũ) d⌧ dz �

Z

A+[A�

1

�
W�(u) d⌧ dz =

Z

{⇣>0}

1

�
(W�(ũ)�W�(u)) d⌧ dz.

So we need to deal with this term on the right

W�(ũ) = W�(u+ ⇣(û� u)).

Applying (4.9) and using that W� is Lipschitz on [�s, s]

|W�(ũ)�W�(u)|  C|u+(r⇤(⌧, z), z)� u�(r⇤(⌧, z), z)|+ C�
X

±
avg±(|@⌧u|) on {⇣ > 0}.

From there the estimate is the same as in Step 3.
Step 5. We still need to bound |N

�(ũ, B,B)�N
�(u,B,B)|. For that we write ũ = u+ ⇣(û� u) and bound

|N
�(ũ, B,B)�N

�(u,B,B)| 
C

�

Z

B

⇣(⌧, z)|û(⌧, z)� u(⌧, z)| d⌧ dz

This type of error term was already bounded in step 4 above.
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A

⌃1

⌃2

⌧

�

6

Figure 6. Open region A intersected by defect surface ⌃ made up of two a�ne pieces ⌃j ,
�-time neighborhoods and their overlap are displayed.

Step 6. Finally we consider the case when ⌃ is a finite union of pieces ⌃1, . . . ,⌃J which are each contained
in a�ne planes Pj , see Figure 6. We can assume that the planes Pj are all distinct, otherwise, the corresponding
sets could be regrouped with a smaller J . For � > 0 su�ciently small the �-neighborhoods of any two parallel
planes of {Pj} will be disjoint. Any two non-parallel Pj meet, at most, on a set of Hausdor↵ dimension d � 1
and we can bound, using the compactness of the region [0, T ]⇥ Td,

H
d(⌃�

j
\ ⌃k)  C� for any j 6= k.

With this in mind, we proceed inductively and assume we have constructed ũj satisfying the conclusion of the
theorem on (A [ ⌃1 [ · · · [ ⌃j)o. Then we apply the single plane case to define ũj+1 by the mollification of ũj .
Notice that the traces (ũj)± on ⌃j+1 only di↵er from the traces of u on the intersections of ⌃�

k
for 1  k  j

with ⌃j+1 and by the previous argument these intersections have H
d measure bounded by C� so

Z

⌃j+1

|(ũj)+ � (ũj)�|dH
d


Z

⌃j+1

(|u+ � u�|+ C�)dHd.

Furthermore the energy

1

�

Z

A\{0<t((⌧,z),⌃j+1)�}
 0(� @⌧ ũj) d⌧ dz  G

�

loc
(ũj ; (A [ ⌃ [ · · · [ ⌃j)

o)� G
�

loc
(u;A)

which we have already assumed, in the inductive hypothesis, to be bounded by the right-hand side of (4.7).

We now state several useful consequences of Proposition 4.11, restated in terms that are more directly useful
for Section 4.4.

The primary use of Proposition 4.11 is to patch together two solutions that agree in trace along the dividing
boundary. We state as a corollary that this can be done without introducing extra cost in the limit as � ! 0.
We use the notation A1 tA2 to denote the interior of the closure of A1 [A2.

Corollary 4.12. Suppose that a surface ⌃, which is a finite union of pieces of d-dimensional a�ne planes,

strongly divides a pair of sets A1 and A2, and u�

1 : A1 ! [�s, s] and u�

2 : A2 ! [�s, s] with sup
�
G(u�

1 ;A1) +
sup

�
G(u�

2 ;A2) < 1. Suppose further that the �-traces on ⌃ of u�

1 converge to v1 : ⌃! [�s, s] and the �-traces
on ⌃ of u�

2 converge to v2 : ⌃! [�s, s]. Then there exists u� : A1 tA2 ! [�s, s] that satisfies

lim sup
�!+0

⇣
ku�

� u�

1kL1(A1) + ku�
� u�

2kL1(A2)

⌘
= 0
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and

lim sup
�!+0

⇣
G
�(u�;A1 tA2)� G

�(u�

1 ;A1)� G
�(u�

2 ;A2)
⌘
 C

Z

⌃
|v1 � v2|dH

d.

Furthermore, the construction of u depends only locally on the values of u1 and u2, and u = u1 or u = u2 a

distance greater than � from the boundary of A1 or A2.

Proof. The proof is a direct application of Proposition 4.11 with the function

u = u�

11A1 + u�

21A2

and u� = ũ. Definition 4.5 ensures that the right hand side of (4.7) are controlled in the limit as � !
+ 0 by

C
R
⌃ |v1 � v2|dHd and also

lim sup
�!0

N
�(ũ, A1, A2) =

1

2
lim sup
�!0

⇥
N

�(ũ, A1 [A2, A1 [A2)�N
�(ũ, A1, A1)�N

�(ũ, A2, A2)
⇤

 lim sup
�!0

N
�(u,A1, A2) + C

Z

⌃
|v1 � v2|dH

d

applying (4.7) with B respectively to be A1 [ A2, A1, A2. Recall from Definition 4.5 and the assumption of
�-trace convergence on ⌃ that the last term on the right of (4.7) involving ��1 0(�·) also converges to zero as
� ! 0.

Furthermore, Lemma 4.10 implies that the nonlocality defect N �(u,A1, A2) is bounded by C
R
⌃ |v1� v2|dHd.

The L1 equivalence follows from the fact that u1 = u and u2 = u a distance greater than � from ⌃.

We similarly will use an adjustment of functions defined on a square to periodic functions in XR. We fix a
space-time unit-normal vector ⌫ and ⇤ 2 ⌅⌫ , and consider the step function

v⌫(t, x) :=

(
+s (t, x) · ⌫ � 0,

�s (t, x) · ⌫ < 0.
(4.13)

Recall that we define spaces for ⇤-periodic C1 functions in Section 3 ((3.21), (3.25) and (3.29)). Recall also that
we consider a sequence �i > 0 such that �i ! 0 as i ! 1, which we denote as � !

+ 0.

Proposition 4.13. (a) Given u� : ⇤⇥ R ⌫ ! [�s, s] satisfying the following:

� sup
�
G(u�;⇤⇥ R ⌫) < 1,

� the � traces agree with v⌫ on the @⇤⇥ R and on ⇤⇥ {�R,R}⌫,
then there is ũ�

2 XR(⇤) such that

lim sup
�!+0

⇣
kũ�

� u�
kL1(⇤⇥R ⌫)

⌘
= 0

and

lim sup
�!+0

⇣
F

�(ũ�;⇤⇥ R ⌫)� G
�(u�;⇤⇥ R ⌫)

⌘
 0.

(b) If u� : ⇤⇥ R+ ⌫ ! [�s, s] where ⌫t > 0 with

� sup
�
G(u�;⇤⇥ R+ ⌫) < 1,

� the �-traces agree with v⌫ on the @⇤⇥ R+
and on ⇤⇥ {R}⌫,
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� the L1
-trace converges on ⇤⇥ {0}⌫ to a constant s0 2 (�s, s),

then there is ũ�
2 X

init

R
(s0,±s,⇤) such that

lim sup
�!+0

⇣
kũ�

� u�
kL1(⇤⇥R+ ⌫)

⌘
= 0

and

lim sup
�!+0

⇣
F

�(ũ�;⇤⇥ R+ ⌫)� G
�(u�;⇤⇥ R+ ⌫)

⌘
 0.

(c) If u� : ⇤⇥ R+ ⌫ ! [�s, s] where ⌫t < 0 with

� sup
�
G(u�;⇤⇥ R+ ⌫) < 1,

� the �-traces agree with v⌫ on the @⇤⇥ R+
and on ⇤⇥ {R}⌫,

then there is ũ�
2 X

end

R
(±s,⇤) such that

lim sup
�!+0

⇣
kũ�

� u�
kL1(⇤⇥R+ ⌫)

⌘
= 0

and

lim sup
�!+0

⇣
F

�(ũ�;⇤⇥ R+ ⌫)� G
�(u�;⇤⇥ R+ ⌫)

⌘
 0.

Proof. Let A1 := ⇤⇥R ⌫ ! [�s, s] and A2 be the union of all the translations along one sidelength of ⇤. Then
Corollary 4.12 constructs ũ� on A1 tA2 with

lim sup
�!+0

⇣
kũ�

� u�
kL1(A1) + kũ�

� u�
kL1(A2)

⌘
= 0

and

lim sup
�!+0

⇣
G
�(ũ�;A1 tA2)� G

�(u�;A1)� G
�(u�;A2)

⌘
 0.

The constructed ũ� is periodic along the translations as the construction of Proposition 4.11 is local, making
the adjustment of ũ� on one edge the same as the adjustment of ũ� on the opposite edge. In this way we may
consider ũ� defined on all of Rd+1.

We now proceed with a mollification of ũ� to ũ�

✏
at a scale ✏ much smaller than �. The mollification converges

in L1 and the local time gradient term is lower semicontinuous due to convexity. Furthermore, the �-trace error
does not increase more than order �, and thus the �-traces of the mollified sequence converges. By the nonlocal
defect estimate of Proposition 4.11, we have that the nonlocal defect vanishes across A1 and Rd+1

\Ā1 and thus
from (3.13) we have

lim sup
�!+0

⇣
F

�(ũ�;⇤⇥ R ⌫)� G
�(u�;⇤⇥ R ⌫)

⌘
 0.

We proceed similarly at the initial and end times. We need to patch on a boundary that is orthogonal to
the time direction here. Having extended u to the half space with t � 0, we now also patch with the constant
function s0 on the half space with t < 0. We mollify the sequence at a scale ✏ and shift it forward on the � scale
to construct a sequence ũ� that agrees with the constant s0 at t = 0. The shift also converges in L1.

The end time is exactly the same, except that we can simply extend by ũ�(0, ·) to times greater than 0.
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4.3. Proving (i) of Theorem 4.1 by lower-semicontinuity

In this section, we show part (i) of Theorem 4.1, the lower bound inequality of the �-convergence: any
sequence s� with bounded cost which converges in L1 to a limit s̄ has asymptotic cost bounded from below
by the e↵ective cost V̄ (s0, g, s̄). For this we follow a now standard idea introduced by Fonseca and Müller [59]:
it su�ces to show that the H

d density of the limiting total variation measure is bounded from below by the
respective value of the e↵ective functional. The key technical tool in this argument is the patching estimates
Proposition 4.11 and Proposition 4.13, which allow us to patch the local values of s� into a global periodic test
minimizer for the appropriate cell problem.

Proposition 4.14. Consider a sequence ŝ� satisfying

ŝ�(��1 ⌧,��1 z) ! s̄(⌧, z) in L1([0, T ]⇥ Td)

and

lim inf
�!0

G
�(ŝ�; [0, T ]⇥ Td) +

Z

Td

h
g(z) ŝ�(T, z) +

1

2�
�
�
ŝ�(T, z)

�
�

1

2�
�
�
ŝ�(0, z)

�i
dz < +1.

Then s̄ 2 BV ((0, T )⇥ Td; {s,�s}) and

lim inf
�!+0

G
�(ŝ�; [0, T ]⇥ Td) +

Z

Td

h
g(z) ŝ�(T, z) +

1

2�
�
�
ŝ�(T, z)

�
�

1

2�
�
�
ŝ�(0, z)

�i
dz � V̄ (s0, g, s̄).

Proof. For each point (⌧, z) 2 [0, T ]⇥ Td, define the energy density

h�(⌧, z) := ��1
h
W�

�
ŝ�(⌧, z)

�
+

1

2�
 
�
ŝ�(⌧, z),�@⌧ ŝ

�(⌧, z)
�
+

1

4

Z

Td

J�(z � w)
�
ŝ�(⌧, z)� ŝ�(⌧, w)

�2
dw
i
,

and the energy measure

��(A) :=

Z Z

A

h�(⌧, z)dz d⌧ +

Z

A\{T}⇥Td

⇣
g(z) ŝ�(T, z) +

1

2�
�
�
ŝ�(T, z)

�⌘
dz �

Z

A\{0}⇥Td

1

2�
�
�
ŝ�(0, z)

�
dz,

for a measurable set A in [0, T ]⇥ Td.
Note that

��(A) = G
�(ŝ�;A) +N

�(ŝ�;A, [0, T ]⇥ Td
\A) for any A ⇢ (0, T )⇥ Td.

In particular, the total mass of �� is bounded above by the total cost. Therefore there is a subsequence and a
nonnegative measure � on [0, T ]⇥ Td such that the �� converge in the weak-? topology, �� *? �.

We aim to show the following density lower bounds with respect to the interfacial surface measure as well as
the initial and end-time surface measures. Call ⌃ to be the set of points (⌧, z) 2 (0, T )⇥ Td where the measure
theoretic limit of s̄ is not in ±s. Note that by our definition this is does not include any initial or final time
points.

(a) On (0, T )⇥ Td

d�

dHd|⌃
(⌧, z) � L̄

�
⌫(⌧, z)

�
for Hd

|⌃-a.e. (⌧, z) 2 ⌃.
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Here ⌫(⌧, z) is the measure theoretic unit normal direction pointing outward to {s̄ = s}, defined H
d
|⌃-

almost everywhere.
(b) On ⌧ = 0,

d�

dHd|⌧=T

(0, z) � V init
�
s0(z), s̄(0, z)

�
for Hd

|⌧=T -a.e. z 2 Td.

(c) On ⌧ = T ,

d�

dHd|⌧=0
(T, z) � V end

�
s̄(T, z), g(z)

�
for Hd

|⌧=0-a.e. z 2 Td.

To begin the proof of (a), we consider a point (⌧0, z0) 2 ⌃ where the outward unit-normal ⌫0 to {s̄ = �s} is
well defined. Consider a unit d-cube in the subspace orthogonal to ⌫0, ⇤ 2 ⌅⌫0 from the definitions of (3.23).
Call the d + 1 dimensional unit cube Q = ⇤ ⇥ [�1/2, 1/2]⌫0 with one of the axes oriented in the ⌫0 direction
and also the rescaled cubes (⌧0, z0) + r Q that are centered at (⌧0, z0) with side lengths r. We say points (⌧0, z0)
are regular if the limit exists

d�

dHd|⌃
(⌧0, z0) = lim

r!0

�((⌧0, z0) + r Q)

rd
, (4.14)

and the rescaled s̄, see the notation defined in (3.18), satisfies

R(⌧0,z0),r s̄ ! v⌫0 strongly in L1
loc

, (4.15)

where v⌫ is the step function from (4.13). Standard results [60] imply that (4.14) and (4.15) will hold H
d
|⌃

almost everywhere provided that ⌃ is rectifiable, which holds for the jump set when s̄ is in BV. Similarly, for
(b) and (c), these conditions hold at the beginning and end times where ⌃ is replaced by the slice {0}⇥ Td or
{T}⇥ Td, and ⌫ is replaced by the appropriate normal vector (the sign of s̄(0, z) or negative sign of s̄(T, z) in
the time direction).

Now consider a regular point (⌧0, z0) 2 ⌃ as above satisfying (4.14) and (4.15). From weak convergence, we
deduce that

lim
�!0

��
�
(⌧0, z0) + r Q

�
= �

�
(⌧0, z0) + r Q

�

except for a countable set N of values of r. Furthermore, by (4.14) we have

lim
r!0; r 62N

lim
�!+0

��
�
(⌧0, z0) + r Q

�

rd
= lim

r!0; r 62N

�
�
(⌧0, z0) + r Q

�

rd
=

d�

dHd|⌃
(⌧0, z0).

Since ŝ� ! s̄ in L1, by (4.15) we have

lim
r!0; r 62N

lim
�!+0

R(⌧0,z0),r ŝ
� = lim

r!0; r 62N

R(⌧0,z0),r s̄ = v⌫0 in L1.

Then we can choose sequences ri and �i such that

lim
i!1

ri = lim
i!1

�i

ri
= 0,

lim
i!1

��i
�
(⌧0, z0) + ri Q

�

rd
i

=
d�

dHd|⌃
(⌧0, z0),
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lim
i!1

R(⌧0,z0),ri ŝ
�i = v⌫0 in L1.

By the scaling property of G� (Lem. 3.7), and by dropping the remainder of the nonlocal term away from
(⌧0, z0) + ri Q, we have

��i
�
(⌧0, z0) + ri Q

�

rd
i

�
G
�i
�
ŝ�i ; (⌧0, z0) + ri Q

�

rd
i

= G
�i/ri

�
R(⌧0,z0),ri ŝ

�i ;Q
�
.

By Lemma 4.7 we can choose t 2 (0, 1) arbitrarily close to 1 so that, up to a subsequence, the �i-traces of
R(⌧0,z0),ri ŝ

�i on @(tQ) converge to v⌫0 in the sense of Definition 4.5. The cost decreases since the new cube is
smaller:

G
�i/ri

�
R(⌧0,z0),ris

�i ;Q
�
� G

�i/ri
�
R(⌧0,z0),ris

�i ; tQ
�
.

Using Proposition 4.11 we construct si
patched

which “extends” R(⌧0,z0),ris
�i to t⇤ ⇥ R ⌫0 by patching with

v⌫0 at distance t/2 away from the tangent hyperplane. Corollary 4.12 and the convergence of the �i-traces of
R(⌧0,z0),ris

�i to v⌫0 on @tQ \ {(⌧ � ⌧0, z � z0) · ⌫0 = ±t/2} shows that

lim inf
i!1

n
G
�i/ri

�
R(⌧0,z0),ris

�i ; tQ
�
+ G

�i(v⌫0 ; (t⇤⇥ R ⌫0)\tQ
�
� G

�i/ri
�
si
patched

; t⇤⇥ R ⌫0
�o

� 0.

We use Proposition 4.13(a) to further replace si
patched

by si
periodic

, a t⇤ periodic function of Rd+1. This does

not increase the cost due to the agreement of the �i trace limits along the boundary of t⇤⇥ R ⌫0,

lim inf
i!1

n
G
�i/ri

�
si
patched

; t⇤⇥ R ⌫0
�
� G

�i/ri
�
si
periodic

; t⇤⇥ R ⌫0
�o

� 0.

Since v⌫0 is constant on the components of (t⇤⇥ R ⌫0)\tQ, we have

G
�i(v⌫0 ; (t⇤⇥ R ⌫0)\tQ

�
= F

�i(v⌫0 ; (t⇤⇥ R ⌫0)\tQ
�
= 0.

Lemma 4.10 bounds the nonlocal defect for the periodic approximation si
periodic

so that

lim inf
i!1

n
G
�i(si

periodic
; t⇤⇥ R ⌫0

�
� F

�i(si
periodic

; t⇤⇥ R ⌫0
�o

� 0.

Again using the scaling Lemma 3.7, and Proposition 4.13 that allows us to assume that si
periodic

is continuously
di↵erentiable, we have

td L̄R

�
⌫0
�
 F

�i/ri
�
si
periodic

, t⇤⇥ R ⌫0
�

which concludes the proof for (a) after chaining together the inequalities and taking t close to 1.

At the initial time the argument is identical, except that when defining si
periodic

we must enforce that

si
periodic

2 X
init

R
(s0(z), s̄(0, z),⇤), i.e., that si

periodic
(0, x) = s0(z). This is also done by Proposition 4.13(b) by

patching with the constant function s0(z) in the domain t < 0 and shifting slightly forward in time so that
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si
periodic

(0, x) = s0(z) holds. The rest of the argument goes through exactly working on t⇤ ⇥ R+ ⌫0 where ⌫0
points forward in time.

At the final time we have (for Q� the intersection of the cube with the lower half plane and ⌫1 the unit-vector
in the negative time direction)

��i
end

�
(⌧0, z0) + ri Q��

rd
i

�
G
�i
�
s�i ; (⌧0, z0) + ri Q��

rd
i

+ r�d

Z

z+r⇤

⇣
g(x) ŝ�i(T, x) +

1

2�
�
�
ŝ�i(T, x)

�⌘
dx

= G
�i/ri

�
R(⌧0,z0),ris

�i ;Q��+
Z

⇤

⇣
g(z + ri y) ŝ

�i(T, z + r y) +
1

2�
�
�
ŝ�i(T, z + r y)

�⌘
dy.

At points of Lebesgue density of g, we can approximately replace g(z + ri y) in the line above with g(z). As
before we construct si

periodic
2 X

end

R
(s̄(T, z),⇤) in Proposition 4.13 (c), making sure to preserve

lim inf
i!1

�Z

t⇤

⇣
g(z)R(T,z),ris(0, x) +

1

2�
�
�
R(T,z),ris(0, x)

�⌘
dx

�

Z

t⇤

⇣
g(z) si

periodic
(0, x) +

1

2�
�
�
si
periodic

(0, x)
�⌘

dx
 
 0.

We arrive at, using again Lemma 4.10 to equate F
�i/ri

�
si
periodic

; t⇤ ⇥ R+ n1

�
and G

�i/ri
�
si
periodic

; t⇤ ⇥

R+ n1

�
,

lim inf
i!1

n
G
�i/ri

�
R(T,z),ris

�i ; tQ��+
Z

t⇤

⇣
g
�
z + ri y) s

�i(T, z + ri y) +
1

2�
�
�
s�i(T, z + ri y)

�⌘
dy

� F
�i/ri

�
si
periodic

; t⇤⇥ R+ n1

�
�

Z

t⇤

⇣
g(z) si

periodic
(0, x) +

1

2�
�
�
si
periodic

(0, x)
�⌘

dx
o
� 0.

We repeat the final scaling argument with

td V end
�
s̄(T, z), g(z)

�
 F

�i/ri
�
si
periodic

; t⇤⇥ R+ n1

�
+

Z

t⇤

⇣
g(z) si

periodic
(0, x) +

1

2�
�
�
si
periodic

(0, x)
�⌘

dx,

to conclude the claim of (c).

Proof of Theorem 4.1 part (i). Let s� as in the statement and choose a subsequence so that

lim
i!0

C�i(s�i , a�i) = lim inf
�!0

C�(s�, a�).

By Proposition 4.3 s�i has a subsequence (not relabeled) converging in L1((0, T )⇥ Td). Now the hypotheses of
Proposition 4.14 are satisfied and the conclusion of 4.14 is the desired conclusion of Theorem 4.1.

4.4. Proof of (ii) of Theorem 4.1 by an upper bound inequality

The di�culty in constructing the recovery sequence lies in approximating a general smooth interface locally
by flat interfaces. We follow the beautiful idea introduced by Alberti and Bellettini [46]. Essentially the concept
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is to reduce to the case of polyhedral sets, via a typical argument with a Reshetnyak Theorem [61], and then
prove the case of polyhedral sets by an inductive argument. We can mostly follow [46] until we come to the
point of “patching” neighboring cells at which point we reuse the ideas from Section 4.2.

Definition 4.15. An d+1-dimensional polyhedral set E in Rd+1 is an open or closed set whose boundary
is a Lipschitz surface contained in the union of finitely many a�ne hyperplanes. The faces of @E are
intersections of @E with one of those hyperplanes, edges points of E are boundary points which are in
multiple faces. The normal direction ⌫E is defined at all non-edge points.
A k-dimensional polyhedral set is a polyhedral set in a k-dimensional a�ne subspace or the closure of
such a set. Note that intersections of polyhedral sets in Rd+1 with k-dimensional a�ne subspaces are
k-dimensional polyhedral sets.
A polyhedral set in a domain ⌦ ⇢ Rd+1 is the intersection of a polyhedral set in Rd+1 with ⌦.
A function s 2 BV (⌦; {±s}) is called a polyhedral function if there is an d+1 dimensional polyhedral set
E which has @E transversal to @⌦, such that s = s1E � s1EC almost everywhere in ⌦. More generally
f 2 BV (⌦,R) is called polyhedral if there is a finite collection of disjoint polyhedral sets Ej so that
[Ej \ ⌦ = ⌦ and f is constant on each Ej .

Definition 4.16. We say that two sets E and F in Rd+1 are transversal if Hd(E \ F ) = 0.

We also make the following notation: given a set E in RN and � > 0 we call E� to be the set of points with
Euclidean distance at most � to E.

We may localize the limit energy V̄ from (3.17) on an open subset A ⇢ [0, T ]⇥ Td as

V̄ (s0, g, s̄;A) :=

Z

A0

[V init
�
s0(z), s̄(0, z)

�
dz +

Z

AT

V end
�
s̄(T, z), g(z)

�
dz +

Z

A\(A0[AT )
L̄
�
⌫(⌧, z)

�
dHd.

Now we construct the recovery sequence for polyhedral functions s0 and g.

Theorem 4.17. Let s̄ 2 BV ((0, T )⇥ Td; {±s}), s0 2 BV (Td; (�s, s)), and g 2 BV (Td;R) with |g|  1
2��

0(s)

be polyhedral functions. There are functions s� on [0, T ]⇥Td
with lim�!+0 ks

�(0, ·)� s0kL1(Td) = 0 and |s�|  s

so that s� ! s̄ uniformly on every compact subset of (0, T )⇥ Td
\ Jump(s̄) and

lim sup
�!+0

n
G
�(s�; (0, T )⇥ Td

�
d⌧ +

Z

Td

h
s�(T, z)g(z) +

1

2�
�
�
s�(T, z)

�i
dz �

Z

Td

1

2�
�
�
s0(z)

�
dz
o
 V̄ (s0, g, s̄).

Proof of Theorem 4.17. The proof is a direct adaptation of [46] until we reach the proof of (c) below, which
considers patching recovery sequences in neighboring domains.

Call � = Jump(s̄) [ {0}⇥ Td
[ {T}⇥ Td. Note that by definition � is a d-dimensional closed polyhedral set.

For a given � > 0, consider the class A of d+ 1-dimensional open polyhedral sets A in [0, T ]⇥ Td with the
following properties:

(i) @A and � are transversal.
(ii) There is a sequence of functions s� defined and continuous on A and a constant K � 1 (which may depend

on A) so that

s� = s̄ on {⇠ 2 A : d(⇠,�) > K�}, lim
�!+0

Z

(0,z)2A

|s�(0, z)� s0(z)|dz = 0, |@ts|  K��1, (4.16)

and

G
�(s�;A) +

Z

(T,z)2A

h
s�(T, z)g(z) +

1

2�
�
�
s�(T, z)

�i
dz �

Z

(0,z)\A

1

2�
�
�
s0(z)

�
dz  V̄ (s0, g, s̄;A) + �.
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A1 A3

t = T

Jump(s̄) A2

Figure 7. Example of a polyhedral decomposition so that each subregion is either of the type
considered in (a) or in (b).

Denote A1 tA2 to be the interior of A1 [A2. We prove that [0, T ]⇥Td
2 A by the following inductive steps.

(a) If A is a d+ 1-dimensional polyhedral set in ⌦ such that Hd(A \ �) = 0 then A 2 A.
(b) Let ⌃ be one of the following: a connected polyhedral subset of {T}⇥Td

\Jump(g), a connected polyhedral
subset of {0} ⇥ Td

\ [Jump(s̄) [ Jump(s0)], or a face of Jump(s̄). Let ⇡ be the projection map onto the
a�ne subspace containing ⌃. Suppose that A is an d+ 1-dimensional polyhedral set in [0, T ]⇥Td so that
� \A = ⌃ and ⇡(A) = ⌃. Then A 2 A.

(c) If A1, A2 2 A are disjoint then A1 tA2 2 A.

Since s̄ is polyhedral we can write [0, T ] ⇥ Td as a finite t union of polyhedral subdomains satisfying the
hypotheses of (a) or (b), see Figure 7. (For example, do a Voronoi type decomposition, and then add regions
of type (a) as necessary to achieve the projection hypothesis in (b).) In particular, even though constants K in
(ii) may increase by a finite factor at each union stage, there is no problem since there are only finitely many
such unions.

Note that once we have proven (a)–(c), since � > 0 was arbitrary, by a diagonal argument, we can find the
recovery sequence s�.

Proof of (a): In this case, s̄ is constant equal to either ±s in each connected component of A. In this case,
the recovery sequence is trivial s� = s̄. The nonlocal and Dirichlet parts of the energy are zero for constants,
and the double-well potential is zero on ±s so

G
�(s�;A) = 0,

H
d({0}⇥ Td

\A) = 0 so the initial data condition in (4.16) is trivially satisfied, and

Z

(T,z)2A

h
s�(T, z)g(z) +

1

2�
�
�
s�(T, z)

�i
dz = 0

because H
d({T}⇥ Td

\A) = 0.

Proof of (b): We divide into cases depending whether the flat interface ⌃ is in {0}⇥ Td, {T}⇥ Td or is a
face of Jump(s̄).

First suppose ⌃ is a face of Jump(s̄). Let ⌫ be the (constant) inner space-time normal to the a�ne plane
containing ⌃. From the definition of L̄(⌫), let ⇤ 2 ⌅⌫ and w be an element XR(⇤) (defined in (3.21)) with

|⇤|
�1

F
1(w;⇤⇥ R ⌫)  L̄(⌫) + �.

We fix some (⌧̄ , z̄) 2 ⌃ and let s�(⌧, z) := w
�
��1(⌧ � ⌧̄),��1(z � z̄)

�
. Note that since w 2 XR(⇤) the property

(4.16) is satisfied with K = R. Recall that XR(⇤) consists of C1 functions so |@ts�|  K��1 increasing K if
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necessary. The remainder of the argument is the same as [46], the �⇤ period cells tile most of ⌃ except for a
O(�)-neighborhood of @⌃ which has surface measure O(�) because ⌃ is polyhedral.

Next suppose ⌃ is a component of {T}⇥ Td
\ (Jump(s̄) [ Jump(g)). We fix some z̄ with (T, z̄) 2 ⌃, so then

s̄ takes a constant value either ±s on A, which we call s̄(A). Also g takes a constant value on ⌃, g(z̄). Let ⌫
now denote the normal-vector oriented in the negative time direction. From the definition of V end, we choose
⇤ 2 ⌅⌫ and w be an element X end

R
(s̄(A),⇤) (defined in (3.29)) with

|⇤|
�1
⇣
F

1(w;⇤⇥ R+ ⌫) +

Z

⇤

h
g(z̄)w(0, x) +

1

2�
�
�
w(0, x)

�i
dx
⌘
 V end(s̄(A), g(z̄)) + �.

Let s�(⌧, z) := w
�
��1(⌧ � T ),��1(z � z̄)

�
. As before we can conclude the compact support and time derivative

bound properties of (4.16) from the properties of the space X end

R
. Using the projection condition ⇡(A) = ⌃ and

tiling ⌃ with �⇤ period cells, up to an O(�)-error from the period cells intersecting @⌃ as before, we have

lim
�!+0

(
G
�(s�;A) +

Z

(T,z)2A

h
s�(T, z)g(z) +

1

2�
�
�
s�(T, z)

�i
dz

)


Z

⌃
V end

�
s̄(T, z), g(z̄)

�
dz + �|⌃|.

Finally suppose ⌃ is a component of {0}⇥Td
\ Jump(s̄) so again s̄ takes a constant value either ±s on A, call

that value s̄(A). Similarly, s0 is constant on ⌃ so we let s0(⌃) denote the value. From the definition of V init, let
R > 0, ⌫ be oriented in the positive time direction, ⇤ 2 ⌅⌫ and w be an element X init

R
(s0(⌃), s̄(A),⇤) (defined

in (3.25)) with

|⇤|
�1

F
1(w;⇤⇥ R+ ⌫)�

1

2�
�(s0(⌃))  V init(s0(⌃), s̄(⌃)) + �.

We similarly fix some (0, z̄) 2 ⌃ and let s�(⌧, z) := w
�
��1⌧,��1(z � z̄)

�
, then proceed as in the previous cases

to conclude.

Proof of (c) This is the point where we need new arguments. Essentially the patching procedure of
Proposition 4.11 is carried out again here, but with simpler boundary conditions we are able to make more
explicit estimates.

Given disjoint sets A1, A2 2 A set A := A1 t A2 and � := @A1 \ @A2. Note that � is contained in a
finite union of a�ne hyperplanes. By assumption, there are sequences s�

j
defined, respectively, on Aj satisfying

hypothesis (ii).
Define

s̃� :=

(
s�1 in A1

s�2 in A2.

We need to regularize s̃� across the interface @A1 \ @A2 at least in the time variable. For given r � �, let
⇣ : [0, T ] ⇥ Td

! [0, 1] a continuous cuto↵ function, which is 1 in an r-neighborhood of @A1 \ @A2 and zero
outside of a 2r-neighborhood with |r⌧,z⇣|  r�1. Let �� = ��(d+1)�(��1

·) be a standard mollifier at scale �,
and define

s� := ⇣��
⇤ s̃� + (1� ⇣)s̃�.

Note that, because s̃� is only defined in A1 tA2 we mean technically

��
⇤ s̃�(⌧, z) = Z(⌧, z)�1

Z

A1tA2

��(⌧ � u, z � y)s̃�(u, y) dy du
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with the normalization factor

Z(⌧, z) :=
1R

A1tA2
��(⌧ � u, z � y)dydu

.

Since A1 t A2 is a polyhedral domain, infA1tA2 Z(x, t) � c > 0 where the constant depends on the domain
Lipschitz property. Due to the hypothesis (ii) and its definition, the function s� is continuous in A1 [A2 with

|@ts
�
|  C��1 + Cr�1. (4.17)

As long as r � � this is bounded by C��1.
By hypothesis (ii) we know

s̃� ⌘ s̄ in A1 tA2 \ �(K1+K2)�

and so we can conclude

s� ⌘ s�
j

in Aj \ [�(K1+K2+1)� \�2r].

The mollification converges uniformly away from the jump set, which also implies convergence in L1 at the
initial time. Call K = K1 +K2. Then we have shown that s� satisfies (4.16) with the constant K.

Because � and � are finite unions of d-dimensional polyhedral sets which meet transversally,

|�K� \�2r|  C�r (4.18)

for some constant C depending on the sets but not on � or r.
Now we use this to compute the energy

G
�(s�;A1 tA2) +

Z

{T}⇥Td\(A1tA2)

h
s�(T, z)g(z) +

1

2�
�
�
s�(T, z)

�i
dz

 G
�(s�1 ;A1) +

Z

{T}⇥Td\A1

h
s�1 (T, z)g(z) +

1

2�
�
�
s�1 (T, z)

�i
dz

+ G
�(s�2 ;A2) +

Z

{T}⇥Td\A2

h
s�2 (T, z)g(z) +

1

2�
�
�
s�2 (T, z)

�i
dz

+ G
�(s�;�2r \ �K�) +N

�(s�;A1, A2).

We estimate the energy in the overlap region using (4.18). The double-well term is immediate usingW�([�s, s]) 
W�(0)

Z

�2r\�K�

1

�
W�(s

�) d⌧ dz  Cr.

The derivative term is estimated using (4.17) and (4.18)

Z

�2r\�K�

1

�
 0(� @⌧s

�)d⌧ dz  Cr.
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The nonlocal part of the energy is bounded similarly by (4.18)

N�(s�;�2r \ �K�,�2r \ �K�)  Cr

using the simple inequality

N
�(s,A,A)  C��1

|A|.

Finally for the nonlocal cross term we use Lemma 4.10 to find

lim sup
�!0

N
�(s�;A1, A2) = 0.

Combining the above we find

lim sup
�!+0

n
G
�(s�;A1 tA2) +

Z

{T}⇥Td\(A1tA2)

h
s�(T, z)g(z) +

1

2�
�
�
s�(T, z)

�i
dz
o

 V̄ (s0, g, s̄;A1) + V̄ (s0, g, s̄;A2) + Cr.

The transversality condition used again implies

lim sup
�!+0

n
G
�(s�;A1 tA2) +

Z

{T}⇥Td\(A1tA2)

h
s�(T, z)g(z) +

1

2�
�
�
s�(T, z)

�i
dz
o
 V̄ (s0, g, s̄;A1 tA2) + Cr.

We can also choose r ! 0 as � ! 0 to get (ii), actually r = � works.
While the construction may not satisfy |s�|  s, we may apply Lemma 3.6 to find an asymptotically equivalent

sequence that satisfies this property.

From Theorem 4.17 we can conclude the proof of Theorem 4.1 part (ii) by the density of polyhedral
sets/functions and the Reshetnyak continuity theorem. We just need to establish the upper-semicontinuity
of the surface energy density L̄(⌫).

Proposition 4.18. The maps L̄ : Sd
7! R and V init(·, s̄), V end(s̄, ·) : (�1, 1) ! R with s̄ 2 {�s, s} are upper-

semicontinuous.

Proof. Given a base direction ⌫0 2 Sd there is a mapping I : ⌫ 2 Sd
! SO(d) such that I(⌫)⌫0 = ⌫. Note that

for any d-dimensional periodic cube ⇤ in the orthogonal complement of ⌫0, the map O 2 SO(d) 7! |⇤|
�1

F
1(s �

O;⇤⇥ RO⌫0) is continuous for any fixed s 2 XR(⇤). Thus the formula

L̄(⌫) = lim inf
R!1

⇥
inf{|⇤|

�1
F

1(s � I(⌫);⇤⇥ R ⌫);⇤ 2 ⌅⌫ , s 2 XR(⇤)}
⇤

represents L̄ as an infimum of continuous functions of ⌫ 2 Sd, making it upper-semicontinuous.
The argument for V end is immediate using continuity of the integral for the terminal cost evaluation.
To prove upper-semicontinuity of V end(s̄, ·), we can simply consider a linear extension and compare costs.

For instance, fix s0,1, s0,2, R and ⇤. For s1 2 X
init

R
(s0,1, s̄,⇤) we can define s2 2 X

init

R
(s0,2, s̄,⇤) by

s2(t, x) =

(
(|s0,2 � s0,1|� t) s0,2

|s0,2�s0,1| + t s0,1

|s0,2�s0,1| t < |s0,2 � s0,1|

s1(t� |s0,2 � s0,1|, x) t � |s0,2 � s0,1|.

The cost is continuous with respect to s0,2, making V init upper-semicontinuous when we take the infimum over
R and ⇤.
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Proof of Theorem 4.1 Part (ii). Let s̄ 2 BV ((0, T )⇥Td; {±s}), s0 2 L1(Td; (�1, 1)), and g 2 L1(Td;R) be gen-
eral, not necessarily polyhedral, data. As a consequence of Theorem 1.24 in [62] (and approximation of smooth
functions by polyhedral ones), there are sequences of polyhedral functions s̄n, sn0 , and gn in the same spaces
and so that

(s̄n, sn0 , g
n) ! (s̄, s0, g) in L1 norm,

and also

Ds̄n
⇤
* Ds̄ and |Ds̄n|

⇤
* |Ds̄|

in duality with continuous functions. Furthermore, this convergence implies that

(s̄n(0, ·), s̄n(T, ·)) ! (s̄n(0, ·), s̄n(T, ·)) in L1 norm,

as shown in Theorem 2.2 of [63]. By Theorem 4.17, for each n there are functions s�,n with lim�!+0 ks
�,n(0, ·)�

sn0kL1(Td) = 0, lim�!+0 ks
�,n

� s̄k(L1((0,T )⇥Td) = 0, and

lim sup
�!+0

n
G
�(s�,n; (0, T )⇥Td

�
d⌧+

Z

Td

h
s�,n(T, z)g(z)+

1

2�
�
�
s�,n(T, z)

�i
dz�

Z

Td

1

2�
�
�
sn0 (z)

�
dz
o
 V̄ (sn0 , g

n, s̄n).

We may now consider a sequence s�n,n such that limn!1 �n = 0, and we will adjust the initial condition of
s�n,n so that it agrees with s0. This may be done by the linear interpolation

s̃n(⌧, z) = max{1�
⌧

�
, 0}s0(z) + min{

⌧

�
, 1}s�n,n(⌧, z).

Arguing as in the proof of Proposition 4.11, seeing that limn!1 ks�n,n(0, ·)� s0kL1(Td) = 0, we have

lim sup
n!1

n
G
�(s̃n; (0, T )⇥ Td

�
d⌧ +

Z

Td

h
s̃n(T, z)g(z) +

1

2�
�
�
s̃n(T, z)

�i
dz �

Z

Td

1

2�
�
�
s0(z)

�
dz
o

 lim sup
n!1

n
G
�(s�n,n; (0, T )⇥ Td

�
d⌧ +

Z

Td

h
s�n,n(T, z)g(z) +

1

2�
�
�
s�n,n(T, z)

�i
dz �

Z

Td

1

2�
�
�
sn0 (z)

�
dz
o
.

We may now conclude upper-semicontinuity of the limit

lim sup
n!1

V̄ (sn0 , g
n, s̄n)  V̄ (s0, g, s̄).

Using Proposition 4.18, L1 convergence of sn0 and gn at the initial and final times with Fatou’s lemma and
Egorov’s theorem we have the upper-semicontinuous limit for V init and V end. Again using Proposition 4.18,
and the well-known result of Reshetnyak that weak convergence of s̄n in BV combined with convergence of the
perimeter implies upper-semicontinuity of the surface area functional (see Thm. 1.3 of [61]).
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