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ABSTRACT

Sunlight is the predominant process for degrading plastics in the environment, but our
current understanding of the degradation of smaller, submicron (<1000 nm) particles is limited
due to prior analytical constraints. We used infrared photothermal heterodyne imaging (IR-PHI)
to simultaneously analyze the chemical and morphological changes of single polystyrene (PS)
particles (~1000 nm) when exposed to ultraviolet (UV) irradiation (A = 250-400 nm). Within 6
hrs of irradiation, infrared bands associated with the backbone of PS decreased, accompanied by
a reduction in the particle size. Concurrently, the formation of several spectral features due to
photooxidation was attributed to ketones, carboxylic acids, aldehydes, esters, and lactones.
Spectral outcomes were used to present an updated reaction scheme for the photodegradation of
PS. After 36 hrs, the average particle size was reduced to 478 £ 158 nm. The rate of size
decrease and carbonyl band area increase were -24 = 3.0 nm hr! and 2.1 £ 0.6 cm™ hrl,
respectively. Use the size related rate, we estimated that under peak terrestrial sunlight

conditions it will take less than 500 hrs for a 1000-nm PS particle to degrade to 1 nm.
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INTRODUCTION

Micro- and nanoplastics (MNPs) are emerging contaminants released from daily used goods such
as textiles,! plastic packaging,>* cosmetics,** and car tires.*” MNPs primarily originate from the
mechanical degradation of larger plastics from product use or exposure to environmental

stressors such as water, wind, and sunlight irradiation.® MNPs have become ubiquitous in air,”!°

1 11,12 3 8,14,15
2

soi surface waters,!> municipal wastewater, and drinking water.'®'® Consequently,
there is a growing concern regarding the potential environmental and health risks associated with
MNPs.®!” While MNPs are not currently known to cause acute fatal effects on organisms, they
are suspected to contribute to chronic toxicity, which is a significant concern in cases of long-
term exposure.

Exposure of MNPs to ultraviolet (UV) irradiation is the primary pathway for their
degradation in the ambient environment.?*2° Photodegradation of plastics happens either through
the direct breakdown of chromophoric groups via photolysis or indirectly through
photooxidation in the presence of oxygen, involving chemical reactions initiated by light
exposure.?! Following photodegradation, the changes to the physical-chemical properties of the
MNPs can influence their fate, transport, and toxicity in the environment.?® To date, research on
the photodegradation of plastics has mainly focused on larger macroplastics (>1 mm).?” Smaller
plastics are released during the degradation of macro-scale plastic products,44—47 but there is
limited understanding of what happens to the released particles when exposed to sunlight.?®
3IThis is especially true for plastics less than 1000 nm due to the lack of suitable analytical tools

capable of characterizing both chemical and morphological changes. Microscopic vibrational

techniques like Raman and Fourier transform infrared spectroscopy (FTIR) are commonly used
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for such analysis, but they are limited by spatial resolutions dictated by the optical diffraction
limit.**7® Micro-FTIR has a lower spatial limit of approximately 5 pm, while Raman, although
theoretically capable of a better resolution, is hindered by low scattering cross-sections. Here, we
introduce the use of photothermal heterodyne imaging (IR-PHI) as a tool to analyze chemical
and structural changes of submicron, or ultrafine, particles (<1000 nm) that occur during
photodegradation. IR-PHI is a super-resolution infrared absorption technique with a current
spatial resolution of 300 nm.*** Through the process of deconvolution, it can effectively
achieve a resolution of approximately 150 nm.*

In this study, IR-PHI was used to investigate the photodegradation of single particle,
submicron plastics exposed to UV irradiation (A = 250-400 nm). This study provides the first
proof-of-concept evidence for using IR-PHI to study the (photo)degradation mechanisms of

submicron polymer particles. We selected polystyrene (PS) particles as a representative model

45,46 24,47 28-31

submicron plastic due to their widespread use and the potential toxicity concerns.
We exposed PS particles (~1000 nm) to UV light and individually tracked and analyzed them
after 0, 6, 18, and 36 hrs of irradiation. IR-PHI provided simultaneous information about the
chemical and morphological changes of the particles. Two-dimensional correlation spectroscopy
(2D-COS) was used to deconvolute IR bands and identify spectral features. The outcomes of the
IR-PHI and 2D-COS analyses provided insights into the photodegradation mechanisms and
enabled the development of an empirical kinetic model. Our results underscore the utility of IR-

PHI as a tool to analyze MNPs at the single particle level, especially those less than 1000 nm,

and the capability to elucidate specific degradation mechanisms.
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MATERIALS AND METHODS

Sample Preparation. Spherical PS particles with a manufacturer reported average
diameter of 1100 nm were used for all experiments (Sigma-Aldrich, MFCDO00131491). The
manufacturer reported that the composition of the stock solution is 30% PS, >69% water, 0.1-
0.5% surfactants (Triton QS15 and Niaproof 4), and 0.2% inorganic salts (sodium bicarbonate
and potassium sulfate). Both unwashed and washed samples were analyzed, and similar results
were observed (see SI). All samples were prepared with ultrapure water (18.2 MQ—-cm) and
loaded onto IR-grade calcium fluoride (CaF>) optical windows (25.0 mm in diameter and 0.5 mm
in thickness, Crystran Ltd.). Before each experiment, the CaF» substrates were cleaned with
acetone and ultrapure water and then cleaned using a Harrick PDC-32G Plasma Cleaner to make
the substrate surface more hydrophilic. Oxygen plasma treatment of the substrate promotes
hydroxylation of the surface by hydrogenating surface oxygen atoms, making it more
hydrophilic so the liquid sample spreads evenly.* It is also important to promote even drying.
The PS solution for the experiments was prepared by diluting the stock solution with ultrapure
water to 1% V/V and then bath sonicated (Bransonic, M3800). Finally, 250 pL of the diluted PS
solution was pipetted onto the CaF; substrates and left to dry in a fume hood for at least 12 hrs.
No cross-contamination of the sample with MNPs from the surrounding environment during
drying was observed on control samples.

UV Irradiation. After drying, the PS sample was exposed to UV irradiation using a 300
W short-arc Xe lamp (Newport 66483-300XF-R22 housing and power supply; 6258 lamp). The
lamp housing was connected to a focusing lens assembly (Newport 77776) and a liquid light

guide (LLG) with a transmission range of 300-650 nm (Newport 77556). This range provides
6
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high-energy UV irradiation wavelengths emitted by the sun, and PS has a strong absorption at
318 nm.* Samples were placed approximately 5 mm from the LLG. The intensity spectrum was
measured at the surface of the sample slide using a calibrated spectrometer (AvaSpec-EEEE-2-
EVO) connected to a fiber optic (Figure SI-1). The light intensity and flux were 19224 uW nm
cm? and 2.59x10'7 photons s cm™, respectively, as calculated from the integrated area of the
spectrum. The flux was used to calculate the photon fluence (photons cm™) at each time point of
analysis (see SI for equations). Samples were irradiated in the dark for 36 hrs under ambient air
conditions. During the irradiation, the sample was removed at t = 0, 6, 18, and 36 hrs for analysis
by IR-PHI. Single particles were tracked using an etch mark made on the CaF, substrate. The
temperature during irradiation was maintained at 23 + 1 °C due to using the LLG, which
removes infrared wavelengths.

IR-PHI Analysis. The absorption of the infrared light [M2 FireFly, tunable pulsed
optical parametric oscillator (1040 to 1840 cm™) 20 kHz] was probed using an LED 532 nm laser
with a neutral density (ND) 1 filter.’® The PS sample was placed on a closed-loop piezo stage
(MadCityLab Inc, MCLS03475) and moved within a 300 x 300 pm? area limit at the selected
step velocity. Next, IR-PHI images were collected in a raster scanning fashion, where a diode-
pumped solid-state laser measured the sample’s absorbance at a selected IR frequency (1500 cm™
1. A large area (8 x 10 um?) containing particles of interest was first scanned at a step size of 0.2
um. Then, using the graphical user interface (GUI), the positions of particles of interest were
identified and used to define the magnified scanning area (3 x 3 um?) at a step size of 0.05
um/pixel. Last, individual infrared absorption spectra are acquired by positioning pump and

probe foci on individual particle positions and scanning incident pump wavelengths across the

7
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optical parametric oscillator’s tuning range. Each spectra data was normalized to the laser power
to account for any intensity contributed by the laser and then divided by the peak intensity at
1600 cm! as a reference®'* because it was not observed to change during irradiation. This
enabled comparison between spectra obtained at various irradiation times for different particles.
As a control, PS particles were analyzed for probe laser degradation by continuously exposing
non-UV irradiated PS particles to the probe laser with an ND1 filter for 24 hrs. No spectra
changes were observed with the ND1 filter; however, we did observe decreasing spectral features
when an NDO0.3 filter was used, so care should be taken with the choice of laser power and
exposure time when analyzing polymers.

For particles, the IR-PHI intensity has a Gaussian profile across the particle width, where
the corresponding full width at half maximum (FWHM) provides the approximate particle size.*’
To get the FWHM, the edge-to-edge profile of the raw images (intensity x pixel count) was first
obtained using Imagel. The pixel count was then converted to nanometers by multiplying the
size in pixels by the image step size (e.g., 50 nm/pixel). Finally, using OriginPro, the resulting
data were fitted with a Gaussian model and integrated to obtain the FWHM. This was repeated at
0, 45, and 90° profiles to get an average size for each particle. A resolution enhancement process
was used on all IR-PHI images for visual representation purposes. Specifically, the
'interpolate.interp2d' function from the SciPy>* Python library was used to double the image
resolution.

Two-dimensional correlation spectroscopy (2D-COS). Generalized 2D-COS was used
to deconvolute the IR spectra to identify new spectral features and to examine sequential changes

in the spectral bands. 2D-COS is a mathematical tool that interprets overlapping peaks of IR

8
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spectra by spreading the peaks over a two-dimensional array.> 2D-COS analysis was completed
in OriginPro using the built-in module. Synchronous and asynchronous plots were scaled using
Pareto Scaling.

XPS Analysis. The surface chemistry of the PS before and after UV irradiation was
characterized by X-Ray Photoelectron Spectroscopy (XPS; Kratos XSAM 800) at a pressure of
1.0 x 107 Pa, with non-monochromatic Mg Ka radiation. Survey spectra were acquired with a
pass energy of 100 eV and 25 eV for high-resolution spectra. The take-off angle for all
experiments was 90°. Spectra peak was fitted using OriginPro analysis software with Linear and
Shirley backgrounds. After subtracting the linear background, all spectra were fitted using 60%
Gaussian/40% Lorentzian peaks, taking the minimum number of peaks consistent with the best
fit. The binding energy scale was calibrated from C—C peaks at 284.8 eV. Carbon and oxygen
peaks were fitted without the constraint of peak width.

AFM Analysis. An atomic force microscope (AFM; XE-70 Parc System) was used to
obtain the size and morphology of single PS before and after UV irradiation. The AFM setup
was mounted on a Herzan TS-150 vibration isolation table to ensure accurate imaging,
effectively minimizing external vibrations during data acquisition. Non-contact mode imaging
was performed using cantilevers with a natural resonant frequency of approximately 300 kHz.
The scanning area for capturing AFM images was set to 4 x 4 um, with a scan size of 256 x 256
pixels. The scanning rate, maintained at 0.5 Hz, was carefully chosen to prevent any movement
of the spherical particles during imaging. In addition, image preprocessing for tilt correction was
applied to compensate for the gradient background resulting from substrate tilt. AFM images

were obtained at two time points: 0 and 18 hrs of UV irradiation. These images validated the

9
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results obtained from IR-PHI, providing additional confirmation of the observed morphological

changes.

RESULTS AND DISCUSSION

IR-PHI analysis of the photodegradation of PS single particles. Figure 2 shows the
IR-PHI analysis of three PS particles at # = 0 hrs (before irradiation). The IR-PHI spectra (Figure
1a) of the PS particles have major bands centered at 1444 cm™! [§(CH)+ v(Semicircle Ring) +
CHz], 1488 cm™ [§(CH)+ v(Semicircle Ring)], and 1600 cm™ [v(Quadrant Ring)], which
correspond with the characteristic bands of PS.°*° The region from 1650-1800 cm is
associated with carbonyl groups (C=0), and its presence is likely due to either oxidation or
minor contamination of the particle. The IR-PHI images (Figure 1b) confirmed the spherical
shape of the PS particles, and the measured sizes for Particles 1, 2, and 3 were 1162, 1192, and
1198 nm (1184 £+ 19 nm), respectively. These values closely correspond with the manufacturer’s

reported size of 1100 nm.
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Figure 1. (a) IR-PHI spectra of Particles 1, 2, and 3 at 0 hrs and (b) IR-PHI images of Particles
1, 2, and 3 at 0 hrs. Images were taken at 1500 cm™. The shaded gray area of the spectra in (a)
represents the IR region between 1650 and 1800 cm™. I, is the absorbance intensity at a select
frequency, Iieo0 is the absorbance intensity at 1600 cm™, and Im is the maximum absorbance
intensity at the frequency used to image. The “basketball” lines and “ring” observed in the IP-
PHI images are optical artifacts caused by scattered probe light diffraction.

The photodegradation of Particles 1, 2, and 3 was tracked for 36 hrs, and similar trends in
changes in size and chemical composition were observed for all particles. Particle 2, referred to
as the P2, was selected for discussion. Figure 2 shows IR-PHI analysis of P2 after 6, 18, and 36
hrs of UV irradiation. Throughout the irradiation, the major bands centered at 1444 cm™ and
1488 cm! were continually reduced, while several new bands formed between 1650 and 1800
cm’! (Figure 2a). This trend is due to the photodegradation of both CH and ring structures of PS
and the formation of C=O groups. A major reduction in the intensity of the band centered at 1600

cm’! was not observed, though the band region widened, indicating the formation of new spectral

features.
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Figure 2b shows IR-PHI images of P2 after UV irradiation. After 6, 18, and 36 hrs, the
average particle size decreased by approximately 29%, 35%, and 60% to 844 + 58, 767 + 74, and
478 + 158 nm, respectively. Additionally, the morphology of the particle changed from spherical
to oblong. The size and morphology reduction were confirmed with AFM (Figure SI-2). The
size reduction and shape change indicated photodegradation occurred, presumably driven by
polymer oxidation and chain scission, and this observation is synonymous with the
disappearance of IR bands at 1444 cm™ and 1488 cm™'.
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Figure 2. IR-PHI (a) spectra and (b) images of P2 after 0, 6, 18, and 36 hrs of UV irradiation.
Images were taken at 1500 cm™'. The shaded gray area of the spectra in (a) represents the IR
region between 1650 and 1800 cm™. I, is the absorbance intensity at a select frequency, Iiso0 is
the absorbance intensity at 1600 cm™, and In is the maximum absorbance intensity at the
frequency used to image. The “basketball” lines observed in the IP-PHI images at 0 hrs and the
“ring” effect observed at 6 hrs are optical artifacts caused by scattered probe light diffraction.

Identification of Photodegradation Products and Mechanisms. XPS analysis of the
Cls region for PS after UV irradiation for 0 and 36 hrs confirmed the formation of C=O groups

(Figure 3). Before irradiation (Figure 3a), three peaks were present in the Cls, corresponding to

12



222 the C-C/C-H (285.6 ¢V) and C=C (284.7 e¢V). The n-n* shake-up satellite at 291.2 eV is from
223 the C=C in the styrene rings.*¢! After 36 hrs of irradiation (Figure 3b), C=C reduced, C-C/C-H
224 increased, and a new peak formed at 289 eV, assigned to C=0."' These changes observed by
225  XPS correlate to the IR-PHI spectra (Figure 2). The reduction of C=C suggests degradation and
226  mass loss are occurring through a ring opening step that leads to radical formation, which reacts
227  with photons, oxygen, and other groups in the PS structure to form low molecular weight
228  products (e.g., carboxylic acids).> Assuming the lower molecular weight products will further
229  degrade and volatilize (e.g., carbon dioxide), C=C degradation supports the observed particle

230  size reduction observed in the IR-PHI images (Figure 2).
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232 Figure 3. XPS analysis of PS after (a) 0 (b) 36 hrs of UV irradiation for the Cls region. The
233 dotted line indicates the experimental data and the colored regions show the fitted peaks.
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In the IR-PHI spectra (Figure 2), the bands centered at 1444 and 1488 cm™ are attributed
to the semicircle vibrations of the styrene ring, whereas 1600 cm™ is attributed to the quadrant
circle vibrations of the ring.?’ After 36 hrs of UV irradiation, 1444 and 1488 cm™! were reduced
significantly, yet the intensity at 1600 cm™ remained mostly unchanged. The loss of the
semicircle vibration in the ring suggests its frequency was coupled to the degradation of the
backbone, whereas the stable quadrant ring vibration suggests that several byproducts still
contained the styrene ring. Concurrently, these reactions led to the formation of several new
bands in the carbonyl region between 1650 and 1800 cm™', as illustrated in Figure 4a. Some of
these bands have been identified in previous studies on the photodegradation of
PS.20:25:45.49.51.36,58.62-79 The 2D-COS asynchronous plot was used to deconvolute and identify
C=0 bands between 1650 and 1800 cm™ (Figure 4b). Several bands were identified, including
1654, 1665, 1674-1677, 1684, 1694, 1701, 1709, 1714-1717, 1720, 1728-1732, 1742-1744,
1751, 1757, 1760, 1770, 1774-1778, 1780, 1783-1786, 1791, and 1798 cm™. Table SI-1
summarizes the band positions and their possible assignments. The assignments broadly cover

ketones, acids, quinones, aldehydes, esters, and lactones and include o,B-unsaturated ketones,

acetophenone, benzoic acid, muconic aldehyde, acetic, formic, and other small carboxylic acids.
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Figure 4. (a) IR-PHI spectra for the carbonyl region (1650-1800 cm™") after 36 hrs of irradiation
for P2. I, is the absorbance intensity at a select frequency, and Iis00 is the absorbance intensity at
1600 cm™. (b) 2D-COS asynchronous plot for 1650-1800 cm™'.

The photooxidation reaction pathway of a polymer includes chain initiation, chain growth

(propagation), radical chain branch formation, and chain termination.’’*> In Figure 5, we

propose an updated scheme for the photodegradation of PS, using outcomes of this study and

1'80 1'81

building from the work of Gardette et al.®” and Ranby et al.®" Overall, the photodegradation of
PS leads to the production of free radicals, scission of polymer chains, production of small
molecules, and, ultimately, reduction of the polymer’s molecular weight.?>#8%83 n the presence
of oxygen (O2), photolysis of PS can be initiated through the styrene chromophore that absorbs
UV photons (< 290 nm),**%37 or via a charge transfer complex between oxygen and PS.®* The
excited species then reacts with PS to abstract an H and forms a PS alkyl radical (PSe; green
color). Alternatively, the excited PS can react with O to form singlet oxygen (10,), which then

reacts with PS to produce PSe. The PSe reacts with O> to form the PS peroxy radical (PS-OOs;

red color). The peroxy radical then abstracts an H from an adjacent PS chain to form PS
15
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hydroperoxide (PS-OOH) and another PSe, which will then react to form more PS-OOH. The
PS-OOH directly photolyzes at 313 nm?’-® to form the PS alkoxy radical (PS-Os, blue color) and
a hydroxide radical (*OH). The concentration of PS-OOH eventually becomes the predominant
absorber of incident radiation, and the photodegradation of PS-OOH becomes the predominant
reaction.?’

There are several possible pathways of degradation for PS-OO¢ and PS-Oe. PS-OO- can
be directly photolyzed to hydroxyphenyl anones and CH> or CH>CH3 radicals, which is evident
from the loss of IR peaks at 1450 cm™ and 1500 cm™. It can also be photolyzed to form water
and an alkoxy radical, which then abstracts an H from a neighboring PS to form PSe and 2-
phenylbut-3-en-2-ol. PS-O¢ can undergo scission at the a-carbon or react with PS.%” The scission
can occur at the C-CHz and form an end-chain acetophenone (1690 cm™), which then either
photolyzes to form acetophenone (1690 cm™) or several products including benzaldehyde (1704
cm™), benzoic acid (1698/1732 cm™), benzoic anhydride (1725/1785 cm™), and chain-end
ketones (1725 cm™). The latter can further photolyze to form chain-end acetic acid (1710/1753
cm™) and acetic acid (1710 cm™). These reactions would also result in the loss of CH groups.
Acetophenone will photolyze to eventually form formic acid (1710 cm™). The scission can also
occur at the C-Ph and form a chain-ketone, which would undergo a Norrish reaction®-” to form
PSe and benzene. If PS-Oe¢ reacts with PS, it will abstract an H to form PSe and phenyl alcohol,
which will further react with photons, O2, *OH from the PS-OOH degradation to quinones (1665

cm™), lactones (1780-1798 cm™), and lower molecular weight byproducts.
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Figure 5. Proposed reaction scheme for the photodegradation of PS.
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Kinetics. The depth of penetration for UV light through polymers tends to be much
greater than the 1-um size of the particles used in this study.’’** Thus, the photodegradation of
the particles were presumably not strictly a surface phenomenon. The IR-PHI spectral results
support this notion because peaks at 1444/1488 cm™' continued to disappear rather than stay
steady, as would be expected as surface layers are degraded and bulk material is exposed.
Regarding the kinetics of photodegradation, the formation of several byproducts simultaneously
(i.e., Figure 4) makes it difficult to propose reaction pathways or determine specific rate laws.
Hence, empirical kinetic models using the carbonyl region and particle size were more
appropriate for identifying general trends. Figure 6 shows the average area of the carbonyl
region (i.e., from 1650 to 1800 cm) and the average particle size for P1, P2, and P3 as a
function of the irradiation time at 0, 6, 18, and 36 hrs. The time points correlate to photon
fluences of 0, 5.60, 1.68, and 3.36 photons x 10*! cm™, respectively. The average carbonyl band
area inversely correlated with the average particle size, confirming that the formation of
byproducts containing C=0 groups was ultimately responsible for the photodegradation of the
PS and the corresponding decrease in size. A linear model was fitted to each dataset to obtain an
approximate rate. The rate of size decrease and carbonyl band area increase was -24 + 3.0 nm hr”
Uand 2.1 £ 0.6 cm™ hr'!, respectively. We can use the rate of size change to estimate the
approximate time it would take to photodegrade the particle N%. Assuming a peak sunlight
intensity in the UV region of approximately 3000 pW c¢cm™ (Solar Constant of 1380 W m™ / 1.38
atmospheric correction x 3% UV), the UV intensity of this study was roughly 6.4 times greater
than peak sunlight. If all the UV photons of terrestrial sunlight participated equally in the

photodegradation of a 1000 nm PS particle (i.e., a photon at 250 nm is the same as one at 400
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312  nm), then the time required to reduce the particle to 1 nm at peak irradiation (noontime, summer)
313  would be ~265 hrs. Thus, while microplastics are expected to be long lived in the environment,

314  this calculation suggests that submicron plastic particles will have a comparatively short lifetime.
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316  Figure 6. Average area of the carbonyl band (left axis) and average particle size (right axis) as a
317  function of time for P1, P2, and P3. The data was fitted with a linear function, with R?> = 0.94 and

318  0.84 for the carbonyl area and particle size, respectively. The carbonyl band area was relative to
319 1600 cm™! (i.e., L/T100).
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The supporting information is available free of charge at XXXX.
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result, additional IR-PHI figures, washed PS IR-PHI spectra, and washed PS kinetics plot.
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