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We establish effective versions of Oppenheim’s conjecture for generic inhomogeneous
quadratic forms. We prove such results for fixed quadratic forms and generic shifts. Our
results complement our previous paper [13] where we considered generic forms and fixed
shifts. In this paper, we use ergodic theorems and in particular we establish a strong
spectral gap with effective bounds for some representations of orthogonal groups, which

do not possess Kazhdan's property (7).

1 Introduction

Let Q be a quadratic form on R"” and let « be a vector in R™. Define the inhomogeneous

quadratic form Q, by
Q,(v) = Q(v + «) for any v € R",

where we think of Q, as a shift by « of the homogenous form Q. The inhomogeneous form

Q, is said to be indefinite if Q is indefinite and non-degenerate if Q is non-degenerate.
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Finally, Q,, is said to be irrational if either Q is an irrational quadratic form, that is, not
proportional to a quadratic form with integer coefficients, or « is an irrational vector.

The famous Oppenheim conjecture admits a natural variant for inhomogeneous
forms. Namely, it follows from the work of Margulis and Mohammadi [28] (who obtained
a more quantitative result on the density of such values) that for any indefinite, irra-
tional, non-degenerate inhomogeneous form Q, in n > 3 variables, Q,(Z") is dense in R.
However, inhomogeneous quadratic forms have attracted considerable attention earlier;
we refer the reader to J. Marklof's important works [26, 27] on their pair correlation
density for example. In this paper, we are concerned with the question of effectivity,
namely, for a given Q,,£ € R and ¢ > 1 large: how small can |Q,(v) — &| get for v € Z"
with ||v| < t bounded? This is a notoriously difficult problem intimately connected
with questions of effectivity in homogeneous dynamics and has received considerable
attention recently. We refer the reader to [13] for a relatively comprehensive account of
the work that has been done on homogeneous forms [1, 5, 6, 10-12, 21, 22, 25] and on
inhomogeneous forms [33].

In a previous paper [13], we considered this question for generic inhomogeneous
forms. There is a natural measure on the space of forms (of a fixed signature and
discriminant) and using a second moment formula for Siegel transforms, it can be shown
[13, Theorem 1.1], that for any « < n — 2, almost all indefinite forms in n variables, and

almost all shifts & € R", the system of inequalities

1Q,(v) =&l <t™*, |vl=t (1.1)

has integer solutions for all sufficiently large ¢t. The main result of [13] addresses the
much more difficult problem of effectivity for fixed shifts and generic forms. More
precisely, by proving a second moment formula for congruence groups, we showed that
the same result as above holds for any fixed rational « € Q™ and almost all indefinite
forms. In fact, we obtain a counting result [13, Theorem 1.2] when the shift is rational.
For fixed irrational shifts, we obtain weaker bounds.

In this paper, we study the complementary problem of a fixed indefinite form
Q, and almost all shifts «. For this problem, we have the following result for rational

forms.

Theorem 1.1. For any rational indefinite form Q in n variables and any £ € R, there
is ky > O (depending only on the signature of Q) such that for any « < «, for almost all

a € R” the system of inequalities (1.1) has integer solutions for all sufficiently large ¢.
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Our proof gives the following explicit values for «;, depending only on the

signature of Q

.9 =21
p.gg=mn-1,1),n>4
k=12 ®9=(@22

3/2 (p,q) = (4,2) or (3,3)
5/2 (p.q@) =(6,3),

while for all other signatures p > g > 1 with p + g = n we have «y = 2«x;q(p — 1) with

% n =0 (mod 4)
1 _
o = 7=1 n =1 (mod4)
ﬁ n =2 (mod 4)
n+r1 n =3 (mod 4).

Remark 1.2. For n = 3,4, our method gives the optimal bound «; = n — 2. However,
in general when n > 5 our result is not as good as what we have for generic forms. For
example for signature (n — 1, 1) we have «; = 2, which is much smaller than the expected
rate of n — 2, which holds for generic forms. For large values of n, our bounds are best
when p = g (or p = g+ 1) in which case we get «; is roughly n/2, which is still about half

the expected value.

The method we use for this problem is completely different from the one used
to study generic forms. Here we reduce the problem to a shrinking target problem for
the action of a semi-simple group acting on a homogeneous space, and then rely on an
effective mean ergodic theorem to study the shrinking target problem. This is similar
to the approach taken in [10] and also in [11, 12]. In order to outline the general idea
and also explain where the exponents are coming from, we need to introduce some more
notation.

For Q an indefinite quadratic form, let G = SOB“(R) denote the connected
component of the identity in the group of linear transformations preserving Q, and note
that for a rational form Q we have that the set of integer points I' = SOZ(Z) is a lattice
in G [4]. Using the natural embedding of G in SL,(R), we get a natural action of G on R"
and we may consider the semi-direct product G = G x R”. We note that ' = I' x Z" is a
lattice in G and that there is a natural left action of G on G/I" preserving the probability

Haar measure mg, thus giving a unitary representation of G on the space L%(G/T). Our
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first step is to reduce the problem of approximating a target & by values Q(v + «) to
a shrinking target problem for the action of G on G/I". Using the results of [11], we can
further reduce this problem to obtaining an appropriate effective mean ergodic theorem.

For any f € L?(G/T') and growing measurable subsets G, C G, consider the

averaging operator

fg %) dmg(g), (1.3)

ﬂcf(X) =

me(Gy) Je,

where m, denotes the probability measure on G/I" coming from Haar measure of G.

From [11], having an effective mean ergodic theorem of the form

valid for all f € L%(G/T') has very strong consequences for shrinking target problems for

<c Il ,
mg(Gy«

ﬂcpf_/é/l:fdmé

2

the action of G on G/T. In fact, we will show that in our case, it is enough to have such
a result for functions in the smaller space L%O(f}/f“) of all functions whose average over
R™/Z" is zero in L?(G/T"). As will become apparent below, this refinement is crucial in
order to get uniform bounds for signatures (n — 1, 1) and (2, 2). More precisely, we will

show that Theorem 1.1 follows from the following.

Theorem 1.2. Let Q be an indefinite rational form of signature (n — q,q) and let
Ky = W with «, as above. There is a family of growing norm balls G, € SOJ&(R)
of measure mg(G,) >» t4"~97Y such that for any « < «; and for any f € L%, (G/T) we

have that

If 1l

meq (G~ '

[Bef 1, <

where the implied constant depends only on «.

For the proof of Theorem 1.2, we will exploit a general spectral transfer principle,
described in [29], giving explicit bounds on the exponent «; in the mean ergodic theorem
in terms of the strong spectral gap of the corresponding representation. This further
reduces our problem, to obtaining effective bounds for the strong spectral gap for
the representation of G on the space L%O(G‘/f‘), which is a problem of independent

interest.
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The strong spectral gap of a unitary representation n is controlled by the
parameter p(x) > 2, which can be defined as follows. We say that a unitary representation
7 of G on a Hilbert space H is strongly LP if the functions g — (7 (g)v,v) are all in LP(G)
for a dense set of vectors v in H. The parameter p(r) is then the infimum over all p > 2
for which n is strongly LP. We note that a unitary representation n is called tempered if
p(r) = 2.

When the group G has Kazhdan's property (T), there is a uniform bound p(G) such
that p() < p(G) for all nontrivial irreducible unitary representations of G [8]. Moreover,
it was shown by Wang [34], that there is a constant p(@)0 such that p(7) < p(f,-’)0 for any
representation 7 = 7|, with 7 a unitary representation of G = GxR", with no nontrivial
R"-invariant vectors. Indeed, Wang studied this question in a much greater generality
of a simple linear group acting linearly on a Euclidean space with no nontrivial
fixed points.

For any finite-index subgroup I' < SOE(Z), we let 7y denote the representation of
G on Lgo(é/f‘) and let p(f‘)0 = p(ny). Since 7y is the restriction of a representation of G

with no nontrivial R™-invariant vectors, we get the hierarchy

p(D)y < p(G)g < P(G).

When G has property (T), the work of [24, 30, 31] gives very good bounds for p(G)
(which are shown in many cases to be sharp). However, much less is known regarding
the values of p(C’—)0 and p(f‘)o. For the special case when G = SOE(R) with Q of signature
(2,1), it follows from a classical result of Kazhdan [18] that any unitary representation
of G = SO/ (R) x R® with no nontrivial R3-invariant vectors is tempered, implying the
optimal bound p(f})0 = 2. Going beyond this case, the method of Wang [34] produces
explicit upper bounds for p(G), in quite great generality. However, these bounds are
usually far from optimal (in particular, when G has property (T) the known bounds for
p(G) are usually better). It is thus an interesting problem to give sharp bounds for p(G),
and p(f“)o.

Our first result in this regard is the following lower bound for p(f‘)O (and hence
also for p(@)o), for G = SOZ(R) with Q an indefinite rational form and I' = SOZ(Z),

showing that in most cases these representations are not tempered.

Theorem 1.3. For Q an indefinite rational form of signature (n — q, q) with 2q < n, let
G = SO} (R) and I' = SO[;(Z) and let G = G x R® and ' = I' x Z" be as above. With the
exception of signatures (2,1), (3, 1), (2,2), and possibly (3, 2), the representation of G on
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Lgo(@—/f‘) is non-tempered. Moreover, we have the following lower bounds:

n—2 Q of signature (n — 1,1) withn > 4
p(Mg>1 n—q—2—j Q of signature (n—q, q) with 1<g<% and j = n—qg—2 (mod 4)
n—q—1—j Qofsignature (q,q) andj=n—q—1 (mod 4).

Here j € {0, 1, 2,3} and in the last two cases we actually have a strict inequality.

In terms of upper bounds, when G has property (T), we could not improve over
the general bounds for p(G). Our new results in this regard are for forms of signature
(2,2) and (n — 1, 1). Our first result is an optimal upper bound for forms with signature

(2,2), analogous to Kazhdan's result for signature (2, 1).

Theorem 1.4. Let Q be a rational form of signature (2,2), let G = SOE(R), and let G =
G x R*. Let 7 = 7|; with 7 a unitary representation of G without nontrivial R%-invariant

vectors, then 7 is tempered.

Next we consider a form Q of signature (n — 1, 1) and as before G = Sog(R) and
G = G x R™. Here, a refinement of the general argument of Wang (see [34, Example 4
) implies that p(f})o < 2(n — 2). We conjecture that the correct bound in this case is
p(@)0 = (n — 2). As evidence for this conjecture, we prove it for the representations of G

on Lgo(@/f) (which is what we need for our application).

Theorem 1.5. Let Q be a rational form of signature (n—1,1) withn > 4,let G = SOE(R),
and let G = G x R" be as above. For any finite-index subgroup I' < SOE(Z), we have
p(f*)0 =n-2.

Remark 1.4. It is interesting to compare this result to the analogous result on the
spectral gap p(I') of the representation of G on L?(G/T"). When I is a congruence group,
the Selberg-Ramanujan conjecture states that p(I') < max{2,n — 2} for any congruence
group I' < SO (Z), whereas the best known bounds towards this conjecture are currently
p) < g—‘é for n = 3,4 [2, 20], while for n > 5 the conjectured bound was proved in [3].
These bounds no longer hold for general finite-index subgroups I' < SOZ(Z), as there are
constructions of finite-index subgroups I' < SO/, (Z) with p(I') arbitrarily large. This is
very different from our current case, where the bound for p(f‘)O holds for all finite-index

subgroups (which is compatible with our conjecture that p(@)0 =n — 2 in this case).
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Finally, as further evidence for our conjecture, we prove the following theorem

reducing the conjecture to the case of signature (3, 1).

Theorem 1.6. If p(G), = 2 for G = SO*(3, 1) then p(G)y = n—2 for G = SO (n—1,1) for

all n > 5.

2 Preliminaries and Notation
2.1 Notation

Letn =p+q>3withp >qg>1.Let Q be anon-degenerate quadratic form of signature
(p,q). Then Q can be represented by a unique invertible symmetric matrix J € M, (R)
in the sense that Q(v) = vJv* for any v € R", where v* denotes the transpose of v. Let
G= SOZ (R) denote the connected component of the identity inside the special orthogonal
group preserving Q. We use the notation A « B as well as A = O(B) to indicate that
there is some constant ¢ > 0 such that A < c¢B. The constant may depend on n that we
think of as fixed, if we want to emphasize the dependance of the constant on various
parameters we will indicate it with a subscript. We also use the notation A =< B to mean
that A €« B < A.

2.2 Coordinates

For some calculations, we will need to work with explicit coordinates. Since, for any
form of signature (p,q), the group SO,(R) can be conjugated in SL,(R) to the group
SOq,(R) with

p n

Qo) =D vi— > v, (2.1)
i=1 i=p+1

it is enough to consider the case of Q = Q. The group G has a polar decomposition

G = KATK with K a maximal compact subgroup and A" the positive Weyl chamber

in the Cartan group A. Explicitly, for G = SOJé0 (R), we can take the maximal compact

subgroup
k
K= [k:( 1 y ) |k, € SO, (R) and k, € SOq(R)},
2

and the Cartan group A = exp a with

a = {H = diag* (hy,...,h 0,...,0,hq,...,h1)|hieRfor1§i§q},

q’
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where diag*(t,,t,, ..., t,) denotes the anti-diagonal matrix with the (n—1i, i)th entry given
by t;. Moreover, the positive Weyl chamber a* can be taken such thatif p > gthen H € a*
ifhy >hy>--->h,>0,andifp=gqthen Heatifhy > hy > --- > h,_; > |h|.

We can now describe the Haar measure m of G as follows (see [19, Proposition
5.28)): for any g € G writing g = k, exp(H)k, with k;,k, € K and H € a', then up to a

normalizing factor

dmg(g) = [] sinh(h; —hjsinh(h; +h) [] sinh(r)P~9dk,dHdk,,  (2.2)

1<i<j<q 1<i<q

where dk is the probability Haar measure on K = SO, (R) xS0, (R) and dH is the Lebesgue
measure on a (identified with R9).

For the case of signature (n — 1, 1), we will need to make some explicit calcula-
tions, so we give some more details on this decomposition. In this case, we have the polar
decomposition G = KATK with

K={k=(¥ ) |K €S0, (R)} and A" = ’at = (COShtInz Sinht) It> o].

sinh ¢ cosht

Let M = SO,,_,(R) be the centralizer of A in K, namely
1
M={m=("m 1) |m' €50, ,(®)].

It was shown in [32, Lemma 2.1 and Proposition 2.4] that any k € K can be written as

k =m,k,m,, where m; € M and
cosf sin@
kg = (—sin@ cosf ) (2.3)
In-2

for some uniquely determined 6 € [0, x], and that with this decomposition, the Haar

measure dk of K is given (up to a normalizing constant) by
dk = (sin#)"~2 dm,dodm,. (2.4)

2.3 Norm balls

We denote by | - || the Euclidean norm on R"” and using the natural embedding of G =
SO?E(R) € SL,(R) € GL,(R) welet ||- lop denote the operator norm on G. Using the operator
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norm, we define the norm ||g|| = |g~* ||Op and we use it to define the growing norm balls
Gr={g€Gllgl =T} (2.5)

Remark 2.6. This choice of norm is convenient for what follows but is not essential.
Note that for g € SO, (R) we have that g~! = Jg*J~! implying that g~ o, =< lIgllop-
We can also use the Hilbert-Schmidt norm instead of the operator norm, noting that
both the Hilbert-Schmidt norm and the operator norm are bi-O,, (R)-invariant and that

Igllas = I19llop for all g € GL,, (R).

The volume of such norm balls was computed (in greater generality) in

[16, Corollary 1] and satisfy that there is T; depending only on n such thatforall T > T
ms(Gyp) =< (log T)’paTdP=1), (2.7)

where ‘Sp,q is the Kronecker delta function, that is, 5p,q =1ifp =qgand 5p,q = 0 otherwise.
We also note that since the identity matrix satisfies ||I|| = 1, from the continuity of the
norm for any T > 1, the set Gy contains some neighborhood of the identity, and hence
mg(Gr) > 0 for all T > 1. Finally, for later use, we note that when G = SOZ0 (R) with Q,

of signature (n — 1, 1), we have that for any T > 1
Gp = {kak; | k;, k, e Kand 0 < t <logT}. (2.8)

3 Reduction to an Effective Mean Ergodic Theorem

In this section, we will perform several reductions to the problem and we will assume
throughout this section that Q is a rational form so that I' = SOZ(Z) is a lattice in G =
SOZ(R). First we reduce the problem to a shrinking target problem for the action of I' =
SOE(Z) on the torus T" = R"/Z" (such problems were studied in detail in [9]). Next, we
further reduce the problem to a shrinking target problem for the action of G on the space
G x R"/T x Z". Finally, we show how this second shrinking target problem follows from

an appropriate effective mean ergodic theorem.

3.1 Reduction to a shrinking target problem for I'-action

Since I' = SOE(Z) is naturally embedded in SL, (Z), it acts on the torus T" = R"*/Z". We
call a family, {A4,};., of subsets of T" a family of shrinking targets if A, € A, for all
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t>s,m(A,;) >0forallt > 0and m(4,) — 0ast — oo (where dm stands for Lebesgue

measure).

Lemma 3.1. Assume that there exists some «x; > 0 such that for any « < «, for any
family of shrinking targets {4,},., in T" with m(4,) > t™*, for almost every « € T" and
for all sufficiently large t, there is y € I" with ||y || < ct and ay € A, for some ¢ > 0. Then
for any « < kg, for almost every « € R", and for all sufficiently large ¢, there is v € Z"
with |Q(v+a) —&| <t ™ and ||v] < t.

Proof. Fix« < kyandlet«’ € (k,xq). Let
Ay ={xeR"||x|| <N, |Qx) — & <€}.

Then by [22, Theorem 5], we have m(Ay ) = 2c4eN™ %(1 + Oy (N~'/2)) and in particular
there is some N, (depending only on Q and &) such that m(Ay, .) =y, € for all € € (0, 1).
Since N, is fixed, the set ANO,E is contained in finitely many fundamental domains for T"
(with the number of fundamental domains uniform in ¢ € (0, 1)); so denoting by A, the

projection of A  to T", we still have that m(4,) < t

Np,t=*¢
Now by assumption, for almost every « € T" and for all sufficiently large ¢, there

is y e ' with ||y|| < ct and ay € A,. Hence for almost every o € R" and for all sufficiently

1

large t, thereis y € ' with ||y|| <ctand u € Z" withx =ay +u cA €

Z™ then since y € I' = SO (Z), we have that

Not—«' - Letv=uy™

Qv +a)=Qy +ay) =0(x),

so that |Q(v + «) — €| < <. We can thus estimate for all ¢ sufficiently large

-1
[

IVl = luy 1 = llxy " +all < Nolly " llop + lll < Noct + 1 < 2cNyt.

Hence, replacing 2cN,t by t, we get that for almost every o« € R” for all sufficiently large
t there is v € Z" with ||v| < tand |Q(v+a) — &| < (t/ZCNO)_K/ <t~ [ |
3.2 Reduction to shrinking target problem for G-action

We now show that the shrinking target property we need for the I'-action follows from an

appropriate shrinking target property for the action of G = SOE(R) on the space G/T" with
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G =GxR"and ' =T x Z" (here the group law on G is given by (h, )(g, v) = (hg,ag + v)
for any (h,®),(g,v) € G).

Lemma 3.2. Let A, C T" be a family of shrinking targets and let A, < [0, 1]" be sets
whose projection to T™ equals A,. Let 7 C G be a fixed fundamental domain for G/T
containing the identity element. Fix a small constant ¢ > 1 and consider the sets B, =
{(g,a) € G | ge F, gl <cuace At} in G, and let B, C f;/f‘ denote the projection of 1§t to
G/T.If for a.e. x € G/T and for all sufficiently large t, there is g € G, with g7'x € B, then
for a.e. « € T" and all sufficiently large t, there is y € I' with ||| < c®t and ay € A,

Proof. Since we assume that the set of x € G/I" such that for all sufficiently large t there

is g € G, with g7'x € B, is a set of full measure, by unfolding we also have that the set

S={ha)eG|Ity>1st.Vt>ty3geG,yel,meZ st (g}, 0)(h a)y, m)cB,l,

is a set of full measure in G. In particular, if @C ={(h,0) € G| |h!|| <c}, thenS = SN f}c
is of full measure in G,. Moreover, since ¢ > 1, the set {h € G | [[h™!|| < c} has positive
measure. Hence, for almost every o € R", there exists some h € G with ||h~1|| < ¢, for
which (h,a) € S, that is, for all sufficiently large ¢ thereis g € G,,y € ' and m € Z"
such that

(9 'hy,ay +m) € B,.
For such a pair (h, ), we have that |g~'hy| < cand |h~!| < cso
= [ ag~ | = 5 gl o~ b | = 2t

and that oy +m € A, so that ay + Z" € A,. We thus showed that for a.e. « € T" and for
all sufficiently large t there is y € I' with |y|| < c¢?t such that ay € A, concluding the
proof. |

3.3 Reduction to an effective mean ergodic theorem

Given a measure preserving ergodic action of a noncompact, locally compact group G on
a probability space (X, my), the mean ergodic theorem states that for any growing family

of subsets G, of G, the averaging operator on L?(X) given by

fg %) dmg(g), (3.1)

ﬂGJ(X) =

me(Gy) Jo,
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satisfies that || f — [f dmyll, — 0 as mg(G,) — oo. We say that the action satisfies an
effective mean ergodic theorem with exponent « if for any f € L?(X),

<. If 12 .
2 Mg(GyY*

o — | £ dmy

We refer the reader to [15] for a comprehensive survey on effective mean ergodic theorems
and their number theoretic applications.

It was shown in [11, Theorem 1] that if the action of G on L2(X) satisfies a mean
ergodic theorem with exponent « and that the set G, = {g € G | |lg|l < t} has measure
me(Gy) > t, then for any a < 2«b and any family of shrinking targets B, € X with
measure my(B,) > t~%, for a.e. x € X for all t > t,(x) there is g € G, with g7'x € B,.
Taking our space X = G/I" and our shrinking sets B, as in Lemma 3.2 will reduce the
problem to establishing a mean ergodic theorem.

While it is possible to obtain such a mean ergodic theorem in this setting, the
exponent « depends on the (strong) spectral gap for the representation of G on L?(X),
which for rank one groups may depend on the lattice I'. To remove this dependence,
we take further advantage of the specific structure of the shrinking sets B, to give the
following refined version.

We can identify L2(G/I') with the subspace of L2(G/T") composed of functions that
are invariant under the action of R", and let LSO(@/ I') denote its orthogonal complement
(i.e., the kernel of the linear map L2(G/I") — L%(G/T) given by averaging over R"/Z").
Decomposing L?(G/ ') further as a direct sum of the space of constant functions and the

space, L3(G/T), of mean zero functions, we get the following decomposition:
L*(G)T) = C@ Li(G/T) ® L3y(G/T), (3.2)

which is preserved by the left regular G-action (under the natural embedding G € G
sending g € G to (g,0) € G). We now reduce the shrinking target problem in Lemma 3.2

to bounds for the averaging operators for the latter two representations.

Proposition 3.3. Let G, C G be a family of growing sets of measure ms(G,) > t’ for

some b > 0. Let «; > 0 and assume the following

(1) There is some k, > 0 such that for any f € L?(G/T)

If 1l

€GO

2

ﬁaf—/c/rfdmc
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(2) Forany« < «; and for any f € Lgo(é/l:)

I1£ 12
|Be.fl, <« Ak

Consider a family of shrinking targets A, € T" and let B, € G/T be as in
Lemma 3.2. If m(4;) > t~% with a < 2bk,, then for a.e. x € G/T and for all sufficiently
large t, there is g € G, with g~'x € B,.

Proof. Lety, € L?(G/T) denote the indicator function of B,. We note that a Haar measure
of G decomposes as dmg(g, @) = dmg(g)dm(a), and by our definition Et is contained in

a single fundamental domain of f}/ . Thus,

my(B,) = my(B,) = / ~ dmg(@)dm(@) = mg(Fym(Ay) =, m(Ay),
{(g,a)eG | ge]—'c,aeAt}

where 7, = {g e G| g € F,llgl < c} with F the fixed fundamental domain for G/T as in
Lemma 3.2. We want to show that for a.e. x € G/I" and for all sufficiently large t, there
is g € G, such that g~'x € B,. It suffices to show that B, (v,)(x) # 0 for all sufficiently

large ¢t where B, denotes the averaging operator (3.1). We thus need to show that the

limsup set

c= U {xeérisewom=o

T>0t>T

has measure zero. Now we consider the dyadic decomposition

Ufxeemiseum=0l= U U [xe&/lisewim=0],

t>T k>log(T) 2k <t<2k+1

and note that, since G, is increasing and v, is decreasing in ¢, if ¢, (¥;)(x) = 0 for some
2k < ¢t < 2k+! then ﬂsz(l/fzk+1)(X) = 0 so that

Ulxeemisswo=0lc U Cuzen,

t>T k>log(T)

where Cp, = {Xe G/T | ,BGT(wt)(X)=0}. We thus need to show that the series

2k Mz(Cok ok+1) is summable.
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We now use our assumptions on the norms of the averaging operators to estimate
me(Cr ). Let ¢, € L?(G/T) denote the projection of ¥, and note that ¢, = m(Ay) Xz, with
F. the projection of F, from G to G/I'. We also note that

(W, — @) € LEo(G/T)  and (9, — mz(,) = (9, — mg(py)) € LA(G/ ).

Now for any T,t > 1 we can estimate

1Ber o) = ma@Wo |, < |1Ber W — 00|, + | By (90 — me(ep) ], -

Now using the bound on the norms of the averaging operators in these spaces we get

that for any « < «;

i Ve —edy, _ /mA)
||/3GT(1/ft (/)t) ||2 <<K mg(GT)K <<C mG(GT)K‘

For the second term, since ¢; = m(A4,) xz, we can bound

IBex 00 = mawol, = [Bes 00— metopl, <o — et
T 2 T 2 mG(GT)KZ
Combining both bounds we get that
m(A,) m(A,)?

2
||ﬁGT(¢t) - mé(l//t) ”2 Lo mG(GT)2K mG(GT)ZKZ :

Since for any x € Cr, we have that ;. (¥,)(x) = 0, the Chebyshev inequality gives
me(Cp NMAD? <, 1Bg, Vs — meWpl3
and hence

1 1
m= C < + < tanzl(b + T72/<2a‘
G( T,t) < K,C m(At)mG(GT)ZK mG(GT)ZKz <

In particular, assuming that a < 2«;b, we can find x < «; so that a < 2«b for which
Mg (Cor gki1) <K, 2K@=260) 4 p=2ke2a jg summable, thereby finishing the proof. [ |
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4 Effective Mean Ergodic Theorems

In this section, we show how the needed effective mean ergodic theorems follow from
results on the strong spectral gap. We first recall some general results on such mean

ergodic theorems.

4.1 Relation to operator norms

Itis useful to think of the averaging operators f;, and the effective mean ergodic theorem
in a wider context for general unitary representations. Given a unitary representation
of G on some Hilbert space H, and a growing family G, of measurable subsets of G as

above, we can consider the averaging operator

Bg,(m)(v) = m(g)vdmg(g). (4.1)

me(Gy) Jo,

This is an operator acting on H and we denote by | B¢, ()], its operator norm. Now for
the special case where 7 is the representation of G on the space L(ZJ(X) of mean zero
functions given by n(g)f(x) = f(g~'x), we have that ﬂGt(n)(f) = ,BGt(f) as elements of
L2(X) and hence the bound 1Bg, (M <, mg(Gy)™* is equivalent to an effective mean
ergodic theorem with exponent «.

One advantage of working in this wider context is that we can reduce the problem
to that of irreducible representations. Explicitly, we record a useful result relating the

bound on the operator norm for a representation to that of its irreducible components.

Lemma 4.1. Let 7 be a unitary representation of G and consider the decomposition = =
féB 7, dv(y) as a direct integral of irreducible representations over some measure space
(Y,v) parametrizing irreducible representations of G. If for some ¢t > 0 and for v-a.e.

y € Y the norm of the averaging operator satisfies | g, ()l < F(0), then [|Bg, (M) < F(®).

Proof. From our assumption for v-a.e.y € Y, forall v, € H,, we have that || B, (7,)v, || <
F(t)||v,l. Since for any v € H we have ||[v]|? = [, [[v,|? dv(y) and (Bg, (7)V), = Bg, (T,)Vy,
we get that

6, (0w = / 1B6,(t,)v, I du(y) < F@2 v,
Y

so that the operator norm satisfies that ||8;, ()|l < F() as claimed. |
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Now, for a unitary representation 7, there is a close relation between bounds for
operator norms of B (7) and the strong spectral gap for =. The strong spectral gap is
closely related to decay of matrix coefficients and is controlled by the parameter p(x) €
[2, 00) as introduced in the introduction. It follows from the work of Gorodnik and Nevo
[14] (see also [15, page 78] and [29, page 306]) that for any unitary representation = of a
semi-simple Lie group G, if we let [ be the smallest even integer satisfying [ > p(x)/2 and

letk, = le (when 7 is tempered we can take «; = 1/2) then for any « < «;
1B, ()] <, ma(GY~ . (4.2)

Remark 4.3. We note that when the growing sets G, are bi-K-invariant, it is expected

that in fact one can take «; = without the parity conditions. In particular, when G

_1
p(m)
has real rank one, this follows from estimates on decay of matrix coefficients of spherical
functions. While this result is well known to experts, as we could not find a reference in

the literature, for the sake of completeness we include a proof below.

Proposition 4.2. Keep the notation as above and assume that Q is of signature (n—1, 1).

Let {G,};-, be the family of growing norm balls defined in (2.5). Then for any « < ﬁ

we have
|8, ™| <, ma(G)™ .

Proof. Note thatif Q, Q" are two forms of signature (n—1, 1) then thereis h € SL,,(R) and
A # 0 with Q'(v) = AQ(vh) and hence conjugating by h gives an isomorphism ¢, : G’ - G
with G’ = SOZ/ (R). Now, any unitary representation =’ of G’ is of the form n’ = 7 o ¢}, and
it is clear that in this case p(7) = p(7’). We also have that the corresponding norm balls
satisfy G;, € G} S G, for some ¢ > 1 from which it follows that it is enough to prove
the result for a single form, and we may take Q = Q, given in (2.1).

Next, we recall that when G is of rank one, the decay of matrix coefficients can be
given explicitly in terms of the KATK decomposition with A" = {a, | t > 0} the positive
chamber in a Cartan subgroup, and K the corresponding maximal compact subgroup,
as in §2.2. More precisely, for a unitary representation = of G on a Hilbert space H not
weakly containing the trivial representation, let a(xr) € (0, ”T*Z] be the smallest number
satisfying that for any positive @ < «a(rr) and for any K-finite vector v € H, we have for

anyt >0

(m(a,)v,v) <, dim (7(K)v)e *||v|>. (4.4)
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Using (2.2) for signature (n — 1, 1) we have that, up to scaling, the Haar measure of G in

the coordinates g = ka,k’ is given by
dm(g) = sinh(t)" 2 dtdkdk’,
which gives the relation that

(4.5)

Now for any test vector v, let vK = Jx m(k)vdk. Note that VK|l < |lv|| and since G,

is bi-K-invariant then

Bg, (1)v = Bg, (m)vE.
Hence to calculate the operator norm, we just need to estimate || 8, ()v| for v a spherical

vector. Now for v a norm one spherical vector, using the KATK decomposition, the

estimate (2.7), the description of G, (2.8), and the fact that x is unitary, we have for ¢ > T,

| B, (v

1
W/Gt /Gt ’(”(QI)V,JT(QZ)V)} dmg(g,)dmg(g,)

X

1 log(t) rlog(t) ) 5 . )
P} /O /O /K |( (ay, ka,,)v, v)| sinh(¢;)"* sinh(t,)"* dkdt, dt,.

Further decomposing k = mk,m’ with m,m’ € M and k, as in (2.3), noting that m, m’
commute with a, and using the Haar measure decomposition in (2.4), we get that the

second line of the above equation is given, up to a constant, by

1 log(t) rlog(t) ,m
=n ZoD / / / |(7r(as, kgay,)v, v)| sin@)" 2 sinh(t,)" 2 sinh(t,)" 2 dodt, dt,.
0 0 0

Now we use the KA*K decomposition to write a, kya,, = ka,k’ for some k, k' € K and
a, € AT, and use the decay of matrix coefficients to estimate the above integral. For any
positive ¢ < «(x), using (4.4), we can estimate matrix coefficients of a spherical norm

one vector by

(7 (a, kgas,)v,v)| = |(m(ka,k)v,v)| <, e " < cosh(t) ™.

20z unp || uo Jasn Aresqr 119N O Aq 8/E€+22/20661/22/€202/a101E/uIwWl/Wwoo"dno-olwapede/:sdpy woly pepeojumod



19524 A. Ghosh et al.

We thus need to estimate the term cosht in terms of the coordinates ¢; and t,. By

comparing the (n, n)" entry of both matrices, we see that

cosh(t) = cosh(t;) cosh(t,) + cos(9) sinh(t;) sinh(t,). (4.6)

We can rearrange this, noting that cosh(t,) cosh(t,) — sinh(t;) sinh(t,) = cosh(t; —t,) to
get that

cosh(t) = 2 cos?(6/2) sinh(t,) sinh(t,) + cosh(t; — t,) > 2cos?(9/2) sinh(t,) sinh(t,).

Using this bound and the estimate on decay of matrix coefficients, we can estimate

9 1 log(t) rlog(t) ,m ) ) ) —a
”'BGt(”)V” <y tz(”——z)/o /0 /0 (cos ©/2) smh(tl)smh(tz))
sin()" 2 sinh(t,)" 2 sinh(t,)" 2 dodt, dt,.
n—2
T

For the innermost integral over 6, note that since o < a () = el < ”T_z the integral

/ " cos(6/2) % sin(9)" 3 do
0

converges. We can thus estimate

2
log(?)
sinh(¢))" 27" dt, | <, t7%.

) 1
oot <. s (

Since this holds for any norm one spherical vector, we get that

|Bo, ()| < t7¢ < mg(G) 7z,

for any positive o < a () = z(;nz). In particular, for any « < ﬁ,

a(m) to conclude the proof. [ |

we cantakea = (n—2)k <

4.2 Groups with property (T)

For a connected semi-simple Lie group G with finite center, define

p(G) := sup {p(x) | = is a nontrivial irreducible unitary representation of G}.

¥20z aunr || uo yasn Aleiqi [II9N O Aq 82€€¥2 /2066 1/22/€20Z/3101ME/uIWI/WOd dNo"dlWapede//:sdRy Woly papeojumoq



Effective Density for Quadratic Forms II 19525

We note that G has property (T) if and only if p(G) < oo. Thus for groups with
property (T) we can bound p(x) from above by p(G) for any unitary representation
of G not containing the trivial representation. Effective bounds for p(G) were obtained
for all semi-simple Lie groups with property (T) in [24, 31], implying in particular the

following

Proposition 4.3. For G = SO/ (R) with Q a form of signature (p, ) we have

p+q—2 p+q=>7,qg=>2and(p,q ¢{(5,2),(43),(6,3)}
2-1) (p.q@ €{(52),(43),(6,3)}

6 (0, €{(4,2),(3,3)}

4 P9 =@ 2).

p(G) =

Proof. Inalltheabove cases,the group G has property (T). When (p, q) ¢ {(5,2), (4,3), (6, 3)},

the parameter p(G) was explicitly computed by Li in Theorem A [24], yielding the cases
except (p,q) € {(5,2),(4,3),(6,3)}. For the remaining cases, this bound follows from
the upper bound on p(G) proved by Oh, see Corollary C in [30] and Theorem 7.4 in [31].

|

Combining these bounds for the strong spectral gap gives the following result

on an effective mean ergodic theorem for these groups.

Theorem 4.4. Let G = SOE(R) with Q a form in n > 5 variables of signature (p, q) with

p>q>1.Let
I n=0(@mod4
ﬁ n =1 (mod 4)
K, =
'] 24 n=2@mod4)
n+r1 n = 3 (mod 4)

except for the case of signatures (3,3), (4,2), and (6,3) for which we let «;, = 1/8,
1/8, and 1/12, respectively. Then for any « < «;, for any unitary representation = of G
without nontrivial G-invariant vectors, and for any growing family G, with finite positive

measure, we have that

|86, (0] < ma(GO™.
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4.3 Signature (n —1,1)

For a form of signature (n — 1, 1), the group G = SOE(R) does not have property (T) so
there is no uniform bound for the strong spectral gap in general. However, in order to
apply Proposition 3.3, the representations we are interested in are the representations of
G on the two function spaces L(Z)(G/ I') and LSO(G‘/f‘) described in the decomposition (3.2).

Using Theorem 1.5 (whose proof is postponed to the next section), we have that
p(I:)0 = max{2,n — 2}. Hence using Proposition 4.2 assumption (2) of Proposition 3.3

holds with «; = % forn=3,4and «; = ﬁ forn > 4.

Remark 4.7. For Q of signature (n — 1,1), we don’t have a uniform bound for the
strong spectral gap for L?(G/TI') (unless I' is a congruence group). However, in this case,
the spectral gap is equivalent to the strong spectral gap and the discreteness of the
Laplacian spectrum implies that there is some bound for the spectral gap (which may
depend on I'). We thus get an effective mean ergodic theorem of the form as assumption

(1) in Proposition 3.3 with some exponent «, > 0 that may depend on T'.

4.4 Signature (2,2)

When Q is of signature (2, 2), the group SO, (R) is locally isomorphic to SL,(R) x SL,(R)
and does not possess property (T). To see this local isomorphism more clearly, it will be

convenient to work with the determinant form
Q,(a,b,c,d) = ad — bc = det(M) (4.8)

when identifying R* = Mat,(R) and writing M = (¢ g). Consider the action of SL,(R) x
SL,(R) on R* = Mat,(R) with (g;,9,) € SL,(R) x SL,(R) sending M € R* to g, Mgs.
This action is clearly linear and preserves Q,, and thus induces a homomorphism from
SL,(R) x SLy(R) to SOq, (R). In fact, let G = Sog1 (R) be the identity component of SO, (R),

then this action induces a double covering
t:SLy(R) x SLy(R) — G (4.9)

with the kernel ker(:) = {£(I,,I,)}. Thus any irreducible unitary representation of G
is of the form 7 (:(g9;,9,)) = m,(9;) ® my(g,) where each n; is an irreducible unitary
representation of SL, (R) such that 7; ®, is trivial on ker(:). By a slight abuse of notation,
we will write in this case 7 = 7; ® 7, and we will view 7 as a representation of both
SL,(R) x SL,(R) and G.
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Nevertheless, Theorem 1.4 (whose proof we postpone to the next section) implies
that the representation of G on L(ZJO(C’—/ I') is tempered. This has the following immediate
corollary, allowing us to obtain an optimal exponent for the effective mean ergodic

theorem for functions in L2,(G/I") for any growing family of sets G,.

Corollary 4.5. Keep the notation as above. For any growing family of sets G; in G, we
have for all « < 1/2, for any f € L%,(G/T'), and forall ¢ > 1,

If1l
N P (AL

The situation for functions in L?(G/T) is more complicated. Here the lattice I'
is not necessarily an irreducible lattice (e.g., for Q = Q, above we can identify G with
SL,(R) x SLy(R) and then I = SL,(Z) x SL,(Z)). In particular, the representation of G on
the space L?(G/ ') might not have a strong spectral gap. Hence, in order to get an effective
rate for the mean ergodic theorem, we need to make sure the growing norm balls are well
balanced.

Before defining the well balanced norm balls, we analyze the norm balls G, C G
defined in (2.5) using the coordinates from the double cover « : H x H - G = SOZI(R)
with H = SL,(R). Fix a polar decomposition H = SO,(R)A™ SO,(R) with

t/2
AT = {at = (80 679/2) |t > 0} .

and for any g € H we denote by t(g) > 0 the uniquely determined positive number in the
decomposition g = k;a; gk, with k;, k; € SO,(R) and a;,) € AT. We note that in these

coordinates the Haar measure of H is given, up to a scalar, by
dmy(k,a.k,) = sinh(t) dk,dtdk,

with dk the probability Haar measure on SO, (R). Moreover, for g = ka4 k, as above, we
have g7! = kz_lat_(;)kl_1 = kz_lwat(g)a)*lkl_l implying that t(g) = t(g7!). Herew = (9 7') €
SO, (R).

Let || - || be the Euclidean norm on R%. Note that under the identification R* =
Mat, (R), ||-|| is the Hilbert-Schmidt norm on Mat, (R), which is bi-SO, (R)-invariant. First,
for any t,,t, > 0 and any M = (2 5) € Mat,(R), we have

. Ma* B ae(t1+t2)/2 be(tlftZ)/z
0 T\ pta—t)/2 ge—(titt2)/2 )’
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implying that ||«(a,,, a,,) ||Op = e(1t%2)/2 where the operator norm is attained when taking
M = ({3). Now for any «(g,,g,) € G and for any M = (2 b)) € Mat,(R) writing g; = kja, k;
with k;, k; € SO,(R) and a,, € At fori=1,2 we have

91 Mg;| = |a, k,Mksa, | < e t®/2 |k Mks|| = et2)/2 M|,
t1 to

implying that [¢(g,,9,) < e(1+%2)/2 On the other hand, taking M such that k, Mk} =
plying 1:92) | op :

(3 9) in the above equation, we get
|9, Mgs | = e/ |k, Mk | = e/ M),

implying that ||L(gl,gz)||Op > ei+%2)/2 Hence, we have ||L(gl,gz)||Op = elitt2)/2
le(g1.92)7" ||Op (since t(g) = t(g~!) for any g € H) implying that

Gr = {1(91,9,) € G| (gy) +1(gy) < 21og T}.
Recall that by (2.7), we have m(Gy) =< T? log T. Denoting by
Hp:={geH|tg <2logT},

we see that the projection to each factor G; N (H x {I}) = H; has measure =< T2, and
hence, the growing norm balls are balanced but are not well balanced in the sense of
[14, Definition 3.17]. We thus need to replace the norm balls with slightly smaller well

balanced norm balls given by

GiP = {1(g,,9,) € Gy | max{t,(g), t,(g)} < log(T)} =1 (Hﬁ x Hﬁ)

having measure m(GWP) = mH(H«/T)2 = T2,

For G = SOZ(R) with Q a different quadratic form of signature (2,2), we fix a
conjugation isomorphism ¢, : SOEI(R) — G and define G‘}"b = @oH s x H /7). We
note that since G C G when G = SOf (R), for general G = SO (R) we have GY* C G
for some constant ¢ > 1 depending only on Q.

Now, for these well balanced balls, we can show the following.

Theorem 4.6. For G = SOT(2,2) and {G‘}Vb}bl, the well-balanced norm balls defined

; If1l2
above, there is some « > 0 (that may depend onI') such that Hﬂa‘gb 0] ”2 < To(GYPY ! for
any f € L3(G/T).
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Proof. In view of the reduction arguments in the proof of Proposition 4.2, it suffices to
prove this theorem for the case when G = SOJé1 (R) with Q, given in (4.8). From Lemma 4.1,

it is enough to show that H,BG‘gh () H < for any irreducible component 7 = 7, ®,

of L(z)(G/ I') with each n; an irreducible representation of SL,(R).

Recall that any nontrivial irreducible unitary representation of SL,(R) is
infinitesimally equivalent to one of the following: the spherical and non-spherical
principal series representations, the discrete series representations, the two mock
discrete series representations, and the complementary series representations, see for
example, [23, Chapter VI] for more details on the description of the unitary dual of
SL,(R). We note that among these irreducible representations the only non-tempered
representations are the complementary series representations, and following the
parameterization in [23] up to infinitesimal equivalence they can be parameterized by
the interval (0, 1). We thus denote them by o, with s € (0, 1), and by examining the decay
rate of matrix coefficients (see e.g., [17, page 216]) and using the relation (4.5) we see
that o, has spectral gap p(o,) = % We also denote the trivial representation of SL,(R)
by o;.

Now, the averaging operator for the balanced norm balls takes the form

e )

1
my(H /7) JH ;7 e (mH(Hﬁ) Hp

7y (hy)V de(hz)) dmy(h,;)
= ﬂHﬁ(ﬂl)ﬂHﬁ(”z)V-

Now, if one of the two representations, say =;, is tempered then for any «; < 1/2 we have

H’BHﬁ(nl)H <L, my(H 7). Hence

PN T

<<k1 mH (Hﬁ) —K1

By, (V|| < Mg (E ) 1,

where we used the trivial bound HﬂHﬁ(nz)‘ < 1 for m,. Since my(H /7) = mg(G¥2)1/2,

this proves the claim in this case with x = %5 < 1/4.
It remains to treat the case where both representations are non-tempered. We
recall that for any irreducible representation n; ® m, weakly contained in L(z)(G/ I

with 7; = o5 with s; € (0,1], there is a spherical eigenfunction of the Camsimir
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operator in L?(G/ ') with eigenvalue 5;(1 —5s;) +5,(1 —s,). Since the Casimir operaor on
spherical functions agrees with the Laplacian, the discreteness of the Laplace spectrum
on L?(G/T') implies that there is some constant s, € (0, 2) (which may depend on I') such
that any irreducible representation m; ® 7, weakly contained in L%(G/ I') satisfies that if
both 7; = o, withs; € (0, 1] are either complementary series or the trivial representation,
then s; 4+ s, < sy. In particular, for such 7 at least one of x; is nontrivial, say, 7, = o, is
always nontrivial.

For the norm balls H /7 in H = SL,(R) and the complementary series representa-
tion o, (with p(oy) = 1%5) by Proposition 4.2 (noting that H = SL,(R) is locally isomorphic
to SO(2, 1)), we have H B ()
bound ’

and we can take «; < % (we take k; = 0if s; = 1) such that (k; +«,)/2 = « to get that

‘ &, my(H 7)7" for any x; < lgsi (we use the trivial

ﬁHﬁ(asl)H < 1if o5, = o0, is the trivial representation). Now let 0 < « < ;-2

e 1] = [ ] < [

Ly mH(Hﬁ)_(Kl-H(Z) — mG(G‘II_'Vb)—(Kl-FKz)/Z _ mG(G‘q’l’b)_"
as claimed. -

4.5 Proof of main results

Collecting together Theorem 4.4, Proposition 4.2, and Corollary 4.5 gives the proof of
Theorem 1.2, where for signature (2, 2) we use the well balanced normed balls. The proof
of Theorem 1.1 then follows as described in §3. More precisely, by (2.7), we have that
ms(G,) > t3P~D, while in signature (2,2) the same estimate holds for m;(G!'®). So by
Proposition 3.3, Lemma 3.1, and Lemma 3.2, we have that the conclusion of Theorem 1.1
holds for ky = 2«,q(p — 1). Note that the first condition of Proposition 3.3 trivially holds
when G has property (T), while in the remaining cases it follows from the discreteness of
the spectrum of the Laplace operator (see Remark 4.7 and Theorem 4.6). Again, for forms
of signature (2, 2), we use Proposition 3.3 with the well balanced norm balls G‘t’"b instead

of G,, noting that G c G, for some ¢ > 1.

5 Upper and Lower Bounds for p(I'),

Let G = SO5(R),G = G x R*, ' < SO} (Z) a finite-index subgroup and [' = I' x Z" be as
above. Throughout this section, we denote by 7 the representation of G on L?(G/I"), which

is unitary with respect to the inner product (f},f,) = fé/f‘fl (x)f5(x) dm(x). Our goal is
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to give upper and lower bounds for p(l:)0 = p(r). For both upper and lower bounds, we

will need the following general construction of functions in Lgo(é/f‘).

Lemma5.1. Given a bounded and compactly supported function ¢ on G and a nontrivial
character A of T" = R"/Z", let f = f,, , be given by

F(@.v) =D egnrwy). (5.1)

yell

Then f € L2,(G/T), and for any F e L?(G/I")

(f,F) =/G<ﬂ(g)/TnA(V)F(g, v)dm(v)dm;(g). (5.2)

In particular, the family of functions f,, ; with 1 a nontrivial character and ¢ compactly

supported span a dense subspace of Lgo(é/f‘).

Proof. The identity f(gy,vy + u) = f(g,v) for any (y,u) € I' x Z" is straightforward,
and since ¢ is bounded and compactly supported (so that its support can be covered by
finitely many fundamental domains for G/T'), we have that f is bounded, implying that
f € L*(G/T"). Moreover, since [r, A(vy) dm(v) = 0 forany y € I', then [1, f(g, v) dm(v) = 0.
Hence f € LSO(@/f). Next to show (5.2), let F be a fundamental domain for G/T" and P a

fundamental parallelogram for T", and write

(f . F) = /G /ﬁf(g,v)F(g, v)dmg(g)dm(v)

=> / / ¢(gy)AM(vy)F(g,v) dm(v)dm(g)
FJP

yell

= / 9(9) / *(VF(g,v) dm(v)dm(g).
Fy Py

yell

Since for any g the function v — A(v)F(g,v) is a function on T" and Py is also a

fundamental domain for R"/Z", we may replace Py by P above to get

R => [ ¢@ | Mv)F(gv)dm(v)dmg(g)
Fy P

yell

= /G ®(9) /P AMWV)F(g, v) dm(v)dm(g)
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as claimed.

Finally for the density argument, for any F € Lgo(@/ ), let

F(9) = /T" F(g, v)A(v) dm(v),

and note that F is orthogonal to f, , for all compactly supported ¢ implies that

/GQD(Q)F)L(Q) dmg(g) =0,

for all compactly supported ¢, and hence F, = 0. Now, if F ¢ L%O(@/f‘) is orthogonal
to all functions f, , with nontrivial A and ¢ compactly supported, then it satisfies that
F, (g) = 0 for all characters A and hence F = 0. |

5.1 Lower bounds

To get lower bounds for p(f“)o, we first prove the following result, giving an upper bound
for the critical exponent in the mean ergodic theorem, by presenting an explicit f €
L3,(G/T) for which |Bs,f|, is large. We first give a large family of test functions for

which we have an explicit estimate for the norm of the averaging operator.

Proposition 5.2. Let A be a nontrivial character of T" = R"/Z" and let G* < G denote

its stabilizer
G*={geG:r(vg) =r(v), YveR"}.

Then for any f = f,, , as in (5.1) with ¢ non-negative and compactly supported, there is a

constant ¢ > 0 depending only on the support of ¢ such that for all ¢t > ¢,

|fG‘/’de|2
mG(Gt)z

|fG‘pde|2

TERY Z Mgy G N Ggp).

yelnG*

Z mG(VGt/c N Gt/c) = ||ﬁctf“§ =
yel'NG*

Proof. Starting from

1
6615 = oz L, L hf xh) dmgtnydme iy

1 —
N W /Gt Gt <f, n(hl 1h2)f) de(hl)de(hZ)

¥20z aunr || uo yasn Aleiqi [II9N O Aq 82€€¥2 /2066 1/22/€20Z/3101ME/uIWI/WOd dNo"dlWapede//:sdRy Woly papeojumoq



Effective Density for Quadratic Forms II 19533

and using (5.2) with F(g,v) = n(h{lhz)f(g, V) =f(h51hlg, v) we get that

1 _—
8612 = e /G /G /G 20) /1r f(hy g, v)r(w) dm(v)dmg(9)dmg(hy)dme (hy).

Further expanding f(g,v) = Zyer ¢(gy)X(vy) and noting that an AWA(vy)dm(v) = 0

unless y € G* we get that

1 e —
1efla= 2 o2 /G /G /G (@9 (hy  hygy) dmg(g)dmg(hy)dmg(hy)
G\Mt t t

yelnG*

1 I
Z mG(G_t)z/G/G/ch(hl—lg)cp(hglgy)de(g)de(hl)de(hz)_

yel'NG*

Let xg, denote the indicator function of G, then making a change of variables h, — gh,

and h, — gyh, gives

16615 = m > / / / X6 (D) X, (hp)e(hy 9@ (hy gy) dmg(hy)dm g (hy)dm(9)

yel'NG*
_ 1
mg(Gy)? yel'nG*
Since ¢ is compactly supported, there is some ¢ > 0 such that max{||k|, |h~!|]} < c for all

h € G with h~! in the support of ¢. This then further implies that for such h,

X6y @ = Xe,(9h) = X¢,, (@), VgeEG.

Since we assume ¢ is non-negative, we get the lower bound

1
186013 = mmess 2 [ [ [ X6, @0, 070 ey dmg(hy)dmehydm o)
G\t

yel'nG*

o(h)dh
= (fC:nT)z) z mG(Gt/C N Gt/Cy).
G\t yelnG*

The upper bound follows from the same argument. |

In order to use this formula to estimate the norm of the averaging operator, we
need a good estimate for m;(G; N G,y). However, since we are only interested in a lower

bound, the following simple estimate will do.

/ / / X6,@h) X6, 97 ho)p By Vg (hy ) dmg(hy)dmg (hy)dmg ().
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Lemma 5.3. Let A < G be a Cartan subgroup and let K < G be a maximal compact
subgroup such that G = KA"K. Let C = sup{||k| | k € K}. Then we have that m;(G, N
G,y) > 1 uniformly for all ¢ > 2C and for all y € I" with |y | < t?/(4C?).

Proof. Let y e I with ||y| < t?/(4C?). Decomposing y = kak’ with k,k' e K and a € A,
we can find some a’ € A satisfying ||a’|| < t/(2C) and |a@’a| = % <t/(2C) (if ||a| < t/(2C)
then we can take a’ to be the identity element, and if |a|| > t/(2C) then we can take a’
such that ||a@’a| = % = t/(2€) and in both cases we have ||a|| < t/(2C)). Let g, = a’k ™!

so that [goll = @'k~ < Clla’| < t/2 and |lggy |l = lla’ak’|| < Cll@’a|l < t/2. Hence any
g € G,g, will satisfy that ||g|| <t and ||gy|l < t, implying that m;(G; N G,y) = m(G,). &

Note that m;(G,) < mg(G,) and, since I' N G* is a lattice in G*, by [14, Theorem
6.4] we have that for large ¢

#{y eI'nG* |yl <t} x mg(G*NGy.

Using these estimates leads to the following.

Corollary 5.4. Let G* C G be the stabilizer of a nontrivial character A of T® = R"*/Z",
then there is f € Lgo(f}/f) such that

2 meg.(G* N Gp2)
||5th‘”2 >>f mG(Gt)z

In particular, since for G = SO™ (p, q) with p > 2 and p > g, we have a character A with
stabilizer G* locally isomorphic to SO*(p — 1, q) we get a function f = f,, for which

2
-1

me.(G* N Gp) t2P=24-200-14 5 m (G, P

2 b>q
||18Gt-f||2 > mG(Gt)z

2
$2(p—1?-2(p—1)p (logt)™2 > mgG) P p=gq.

Combining this result and the relation between p(;r) and the critical exponent in

the mean ergodic theorem, we get the following.

Proof of Theorem 1.3. First note that if the representation = of G on Lgo(é/f‘) was

tempered then | B¢ f|, < mgﬂ‘fﬁk for any ¥ <  and any f € L2 (G/T"). However, if p > g
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and p > 3 then ﬁ < 2 while for if p = g > 3 then we can find ¢ sufficiently small so

that 117 +5 < % This implies that the representation is not tempered except possibly for

signatures (3,2),(3,1),(2,2),and (2,1).

Next for the case of signature (n — 1,1) with n > 4, since for all ¥ < ﬁ we
0
have the bound ||ﬁthH2 < mg{g)“ the example above implies that p(I'), > n — 2. For

signature (n — q,q) with 1 < q < 3 letj € {0,1,2,3} withj = n — g — 2 (mod 4). Then
our example implies that p(f‘o) > n —q— 2 —j. Indeed, if p(f‘o) <n-q-—2-—j, then

|Befll, < mi{‘clfm for any k < #_2_]., which contradicts our counter example. Finally,
for signature (q, q) the same argument shows that p(n) > n—q—1—jwithje {0,1,2,3}

satisfyingj=n — g — 1 (mod 4). |

5.2 Upper bounds

In order to get upper bound for p() = p(I'),, we need bounds for matrix coefficients of

a dense set of test functions. We start with the following general estimate.

Lemma 5.5. For ¢,¢ compactly supported functions on G and A,2 two nontrivial
characters of T" = R"/Z" let f = f,;, and f’ = f,, ;, be as in (5.1). Then for any h € G
we have that (f’, 7 (h)f) = 0 unless (y;),A = A for some y, € I, in which case

(N < el 0] D, merG.N Gerpy),
yel'nG*

where y,A(v) = A(vy) for any v € R", G* is the stabilizer of A in G given as in

Proposition 5.2, and ¢ > 1 satisfies that ¢, ¢’ are supported on G,.

Proof. Using (5.2) with F = = (h)f and expanding f(g, v), we get that

Fomip = [ @ [ FTg v w amwamgo)

= ch;w’(g)w(h‘lgy)/w/\(vy)k/(v) dm(v)dm(g)

yel

= > /Gw’(g)w(h‘lgy)dmc(g).

yel
Veh=2"
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The sum is empty unless (y;),A = A’ for some y, € I' in which case making a change of

variables y — y,y, we get that

Forn) = Y [ othoiagror dme)

yel'nG* ¢

The result now follows by bounding |¢| < l|¢llxs, and |¢'| < ¢’ xg, - [ ]

In order to use this estimate, we need to control the size of m;(hG, N G, yyy),

which can be done as follows when Q is of signature (n — 1, 1).

Lemma 5.6. Let G = SOZS(R) with Q of signature (n — 1,1). Then for any h,,h, € G,
mg(hyG, N Gyhy) = 0 unless ||k, || <, ||hy| in which case mg(h,G, N Gzhy) <, |[h |72,

Proof. Arguing similarly as in the beginning of the proof of Proposition 4.2, we may
assume Q = Q as in (2.1). In particular, in this case, the norm balls are bi-K-invariant.
Writing h;, = k,a, k} and h, = k,a,,k, and using the invariance of the Haar measure, we
then have mg(h, G, N G;hy) = mg(a,, G, N Gea,,), and that

mg(ay, G N Geay,) = /G X6, (@, 9 Xc,(9ar,) dme(g)
o0
= / / / X, (@r kya)xg, (@kya,,) (sinh(t)* 2 dtdk,dk,  (5.3)
K JO K

= /OO (/ XGc(atl kat) dk) (/ XGC(atkatz) dk) (Sinh(t))n—l dt.
0 K X

We thus need to estimate the two inner integrals. Further decompose k = mk,m, with

k, defined as in (2.3) and m;, m, commuting with a,, to get that
T
/ X, (@ kay) dk = / Xg, (@t kga,) sin(®)" 2 do.
K 0
We can now use (4.6) to write a, kya, = k,a_ k, with
cosh(r) =2 cos2(6/2) sinh(t,) sinh(t) + cosh(t; —t).
Using that ||k, a,k, | < cosh(r) the condition that a, kya, € G, implies that

2 0052(9/2) sinh(t;) sinh(¢) + cosh(t; — t) < c.
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In particular, ¢t = t; + O,(1) and cos?(/2) <, e 2!'. Consequently, the product

(/ X, (ay kay) dk) (/ Xg,(acka;,) dk) =0,
K K

unless ¢} = t+0.(1) and t, = t+0.(1). Hence, mg(a; G.NGea.,) = 0unless t; = t,+0.(1),

2ty

or equivalently, ||k, || <, ||h,|. In this case, the condition cos?(0/2) &, e “" implies 6 =

7+ 0,(e”") so sin(¥) < e~ and
T
/ Xc,(@s ka,) dk = / Xc,(@s kgay) sin@)" 2 do « e 12 < ||py || "2,
K 0

Similarly, we also have that [, x¢_(aka,,) dk <, [hy|~""2. Plugging these estimates,
together with the estimates ¢t = t; + O,(1) = t; + O,(1) back in (5.3) completes the
proof. |

We can now calculate the spectral gap p(I'), for any finite-index subgroup I' <
SO/ (Z) with Q of signature (n — 1,1).

Proof of Theorem 1.5. Let G = SO/ (R) with Q of signature (n — 1,1), let T < SO} (Z)
denote a finite-index subgroup, and let I' = I' x Z" be as above. We have already shown
in Theorem 1.3 that p(f‘)0 > n — 2; it thus remains to show that p(f*)0 <n—2.To do this,
we need to find a dense set of vectors in L(Z)O(f}/f) for which the corresponding matrix
coefficients are in LP(G) for all p > n — 2. We will use the set of vectors spanned by the
functions f,, given as in (5.1) with ¢ compactly supported and A a nontrivial character
of T". Note that by Lemma 5.1 this is indeed a dense set in L%O(@/f‘). From linearity, it is
enough to show that for any p > n — 2 the functions g — (f,, ,/, 7(9)f,,,) are all in LP(G).
First, by Lemma 5.5, it is enough to consider the case when (y;), A = A’ for some y, € ' in

which case we can estimate

1o T @F )l < 10laolle’ e D Ma(@Ge N Geygy),
yel'nG*

where G* is the stabilizer of A in G, and c is any constant so that ¢ and ¢’ are supported
on G,.. Next, by Lemma 5.6, the term m;(gG, N G_y,y) vanishes unless |g|| <. lyyy| in
which case it is bounded by O,(||g||~™~?). This leads to the bound

F it T @D 3| Ly G~ P2 # {y €T NG | IYll Keyp ||g||} :
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Here for the estimate we also used that ||y, y || =y 171l and absorbed the dependence on
¢, yp into the dependence on ¢, ¢’, 1, 1". Now using a classification of the stabilizer group
G’ (see Proposition 6.1 below) we have that G* is either compact (in which case #(I'NG") is
uniformly bounded) or it is a semi-direct product of a maximal unipotent and a compact

group, in which case

n—2
#ly eTNG | Iyl <y g} < vol ({v e R*2 | Iv]* <, 1911}) Koy 9177

or it is isomorphic to a copy of SO*(n — 2, 1) inside G, in which case

#y eTNGH Iyl Kgyp 191} Loy G172,

In particular, in all cases, we get that

| T @Dy 30| K 917

Finally, since there is h € SL,(R) such that h~!Gh = SOEO (R) and the Haar measure
of G is the push-forward of the Haar measure of SOEO(R). Using (2.2) and the relation
la,|| < €', it is not difficult to see that if a function F on G satisfies |F(g)| « lgl~!, then
F e LP(G) for all p > (n — 2), thus concluding the proof. |

6 Bounds for p(G),

In this section, we take a closer look at the parameter p(f})o for G = SOE(R) without

property (T), explicitly when Q has signature (2,2) or (n — 1, 1).

6.1 Signature (2,2)

Since for different forms of the same signature the corresponding stabilizers are
conjugate, it is enough to show this for the specific form Q = Q; given in (4.8). In
this case, we can identify the stabilizer G = SOE(R) with SL,(R) x SL,(R) where the
action of (g,,g9,) € SLy(R) x SL,(R) on R* = Mat,(R) is given by M +— g,Mgj. As
we noted in §4.4, the irreducible representations of G are all of the form n; ® m, with
7y, 7y irreducible representations of SL, (R). With this identification in mind, we have the

following.
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Proof of Theorem 1.4. Let G = SOZI(R) and let ¢ : SL,(R) x SL,(R) — G be the
homomorphism defined in (4.9). Consider the two subgroups f}l, f;z of G given by

G; =1(t(91,92).v) € G | g; = I},

and let G, G, = SL,(R) be the corresponding two subgroups of G. Note that each of the
groups G; is naturally isomorphic to SL,(R) x R* where the action of SL,(R) on R* =
Mat,(R) is given by matrix multiplication (one acting on the left and the other acting by
the transpose on the right). In particular, for both cases, the only SL, (R)-invariant vector
is the zero vector.

Now, let 7 be a representation of G with no nontrivial R*-invariant vectors. Then
7| & is a representation of SL, (R) x R* with no nontrivial R*-invariant vectors and hence
ﬁ|Gi is tempered (see [35, Theorem 7.3.9]). Now to see that 7 = 7|; is tempered, it is
enough to show that any irreducible representation weakly contained in 7 is tempered.
But any such irreducible representation is of the form 7; ® 7, with 7, 7, irreducible
representations of G;, G, = SL,(R). Since the restriction of 7 to each of the factors is
tempered, we must have that both n,, 7, are tempered, and hence 7; ® n, is tempered.
Since this holds for any irreducible representation weakly contained in =z, then 7 is

tempered as claimed. |

6.2 Signature (n —1,1)

For signature (n — 1,1), we use a different strategy, using an induction argument.
However, in order to execute the induction argument, we need to take a closer look
at the proof of [35, Theorem 7.3.9], and in particular Mackey's characterization of

representations of semi-direct products (see [35, Theorem 7.3.1])

Theorem (Mackey). Let Gbe a group acting on R” and let G = GxR™. For any irreducible
unitary representation 7 of G, there is a unitary character A of R”, and an irreducible
unitary representation o of G*, the stabilizer of A in G, such that

(1) 7 =mdS (@),

(2) o|gn = (dimo)a,

(3) A|gn = L?(G/G*, M) for some Hilbert space H with respect to the measure on

G/G* coming from Haar measure on G, where the action of R” is given by

@ (1, v)f) () = A(vg)f (9.
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Remark 6.1. The group G acts on R® < G by conjugation and induces an action on
the group of unitary characters R". Since the action of R™ is trivial, this action factors
through the group G, which acts on characters by g - A(v) = A(vg). In particular, the

stabilizer is G* = G* x R" with

G* ={g e G|rvg) = Ar(v), YV e R"}.

Consequently, we can identify the quotients G/G* = G/G*.

We use this characterization for the case of G = SOB(R), for Q of signature (n —
1,1). To further understand this characterization of irreducible representations of G,
we take a closer look at the structure of the stabilizers G* for characters A of R"*. Any
unitary character A of R™ is of the form A(v) = eV for some vector & € R", and with this

identification we have that

G ={geG|ag*=a} (6.2)

is the transpose of the stabilizer of « in G* (the transpose of G) under the right
multiplication action of G* on R™. So the first step in understanding the representation

7 is to characterize the different stabilizers.

Remark 6.3. Note that for G = SO} (R), we have its transpose G* = SO}, (R) with Q*
a different form of the same signature. Explicitly, if Q(v) = vJv* for some symmetric
matrix J with det(J) # 0 then Q*(v) = vJ~!v* has stabilizer SO« (R) = (SO, (R))*. We

thus need to understand the structure of stabilizers in G*.

First for « = 0 the character A is trivial, G* = G and # = o. In this case, the
restriction 77|g» = olpn is trivial, so this case does not occur when = has no nontrivial
R"-invariant vectors. Next for « # 0 we note that, up to conjugation in G*, the stabilizer
of @ # 0 in G* = SO[.(R) only depends on the sign of Q*(«). The following proposition
summarizes the different possible stabilizers, we omit the proof, which is a simple

calculation.

Proposition 6.1. Let A(v) = eV* with « # 0 and G* as above. If Q*(«) < 0, then G*
is compact; if Q*(1) = 0, then G* is conjugate to the semi-direct product of a maximal
unipotent subgroup and a compact group; and if Q*(«) > 0, then G* is a copy of SOZ/ (R)
sitting inside G with Q" a form of signature (n — 2,1) (given by the restriction of Q to
ker(2)).
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For cases where the stabilizer G* is amenable, we also have that G* = G* x R"
is amenable. Hence, in these cases, o is weakly contained in the regular representation
of G* and hence 7 is weakly contained in the regular representation of G. But then any
irreducible component of w = 77| is weakly contained in the regular representation of G
and hence is tempered. So in these cases we have that p(7) = 2. We note that when n =
3 the stabilizer G* is always amenable and all representations are tempered; however,
when n > 3, this is no longer the case when Q*(«) > 0.

To handle the cases where G* is not amenable, let V, =ker(x) ={v e R" | A(v) =1}
and identify the semi-direct product G* x V, as a subgroup of G = G x R". We then show
the following.

Lemma 6.2. Keep the notation as above and assume that Q*(«) # 0. Then the represen-

tation 7 has no nontrivial V, -invariant vectors.

Proof. It is enough to show that the restriction 7|z» has no nontrivial V,-invariant
vectors, and from the characterization of #|g. = L?(G/G*,H) it is enough to show that
for any f € L2(G/G*, H), if A(vg)f(g) = f(g) for almost all g € G and for all v € v,,
then f = 0.

Now for any fixed g € G, the condition A(vg)f(g) = f(g) for all v € V, implies that
either f(g) = 0 or A(vg) = 1 for all v € V,. Writing A(vg) = el we see that A(vg) = 1
for all v € V, if and only if ag* € Vi = Ra. Next, noting that Q*(ag*) = Q*(«) for any
g € G = SO} (R), if ag* = ca then ¢?Q*(a) = Q*(ca) = Q*(a) # 0 so ¢? = 1, implying that
ag* = +a. Hence, if f € L?(G/G*, H), satisfies A(vg)f(g) = f(g) for all v € V, then up to a
null set, f is supported on the set {g € G/G* | ag* = +a} containing at most two points
in G/G*. Since f € L?>(G/G*,H) is only defined up to its values on null sets, the only such

element is the zero vector. |

The final ingredient for the induction argument is the following argument going
back to Burger and Sarnak [7]. Let G = SO (n — 1,1) and recall that for any unitary
representation = of G not weakly containing the trivial representation, the parameter
a(mr) = ;(;nz) characterizes the fastest decay rate of matrix coefficients of 7 restricted
to a fixed Cartan subgroup A < G. To carry over this reduction argument, it is more
convenient to work with this parameter o (7). Now inside G we have a sequence of closed

subgroups

G=GY >G6? > G2 54,
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with G = SOt (n —j,1) for 2 < j < n — 2, all containing the same fixed Cartan group A
(so that for each G¥ we have a decomposition GV = K;A"K; with K; < G¥ a maximal
compact subgroup). Since any K-finite vector in 7 is also a K;-finite vector in x|g; and
the parameter «(7) depends only on the A-action on K-finite vectors, we have that «(7) >
a(m|g@). This leads to the following simple lemma reducing the proof of Theorem 1.6 to

studying the restriction representation 7|;; for some 1 <j<n — 2.

Lemma 6.3. Keep the notation and assumptions as above and let x € [1, 2]. If p(«|zp) <

k(n—j—1)forsomel <j<n-—2then p(r) <« —2) (and a(xw) > 1/k).

Proof. Suppose p(7|gp)) < k(n —j—1) for some 2 < j < n — 2, then by the relation (4.5)
1:(‘%6_0,1) > % Again by (4.5), we have p(7) = g(_;z) < k(n—2),

finishing the proof. |

we have a(r) > a(7|gp) =

We can now give the following:

Proof of Theorem 1.6. The proof is by induction on n. When n = 4, by our hypothesis,
we have p((N})0 = 2, so we may assume n > 5. Let # denote a representation of G =
SOZ(R) x R™ with no nontrivial R"-invariant vectors and let 7 = 7|;. Since almost every
irreducible component of 7 has no nontrivial R"-invariant vectors we may assume that
7 is irreducible. Then 7 = Indga for some nontrivial unitary character A of R"?, and an
irreducible unitary representation o of G*.

Now from the discussion above, either G* is amenable, in which case 7 is
tempered, or G = SOZ/ with Q' of signature (n — 2,1). In the second case, let @2 =
G* x V; = SO/, xR""! with V, = ker(}) as above. By Lemma 6.2, the restriction of # to

G, has no nontrivial V, -invariant vectors, so decomposing it as a direct integral

with 77, irreducible, since 7|z, has no nontrivial V,-invariant vectors then 7, has no
nontrivial V,-invariant vectors for almost every x, and hence by induction p(7,|z) <
(n — 3) for almost every x, implying that p(7|z) < (n — 3). Finally, since 7|z = 7| by

Lemma 6.3, we get p(rr) < (n — 2) finishing the proof. |

Remark 6.4. Unconditionally, we can use the same argument starting with n = 3 as the
base of the induction (i.e., the aforementioned result of Kazhdan [18]), giving the bound

p(@)O < 2(n — 2), which recovers the result of Wang [34].
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