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We establish effective versions of Oppenheim’s conjecture for generic inhomogeneous

quadratic forms.We prove such results for fixed quadratic forms and generic shifts. Our

results complement our previous paper [13] where we considered generic forms and fixed

shifts. In this paper, we use ergodic theorems and in particular we establish a strong

spectral gapwith effective bounds for some representations of orthogonal groups,which

do not possess Kazhdan’s property (T).

1 Introduction

Let Q be a quadratic form on Rn and let α be a vector in Rn. Define the inhomogeneous

quadratic form Qα by

Qα(v) = Q(v + α) for any v ∈ Rn,

where we think ofQα as a shift by α of the homogenous formQ. The inhomogeneous form

Qα is said to be indefinite if Q is indefinite and non-degenerate if Q is non-degenerate.

Communicated by Prof. Barak Weiss
Received July 20, 2023; Revised July 20, 2023; Accepted August 3, 2023

© The Author(s) 2023. Published by Oxford University Press. All rights reserved. For permissions, please
e-mail: journals.permission@oup.com.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
rtic

le
/2

0
2
3
/2

2
/1

9
5
0
7
/7

2
4
3
3
7
8
 b

y
 O

 N
e
ill L

ib
ra

ry
 u

s
e
r o

n
 1

1
 J

u
n
e
 2

0
2
4



19508 A. Ghosh et al.

Finally,Qα is said to be irrational if either Q is an irrational quadratic form, that is, not

proportional to a quadratic form with integer coefficients, or α is an irrational vector.

The famous Oppenheim conjecture admits a natural variant for inhomogeneous

forms. Namely, it follows from the work of Margulis and Mohammadi [28] (who obtained

a more quantitative result on the density of such values) that for any indefinite, irra-

tional, non-degenerate inhomogeneous form Qα in n ≥ 3 variables,Qα(Zn) is dense in R.

However, inhomogeneous quadratic forms have attracted considerable attention earlier;

we refer the reader to J. Marklof’s important works [26, 27] on their pair correlation

density for example. In this paper, we are concerned with the question of effectivity,

namely, for a given Qα, ξ ∈ R and t ≥ 1 large: how small can |Qα(v) − ξ | get for v ∈ Zn

with ‖v‖ ≤ t bounded? This is a notoriously difficult problem intimately connected

with questions of effectivity in homogeneous dynamics and has received considerable

attention recently. We refer the reader to [13] for a relatively comprehensive account of

the work that has been done on homogeneous forms [1, 5, 6, 10–12, 21, 22, 25] and on

inhomogeneous forms [33].

In a previous paper [13], we considered this question for generic inhomogeneous

forms. There is a natural measure on the space of forms (of a fixed signature and

discriminant) and using a secondmoment formula for Siegel transforms, it can be shown

[13, Theorem 1.1], that for any κ < n − 2, almost all indefinite forms in n variables, and

almost all shifts α ∈ Rn, the system of inequalities

|Qα(v) − ξ | < t−κ , ‖v‖ ≤ t (1.1)

has integer solutions for all sufficiently large t. The main result of [13] addresses the

much more difficult problem of effectivity for fixed shifts and generic forms. More

precisely, by proving a second moment formula for congruence groups, we showed that

the same result as above holds for any fixed rational α ∈ Qn and almost all indefinite

forms. In fact, we obtain a counting result [13, Theorem 1.2] when the shift is rational.

For fixed irrational shifts, we obtain weaker bounds.

In this paper, we study the complementary problem of a fixed indefinite form

Q, and almost all shifts α. For this problem, we have the following result for rational

forms.

Theorem 1.1. For any rational indefinite form Q in n variables and any ξ ∈ R, there

is κ0 > 0 (depending only on the signature of Q) such that for any κ < κ0, for almost all

α ∈ Rn the system of inequalities (1.1) has integer solutions for all sufficiently large t.
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Effective Density for Quadratic Forms II 19509

Our proof gives the following explicit values for κ0, depending only on the

signature of Q

κ0 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 (p,q) = (2, 1)

2 (p,q) = (n− 1, 1), n ≥ 4

2 (p,q) = (2, 2)

3/2 (p,q) = (4, 2) or (3, 3)

5/2 (p,q) = (6, 3),

while for all other signatures p ≥ q > 1 with p+ q = n we have κ0 = 2κ1q(p− 1) with

κ1 =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
n n ≡ 0 (mod 4)

1
n−1 n ≡ 1 (mod 4)

1
n−2 n ≡ 2 (mod 4)

1
n+1 n ≡ 3 (mod 4).

Remark 1.2. For n = 3, 4, our method gives the optimal bound κ0 = n − 2. However,

in general when n ≥ 5 our result is not as good as what we have for generic forms. For

example for signature (n−1, 1) we have κ0 = 2, which is much smaller than the expected

rate of n − 2, which holds for generic forms. For large values of n, our bounds are best

when p = q (or p = q+1) in which case we get κ0 is roughly n/2, which is still about half

the expected value.

The method we use for this problem is completely different from the one used

to study generic forms. Here we reduce the problem to a shrinking target problem for

the action of a semi-simple group acting on a homogeneous space, and then rely on an

effective mean ergodic theorem to study the shrinking target problem. This is similar

to the approach taken in [10] and also in [11, 12]. In order to outline the general idea

and also explain where the exponents are coming from, we need to introduce some more

notation.

For Q an indefinite quadratic form, let G = SO+
Q(R) denote the connected

component of the identity in the group of linear transformations preserving Q, and note

that for a rational form Q we have that the set of integer points � = SO+
Q(Z) is a lattice

in G [4]. Using the natural embedding of G in SLn(R), we get a natural action of G on Rn

and we may consider the semi-direct product G̃ = G � Rn. We note that �̃ = � � Zn is a

lattice in G̃ and that there is a natural left action of G on G̃/�̃ preserving the probability

Haar measure mG̃, thus giving a unitary representation of G on the space L2(G̃/�̃). Our
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19510 A. Ghosh et al.

first step is to reduce the problem of approximating a target ξ by values Q(v + α) to

a shrinking target problem for the action of G on G̃/�̃. Using the results of [11], we can

further reduce this problem to obtaining an appropriate effective mean ergodic theorem.

For any f ∈ L2(G̃/�̃) and growing measurable subsets Gt ⊆ G, consider the

averaging operator

βGtf (x) = 1

mG(Gt)

∫

Gt

f (g−1x)dmG(g), (1.3)

where mG denotes the probability measure on G/� coming from Haar measure of G.

From [11], having an effective mean ergodic theorem of the form

∥∥∥∥βGtf −
∫

G̃/�̃

f dmG̃

∥∥∥∥
2

≤ C
‖f ‖2

mG(Gt)
κ
,

valid for all f ∈ L2(G̃/�̃) has very strong consequences for shrinking target problems for

the action of G on G̃/�̃. In fact, we will show that in our case, it is enough to have such

a result for functions in the smaller space L200(G̃/�̃) of all functions whose average over

Rn/Zn is zero in L2(G/�). As will become apparent below, this refinement is crucial in

order to get uniform bounds for signatures (n − 1, 1) and (2, 2). More precisely, we will

show that Theorem 1.1 follows from the following.

Theorem 1.2. Let Q be an indefinite rational form of signature (n − q,q) and let

κ1 = κ0
2q(n−q−1)

with κ0 as above. There is a family of growing norm balls Gt ⊆ SO+
Q(R)

of measure mG(Gt) 	 tq(n−q−1) such that for any κ < κ1 and for any f ∈ L200(G̃/�̃) we

have that

∥∥βGtf
∥∥
2


κ

‖f ‖2
mG(Gt)

κ
,

where the implied constant depends only on κ.

For the proof of Theorem 1.2,wewill exploit a general spectral transfer principle,

described in [29], giving explicit bounds on the exponent κ1 in the mean ergodic theorem

in terms of the strong spectral gap of the corresponding representation. This further

reduces our problem, to obtaining effective bounds for the strong spectral gap for

the representation of G on the space L200(G̃/�̃), which is a problem of independent

interest.
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Effective Density for Quadratic Forms II 19511

The strong spectral gap of a unitary representation π is controlled by the

parameter p(π) ≥ 2,which can be defined as follows.We say that a unitary representation

π of G on a Hilbert space H is strongly Lp if the functions g �→ 〈π(g)v,v〉 are all in Lp(G)

for a dense set of vectors v in H. The parameter p(π) is then the infimum over all p ≥ 2

for which π is strongly Lp. We note that a unitary representation π is called tempered if

p(π) = 2.

When the groupG has Kazhdan’s property (T), there is a uniform bound p(G) such

that p(π) ≤ p(G) for all nontrivial irreducible unitary representations of G [8]. Moreover,

it was shown by Wang [34], that there is a constant p(G̃)0 such that p(π) ≤ p(G̃)0 for any

representation π = π̃ |G, with π̃ a unitary representation of G̃ = G�Rn, with no nontrivial

Rn-invariant vectors. Indeed, Wang studied this question in a much greater generality

of a simple linear group acting linearly on a Euclidean space with no nontrivial

fixed points.

For any finite-index subgroup � ≤ SO+
Q(Z), we let π�̃ denote the representation of

G on L200(G̃/�̃) and let p(�̃)0 = p(π�̃). Since π�̃ is the restriction of a representation of G̃

with no nontrivial Rn-invariant vectors, we get the hierarchy

p(�̃)0 ≤ p(G̃)0 ≤ p(G).

When G has property (T), the work of [24, 30, 31] gives very good bounds for p(G)

(which are shown in many cases to be sharp). However, much less is known regarding

the values of p(G̃)0 and p(�̃)0. For the special case when G = SO+
Q(R) with Q of signature

(2, 1), it follows from a classical result of Kazhdan [18] that any unitary representation

of G̃ = SO+
Q(R) � R3 with no nontrivial R3-invariant vectors is tempered, implying the

optimal bound p(G̃)0 = 2. Going beyond this case, the method of Wang [34] produces

explicit upper bounds for p(G̃)0 in quite great generality. However, these bounds are

usually far from optimal (in particular, when G has property (T) the known bounds for

p(G) are usually better). It is thus an interesting problem to give sharp bounds for p(G̃)0

and p(�̃)0.

Our first result in this regard is the following lower bound for p(�̃)0 (and hence

also for p(G̃)0), for G = SO+
Q(R) with Q an indefinite rational form and � = SO+

Q(Z),

showing that in most cases these representations are not tempered.

Theorem 1.3. For Q an indefinite rational form of signature (n − q,q) with 2q ≤ n, let

G = SO+
Q(R) and � = SO+

Q(Z) and let G̃ = G � Rn and �̃ = � � Zn be as above. With the

exception of signatures (2, 1), (3, 1), (2, 2), and possibly (3, 2), the representation of G on
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19512 A. Ghosh et al.

L200(G̃/�̃) is non-tempered. Moreover, we have the following lower bounds:

p(�̃)0 ≥

⎧
⎪⎪⎨
⎪⎪⎩

n− 2 Q of signature (n− 1, 1) with n ≥ 4

n− q− 2−j Q of signature (n−q,q) with 1<q< n
2 and j ≡ n−q−2 (mod 4)

n− q− 1 − j Q of signature (q,q) and j ≡ n− q− 1 (mod 4).

Here j ∈ {0, 1, 2, 3} and in the last two cases we actually have a strict inequality.

In terms of upper bounds, when G has property (T), we could not improve over

the general bounds for p(G). Our new results in this regard are for forms of signature

(2, 2) and (n− 1, 1). Our first result is an optimal upper bound for forms with signature

(2, 2), analogous to Kazhdan’s result for signature (2, 1).

Theorem 1.4. Let Q be a rational form of signature (2, 2), let G = SO+
Q(R), and let G̃ =

G�R4. Let π = π̃ |G with π̃ a unitary representation of G̃ without nontrivial R4-invariant

vectors, then π is tempered.

Next we consider a form Q of signature (n− 1, 1) and as before G = SO+
Q(R) and

G̃ = G � Rn. Here, a refinement of the general argument of Wang (see [34, Example 4

]) implies that p(G̃)0 ≤ 2(n − 2). We conjecture that the correct bound in this case is

p(G̃)0 = (n− 2). As evidence for this conjecture, we prove it for the representations of G

on L200(G̃/�̃) (which is what we need for our application).

Theorem 1.5. LetQ be a rational form of signature (n−1, 1) with n ≥ 4, let G = SO+
Q(R),

and let G̃ = G � Rn be as above. For any finite-index subgroup � ≤ SO+
Q(Z), we have

p(�̃)0 = n− 2.

Remark 1.4. It is interesting to compare this result to the analogous result on the

spectral gap p(�) of the representation of G on L2(G/�). When � is a congruence group,

the Selberg–Ramanujan conjecture states that p(�) ≤ max{2,n − 2} for any congruence

group � ≤ SO+
Q(Z), whereas the best known bounds towards this conjecture are currently

p(�) ≤ 64
25 for n = 3, 4 [2, 20], while for n ≥ 5 the conjectured bound was proved in [3].

These bounds no longer hold for general finite-index subgroups � ≤ SO+
Q(Z), as there are

constructions of finite-index subgroups � ≤ SO+
Q(Z) with p(�) arbitrarily large. This is

very different from our current case, where the bound for p(�̃)0 holds for all finite-index

subgroups (which is compatible with our conjecture that p(G̃)0 = n− 2 in this case).
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Effective Density for Quadratic Forms II 19513

Finally, as further evidence for our conjecture, we prove the following theorem

reducing the conjecture to the case of signature (3, 1).

Theorem 1.6. If p(G̃)0 = 2 for G ∼= SO+(3, 1) then p(G̃)0 = n−2 for G ∼= SO+(n−1, 1) for

all n ≥ 5.

2 Preliminaries and Notation

2.1 Notation

Let n = p+ q ≥ 3 with p ≥ q ≥ 1. Let Q be a non-degenerate quadratic form of signature

(p,q). Then Q can be represented by a unique invertible symmetric matrix J ∈ Mn(R)

in the sense that Q(v) = vJv∗ for any v ∈ Rn, where v∗ denotes the transpose of v. Let

G = SO+
Q(R) denote the connected component of the identity inside the special orthogonal

group preserving Q. We use the notation A 
 B as well as A = O(B) to indicate that

there is some constant c > 0 such that A ≤ cB. The constant may depend on n that we

think of as fixed, if we want to emphasize the dependance of the constant on various

parameters we will indicate it with a subscript. We also use the notation A � B to mean

that A 
 B 
 A.

2.2 Coordinates

For some calculations, we will need to work with explicit coordinates. Since, for any

form of signature (p,q), the group SOQ(R) can be conjugated in SLn(R) to the group

SOQ0
(R) with

Q0(v) =
p∑

i=1

v2i −
n∑

i=p+1

v2i , (2.1)

it is enough to consider the case of Q = Q0. The group G has a polar decomposition

G = KA+K with K a maximal compact subgroup and A+ the positive Weyl chamber

in the Cartan group A. Explicitly, for G = SO+
Q0

(R), we can take the maximal compact

subgroup

K =
{
k =

(
k1

k2

)
| k1 ∈ SOp(R) and k2 ∈ SOq(R)

}
,

and the Cartan group A = exp a with

a = {H = diag� (h1, . . . ,hq, 0, . . . , 0,hq, . . . ,h1) | hi ∈ R for 1 ≤ i ≤ q},

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
rtic

le
/2

0
2
3
/2

2
/1

9
5
0
7
/7

2
4
3
3
7
8
 b

y
 O

 N
e
ill L

ib
ra

ry
 u

s
e
r o

n
 1

1
 J

u
n
e
 2

0
2
4



19514 A. Ghosh et al.

where diag�(t1, t2, . . . , tn) denotes the anti-diagonal matrix with the (n−i, i)th entry given

by ti. Moreover, the positive Weyl chamber a+ can be taken such that if p > q then H ∈ a
+

if h1 ≥ h2 ≥ · · · ≥ hq ≥ 0, and if p = q then H ∈ a
+ if h1 ≥ h2 ≥ · · · ≥ hq−1 ≥ |hq|.

We can now describe the Haar measure mG of G as follows (see [19, Proposition

5.28]): for any g ∈ G writing g = k1 exp(H)k2 with k1,k2 ∈ K and H ∈ a
+, then up to a

normalizing factor

dmG(g) =
∏

1≤i<j≤q
sinh(hi − hj) sinh(hi + hj)

∏

1≤i≤q
sinh(hi)

p−q dk1dHdk2, (2.2)

where dk is the probability Haarmeasure onK ∼= SOp(R)×SOq(R) and dH is the Lebesgue

measure on a (identified with Rq).

For the case of signature (n − 1, 1), we will need to make some explicit calcula-

tions, so we give somemore details on this decomposition. In this case,we have the polar

decomposition G = KA+K with

K =
{
k =

(
k′

1

)
| k′ ∈ SOn−1(R)

}
and A+ =

{
at =

(
cosh t sinh t

In−2

sinh t cosh t

)
| t > 0

}
.

Let M ∼= SOn−2(R) be the centralizer of A in K, namely

M =
{
m =

(
1
m′

1

)
| m′ ∈ SOn−2(R)

}
.

It was shown in [32, Lemma 2.1 and Proposition 2.4] that any k ∈ K can be written as

k = m1kθm2, where mi ∈ M and

kθ =
(

cos θ sin θ
− sin θ cos θ

In−2

)
(2.3)

for some uniquely determined θ ∈ [0,π ], and that with this decomposition, the Haar

measure dk of K is given (up to a normalizing constant) by

dk = (sin θ)n−3 dm1dθdm2. (2.4)

2.3 Norm balls

We denote by ‖ · ‖ the Euclidean norm on Rn and using the natural embedding of G =
SO+

Q(R) ⊆ SLn(R) ⊆ GLn(R)we let ‖·‖op denote the operator norm onG.Using the operator
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Effective Density for Quadratic Forms II 19515

norm, we define the norm ‖g‖ =
∥∥g−1

∥∥
op

and we use it to define the growing norm balls

GT = {g ∈ G | ‖g‖ ≤ T}. (2.5)

Remark 2.6. This choice of norm is convenient for what follows but is not essential.

Note that for g ∈ SOQ(R) we have that g−1 = Jg∗J−1 implying that ‖g−1‖op � ‖g‖op.
We can also use the Hilbert–Schmidt norm instead of the operator norm, noting that

both the Hilbert–Schmidt norm and the operator norm are bi-On(R)-invariant and that

‖g‖HS � ‖g‖op for all g ∈ GLn(R).

The volume of such norm balls was computed (in greater generality) in

[16, Corollary 1] and satisfy that there is T0 depending only on n such that for all T ≥ T0

mG(GT) � (logT)δp,qTq(p−1), (2.7)

where δp,q is the Kronecker delta function, that is, δp,q = 1 if p = q and δp,q = 0 otherwise.

We also note that since the identity matrix satisfies ‖I‖ = 1, from the continuity of the

norm for any T > 1, the set GT contains some neighborhood of the identity, and hence

mG(GT) > 0 for all T > 1. Finally, for later use, we note that when G = SO+
Q0

(R) with Q0

of signature (n− 1, 1), we have that for any T > 1

GT =
{
k1atk2 | k1,k2 ∈ K and 0 < t ≤ logT

}
. (2.8)

3 Reduction to an Effective Mean Ergodic Theorem

In this section, we will perform several reductions to the problem and we will assume

throughout this section that Q is a rational form so that � = SO+
Q(Z) is a lattice in G =

SO+
Q(R). First we reduce the problem to a shrinking target problem for the action of � =

SO+
Q(Z) on the torus Tn = Rn/Zn (such problems were studied in detail in [9]). Next, we

further reduce the problem to a shrinking target problem for the action of G on the space

G�Rn/� �Zn. Finally, we show how this second shrinking target problem follows from

an appropriate effective mean ergodic theorem.

3.1 Reduction to a shrinking target problem for �-action

Since � = SO+
Q(Z) is naturally embedded in SLn(Z), it acts on the torus Tn = Rn/Zn. We

call a family, {At}t>0, of subsets of Tn a family of shrinking targets if At ⊆ As for all
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t ≥ s,m(At) > 0 for all t > 0 and m(At) → 0 as t → ∞ (where dm stands for Lebesgue

measure).

Lemma 3.1. Assume that there exists some κ0 > 0 such that for any κ < κ0, for any

family of shrinking targets {At}t>0 in Tn with m(At) 	 t−κ , for almost every α ∈ Tn and

for all sufficiently large t, there is γ ∈ � with ‖γ ‖ ≤ ct and αγ ∈ At for some c > 0. Then

for any κ < κ0, for almost every α ∈ Rn, and for all sufficiently large t, there is v ∈ Zn

with |Q(v + α) − ξ | < t−κ and ‖v‖ ≤ t.

Proof. Fix κ < κ0 and let κ ′ ∈ (κ, κ0). Let

ÃN,ε =
{
x ∈ Rn | ‖x‖ ≤ N, |Q(x) − ξ | ≤ ε

}
.

Then by [22, Theorem 5], we have m(AN,ε) = 2cQεNn−2(1 + OQ(N−1/2)) and in particular

there is some N0 (depending only on Q and ξ ) such that m(AN0,ε
) �N0

ε for all ε ∈ (0, 1).

Since N0 is fixed, the set ÃN0,ε
is contained in finitely many fundamental domains for Tn

(with the number of fundamental domains uniform in ε ∈ (0, 1)); so denoting by At the

projection of ÃN0,t−κ′ to Tn, we still have that m(At) � t−κ ′
.

Now by assumption, for almost every α ∈ Tn and for all sufficiently large t, there

is γ ∈ � with ‖γ ‖ ≤ ct and αγ ∈ At. Hence for almost every α ∈ Rn and for all sufficiently

large t, there is γ ∈ � with ‖γ ‖ ≤ ct and u ∈ Zn with x = αγ +u ∈ ÃN0,t−κ′ . Let v = uγ −1 ∈
Zn then since γ ∈ � = SO+

Q(Z), we have that

Q(v + α) = Q(vγ + αγ ) = Q(x),

so that |Q(v + α) − ξ | < t−κ ′
. We can thus estimate for all t sufficiently large

‖v‖ = ‖uγ −1‖ = ‖xγ −1 + α‖ ≤ N0‖γ −1‖op + ‖α‖ ≤ N0ct+ 1 ≤ 2cN0t.

Hence, replacing 2cN0t by t, we get that for almost every α ∈ Rn for all sufficiently large

t there is v ∈ Zn with ‖v‖ ≤ t and |Q(v + α) − ξ | ≤ (t/2cN0)
−κ ′

< t−κ . �

3.2 Reduction to shrinking target problem for G-action

We now show that the shrinking target property we need for the �-action follows from an

appropriate shrinking target property for the action ofG = SO+
Q(R) on the space G̃/�̃ with

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
rtic

le
/2

0
2
3
/2

2
/1

9
5
0
7
/7

2
4
3
3
7
8
 b

y
 O

 N
e
ill L

ib
ra

ry
 u

s
e
r o

n
 1

1
 J

u
n
e
 2

0
2
4



Effective Density for Quadratic Forms II 19517

G̃ = G�Rn and �̃ = � �Zn (here the group law on G̃ is given by (h,α)(g,v) = (hg,αg+ v)

for any (h,α), (g,v) ∈ G̃).

Lemma 3.2. Let At ⊆ Tn be a family of shrinking targets and let Ãt ⊆ [0, 1]n be sets

whose projection to Tn equals At. Let F ⊂ G be a fixed fundamental domain for G/�

containing the identity element. Fix a small constant c > 1 and consider the sets B̃t =
{(g,α) ∈ G̃ | g ∈ F , ‖g‖ ≤ c,α ∈ Ãt} in G̃, and let Bt ⊆ G̃/�̃ denote the projection of B̃t to

G̃/�̃. If for a.e. x ∈ G̃/�̃ and for all sufficiently large t, there is g ∈ Gt with g−1x ∈ Bt then

for a.e. α ∈ Tn and all sufficiently large t, there is γ ∈ � with ‖γ ‖ ≤ c2t and αγ ∈ At.

Proof. Since we assume that the set of x ∈ G̃/�̃ such that for all sufficiently large t there

is g ∈ Gt with g−1x ∈ Bt is a set of full measure, by unfolding we also have that the set

S = {(h,α) ∈ G̃ | ∃ t0 > 1 s.t. ∀ t ≥ t0 ∃ g ∈ Gt, γ ∈ �,m ∈ Zn s.t. (g−1, 0)(h,α)(γ ,m) ∈ B̃t},

is a set of full measure in G̃. In particular, if G̃c = {(h,α) ∈ G̃ | ‖h−1‖ ≤ c}, then S′ = S∩ G̃c

is of full measure in G̃c. Moreover, since c > 1, the set {h ∈ G | ‖h−1‖ ≤ c} has positive

measure. Hence, for almost every α ∈ Rn, there exists some h ∈ G with ‖h−1‖ ≤ c, for

which (h,α) ∈ S′, that is, for all sufficiently large t there is g ∈ Gt, γ ∈ � and m ∈ Zn

such that

(g−1hγ ,αγ +m) ∈ B̃t.

For such a pair (h,α), we have that ‖g−1hγ ‖ ≤ c and ‖h−1‖ ≤ c so

‖γ ‖ =
∥∥h−1gg−1hγ

∥∥ ≤
∥∥h−1

∥∥∥∥g
∥∥∥∥g−1hγ

∥∥ ≤ c2t,

and that αγ + m ∈ Ãt so that αγ + Zn ∈ At. We thus showed that for a.e. α ∈ Tn and for

all sufficiently large t there is γ ∈ � with ‖γ ‖ ≤ c2t such that αγ ∈ At concluding the

proof. �

3.3 Reduction to an effective mean ergodic theorem

Given a measure preserving ergodic action of a noncompact, locally compact group G on

a probability space (X,mX), the mean ergodic theorem states that for any growing family

of subsets Gt of G, the averaging operator on L2(X) given by

βGtf (x) = 1

mG(Gt)

∫

Gt

f (g−1x)dmG(g), (3.1)
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19518 A. Ghosh et al.

satisfies that ‖βGtf −
∫
X f dmX‖2 → 0 asmG(Gt) → ∞. We say that the action satisfies an

effective mean ergodic theorem with exponent κ if for any f ∈ L2(X),

∥∥∥∥βGtf −
∫

X

f dmX

∥∥∥∥
2


κ

‖f ‖2
mG(Gt)

κ
.

We refer the reader to [15] for a comprehensive survey on effectivemean ergodic theorems

and their number theoretic applications.

It was shown in [11, Theorem 1] that if the action of G on L2(X) satisfies a mean

ergodic theorem with exponent κ and that the set Gt = {g ∈ G | ‖g‖ ≤ t} has measure

mG(Gt) 	 tb, then for any a < 2κb and any family of shrinking targets Bt ⊆ X with

measure mX(Bt) 	 t−a, for a.e. x ∈ X for all t ≥ t0(x) there is g ∈ Gt with g−1x ∈ Bt.

Taking our space X = G̃/�̃ and our shrinking sets Bt as in Lemma 3.2 will reduce the

problem to establishing a mean ergodic theorem.

While it is possible to obtain such a mean ergodic theorem in this setting, the

exponent κ depends on the (strong) spectral gap for the representation of G on L2(X),

which for rank one groups may depend on the lattice �. To remove this dependence,

we take further advantage of the specific structure of the shrinking sets Bt to give the

following refined version.

We can identify L2(G/�)with the subspace of L2(G̃/�̃) composed of functions that

are invariant under the action of Rn, and let L200(G̃/�̃) denote its orthogonal complement

(i.e., the kernel of the linear map L2(G̃/�̃) → L2(G/�) given by averaging over Rn/Zn).

Decomposing L2(G/�) further as a direct sum of the space of constant functions and the

space, L20(G/�), of mean zero functions, we get the following decomposition:

L2(G̃/�̃) = C ⊕ L20(G/�) ⊕ L200(G̃/�̃), (3.2)

which is preserved by the left regular G-action (under the natural embedding G ⊆ G̃

sending g ∈ G to (g, 0) ∈ G̃). We now reduce the shrinking target problem in Lemma 3.2

to bounds for the averaging operators for the latter two representations.

Proposition 3.3. Let Gt ⊂ G be a family of growing sets of measure mG(Gt) 	 tb for

some b > 0. Let κ1 > 0 and assume the following

(1) There is some κ2 > 0 such that for any f ∈ L2(G/�)

∥∥∥∥βGtf −
∫

G/�

f dmG

∥∥∥∥
2


 ‖f ‖2
mG(Gt)

κ2
.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
rtic

le
/2

0
2
3
/2

2
/1

9
5
0
7
/7

2
4
3
3
7
8
 b

y
 O

 N
e
ill L

ib
ra

ry
 u

s
e
r o

n
 1

1
 J

u
n
e
 2

0
2
4



Effective Density for Quadratic Forms II 19519

(2) For any κ < κ1 and for any f ∈ L200(G̃/�̃)

∥∥βGtf
∥∥
2


κ

‖f ‖2
mG(Gt)

κ
.

Consider a family of shrinking targets At ⊆ Tn and let Bt ⊆ G̃/�̃ be as in

Lemma 3.2. If m(At) 	 t−a with a < 2bκ1, then for a.e. x ∈ G̃/�̃ and for all sufficiently

large t, there is g ∈ Gt with g−1x ∈ Bt.

Proof. Letψt ∈ L2(G̃/�̃) denote the indicator function of Bt.We note that a Haarmeasure

of G̃ decomposes as dmG̃(g,α) = dmG(g)dm(α), and by our definition B̃t is contained in

a single fundamental domain of G̃/�̃. Thus,

mG̃(Bt) = mG̃(B̃t) =
∫
{
(g,α)∈G̃ | g∈Fc,α∈Ãt

} dmG(g)dm(α) = mG(Fc)m(At) �c m(At),

where Fc = {g ∈ G | g ∈ F , ‖g‖ ≤ c} with F the fixed fundamental domain for G/� as in

Lemma 3.2. We want to show that for a.e. x ∈ G̃/�̃ and for all sufficiently large t, there

is g ∈ Gt such that g−1x ∈ Bt. It suffices to show that βGt(ψt)(x) �= 0 for all sufficiently

large t where βGt denotes the averaging operator (3.1). We thus need to show that the

limsup set

C =
⋂

T≥0

⋃

t≥T

{
x ∈ G̃/�̃ | βGt(ψt)(x) = 0

}

has measure zero. Now we consider the dyadic decomposition

⋃

t≥T

{
x ∈ G̃/�̃ | βGt(ψt)(x) = 0

}
=

⋃

k≥log(T)

⋃

2k≤t<2k+1

{
x ∈ G̃/�̃ | βGt(ψt)(x) = 0

}
,

and note that, since Gt is increasing and ψt is decreasing in t, if βGt(ψt)(x) = 0 for some

2k ≤ t < 2k+1 then βG
2k

(ψ2k+1)(x) = 0 so that

⋃

t≥T

{
x ∈ G̃/�̃ | βGt(ψt) = 0

}
⊆

⋃

k≥log(T)

C2k,2k+1 ,

where CT,t :=
{
x ∈ G̃/�̃ | βGT (ψt)(x) = 0

}
. We thus need to show that the series

∑
kmG̃(C2k,2k+1) is summable.
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19520 A. Ghosh et al.

We now use our assumptions on the norms of the averaging operators to estimate

mG̃(CT,t). Let ϕt ∈ L2(G/�) denote the projection of ψt and note that ϕt = m(At)χFc
with

Fc the projection of Fc from G to G/�. We also note that

(ψt − ϕt) ∈ L200(G̃/�̃) and (ϕt −mG̃(ψt)) = (ϕt −mG(ϕt)) ∈ L20(G/�).

Now for any T, t > 1 we can estimate

∥∥βGT (ψt) −mG̃(ψt)
∥∥
2

≤
∥∥βGT (ψt − ϕt)

∥∥
2

+
∥∥βGT (ϕt) −mG(ϕt)

∥∥
2
.

Now using the bound on the norms of the averaging operators in these spaces we get

that for any κ < κ1

∥∥βGT (ψt − ϕt)
∥∥
2


κ

‖ψt − ϕt‖2
mG(GT)κ


c

√
m(At)

mG(GT)κ
.

For the second term, since ϕt = m(At)χFc
we can bound

∥∥βGT (ϕt) −mG̃(ψt)
∥∥
2

=
∥∥βGT (ϕt) −mG(ϕt)

∥∥
2


c

m(At)

mG(GT)κ2
.

Combining both bounds we get that

∥∥βGT (ψt) −mG̃(ψt)
∥∥2
2


κ,c

m(At)

mG(GT)2κ
+ m(At)

2

mG(GT)2κ2
.

Since for any x ∈ CT,t we have that βGT (ψt)(x) = 0, the Chebyshev inequality gives

mG̃(CT,t))m(At)
2 
c ‖βGtψt −mG̃(ψt)‖22,

and hence

mG̃(CT,t) 
κ,c

1

m(At)mG(GT)2κ
+ 1

mG(GT)2κ2

 taT−2κb + T−2κ2a.

In particular, assuming that a < 2κ1b, we can find κ < κ1 so that a < 2κb for which

mG̃(C2k,2k+1) 
κ 2k(a−2κb) + 2−2kκ2a is summable, thereby finishing the proof. �
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4 Effective Mean Ergodic Theorems

In this section, we show how the needed effective mean ergodic theorems follow from

results on the strong spectral gap. We first recall some general results on such mean

ergodic theorems.

4.1 Relation to operator norms

It is useful to think of the averaging operators βGt and the effectivemean ergodic theorem

in a wider context for general unitary representations. Given a unitary representation π

of G on some Hilbert space H, and a growing family Gt of measurable subsets of G as

above, we can consider the averaging operator

βGt(π)(v) = 1

mG(Gt)

∫

Gt

π(g)v dmG(g). (4.1)

This is an operator acting on H and we denote by ‖βGt(π)‖, its operator norm. Now for

the special case where π is the representation of G on the space L20(X) of mean zero

functions given by π(g)f (x) = f (g−1x), we have that βGt(π)(f ) = βGt(f ) as elements of

L2(X) and hence the bound ‖βGt(π)‖ 
κ mG(Gt)
−κ is equivalent to an effective mean

ergodic theorem with exponent κ.

One advantage of working in this wider context is that we can reduce the problem

to that of irreducible representations. Explicitly, we record a useful result relating the

bound on the operator norm for a representation to that of its irreducible components.

Lemma 4.1. Let π be a unitary representation of G and consider the decomposition π =
∫⊕
Y πy dν(y) as a direct integral of irreducible representations over some measure space

(Y, ν) parametrizing irreducible representations of G. If for some t > 0 and for ν-a.e.

y ∈ Y the norm of the averaging operator satisfies ‖βGt(πy)‖ ≤ F(t), then ‖βGt(π)‖ ≤ F(t).

Proof. From our assumption for ν-a.e. y ∈ Y, for all vy ∈ Hy, we have that ‖βGt(πy)vy‖ ≤
F(t)‖vy‖. Since for any v ∈ H we have ‖v‖2 =

∫
Y ‖vy‖2 dν(y) and (βGt(π)v)y = βGt(πy)vy,

we get that

∥∥βGt(π)v
∥∥2 =

∫

Y

‖βGt(πy)vy‖
2 dν(y) ≤ F(t)2‖v‖2,

so that the operator norm satisfies that ‖βGt(π)‖ ≤ F(t) as claimed. �
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19522 A. Ghosh et al.

Now, for a unitary representation π , there is a close relation between bounds for

operator norms of βGt(π) and the strong spectral gap for π . The strong spectral gap is

closely related to decay of matrix coefficients and is controlled by the parameter p(π) ∈
[2,∞) as introduced in the introduction. It follows from the work of Gorodnik and Nevo

[14] (see also [15, page 78] and [29, page 306]) that for any unitary representation π of a

semi-simple Lie group G, if we let l be the smallest even integer satisfying l ≥ p(π)/2 and

let κ1 = 1
2l

(when π is tempered we can take κ1 = 1/2) then for any κ < κ1

∥∥βGt(π)
∥∥ 
κ mG(Gt)

−κ . (4.2)

Remark 4.3. We note that when the growing sets Gt are bi-K-invariant, it is expected

that in fact one can take κ1 = 1
p(π)

without the parity conditions. In particular, when G

has real rank one, this follows from estimates on decay of matrix coefficients of spherical

functions. While this result is well known to experts, as we could not find a reference in

the literature, for the sake of completeness we include a proof below.

Proposition 4.2. Keep the notation as above and assume thatQ is of signature (n−1, 1).

Let {Gt}t>1 be the family of growing norm balls defined in (2.5). Then for any κ < 1
p(π)

we have

∥∥βGt(π)
∥∥ 
κ mG(Gt)

−κ .

Proof. Note that ifQ,Q′ are two forms of signature (n−1, 1) then there is h ∈ SLn(R) and

λ �= 0 with Q′(v) = λQ(vh) and hence conjugating by h gives an isomorphism ϕh : G′ → G

with G′ = SO+
Q′(R). Now, any unitary representation π ′ of G′ is of the form π ′ = π ◦ϕh and

it is clear that in this case p(π) = p(π ′). We also have that the corresponding norm balls

satisfy Gt/c ⊆ G′
t ⊆ Gct for some c > 1 from which it follows that it is enough to prove

the result for a single form, and we may take Q = Q0 given in (2.1).

Next, we recall that when G is of rank one, the decay of matrix coefficients can be

given explicitly in terms of the KA+K decomposition with A+ = {at | t ≥ 0} the positive

chamber in a Cartan subgroup, and K the corresponding maximal compact subgroup,

as in §2.2. More precisely, for a unitary representation π of G on a Hilbert space H not

weakly containing the trivial representation, let α(π) ∈ (0, n−2
2 ] be the smallest number

satisfying that for any positive α < α(π) and for any K-finite vector v ∈ H, we have for

any t > 0

〈π(at)v,v〉 
α dim 〈π(K)v〉e−αt‖v‖2. (4.4)
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Using (2.2) for signature (n− 1, 1) we have that, up to scaling, the Haar measure of G in

the coordinates g = katk
′ is given by

dmG(g) = sinh(t)n−2 dtdkdk′,

which gives the relation that

α(π) = n− 2

p(π)
. (4.5)

Now for any test vector v, let vK =
∫
K π(k)vdk. Note that ‖vK‖ ≤ ‖v‖ and since Gt

is bi-K-invariant then

βGt(π)v = βGt(π)vK .

Hence to calculate the operator norm,we just need to estimate ‖βGt(π)v‖ for v a spherical

vector. Now for v a norm one spherical vector, using the KA+K decomposition, the

estimate (2.7), the description of Gt (2.8), and the fact that π is unitary, we have for t > T0

∥∥βGt(π)v
∥∥2 ≤ 1

mG(Gt)
2

∫

Gt

∫

Gt

∣∣〈π(g1)v,π(g2)v〉
∣∣ dmG(g1)dmG(g2)

� 1

t2(n−2)

∫ log(t)

0

∫ log(t)

0

∫

K

∣∣〈π(at1kat2)v,v〉
∣∣ sinh(t1)

n−2 sinh(t2)
n−2 dkdt1dt2.

Further decomposing k = mkθm
′ with m,m′ ∈ M and kθ as in (2.3), noting that m,m′

commute with at and using the Haar measure decomposition in (2.4), we get that the

second line of the above equation is given, up to a constant, by

�n

1

t2(n−2)

∫ log(t)

0

∫ log(t)

0

∫ π

0

∣∣〈π(at1kθat2)v,v〉
∣∣ sin(θ)n−3 sinh(t1)

n−2 sinh(t2)
n−2 dθdt1dt2.

Now we use the KA+K decomposition to write at1kθat2 = katk
′ for some k,k′ ∈ K and

at ∈ A+, and use the decay of matrix coefficients to estimate the above integral. For any

positive α < α(π), using (4.4), we can estimate matrix coefficients of a spherical norm

one vector by

|〈π(at1kθat2)v,v〉| = |〈π(katk
′)v,v〉| 
α e

−αt � cosh(t)−α.
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We thus need to estimate the term cosh t in terms of the coordinates t1 and t2. By

comparing the (n,n)th entry of both matrices, we see that

cosh(t) = cosh(t1) cosh(t2) + cos(θ) sinh(t1) sinh(t2). (4.6)

We can rearrange this, noting that cosh(t1) cosh(t2) − sinh(t1) sinh(t2) = cosh(t1 − t2) to

get that

cosh(t) = 2 cos2(θ/2) sinh(t1) sinh(t2) + cosh(t1 − t2) ≥ 2 cos2(θ/2) sinh(t1) sinh(t2).

Using this bound and the estimate on decay of matrix coefficients, we can estimate

∥∥βGt(π)v
∥∥2 
α

1

t2(n−2)

∫ log(t)

0

∫ log(t)

0

∫ π

0

(
cos2(θ/2) sinh(t1) sinh(t2)

)−α

sin(θ)n−3 sinh(t1)
n−2 sinh(t2)

n−2 dθdt1dt2.

For the innermost integral over θ , note that since α < α(π) = n−2
p(π)

≤ n−2
2 the integral

∫ π

0
cos(θ/2)−2α sin(θ)n−3 dθ

converges. We can thus estimate

∥∥βGt(π)v
∥∥2 
α

1

t2(n−2)

(∫ log(t)

0
sinh(t1)

n−2−α dt1

)2


α t
−2α.

Since this holds for any norm one spherical vector, we get that

∥∥βGt(π)
∥∥ 
 t−α � mG(Gt)

− α
n−2 ,

for any positive α < α(π) = n−2
p(π)

. In particular, for any κ < 1
p(π)

, we can take α = (n−2)κ <

α(π) to conclude the proof. �

4.2 Groups with property (T)

For a connected semi-simple Lie group G with finite center, define

p(G) := sup {p(π) | π is a nontrivial irreducible unitary representation of G} .
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We note that G has property (T) if and only if p(G) < ∞. Thus for groups with

property (T) we can bound p(π) from above by p(G) for any unitary representation π

of G not containing the trivial representation. Effective bounds for p(G) were obtained

for all semi-simple Lie groups with property (T) in [24, 31], implying in particular the

following

Proposition 4.3. For G = SO+
Q(R) with Q a form of signature (p,q) we have

p(G) ≤

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p+ q− 2 p+ q ≥ 7, q ≥ 2 and (p,q) �∈ {(5, 2), (4, 3), (6, 3)}
2(p− 1) (p,q) ∈ {(5, 2), (4, 3), (6, 3)}
6 (p,q) ∈ {(4, 2), (3, 3)}
4 (p,q) = (3, 2).

Proof. In all the above cases, the groupG has property (T).When (p,q) /∈ {(5, 2), (4, 3), (6, 3)},
the parameter p(G) was explicitly computed by Li in Theorem A [24], yielding the cases

except (p,q) ∈ {(5, 2), (4, 3), (6, 3)}. For the remaining cases, this bound follows from

the upper bound on p(G) proved by Oh, see Corollary C in [30] and Theorem 7.4 in [31].

�

Combining these bounds for the strong spectral gap gives the following result

on an effective mean ergodic theorem for these groups.

Theorem 4.4. Let G = SO+
Q(R) with Q a form in n ≥ 5 variables of signature (p,q) with

p ≥ q > 1. Let

κ1 =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
n n ≡ 0 (mod 4)

1
n−1 n ≡ 1 (mod 4)

1
n−2 n ≡ 2 (mod 4)

1
n+1 n ≡ 3 (mod 4)

except for the case of signatures (3, 3), (4, 2), and (6, 3) for which we let κ1 = 1/8,

1/8, and 1/12, respectively. Then for any κ < κ1, for any unitary representation π of G

without nontrivialG-invariant vectors, and for any growing familyGt with finite positive

measure, we have that

∥∥βGt(π)
∥∥ 
κ mG(Gt)

−κ .
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19526 A. Ghosh et al.

4.3 Signature (n− 1, 1)

For a form of signature (n − 1, 1), the group G = SO+
Q(R) does not have property (T) so

there is no uniform bound for the strong spectral gap in general. However, in order to

apply Proposition 3.3, the representations we are interested in are the representations of

G on the two function spaces L20(G/�) and L200(G̃/�̃) described in the decomposition (3.2).

Using Theorem 1.5 (whose proof is postponed to the next section), we have that

p(�̃)0 = max{2,n − 2}. Hence using Proposition 4.2 assumption (2) of Proposition 3.3

holds with κ1 = 1
2 for n = 3, 4 and κ1 = 1

n−2 for n ≥ 4.

Remark 4.7. For Q of signature (n − 1, 1), we don’t have a uniform bound for the

strong spectral gap for L2(G/�) (unless � is a congruence group). However, in this case,

the spectral gap is equivalent to the strong spectral gap and the discreteness of the

Laplacian spectrum implies that there is some bound for the spectral gap (which may

depend on �). We thus get an effective mean ergodic theorem of the form as assumption

(1) in Proposition 3.3 with some exponent κ2 > 0 that may depend on �.

4.4 Signature (2, 2)

When Q is of signature (2, 2), the group SOQ(R) is locally isomorphic to SL2(R) × SL2(R)

and does not possess property (T). To see this local isomorphism more clearly, it will be

convenient to work with the determinant form

Q1(a,b, c,d) = ad− bc = det(M) (4.8)

when identifying R4 = Mat2(R) and writing M =
(
a b
c d

)
. Consider the action of SL2(R) ×

SL2(R) on R4 = Mat2(R) with (g1,g2) ∈ SL2(R) × SL2(R) sending M ∈ R4 to g1Mg
∗
2.

This action is clearly linear and preserves Q1, and thus induces a homomorphism from

SL2(R)×SL2(R) to SOQ1
(R). In fact, letG = SO+

Q1
(R) be the identity component of SOQ1

(R),

then this action induces a double covering

ι : SL2(R) × SL2(R) → G (4.9)

with the kernel ker(ι) = {±(I2, I2)}. Thus any irreducible unitary representation of G

is of the form π(ι(g1,g2)) = π1(g1) ⊗ π2(g2) where each πi is an irreducible unitary

representation of SL2(R) such that π1⊗π2 is trivial on ker(ι). By a slight abuse of notation,

we will write in this case π = π1 ⊗ π2 and we will view π as a representation of both

SL2(R) × SL2(R) and G.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
rtic

le
/2

0
2
3
/2

2
/1

9
5
0
7
/7

2
4
3
3
7
8
 b

y
 O

 N
e
ill L

ib
ra

ry
 u

s
e
r o

n
 1

1
 J

u
n
e
 2

0
2
4



Effective Density for Quadratic Forms II 19527

Nevertheless, Theorem 1.4 (whose proof we postpone to the next section) implies

that the representation of G on L200(G̃/�̃) is tempered. This has the following immediate

corollary, allowing us to obtain an optimal exponent for the effective mean ergodic

theorem for functions in L200(G̃/�̃) for any growing family of sets Gt.

Corollary 4.5. Keep the notation as above. For any growing family of sets Gt in G, we

have for all κ < 1/2, for any f ∈ L200(G̃/�̃), and for all t > 1,

∥∥βGtf
∥∥
2


κ

‖f ‖2
mG(Gt)

κ
.

The situation for functions in L2(G/�) is more complicated. Here the lattice �

is not necessarily an irreducible lattice (e.g., for Q = Q1 above we can identify G with

SL2(R) × SL2(R) and then � = SL2(Z) × SL2(Z)). In particular, the representation of G on

the space L2(G/�)might not have a strong spectral gap.Hence, in order to get an effective

rate for the mean ergodic theorem,we need to make sure the growing norm balls are well

balanced.

Before defining the well balanced norm balls, we analyze the norm balls Gt ⊂ G

defined in (2.5) using the coordinates from the double cover ι : H × H → G = SO+
Q1

(R)

with H = SL2(R). Fix a polar decomposition H = SO2(R)A+ SO2(R) with

A+ =
{
at =

(
et/2 0
0 e−t/2

)
| t > 0

}
,

and for any g ∈ H we denote by t(g) > 0 the uniquely determined positive number in the

decomposition g = k1at(g)k2 with k1,k2 ∈ SO2(R) and at(g) ∈ A+. We note that in these

coordinates the Haar measure of H is given, up to a scalar, by

dmH(k1atk2) = sinh(t)dk1dtdk2

with dk the probability Haar measure on SO2(R).Moreover, for g = k1at(g)k2 as above,we

have g−1 = k−1
2 a−1

t(g)k
−1
1 = k−1

2 ωat(g)ω
−1k−1

1 implying that t(g) = t(g−1). Here ω =
(
0 −1
1 0

)
∈

SO2(R).

Let ‖ · ‖ be the Euclidean norm on R4. Note that under the identification R4 =
Mat2(R), ‖·‖ is the Hilbert–Schmidt norm onMat2(R),which is bi-SO2(R)-invariant. First,

for any t1, t2 > 0 and any M =
(
a b
c d

)
∈ Mat2(R), we have

at1Ma
∗
t2

=
(
ae(t1+t2)/2 be(t1−t2)/2

ce(t2−t1)/2 de−(t1+t2)/2

)
,
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implying that
∥∥ι(at1 ,at2)

∥∥
op

= e(t1+t2)/2, where the operator norm is attained when taking

M =
(
1 0
0 0

)
. Now for any ι(g1,g2) ∈ G and for anyM =

(
a b
c d

)
∈ Mat2(R) writing gi = k′

i
atiki

with ki,k
′
i
∈ SO2(R) and ati ∈ A+ for i = 1, 2 we have

∥∥g1Mg∗
2

∥∥ =
∥∥at1k1Mk

∗
2at2

∥∥ ≤ e(t1+t2)/2 ∥∥k1Mk∗
2

∥∥ = e(t1+t2)/2 ‖M‖ ,

implying that
∥∥ι(g1,g2)

∥∥
op

≤ e(t1+t2)/2. On the other hand, taking M such that k1Mk
∗
2 =

(
1 0
0 0

)
in the above equation, we get

∥∥g1Mg∗
2

∥∥ = e(t1+t2)/2 ∥∥k1Mk∗
2

∥∥ = e(t1+t2)/2‖M‖,

implying that
∥∥ι(g1,g2)

∥∥
op

≥ e(t1+t2)/2. Hence, we have
∥∥ι(g1,g2)

∥∥
op

= e(t1+t2)/2 =∥∥ι(g1,g2)−1
∥∥
op

(since t(g) = t(g−1) for any g ∈ H) implying that

GT =
{
ι(g1,g2) ∈ G | t(g1) + t(g2) ≤ 2 logT

}
.

Recall that by (2.7), we have mG(GT) � T2 logT. Denoting by

HT :=
{
g ∈ H | t(g) ≤ 2 logT

}
,

we see that the projection to each factor GT ∩ (H × {I}) = HT has measure � T2, and

hence, the growing norm balls are balanced but are not well balanced in the sense of

[14, Definition 3.17]. We thus need to replace the norm balls with slightly smaller well

balanced norm balls given by

Gwb
T =

{
ι(g1,g2) ∈ GT | max{t1(g), t2(g)} ≤ log(T)

}
= ι

(
H√

T × H√
T

)

having measure mG(Gwb
T ) = mH(H√

T)2 � T2.

For G = SO+
Q(R) with Q a different quadratic form of signature (2, 2), we fix a

conjugation isomorphism ϕQ : SO+
Q1

(R) → G and define Gwb
T := ϕQ(ι(H√

T × H√
T)). We

note that since Gwb
T ⊂ GT when G = SO+

Q1
(R), for general G = SO+

Q(R) we have Gwb
T ⊂ GcT

for some constant c > 1 depending only on Q.

Now, for these well balanced balls, we can show the following.

Theorem 4.6. For G = SO+(2, 2) and {Gwb
T }T>1, the well-balanced norm balls defined

above, there is some κ > 0 (that may depend on�) such that
∥∥∥βGwb

T
(f )
∥∥∥
2


 ‖f ‖2
mG(Gwb

T )κ
, for

any f ∈ L20(G/�).
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Proof. In view of the reduction arguments in the proof of Proposition 4.2, it suffices to

prove this theorem for the case whenG = SO+
Q1

(R)withQ1 given in (4.8). From Lemma 4.1,

it is enough to show that
∥∥∥βGwb

T
(π)

∥∥∥ 
 1

mG(Gwb
T )κ

for any irreducible component π = π1⊗π2

of L20(G/�) with each πi an irreducible representation of SL2(R).

Recall that any nontrivial irreducible unitary representation of SL2(R) is

infinitesimally equivalent to one of the following: the spherical and non-spherical

principal series representations, the discrete series representations, the two mock

discrete series representations, and the complementary series representations, see for

example, [23, Chapter VI] for more details on the description of the unitary dual of

SL2(R). We note that among these irreducible representations the only non-tempered

representations are the complementary series representations, and following the

parameterization in [23] up to infinitesimal equivalence they can be parameterized by

the interval (0, 1). We thus denote them by σs with s ∈ (0, 1), and by examining the decay

rate of matrix coefficients (see e.g., [17, page 216]) and using the relation (4.5) we see

that σs has spectral gap p(σs) = 2
1−s . We also denote the trivial representation of SL2(R)

by σ1.

Now, the averaging operator for the balanced norm balls takes the form

βGwb
T

(π)v = 1

mG(Gwb
T )

∫

H√
T×H√

T

π1(h1) ⊗ π2(h2)v dmH(h1)dmH(h2)

= 1

mH(H√
T)

∫

H√
T

π1(h1)

(
1

mH(H√
T)

∫

H√
T

π2(h2)v dmH(h2)

)
dmH(h1)

= βH√
T
(π1)βH√

T
(π2)v.

Now, if one of the two representations, say π1, is tempered then for any κ1 < 1/2 we have∥∥∥βH√
T
(π1)

∥∥∥ 
κ1
mH(H√

T)−κ1 . Hence

∥∥∥βGwb
T

(π)v
∥∥∥ =

∥∥∥βH√
T
(π1)βH√

T
(π2)v

∥∥∥


k1
mH(H√

T)−κ1

∥∥∥βH√
T
(π2)v

∥∥∥ ≤ mH(H√
T)−κ1 ‖v‖ ,

where we used the trivial bound
∥∥∥βH√

T
(π2)

∥∥∥ ≤ 1 for π2. Since mH(H√
T) = mG(Gwb

T )1/2,

this proves the claim in this case with κ = κ1
2 < 1/4.

It remains to treat the case where both representations are non-tempered. We

recall that for any irreducible representation π1 ⊗ π2 weakly contained in L20(G/�)

with πi = σsi with si ∈ (0, 1], there is a spherical eigenfunction of the Camsimir
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19530 A. Ghosh et al.

operator in L2(G/�) with eigenvalue s1(1− s1) + s2(1− s2). Since the Casimir operaor on

spherical functions agrees with the Laplacian, the discreteness of the Laplace spectrum

on L2(G/�) implies that there is some constant s0 ∈ (0, 2) (which may depend on �) such

that any irreducible representation π1 ⊗ π2 weakly contained in L20(G/�) satisfies that if

both πi = σsi with si ∈ (0, 1] are either complementary series or the trivial representation,

then s1 + s2 ≤ s0. In particular, for such π at least one of πi is nontrivial, say, π2 = σs2 is

always nontrivial.

For the norm balls H√
T in H = SL2(R) and the complementary series representa-

tion σs (with p(σs) = 2
1−s ) by Proposition 4.2 (noting that H = SL2(R) is locally isomorphic

to SO(2, 1)), we have
∥∥∥βH√

T
(σsi)

∥∥∥ 
κi
mH(H√

T)−κi for any κi <
1−si
2 (we use the trivial

bound
∥∥∥βH√

T
(σs1)

∥∥∥ ≤ 1 if σs1 = σ1 is the trivial representation). Now let 0 < κ < 1
2 − s0

4

and we can take κi <
1−si
2 (we take κ1 = 0 if s1 = 1) such that (κ1 + κ2)/2 = κ to get that

∥∥∥βGwb
T

(π)v
∥∥∥ =

∥∥∥βH√
T
(π1)βH√

T
(π2)v

∥∥∥ 
κ1
mH(H√

T)−κ1

∥∥∥βH√
T
(π2)v

∥∥∥


κ2
mH(H√

T)−(κ1+κ2) = mG(Gwb
T )−(κ1+κ2)/2 = mG(Gwb

T )−κ

as claimed. �

4.5 Proof of main results

Collecting together Theorem 4.4, Proposition 4.2, and Corollary 4.5 gives the proof of

Theorem 1.2, where for signature (2, 2) we use the well balanced normed balls. The proof

of Theorem 1.1 then follows as described in §3. More precisely, by (2.7), we have that

mG(Gt) 	 tq(p−1), while in signature (2, 2) the same estimate holds for mG(Gwb
t ). So by

Proposition 3.3, Lemma 3.1, and Lemma 3.2, we have that the conclusion of Theorem 1.1

holds for κ0 = 2κ1q(p− 1). Note that the first condition of Proposition 3.3 trivially holds

when G has property (T), while in the remaining cases it follows from the discreteness of

the spectrum of the Laplace operator (see Remark 4.7 and Theorem 4.6). Again, for forms

of signature (2, 2), we use Proposition 3.3 with the well balanced norm balls Gwb
t instead

of Gt, noting that Gwb
t ⊂ Gct for some c > 1.

5 Upper and Lower Bounds for p(�̃)0

Let G = SO+
Q(R), G̃ = G � Rn, � ≤ SO+

Q(Z) a finite-index subgroup and �̃ = � � Zn be as

above. Throughout this section,we denote by π the representation ofG on L2(G̃/�̃),which

is unitary with respect to the inner product 〈f1, f2〉 =
∫
G̃/�̃

f1(x)f2(x)dmG̃(x). Our goal is
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to give upper and lower bounds for p(�̃)0 = p(π). For both upper and lower bounds, we

will need the following general construction of functions in L200(G̃/�̃).

Lemma 5.1. Given a bounded and compactly supported function ϕ onG and a nontrivial

character λ of Tn = Rn/Zn, let f = fϕ,λ be given by

f (g,v) =
∑

γ∈�

ϕ(gγ )λ(vγ ). (5.1)

Then f ∈ L200(G̃/�̃), and for any F ∈ L2(G̃/�̃)

〈f ,F〉 =
∫

G

ϕ(g)

∫

Tn
λ(v)F(g,v)dm(v)dmG(g). (5.2)

In particular, the family of functions fϕ,λ with λ a nontrivial character and ϕ compactly

supported span a dense subspace of L200(G̃/�̃).

Proof. The identity f (gγ ,vγ + u) = f (g,v) for any (γ ,u) ∈ � � Zn is straightforward,

and since ϕ is bounded and compactly supported (so that its support can be covered by

finitely many fundamental domains for G/�), we have that f is bounded, implying that

f ∈ L2(G̃/�̃).Moreover, since
∫
Tn

λ(vγ )dm(v) = 0 for any γ ∈ �, then
∫
Tn
f (g,v)dm(v) = 0.

Hence f ∈ L200(G̃/�̃). Next to show (5.2), let F be a fundamental domain for G/� and P a

fundamental parallelogram for Tn, and write

〈f ,F〉 =
∫

G̃/�̃

f (g,v)F(g,v)dmG(g)dm(v)

=
∑

γ∈�

∫

F

∫

P

ϕ(gγ )λ(vγ )F(g,v)dm(v)dmG(g)

=
∑

γ∈�

∫

Fγ

ϕ(g)

∫

Pγ

λ(v)F(g,v)dm(v)dmG(g).

Since for any g the function v �→ λ(v)F(g,v) is a function on Tn and Pγ is also a

fundamental domain for Rn/Zn, we may replace Pγ by P above to get

〈f ,F〉 =
∑

γ∈�

∫

Fγ

ϕ(g)

∫

P

λ(v)F(g,v)dm(v)dmG(g)

=
∫

G

ϕ(g)

∫

P

λ(v)F(g,v)dm(v)dmG(g)
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as claimed.

Finally for the density argument, for any F ∈ L200(G̃/�̃), let

Fλ(g) =
∫

Tn
F(g,v)λ(v)dm(v),

and note that F is orthogonal to fϕ,λ for all compactly supported ϕ implies that

∫

G

ϕ(g)Fλ(g)dmG(g) = 0,

for all compactly supported ϕ, and hence Fλ = 0. Now, if F ∈ L200(G̃/�̃) is orthogonal

to all functions fϕ,λ with nontrivial λ and ϕ compactly supported, then it satisfies that

Fλ(g) = 0 for all characters λ and hence F = 0. �

5.1 Lower bounds

To get lower bounds for p(�̃)0, we first prove the following result, giving an upper bound

for the critical exponent in the mean ergodic theorem, by presenting an explicit f ∈
L200(G̃/�̃) for which

∥∥βGtf
∥∥
2
is large. We first give a large family of test functions for

which we have an explicit estimate for the norm of the averaging operator.

Proposition 5.2. Let λ be a nontrivial character of Tn = Rn/Zn and let Gλ ≤ G denote

its stabilizer

Gλ =
{
g ∈ G : λ(vg) = λ(v), ∀ v ∈ Rn

}
.

Then for any f = fϕ,λ as in (5.1) with ϕ non-negative and compactly supported, there is a

constant c > 0 depending only on the support of ϕ such that for all t > c,

∣∣∫
G ϕ dmG

∣∣2

mG(Gt)
2

∑

γ∈�∩Gλ

mG(γGt/c ∩ Gt/c) ≤
∥∥βGtf

∥∥2
2

≤
∣∣∫
G ϕ dmG

∣∣2

mG(Gt)
2

∑

γ∈�∩Gλ

mG(γGct ∩ Gct).

Proof. Starting from

∥∥βGtf
∥∥2
2

= 1

mG(Gt)
2

∫

Gt

∫

Gt

〈π(h1)f ,π(h2)f 〉dmG(h1)dmG(h2)

= 1

mG(Gt)
2

∫

Gt

∫

Gt

〈f ,π(h−1
1 h2)f 〉dmG(h1)dmG(h2)
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Effective Density for Quadratic Forms II 19533

and using (5.2) with F(g,v) = π(h−1
1 h2)f (g,v) = f (h−1

2 h1g,v) we get that

∥∥βGtf
∥∥2
2

= 1

mG(Gt)
2

∫

Gt

∫

Gt

∫

G

ϕ(g)

∫

Tn
f (h−1

2 h1g,v)λ(v)dm(v)dmG(g)dmG(h1)dmG(h2).

Further expanding f (g,v) =
∑

γ∈� ϕ(gγ )λ(vγ ) and noting that
∫
Tn

λ(v)λ(vγ )dm(v) = 0

unless γ ∈ Gλ we get that

∥∥βGtf
∥∥2
2

=
∑

γ∈�∩Gλ

1

mG(Gt)
2

∫

Gt

∫

Gt

∫

G

ϕ(g)ϕ(h−1
2 h1gγ )dmG(g)dmG(h1)dmG(h2)

=
∑

γ∈�∩Gλ

1

mG(Gt)
2

∫

Gt

∫

Gt

∫

G

ϕ(h−1
1 g)ϕ(h−1

2 gγ )dmG(g)dmG(h1)dmG(h2).

Let χGt denote the indicator function of Gt then making a change of variables h1 �→ gh1

and h2 �→ gγh2 gives

∥∥βGtf
∥∥2
2

= 1

mG(Gt)
2

∑

γ∈�∩Gλ

∫

G

∫

G

∫

G

χGt(h1)χGt(h2)ϕ(h−1
1 g)ϕ(h−1

2 gγ )dmG(h1)dmG(h2)dmG(g)

= 1

mG(Gt)
2

∑

γ∈�∩Gλ

∫

G

∫

G

∫

G

χGt(gh1)χGt(gγh2)ϕ(h−1
1 )ϕ(h−1

2 )dmG(h1)dmG(h2)dmG(g).

Since ϕ is compactly supported, there is some c > 0 such that max{‖h‖, ‖h−1‖} ≤ c for all

h ∈ G with h−1 in the support of ϕ. This then further implies that for such h,

χGt/c (g) ≤ χGt(gh) ≤ χGct(g), ∀ g ∈ G.

Since we assume ϕ is non-negative, we get the lower bound

‖βGtf ‖
2
2 ≥ 1

mG(Gt)
2

∑

γ∈�∩Gλ

∫

G

∫

G

∫

G

χGt/c (g)χGt/c (gγ )ϕ(h−1
1 )ϕ(h−1

2 )dmG(h1)dmG(h2)dmG(g)

=
(∫
G ϕ(h)dh

)2

mG(Gt)
2

∑

γ∈�∩Gλ

mG(Gt/c ∩ Gt/cγ ).

The upper bound follows from the same argument. �

In order to use this formula to estimate the norm of the averaging operator, we

need a good estimate for mG(Gt ∩ Gtγ ). However, since we are only interested in a lower

bound, the following simple estimate will do.
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19534 A. Ghosh et al.

Lemma 5.3. Let A ≤ G be a Cartan subgroup and let K ≤ G be a maximal compact

subgroup such that G = KA+K. Let C = sup{‖k‖ | k ∈ K}. Then we have that mG(Gt ∩
Gtγ ) 	 1 uniformly for all t > 2C and for all γ ∈ � with ‖γ ‖ ≤ t2/(4C2).

Proof. Let γ ∈ � with ‖γ ‖ ≤ t2/(4C2). Decomposing γ = kak′ with k,k′ ∈ K and a ∈ A,

we can find some a′ ∈ A satisfying ‖a′‖ ≤ t/(2C) and ‖a′a‖ = ‖a‖
‖a′‖ ≤ t/(2C) (if ‖a‖ ≤ t/(2C)

then we can take a′ to be the identity element, and if ‖a‖ > t/(2C) then we can take a′

such that ‖a′a‖ = ‖a‖
‖a′‖ = t/(2C) and in both cases we have ‖a′‖ ≤ t/(2C)). Let g0 = a′k−1

so that ‖g0‖ = ‖a′k−1‖ ≤ C‖a′‖ ≤ t/2 and ‖g0γ ‖ = ‖a′ak′‖ ≤ C‖a′a‖ ≤ t/2. Hence any

g ∈ G2g0 will satisfy that ‖g‖ ≤ t and ‖gγ ‖ ≤ t, implying that mG(Gt ∩ Gtγ ) ≥ mG(G2). �

Note that mG(Gct) � mG(Gt) and, since � ∩ Gλ is a lattice in Gλ, by [14, Theorem

6.4] we have that for large t

#
{
γ ∈ � ∩ Gλ | ‖γ ‖ ≤ t

}
� mGλ(Gλ ∩ Gt).

Using these estimates leads to the following.

Corollary 5.4. Let Gλ ⊆ G be the stabilizer of a nontrivial character λ of Tn = Rn/Zn,

then there is f ∈ L200(G̃/�̃) such that

∥∥βGtf
∥∥2
2

	f

mGλ(Gλ ∩ Gt2)

mG(Gt)
2

.

In particular, since for G ∼= SO+(p,q) with p > 2 and p ≥ q, we have a character λ with

stabilizer Gλ locally isomorphic to SO+(p− 1,q) we get a function f = fϕ,λ for which

∥∥βGtf
∥∥2
2

	 mGλ(Gλ ∩ Gt2)

mG(Gt)
2

	

⎧
⎨
⎩

t2(p−2)q−2(p−1)q 	 mG(Gt)
− 2
p−1 p > q

t2(p−1)2−2(p−1)p (log t)−2 	ε mG(Gt)
− 2
p−ε

p = q.

Combining this result and the relation between p(π) and the critical exponent in

the mean ergodic theorem, we get the following.

Proof of Theorem 1.3. First note that if the representation π of G on L200(G̃/�̃) was

tempered then
∥∥βGtf

∥∥
2

≤ ‖f ‖2
mG(Gt)κ

for any κ < 1
2 and any f ∈ L200(G̃/�̃). However, if p > q
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Effective Density for Quadratic Forms II 19535

and p > 3 then 1
p−1 < 1

2 while for if p = q ≥ 3 then we can find ε sufficiently small so

that 1
p + ε

2 < 1
2 . This implies that the representation is not tempered except possibly for

signatures (3, 2), (3, 1), (2, 2), and (2, 1).

Next for the case of signature (n − 1, 1) with n ≥ 4, since for all κ < 1

p(�̃)0
we

have the bound
∥∥βGtf

∥∥
2

≤ ‖f ‖2
mG(Gt)κ

, the example above implies that p(�̃)0 ≥ n − 2. For

signature (n − q,q) with 1 < q < n
2 let j ∈ {0, 1, 2, 3} with j ≡ n − q − 2 (mod 4). Then

our example implies that p(�̃0) > n − q − 2 − j. Indeed, if p(�̃0) ≤ n − q − 2 − j, then∥∥βGtf
∥∥
2

≤ ‖f ‖2
mG(Gt)κ

for any κ < 1
n−q−2−j , which contradicts our counter example. Finally,

for signature (q,q) the same argument shows that p(π) > n− q− 1− j with j ∈ {0, 1, 2, 3}
satisfying j ≡ n− q− 1 (mod 4). �

5.2 Upper bounds

In order to get upper bound for p(π) = p(�̃)0, we need bounds for matrix coefficients of

a dense set of test functions. We start with the following general estimate.

Lemma 5.5. For ϕ,ϕ′ compactly supported functions on G and λ, λ′ two nontrivial

characters of Tn = Rn/Zn let f = fϕ,λ and f ′ = fϕ′,λ′ be as in (5.1). Then for any h ∈ G

we have that 〈f ′,π(h)f 〉 = 0 unless (γ0)∗λ = λ for some γ0 ∈ �, in which case

∣∣〈f ′,π(h)f 〉
∣∣ ≤ ‖ϕ‖∞

∥∥ϕ′∥∥
∞

∑

γ∈�∩Gλ

mG(hGc ∩ Gcγ0γ ),

where γ∗λ(v) := λ(vγ ) for any v ∈ Rn, Gλ is the stabilizer of λ in G given as in

Proposition 5.2, and c ≥ 1 satisfies that ϕ,ϕ′ are supported on Gc.

Proof. Using (5.2) with F = π(h)f and expanding f (g,v), we get that

〈f ′,π(h)f 〉 =
∫

G

ϕ′(g)
∫

Tn
f (h−1g,v)λ′(v)dm(v)dmG(g)

=
∑

γ∈�

∫

G

ϕ′(g)ϕ(h−1gγ )

∫

Tn
λ(vγ )λ′(v)dm(v)dmG(g)

=
∑

γ∈�

γ∗λ=λ′

∫

G

ϕ′(g)ϕ(h−1gγ )dmG(g).
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The sum is empty unless (γ0)∗λ = λ′ for some γ0 ∈ � in which case making a change of

variables γ �→ γ0γ , we get that

〈f ′,π(h)f 〉 =
∑

γ∈�∩Gλ

∫

G

ϕ(hg)ϕ(gγ0γ )dmG(g).

The result now follows by bounding |ϕ| ≤ ‖ϕ‖∞χGc and |ϕ′| ≤ ‖ϕ′‖∞χGc . �

In order to use this estimate, we need to control the size of mG(hGc ∩ Gcγ0γ ),

which can be done as follows when Q is of signature (n− 1, 1).

Lemma 5.6. Let G = SO+
Q(R) with Q of signature (n − 1, 1). Then for any h1,h2 ∈ G,

mG(h1Gc ∩ Gch2) = 0 unless ‖h1‖ �c ‖h2‖ in which case mG(h1Gc ∩ Gch2) 
c ‖h1‖−(n−2).

Proof. Arguing similarly as in the beginning of the proof of Proposition 4.2, we may

assume Q = Q0 as in (2.1). In particular, in this case, the norm balls are bi-K-invariant.

Writing h1 = k1at1k
′
1 and h2 = k2at2k

′
2 and using the invariance of the Haar measure, we

then have mG(h1Gc ∩ Gch2) = mG(at1Gc ∩ Gcat2), and that

mG(at1Gc ∩ Gcat2) =
∫

G

χGc (at1g)χGc (gat2)dmG(g)

=
∫

K

∫ ∞

0

∫

K

χGc (at1k1at)χGc (atk2at2)(sinh(t))n−2 dtdk1dk2 (5.3)

=
∫ ∞

0

(∫

K

χGc (at1kat)dk

)(∫

K

χGc (atkat2)dk

)
(sinh(t))n−1 dt.

We thus need to estimate the two inner integrals. Further decompose k = m1kθm2 with

kθ defined as in (2.3) and m1,m2 commuting with at, to get that

∫

K

χGc (at1kat)dk =
∫ π

0
χGc (at1kθat) sin(θ)n−3 dθ .

We can now use (4.6) to write at1kθat = k1aτk2 with

cosh(τ ) = 2 cos2(θ/2) sinh(t1) sinh(t) + cosh(t1 − t).

Using that ‖k1aτk2‖ � cosh(τ ) the condition that at1kθat ∈ Gc implies that

2 cos2(θ/2) sinh(t1) sinh(t) + cosh(t1 − t) 
 c.
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In particular, t = t1 + Oc(1) and cos2(θ/2) 
c e
−2t1 . Consequently, the product

(∫

K

χGc (at1kat)dk

)(∫

K

χGc (atkat2)dk

)
= 0,

unless t1 = t+Oc(1) and t2 = t+Oc(1). Hence,mG(at1Gc∩Gcat2) = 0 unless t1 = t2+Oc(1),

or equivalently, ‖h1‖ �c ‖h2‖. In this case, the condition cos2(θ/2) 
c e
−2t1 implies θ =

π + Oc(e
−t1) so sin(θ) 
 e−t1 and

∫

K

χGc (at1kat)dk =
∫ π

0
χGc (at1kθat) sin(θ)n−3 dθ 
 e−t1(n−2) � ‖h1‖−(n−2).

Similarly, we also have that
∫
K χGc (atkat2)dk 
c ‖h2‖−(n−2). Plugging these estimates,

together with the estimates t = t1 + Oc(1) = t2 + Oc(1) back in (5.3) completes the

proof. �

We can now calculate the spectral gap p(�̃)0 for any finite-index subgroup � ≤
SO+

Q(Z) with Q of signature (n− 1, 1).

Proof of Theorem 1.5. Let G = SO+
Q(R) with Q of signature (n − 1, 1), let � ≤ SO+

Q(Z)

denote a finite-index subgroup, and let �̃ = � � Zn be as above. We have already shown

in Theorem 1.3 that p(�̃)0 ≥ n− 2; it thus remains to show that p(�̃)0 ≤ n− 2. To do this,

we need to find a dense set of vectors in L200(G̃/�̃) for which the corresponding matrix

coefficients are in Lp(G) for all p > n − 2. We will use the set of vectors spanned by the

functions fϕ,λ given as in (5.1) with ϕ compactly supported and λ a nontrivial character

of Tn. Note that by Lemma 5.1 this is indeed a dense set in L200(G̃/�̃). From linearity, it is

enough to show that for any p > n− 2 the functions g �→ 〈fϕ′,λ′ ,π(g)fϕ,λ〉 are all in Lp(G).

First, by Lemma 5.5, it is enough to consider the case when (γ0)∗λ = λ′ for some γ0 ∈ � in

which case we can estimate

|〈fϕ′,λ′ ,π(g)fϕ,λ〉| ≤ ‖ϕ‖∞‖ϕ′‖∞
∑

γ∈�∩Gλ

mG(gGc ∩ Gcγ0γ ),

where Gλ is the stabilizer of λ in G, and c is any constant so that ϕ and ϕ′ are supported

on Gc. Next, by Lemma 5.6, the term mG(gGc ∩ Gcγ0γ ) vanishes unless ‖g‖ �c ‖γ0γ ‖ in

which case it is bounded by Oc(‖g‖−(n−2)). This leads to the bound

∣∣∣〈fϕ′,λ′ ,π(g)fϕ,λ〉
∣∣∣ 
ϕ,ϕ′,λ,λ′ ‖g‖−(n−2) #

{
γ ∈ � ∩ Gλ | ‖γ ‖ 
c,γ0

‖g‖
}
.
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19538 A. Ghosh et al.

Here for the estimate we also used that ‖γ0γ ‖ �γ0
‖γ ‖ and absorbed the dependence on

c, γ0 into the dependence on ϕ,ϕ′, λ, λ′. Now using a classification of the stabilizer group

Gλ (see Proposition 6.1 below) we have thatGλ is either compact (in which case #(�∩Gλ) is

uniformly bounded) or it is a semi-direct product of a maximal unipotent and a compact

group, in which case

#
{
γ ∈ � ∩ Gλ | ‖γ ‖ 
c,γ0

‖g‖
}


 vol
({
v ∈ Rn−2 | ‖v‖2 
c,γ0

‖g‖
})


c,γ0
‖g‖n−2

2 ,

or it is isomorphic to a copy of SO+(n− 2, 1) inside G, in which case

#
{
γ ∈ � ∩ Gλ | ‖γ ‖ 
c,γ0

‖g‖
}


c,γ0
‖g‖n−3.

In particular, in all cases, we get that

∣∣〈fϕ′,λ′ ,π(g)fϕ,λ〉
∣∣ 
ϕ,ϕ′,λ,λ′ ‖g‖−1,

Finally, since there is h ∈ SLn(R) such that h−1Gh = SO+
Q0

(R) and the Haar measure

of G is the push-forward of the Haar measure of SO+
Q0

(R). Using (2.2) and the relation

‖at‖ � et, it is not difficult to see that if a function F on G satisfies |F(g)| 
 ‖g‖−1, then

F ∈ Lp(G) for all p > (n− 2), thus concluding the proof. �

6 Bounds for p(G̃)0

In this section, we take a closer look at the parameter p(G̃)0 for G = SO+
Q(R) without

property (T), explicitly when Q has signature (2, 2) or (n− 1, 1).

6.1 Signature (2, 2)

Since for different forms of the same signature the corresponding stabilizers are

conjugate, it is enough to show this for the specific form Q = Q1 given in (4.8). In

this case, we can identify the stabilizer G = SO+
Q(R) with SL2(R) × SL2(R) where the

action of (g1,g2) ∈ SL2(R) × SL2(R) on R4 = Mat2(R) is given by M �→ g1Mg
∗
2. As

we noted in §4.4, the irreducible representations of G are all of the form π1 ⊗ π2 with

π1,π2 irreducible representations of SL2(R).With this identification in mind,we have the

following.
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Proof of Theorem 1.4. Let G = SO+
Q1

(R) and let ι : SL2(R) × SL2(R) → G be the

homomorphism defined in (4.9). Consider the two subgroups G̃1, G̃2 of G̃ given by

G̃i = {(ι(g1,g2),v) ∈ G̃ | gi = I2},

and let G1,G2
∼= SL2(R) be the corresponding two subgroups of G. Note that each of the

groups G̃i is naturally isomorphic to SL2(R) � R4 where the action of SL2(R) on R4 =
Mat2(R) is given by matrix multiplication (one acting on the left and the other acting by

the transpose on the right). In particular, for both cases, the only SL2(R)-invariant vector

is the zero vector.

Now, let π̃ be a representation of G̃with no nontrivial R4-invariant vectors. Then

π̃ |G̃i is a representation of SL2(R)�R4 with no nontrivial R4-invariant vectors and hence

π̃ |Gi is tempered (see [35, Theorem 7.3.9]). Now to see that π = π̃ |G is tempered, it is

enough to show that any irreducible representation weakly contained in π is tempered.

But any such irreducible representation is of the form π1 ⊗ π2 with π1,π2 irreducible

representations of G1,G2
∼= SL2(R). Since the restriction of π to each of the factors is

tempered, we must have that both π1,π2 are tempered, and hence π1 ⊗ π2 is tempered.

Since this holds for any irreducible representation weakly contained in π , then π is

tempered as claimed. �

6.2 Signature (n− 1, 1)

For signature (n − 1, 1), we use a different strategy, using an induction argument.

However, in order to execute the induction argument, we need to take a closer look

at the proof of [35, Theorem 7.3.9], and in particular Mackey’s characterization of

representations of semi-direct products (see [35, Theorem 7.3.1])

Theorem (Mackey). LetG be a group acting onRn and let G̃ = G�Rn. For any irreducible

unitary representation π̃ of G̃, there is a unitary character λ of Rn, and an irreducible

unitary representation σ of G̃λ, the stabilizer of λ in G̃, such that

(1) π̃ = IndG̃
G̃λ(σ ),

(2) σ |
Rn = (dim σ)λ,

(3) π̃ |
Rn

∼= L2(G̃/G̃λ,H) for some Hilbert space H with respect to the measure on

G̃/G̃λ coming from Haar measure on G̃, where the action of Rn is given by

(π̃(1,v)f ) (g) = λ(vg)f (g).
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Remark 6.1. The group G̃ acts on Rn ≤ G̃ by conjugation and induces an action on

the group of unitary characters R̂n. Since the action of Rn is trivial, this action factors

through the group G, which acts on characters by g · λ(v) = λ(vg). In particular, the

stabilizer is G̃λ = Gλ �Rn with

Gλ = {g ∈ G | λ(vg) = λ(v), ∀v ∈ Rn}.

Consequently, we can identify the quotients G̃/G̃λ = G/Gλ.

We use this characterization for the case of G = SO+
Q(R), for Q of signature (n −

1, 1). To further understand this characterization of irreducible representations of G̃,

we take a closer look at the structure of the stabilizers Gλ for characters λ of Rn. Any

unitary character λ of Rn is of the form λ(v) = eiv·α for some vector α ∈ Rn, and with this

identification we have that

Gλ = {g ∈ G | αg∗ = α} (6.2)

is the transpose of the stabilizer of α in G∗ (the transpose of G) under the right

multiplication action of G∗ on Rn. So the first step in understanding the representation

π̃ is to characterize the different stabilizers.

Remark 6.3. Note that for G = SO+
Q(R), we have its transpose G∗ = SO+

Q∗(R) with Q∗

a different form of the same signature. Explicitly, if Q(v) = vJv∗ for some symmetric

matrix J with det(J) �= 0 then Q∗(v) = vJ−1v∗ has stabilizer SOQ∗(R) = (SOQ(R))∗. We

thus need to understand the structure of stabilizers in G∗.

First for α = 0 the character λ is trivial, G̃λ = G̃ and π̃ = σ . In this case, the

restriction π̃ |
Rn = σ |

Rn is trivial, so this case does not occur when π has no nontrivial

Rn-invariant vectors. Next for α �= 0 we note that, up to conjugation in G∗, the stabilizer

of α �= 0 in G∗ = SO+
Q∗(R) only depends on the sign of Q∗(α). The following proposition

summarizes the different possible stabilizers, we omit the proof, which is a simple

calculation.

Proposition 6.1. Let λ(v) = eiv·α with α �= 0 and Gλ as above. If Q∗(α) < 0, then Gλ

is compact; if Q∗(λ) = 0, then Gλ is conjugate to the semi-direct product of a maximal

unipotent subgroup and a compact group; and if Q∗(α) > 0, then Gλ is a copy of SO+
Q′(R)

sitting inside G with Q′ a form of signature (n − 2, 1) (given by the restriction of Q to

ker(λ)).
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For cases where the stabilizer Gλ is amenable, we also have that G̃λ = Gλ � Rn

is amenable. Hence, in these cases, σ is weakly contained in the regular representation

of G̃λ and hence π̃ is weakly contained in the regular representation of G̃. But then any

irreducible component of π = π̃ |G is weakly contained in the regular representation of G

and hence is tempered. So in these cases we have that p(π) = 2. We note that when n =
3 the stabilizer Gλ is always amenable and all representations are tempered; however,

when n > 3, this is no longer the case when Q∗(α) > 0.

To handle the caseswhereGλ is not amenable, letVλ = ker(λ) = {v ∈ Rn | λ(v) = 1}
and identify the semi-direct product Gλ �Vλ as a subgroup of G̃ = G�Rn. We then show

the following.

Lemma 6.2. Keep the notation as above and assume that Q∗(α) �= 0. Then the represen-

tation π̃ has no nontrivial Vλ-invariant vectors.

Proof. It is enough to show that the restriction π̃ |
Rn has no nontrivial Vλ-invariant

vectors, and from the characterization of π̃ |
Rn

∼= L2(G̃/G̃λ,H) it is enough to show that

for any f ∈ L2(G̃/G̃λ,H), if λ(vg)f (g) = f (g) for almost all g ∈ G and for all v ∈ Vλ,

then f = 0.

Now for any fixed g ∈ G, the condition λ(vg)f (g) = f (g) for all v ∈ Vλ implies that

either f (g) = 0 or λ(vg) = 1 for all v ∈ Vλ. Writing λ(vg) = eivg·α we see that λ(vg) = 1

for all v ∈ Vλ if and only if αg∗ ∈ V⊥
λ = Rα. Next, noting that Q∗(αg∗) = Q∗(α) for any

g ∈ G = SO+
Q(R), if αg∗ = cα then c2Q∗(α) = Q∗(cα) = Q∗(α) �= 0 so c2 = 1, implying that

αg∗ = ±α. Hence, if f ∈ L2(G̃/G̃λ,H), satisfies λ(vg)f (g) = f (g) for all v ∈ Vλ then up to a

null set, f is supported on the set {g ∈ G/Gλ | αg∗ = ±α} containing at most two points

in G/Gλ. Since f ∈ L2(G/Gλ,H) is only defined up to its values on null sets, the only such

element is the zero vector. �

The final ingredient for the induction argument is the following argument going

back to Burger and Sarnak [7]. Let G = SO+(n − 1, 1) and recall that for any unitary

representation π of G not weakly containing the trivial representation, the parameter

α(π) = n−2
p(π)

characterizes the fastest decay rate of matrix coefficients of π restricted

to a fixed Cartan subgroup A ≤ G. To carry over this reduction argument, it is more

convenient to work with this parameter α(π). Now inside Gwe have a sequence of closed

subgroups

G = G(1) ⊃ G(2) ⊃ G(n−2) ⊃ A,
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with G(j) ∼= SO+(n − j, 1) for 2 ≤ j ≤ n − 2, all containing the same fixed Cartan group A

(so that for each G(j) we have a decomposition G(j) = KjA
+Kj with Kj ≤ G(j) a maximal

compact subgroup). Since any K-finite vector in π is also a Kj-finite vector in π |G(j) and

the parameter α(π) depends only on the A-action on K-finite vectors, we have that α(π) ≥
α(π |G(j)). This leads to the following simple lemma reducing the proof of Theorem 1.6 to

studying the restriction representation π |G(j) for some 1 ≤ j ≤ n− 2.

Lemma 6.3. Keep the notation and assumptions as above and let κ ∈ [1, 2]. If p(π |G(j)) ≤
κ(n− j − 1) for some 1 ≤ j ≤ n− 2 then p(π) ≤ κ(n− 2) (and α(π) ≥ 1/κ).

Proof. Suppose p(π |G(j)) ≤ κ(n− j − 1) for some 2 ≤ j ≤ n− 2, then by the relation (4.5)

we have α(π) ≥ α(π |G(j)) = n−j−1
p(π |

G(j) )
≥ 1

κ
. Again by (4.5), we have p(π) = n−2

α(π)
≤ κ(n − 2),

finishing the proof. �

We can now give the following:

Proof of Theorem 1.6. The proof is by induction on n. When n = 4, by our hypothesis,

we have p(G̃)0 = 2, so we may assume n ≥ 5. Let π̃ denote a representation of G̃ =
SO+

Q(R)�Rn with no nontrivial Rn-invariant vectors and let π = π̃ |G. Since almost every

irreducible component of π̃ has no nontrivial Rn-invariant vectors we may assume that

π̃ is irreducible. Then π̃ = IndG̃
G̃λσ for some nontrivial unitary character λ of Rn, and an

irreducible unitary representation σ of G̃λ.

Now from the discussion above, either Gλ is amenable, in which case π is

tempered, or Gλ = SO+
Q′ with Q′ of signature (n − 2, 1). In the second case, let G̃2 =

Gλ � Vλ
∼= SO+

Q′ �Rn−1 with Vλ = ker(λ) as above. By Lemma 6.2, the restriction of π̃ to

G̃2 has no nontrivial Vλ-invariant vectors, so decomposing it as a direct integral

π̃ |G̃2
=
∫ ⊕

π̃x,

with π̃x irreducible, since π̃ |G̃2
has no nontrivial Vλ-invariant vectors then π̃x has no

nontrivial Vλ-invariant vectors for almost every x, and hence by induction p(π̃x|Gλ) ≤
(n − 3) for almost every x, implying that p(π̃ |Gλ) ≤ (n − 3). Finally, since π̃ |Gλ = π |Gλ by

Lemma 6.3, we get p(π) ≤ (n− 2) finishing the proof. �

Remark 6.4. Unconditionally, we can use the same argument starting with n = 3 as the

base of the induction (i.e., the aforementioned result of Kazhdan [18]), giving the bound

p(G̃)0 ≤ 2(n− 2), which recovers the result of Wang [34].
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