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Abstract. We study the sup-norm bound (both individually and on average) for Eisenstein
series on certain arithmetic hyperbolic orbifolds producing sharp exponents for the modular
surface and Picard 3-fold. The methods involve bounds for Epstein zeta functions, and
counting restricted values of indefinite quadratic forms at integer points.

1. Introduction

For a compact Riemannian manifold, X, one can show that if ϕ ∈ L2(X) has ∥ϕ∥2= 1
and is an eigenfunction of the Laplace-Beltrami operator with eigenvalue ¼, then ∥ϕ∥∞j
¼

dim(X)−1
4 , see [SS89, Cor 2.2]. This bound, usually referred to as the convexity bound, is sharp

in general. However, when X has negative curvature, it is believed that this exponent can be
improved (a log savings is obtained by Bérard [B7́7]) and there are some results of this nature
for cusp forms on some arithmetic hyperbolic manifolds. Explicitly, for arithmetic hyperbolic
surfaces it is conjectured that ∥ϕ∥∞jϵ ¼

ϵ, and it was shown in [IS95] that ∥ϕ∥∞jϵ ¼
5/24+ϵ

for ϕ a Hecke-Maass cusp form. In higher dimensions, the situation is more complicated,
as it was shown in the work Rudnick and Sarnak [RS94] and in more detail by Milićević
[Mil11], that for any ϵ > 0, there exists Hecke-Maass forms on a given arithmetic hyperbolic
3-manifold for which ∥ϕ∥∞k ¼1/4−ϵ. Nevertheless, a subconvex upper bound of order ¼5/12+ϵ

was proved in [Koy95, BHM16], so the truth is somewhere in between.
This paper is concerned with the analogous problem where the cusp form is replaced by

an Eisenstein series. Explicitly, given a non-uniform lattice, Γ, acting on hyperbolic n + 1
space H

n+1, for each cusp À, let EΓ,À(s, z) denote the Eisenstein series corresponding to this
cusp with normalization such that the constant term of the Fourier expansion based at À is of

the form ys + cÀ(s)y
n−s. Then EΓ,À(

n

2
+ it, z) is an almost-L2 eigenfunction of the Laplacian

with eigenvalue ¼ =
n2

4
+ t2. Since the Eisenstein series is unbounded as z moves into the

cusp, in order to consider the supremum norm, we need to restrict to a compact set. We
define the parameter ¿∞ = ¿∞(Γ) as the infimum over all ¿ > 0 such that for any compact
set Ω ¦ H

n+1, and any cusp À, we have

sup
z∈Ω

|EΓ,À(
n

2
+ it, z)| jΩ |t|¿ .

Remark 1.1. There is another natural way to normalize the Eisenstein series; instead of
ensuring that the constant term is of the form ys+cÀ(s)y

n−s, one could L2-normalize (locally
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in Ω, since Eisenstein series are not L2), that is, ask that
∫

Ω

∣∣∣EΓ,À

(n
2
+ it, z

)∣∣∣
2

dz = 1,

where dz is the hyperbolic volume form. When Γ is arithmetic, the two normalizations are
not too different, but in the nonarithmetic setting, very little is known about the arising
discrepancies.

For numerous applications, it suffices to understand sup norm bounds on average; towards
this, we consider the quantity ¿2 = ¿2(Γ) defined as the infimum of all ¿ > 0 such that for
any compact set Ω ¦ H

n+1, and any cusp À, we have
∫ T

−T

(
sup
z∈Ω

|EΓ,À(
n

2
+ it, z)|

)2

dt jΩ T 1+2¿ .

Then clearly ¿2 f ¿∞ but one expects that we can give a sharper bound for ¿2.

Remark 1.2. One example of an application is as follows. Given a rational quadratic form
Q of signature (n+1, 1), the number N(X) of primitive integer points v ∈ Z

n+2 on the light
cone Q = 0 of norm bounded by X can be estimated precisely in terms of ¿2 = ¿2(SOQ(Z)),
see [KY22, Prop 3.5] showing that

N(X) = cXn +O(X
n
(

1− 1
2(¿2+1)

)

).

For another application, see [BNRW20].

1.1. The case Γ = SL2(Z).
The main result of this paper is a determination of ¿2 for the modular group.

Theorem 1. For Γ = SL2(Z), we have that ¿2(Γ) = 0. That is, for any compact set
Ω ¢ Γ\H, there is a constant c = c(Ω) such that for all T g 1,

∫ T

−T

(
sup
z∈Ω

|EΓ(z,
1

2
+ it)|

)2

dt f cT log4(T ).(1.3)

Here EΓ is the Eisenstein series at the (unique) cusp at ∞.

Remark 1.4. For Γ f SL2(Z) a congruence subgroup, it is believed that ¿2(Γ) = ¿∞(Γ) = 0.
We expect that modifications of our techniques would show that ¿2(Γ) = 0 also for congruence

subgroups of SL2(Z). For ¿∞, the convexity bound is ¿∞(Γ) f 1

2
, and the work of Young

and consequently Huang [You18, Hua19] using amplification gives the sub-convex bound of

¿∞(Γ) f 3

8
while the best result to date is due to Blomer [Blo20] who used the approximate

functional equation and Burgess’ bound to prove that ¿∞(SL2(Z)) f
1

3
.

Remark 1.5. We note that for a general non-arithmetic lattice acting on H
2, nothing is known

about ¿∞(Γ). For ¿2(Γ), it is likely that the known convexity bound ¿2(Γ) f
1

2
is actually

sharp (with the caveat that our normalization is not L2, but rather that which arises in the

pre-trace formula; see Remark 1.1). As evidence for this, we show that if ¿2(Γ, z) <
1

2
at some
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point z ∈ H
2, then Γ must have infinitely many cusp forms, in contrast with the Phillips-

Sarnak conjecture [PS85], see Theorem 9 below and the discussion in Section 5. (Here we
denote by ¿2(Γ, z) the exponent for a fixed point z.) Again, this might not necessarily signal
the existence of a large jump in the size of the Eisenstein series near the single point z, but
could rather come from the discrepancy with L2 normalization.

The bulk of the paper is devoted to proving Theorem 1. A key ingredient of independent
interest is obtaining strong bounds on the Epstein zeta function (see §1.3).

1.2. The case Γ = SL2(Z[i]).
For the Picard group Γ = SL2(Z[i]) acting on hyperbolic 3-space, one can resolve the issue

completely. Using Blomer’s upper bounds [Blo20] on Epstein zeta function, and connections
between such and Eisenstein series (which are well-known for SL2(Z) and derived here for
Γ = SL2(Z[i])), one obtains the following.

Theorem 2. For Γ = SL2(Z[i]), any compact set Ω ¢ Γ\H3, and for any ϵ > 0, there is a
constant c = c(Ω, ϵ) such that

sup
z∈Ω

|EΓ(z, 1 + iT )| f cT 1/2+ϵ.(1.6)

As a consequence, we have that

¿2(SL2(Z[i])) = ¿∞(SL2(Z[i])) = 1/2.(1.7)

We note that the upper bound for ¿∞ implied by (1.6) matches a lower bound for ¿2 in
work of Kelmer-Yu [KY22] (see Remark 1.9), leading to (1.7).

Remark 1.8. We similarly expect that Theorem 2 can be proved along the same lines for
Γ = SL2(OK) (or a congruence subgroup thereof) with K an imaginary quadratic field.
When Γ is a congruence lattice in SL2(C), the convexity sup norm bound is ¿∞(Γ) f 1, it

is commonly believed that ¿∞(Γ) =
1

2
, and the best currently known bound comes from the

work of Assing [Ass19] who used amplification to show that ¿∞(Γ) f 7

8
(his result is more

general and deals with Eisenstein series for SL2 defined over general number fields).

Remark 1.9. For lattices acting on hyperbolic (n + 1)-space, even the “convexity” bound

¿∞(Γ) f n

2
is not known in general, not even for general arithmetic lattices. Nevertheless,

in [KY22], this convexity bound was proved for a large family of arithmetic lattices. While

it may be expected that ¿∞ =
n− 1

2
, there are no known subconvex bounds when n g 3.

(Note that with a different normalization – see Remark 1.1 – an argument due to Sarnak
[Sar04] shows that the L∞ norm is controlled by the L2 norm on compacta, thus proving the
convexity bound with this other normalization.)

For sup norm bounds on average, the convexity bound ¿2(Γ) f
n

2
is known to hold for a

general non-uniform lattice [CS80, Cor 7.7]. Note that when n ∈ {1, 2, 3, 5, 7}, for certain
arithmetic lattices, it is possible to evaluate E(s, z0) at special points as a product of zeta

functions and L-functions (see [KY22]), from which one can conclude that ¿2(Γ, z0) =
n− 1

2
at these points. This gives a lower bound on what can be expected to hold in general.
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1.3. Mean square bounds on Epstein zeta functions.

Both Theorems 1 and 2 are derived (in section 4) from the following bounds on Epstein
zeta functions. Given a positive-definite quadratic form Q in m variables, let

ZQ(s) :=
∑

v∈Zm\0
Q(v)−s

denote the Epstein zeta function, defined originally in some half-planeRe(s) k 1, and having
a well-known meromorphic continuation to s ∈ C (see [Ter73]) and functional equation
relating ZQ(s) to ZQ−

(m
2
− s), where Q− is the dual form. That is, if Q is given by Q(x) =

xTZx, then Q−(x) = xTZ−1x.

Theorem 3. Let Q be a positive-definite quadratic form in m variables, and let the associated
Epstein zeta function be ZQ. If m = 2 then

∫ 2T

T

|ZQ(
1

2
+ it)|2dt jQ T log2(T ).(1.10)

Moreover, if m g 3, then for any ε > 0,
∫ 2T

T

∣∣∣ZQ

(m
4
+ it

)∣∣∣
2

dt jQ Tm/2+ε.(1.11)

In either case, the implicit constants depend on the form Q, but may be taken uniform as Q
varies in a compact set in the space of positive-definite quadratic forms.

We note that the above result is only new for m = 2, 3. While the m = 3 case is not
related to bounds on Eisenstein series, we nevertheless include it for its intrinsic interest.
For m g 4, (1.11) follows immediately from Blomer’s pointwise bounds for the Epstein zeta
function.

Theorem 4 ([Blo20, Theorem 1]). Let Q be a positive-definite quadratic form in m variables,
with m g 4. Then for any ε > 0,

∣∣∣ZQ

(m
4
+ it

)∣∣∣ jQ,ε T
(m−2)/4+ε.

Blomer also gives pointwise bounds for m = 2 and m = 3, but these are weaker than what
is needed for the L2 bounds in Theorem 3.

1.4. Values of indefinite forms at integer points.

To prove Theorem 3, we require a result from the geometry of numbers, namely the
following uniform version of [EMM98, Theorem 2.3].

Theorem 5. For any n = p + q g 3 with p g q g 1, and any form Q(v) of signature
(p, q) having discriminant one, there are constants c = c(Q), A0, and B0 such that, for any
A g A0 and B g B0, if (p, q) ̸∈ {(2, 1), (2, 2)}, then

#{v ∈ Z
n : ∥v∥f A, Q(v) ∈ (−B,B)} f cBAn−2.

while for (p, q) ∈ {(2, 1), (2, 2)},
#{v ∈ Z

n : ∥v∥f A, Q(v) ∈ (−B,B)} f cBAn−2 log(A).

The constant c can be taken uniform for Q ranging in a compact set.
4



Remark 1.12. The result of [EMM98, Theorem 2.3] gives a similar upper bound to

#{v ∈ Z
n : ∥v∥f A, Q(v) ∈ (a, b)}

with the bound depending implicitly on the form Q and the target interval (a, b). The novelty
of our result is to make the dependence on the target interval explicit.

Outline. In Section 2, we prove Theorem 5. Then in Section 3.1 we first focus on the case
m = 2 of Theorem 3; and settle the case m g 3 in Section 3.2. We then show in Section 4
how to derive the bounds on the Eisenstein series from Theorem 3. Finally, in Section 5, we
explicate Remark 1.5.

Notation. We use standard Vinogradov notation that f j g if there is a constant C > 0
so that f(x) f Cg(x) for all x. When the implied constant depends on more than the lattice
Γ or Q or z varying in a compact set Ω, which we think of as fixed, we denote this with a
subscript.

Acknowledgements. We thank Valentin Blomer, Jens Marklof, and Amir Mohammadi for
insightful discussions, and the referee for many comments that greatly improved this paper.

2. Counting estimate

In this section we prove Theorem 5. We first recall the main ideas in the proof of [EMM98].
Let Q be a quadratic form of signature (p, q) and let g ∈ SLn(R) such that Q(v) = Q0(gv)
with

Q0(x) = x1xn +

p∑

i=2

x2
i −

n−1∑

i=p+1

x2
i .

We let g (and hence Q) vary in a compact set, and fix a ´ > 0 so that max{∥g∥, ∥g−1∥} f ´
in this compact region.

LetH = SOQ0(R), letK = H∩SO(n) be a maximal compact, and let at = diag(e−t, 1 . . . , 1, , et) ∈
H. For any real-valued, compactly supported function f on R

n, any r > 0, and any À ∈ R,
define the function

Jf (r, À) =
1

rn−2

∫

Rn−2

f(r, x2, . . . , xn−1,
À −Q0(0, x2, . . . , xn−1, 0)

2r
)dx2 . . . dxn−1.

Then by [EMM98, Lemma 3.6], there is a constant cp,q and T0 > 1 such that for every
t g log(T0) and any v ∈ R

n with ∥v∥> T0, we have that
∣∣∣∣Jf (∥v∥e

−t, Q0(v))− cp,qe
(n−2)t

∫

K

f(atkv)dm(k)

∣∣∣∣ f 1.

In particular, if we choose f so that Jf (r, À) g 2 for all r ∈ (1, 2) and À ∈ (a, b), then for any
v ∈ R

n with et f ∥gv∥f 2et and Q0(gv) ∈ (a, b), we have that Jf (∥gv∥e−t, Q0(gv))) g 2,
whence cp,qe

(n−2)t
∫
K
f(atkv)dm(k) g 1 and

#{v ∈ Z
n : Q0(gv) ∈ (a, b), ∥gv∥∈ [et, 2et]} f

∑

v∈Zn

cp,qe
(n−2)t

∫

K

f(atkgv)dm(k)

= cp,qe
(n−2)t

∫

K

f̂(atkg)dm(k)(2.1)
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where
f̂(g) =

∑

0 ̸=v∈Zn

f(gv)

is the Siegel transform. Next, using [Sch68, Lemma 2] we can bound

f̂(g) f cf³(gZ
n),(2.2)

where the function ³(Λ) is the function on the space of lattices defined in [EMM98, equation
(3.3)], and cf is a constant depending only on f . Finally, [EMM98, Theorem 3.2 and Theorem
3.3] state that ∫

K

³(atkgZ
n)dm(k) f cg,

is uniformly bounded when (p, q) ̸∈ {(2, 2), (2, 1)} and that
∫

K

³(atkgZ
n)dm(k) f cgt,

when (p, q) = (2, 2) or (p, q) = (2, 1). Here the constant cg is uniform when g is taken from
a compact set. Using this we get that when (p, q) ̸∈ {(2, 2), (2, 1)}

#{v ∈ Z
n : Q0(gv) ∈ (a, b), ∥gv∥∈ [et, 2et]} f cp,qcfcge

(n−2)t,

and that for (p, q) ∈ {(2, 2), (2, 1)}
#{v ∈ Z

n : Q0(gv) ∈ (a, b), ∥gv∥∈ [et, 2et]} f cp,qcfcgte
(n−2)t.

Summing over t f log(T ) in dyadic intervals gives a bound of the form

#{v ∈ Z
n : Q0(gv) ∈ (a, b), ∥gv∥f T} f cT n−2,

when signature (p, q) ̸∈ {(2, 2), (2, 1)} and

#{v ∈ Z
n : Q0(gv) ∈ (a, b), ∥gv∥f T} f cT n−2 log(T ),

otherwise. Here the constant c depends on the signature on the group element g, and on the
function f (and hence on the interval (a, b).
Up to this point, the proof is identical to the treatment in [EMM98]. It is at this moment

where we need one simple extra ingredient to make everything uniform, in the special case
of a target interval (−B,B). Our goal is to find a suitable function f so that Jf (r, À) g 2
when r ∈ [1, 2] and |À|f B such that cf f cB. We first note that [Sch68, Lemma 2] implies
that for any R g 1 and any lattice Λ = gZn, we have the bound

#{v ∈ Λ : ∥v∥f R} f cRn³(Λ),

with c and absolute constant depending only on n. We combine this with the following
simple observation.

Lemma 6. For any x ∈ R
n and any lattice Λ we can bound

#{v ∈ Λ : ∥v − x∥f R} f #{v ∈ Λ : ∥v∥f 2R}.
Proof. If there is no v ∈ Λ with ∥v − x∥f R, then this is obvious. Otherwise, let u ∈ Λ
satisfy ∥u− x∥f R; then ∥v − x∥f R implies that

∥v − u∥= ∥v − x+ x− u∥f 2R.

Since v ∈ Λ if and only if v − u ∈ Λ, this concludes the proof. □
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We now describe our choice of f . Assume that B g (n−2) and let f take values in [0, 2] and
supported on [0, 3]×[−2, 2]n−2×[−2B, 2B] such that f(x) = 2 on [1, 2]×[−1, 1]n−2×[−B,B].
Note that for any r ∈ [1, 2] and À ∈ [−B,B] and (x2, . . . , xn−2) ∈ [−1, 1]n−2 we have that
À −Q0(0, x2, . . . , xn−1, 0)

2r
∈ [−B,B] so that

f(r, x2, . . . , xn−1,
À −Q0(0, x2, . . . , xn−1, 0)

2r
) = 2.

We thus get a lower bound Jf (r, À) g 2
2n−2

∫
[−1,1]n−2 dx2 . . . dxn−1 = 2. On the other hand,

we can cover the support of f by 2B + 1 balls of radius Rn = 2
√
n centered at the points

vj = (1, 0, . . . , 0, 2j) with −B f j f B. From Lemma 6, we can bound

#{v ∈ Λ : ∥v − vj∥f Rn} f #(Λ ∩ 2Rn} f cn³(Λ),

where the constant depends only on n. Using this, we can bound the Siegel transform

f̂(g) f 2cnB³(Λ). Plugging this estimate into (2.2) and (2.1) concludes the proof of Theorem
5.

3. Bounds on the Epstein zeta function

3.1. Bounds for m = 2. In this section we fix m = 2 and prove (1.10). In [SV05], the
authors considered the case of an integral quadratic form Q and proved an approximate
functional equation as well as a formula for the mean square. While the formula for the
mean square is special for a family of integral quadratic forms, the approximate functional
equation [SV05, Theorem 1] holds in general. We record this result in our special case as
follows.

Theorem 7. For Q a positive definite quadratic form of discriminant D with dual form Q−
and sequences an, ¼n, bn, µn defined for Re(s) k 1 by:

ZQ(s) =
∑

¼n

an
¼s
n

, and ZQ−
(s) =

∑

µn

bn
µs
n

,

we have, for s =
1

2
+ it with |t|g 1, that:

ZQ(s) =
∑

¼nfX

an
¼s
n

+ Ç(s)
∑

µnfX

bn
µ1−s
n

+OD(log(|t|)),

where

Ç(s) = (

√
D

Ã
)1−2sΓ(1− s)

Γ(s)
,

and X = X(t) := |t|
√
D

Ã
.

Noting that |Ç(s)|= 1 for s =
1

2
+ it, we can estimate

|ZQ(
1

2
+ it)|2j FQ(t) + FQ−

(t) +O(log2(t)),(3.1)
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where we have set

FQ(t) :=

∣∣∣∣∣∣

∑

¼nfX(t)

an

¼
1
2
+it

n

∣∣∣∣∣∣

2

.

Recall again that X(t) = |t|
√
D

Ã
≍ |t|.

Integrating (3.1) gives:

∫ 2T

T

|ZQ(
1

2
+ it)|2dt j

∫ 2T

T

FQ(t)dt+

∫ 2T

T

FQ−
(t)dt+O(T log2(T )).(3.2)

These terms can be estimated as:

∫ 2T

T

FQ(t)dt =

∫ 2T

T

∑

u,v∈Z2\0
Q(u),Q(v)fX(t)

1

Q(u)1/2+itQ(v)1/2−it
dt

j
∑

u,v∈Z2\0
∥v∥,∥u∥j

√
T

1

∥u∥∥v∥

∣∣∣∣
∫ 2T

max{Q(u),Q(v),T}
eit log(

Q(v)
Q(u)

)dt

∣∣∣∣ ,

where we used that Q(u) ≍ ∥u∥2.
We now break this into different regions depending on the ratio of Q(u)

Q(v)
. First consider

the range when |log(Q(u)
Q(v)

)|g 1. In this range, we can bound the inner integral by 2 to get a

bound of

∑

u,v∈Z2

∥v∥,∥u∥j
√
T

1

∥u∥∥v∥ j




∑

v∈Z2

∥v∥j
√
T

1

∥v∥




2

j T.

For the rest, we have that Q(u) ≍ Q(v) so also ∥u∥≍ ∥v∥, and we break the sum into

dyadic intervals A f ∥v∥f 2A and B
T

f |log(Q(u)
Q(v)

)|f 2B
T
, with A f

√
T and B f T . The

contribution of each such dyadic interval is then given by

NT (A,B) =
∑

v∈Z2

Af∥v∥f2A

∑

u∈Z2

|log(Q(u)
Q(v)

)|∈(B
T
, 2B
T

)

1

∥u∥∥v∥

∣∣∣∣
∫ 2T

max{Q(u),Q(v),T}
eit log(

Q(u)
Q(v)

)dt

∣∣∣∣

j T

A2B
#{u, v ∈ Z

2 : ∥v∥f 2A, |Q(u)

Q(v)
− 1|f 2B

T
}

j T

A2B
#{(u, v) ∈ Z

4 : ∥(u, v)∥f 2A, |Q(u)−Q(v)|j A2B

T
}.
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We also have the range where |log(Q(u)
Q(v)

)|f 1
T
that we can similarly bound by

NT (A) =
∑

v∈Z2

Af∥v∥f2A

∑

u∈Z2

|log(Q(u)
Q(v)

)|∈[0, 1
T
)

1

∥u∥∥v∥

∣∣∣∣
∫ 2T

max{Q(u),Q(v),T}
eit log(

Q(u)
Q(v)

)dt

∣∣∣∣

j T

A2
#{(u, v) ∈ Z

4 : ∥(u, v)∥f 2A, |Q(u)−Q(v)|j 1}.

Note that for Q(v) a positive definite binary quadratic form, the form

Q̃(u, v) = Q(u)−Q(v)

has signature (2, 2). Applying Theorem 5 gives

#{v ∈ Z
4 : ∥v∥f A, Q̃(v) ∈ (−B,B)} f cBA2 log(A),

from which we can bound

NT (A,B) j A2 log(A) j A2 log(T )

for A f
√
T . We also have the bound NT (A) f cT log(T ) for all A f

√
T . Taking A,B to

be powers of 2 and summing over A f
√
T ,B f T , we get the bound

∫ 2T

T

|ZQ(
1

2
+ it)|2dt j T log2(T ),

as claimed in (1.10).

3.2. Bounds for m g 3. Turning now to (1.11) for m g 3, we follow the same approach,
however instead of using the approximate functional equation of [SV05], we instead use the
following.

Theorem 8 ([Blo20, (2.2)]). Recalling that Q− is the dual form to Q = Q+, we have that

ZQ(
m

4
+ it) j 1 + |t|ε

∑

±

∑

A

∫

|w|f|t|ε
A−m/4

∣∣∣∣∣
∑

v ̸=0

VA(Q±(v))

Q±(v)±it+iw

∣∣∣∣∣ dw(3.3)

where the sum over A ranges over powers of 2 less than |t|1+ε, and VA is bounded and has
compact support in [A, 3A].

Now consider the L2 norm and expand the square using Cauchy-Schwarz to get that

∫ 2T

T

|ZQ(
m

4
+ it)|2dt j

∫ 2T

T

∣∣∣∣∣1 + tϵ
∑

±

∑

A

∫

|w|f|t|ε
A−m/4

∣∣∣∣∣
∑

v ̸=0

VA(Q±(v))

Q±(v)±it+iw

∣∣∣∣∣ dw
∣∣∣∣∣

2

dt

j
∫ 2T

T


1 + tϵ

∑

±

∑

Aft1+ϵ

dyadic

∫

|w|ftϵ
A−m/2

∣∣∣∣∣
∑

v ̸=0

VA(Q±(v))

Q±(v)±it+iw

∣∣∣∣∣

2


 dt

j T + T ε
∑

±

∑

AfT1+ϵ

dyadic

A−m/2

∫

|w|fT ϵ

∫ 2T

max{T,A,|w|1/ϵ}

∣∣∣∣∣
∑

v ̸=0

VA(Q±(v))

Q±(v)±it+iw

∣∣∣∣∣

2

dt.

9



For any fixed A and w in this range and for each of the choices of Q = Q+ or Q = Q−, we
open the square and estimate the integral

∫ 2T

max{T,A,|w|1/ϵ}

∣∣∣∣∣
∑

v ̸=0

VA(Q(v))

Q(v)it+iw

∣∣∣∣∣

2

dt j
∑

v,u ̸=0

VA(Q(v))VA(Q(u))

∣∣∣∣
∫ 2T−w

max{T,A,|w|1/ϵ}−w

eit log
Q(v)
Q(u)dt

∣∣∣∣

depending on the range of Q(v)
Q(u)

.

If |log(Q(v)
Q(u)

)|g 1, the integral is bounded independently on the boundaries of integration.

Since VA(Q(v)) is bounded and supported on Q(u) f 3A, the sum over ∥u∥j Q(u)1/2 j
A1/2 and ∥v∥j A1/2 is bounded by O(Am). In the remaining case we may assume that

∥v∥≍ ∥u∥≍ A1/2. Now further break the summation by taking B
T

f |log(Q(v)
Q(u)

)|f 2B
T
, with

B j T dyadic. For each B g 1 we get a term of the form

NT (A,B) =
∑

v∈Zm√
Af∥v∥f

√
3A

∑

u∈Zm

|log(Q(v)
Q(u)

)|∈(B
T
, 2B
T

)

∣∣∣∣
∫ 2T−w

max{T,A,|w|1/ϵ}−w

eit log(
Q(v)
Q(u)

)dt

∣∣∣∣

j T

B
#{(u, v) ∈ Z

2m : ∥(u, v)∥f
√
2A, |Q(u)−Q(v)|j AB

T
}

and for B f 1 we let

NT (A) =
∑

v∈Zm√
Af∥v∥f

√
3A

∑

u∈Zm

|log(Q(v)
Q(u)

)|∈(0, 1
T
)

∣∣∣∣
∫ 2T−w

max{T,A,|w|1/ϵ}−w

eit log(
Q(v)
Q(u)

)dt

∣∣∣∣

j T#{(u, v) ∈ Z
2m : ∥(u, v)∥f

√
2A, |Q(u)−Q(v)|j 1}.

Again following our approach for m = 2, we note that Q̃(u, v) := Q(u) − Q(v) is a form of
signature (m,m), and apply Theorem 5. It follows that

(3.4) NT (A,B) j T

B
Am−1AB

T
= Am.

Similarly, we can trivially bound NT (A) by Am.
Plugging these bounds back, bounding the integral of w by O(T ϵ) and summing over A,B

powers of 2 we get the bound

∫ 2T

T

|ZQ(1 + it)|2dt j T + T ε
∑

AfT1+ϵ

dyadic

A−m/2


Am +NT (A) +

∑

BjT
dyadic

NT (A,B)


 j Tm/2+ε,

as claimed in (1.11).

4. Bounds on Eisenstein series: Proof of Theorems 1 and 2

To move from bounds on the Epstein zeta function to the Eisenstein series, argue as follows.
First note that for Γ = SL2(Z) we have the following well known identity (for Res > 1):

·(2s)EΓ(s, z) = ys
∑

(c,d) ̸=(0,0)

1

((x2 + y2)c2 + 2xcd+ d2)s
= ysZQ(s),

10



where Q(c, d) = Qz(c, d) = (x2 + y2)c2 + 2xcd+ d2 and

ZQ(s) =
∑

v∈Z2\0
Q(v)−s.

Applying (1.10) and the well-known bound ·(1 + 2it) k log(t)−1, we conclude (1.3). This
completes the proof of Theorem 1.

Next we show that for Γ = SL2(Z[i]) we can again write EΓ(s, z) in terms of an Epstein
zeta function. Using the upper-half-space model of hyperbolic 3-space,

H
3 = {z = x1 + ix2 + jy : xj ∈ R, y > 0},

the Eisenstein series is defined (for Res > 2) by

EΓ(s, z) =
∑

c,d∈Z[i]
co-prime

ys

N(cz + d)s
,

where N(z) = x2
1 + x2

2 + y2 denotes the norm on the quaternions. Since the norm is multi-
plicative, if we write

·Z[i](s) =
∑

³∈Z[i]

1

N(³)s
,

then we can simplify the Eisenstein series to

1

4
·Z[i](s)E(s, z) =

∑

(c,d) ̸=(0,0)

ys

N(cz + d)s
.

Moreover, we can write ·Z[i](s) = 4·(s)L(s, Ç1) with Ç1 the quadratic Dirichlet character
modulo 4. Now if we expand the norm on the right hand side, we arrive at

·(s)L(s, Ç1)E(s, z) = ys
∑

(c,d) ̸=(0,0)

1

Qz(c, d)s
,

where

Qz(c, d) = N(z)c21 +N(z)c22 + d21 + d22 + 2(x1c1d1 − x2c2d1 + x1c2d2 + x2c1d2)

is a positive definite quaternary quadratic form. Again we have good control on ·(s) for
s = 1 + it and on L(s, Ç1). Thus the problem reduces to estimating the Epstein zeta
function

ZQz(s) =
∑

v∈Z4\0
Qz(v)

−s,

and (1.6) follows easily from Theorem 4. This completes the proof of Theorem 2.
11



5. Sharpness

We now consider the case of a general non-arithmetic lattice and show that any subconvex
bound for ¿2(Γ) implies the existance of infinitely many Maass cusp forms. Explicitly we
show the following.

Theorem 9. Let Γ f PSL2(R) be a non uniform lattice and assume that there is some z0
such that ¿2(Γ, z0) < 1/2. Then there are infinitely many Maass cusp forms φj ∈ L2(Γ\H)
with △φj + ¼jφj = 0. Moreover, they satisfy the local Weyl law: for any test function h(r)
with Fourier transform smooth and compactly supported, for all sufficiently large T ,

∑

j

h(
rj
T
)|φj(z)|2 = T 2 |Γz|

2Ã

∫ ∞

0

h(r)rdr +O¶,h(T
2−¶)

for some ¶ > 0, where Γz = {µ ∈ Γ : µz = z} and {φj}j∈N form an orthonormal system of

Maass forms in L2(Γ\H) with eigenvalue parametrized by ¼j =
1

4
+ r2j .

Proof. We recall some well known results on the pre-trace formula and refer to [Hej76]
for more details. Given a point pair invariant k(z, w) = k(sinh2(d(z, w))) with d(z, w)
the hyperbolic distance and k ∈ C∞

c (R+), its spherical transform is defined as H(s) =∫
H2 k(z, i)Im(z)sdµ(z). By [Hej76, Proposition 4.1] the point pair invariant can be recovered

from H(s) as follows : Let h(r) = H(
1

2
+ ir) and let g(u) = 1

2Ã

∫∞
−∞ h(r)e−irudr denote its

Fourier transform, then, defining the auxiliary function Q ∈ C∞
c (R+) by g(u) = Q(sinh2(u

2
))

we have that k(t) = − 1
Ã

∫∞
t

dQ(r)√
r−t

. We also recall that k(0) = 1
2Ã

∫∞
0

h(r)r tanh(Ãr)dr (see

[Hej76, Proposition 6.4]).
Given any such point pair invariant we have the pre-trace formula

∑

µ∈Γ
k(z, µz) =

∑

j

h(rj)|φj(z)|2+
»∑

i=1

1

2Ã

∫

R

h(r)|EΓ,Ài(
1

2
+ ir, z)|2dr,

where À1, . . . , À» are the cusps of Γ.
Now, fix a smooth compactly supported function g(u) ∈ C∞

c ((−1, 1)) and for any T g
1 let gT (u) = Tg(Tu) so that hT (r) = h( r

T
) and kT (z, w) the corresponding point pair

invariant. Since gT (u) is supported on (− 1
T
, 1
T
) the point pair invariant k(z, w) is supported

on the set {(z, w)|d(z, w) f 1
T
} with d(z, w) the hyperbolic distance. Since Γ acts properly

discontinuously on H
2 for any fixed z there is ¶ = ¶(z) such that d(z, µz) g ¶ for any µ ∈ Γ

with µz ̸= z. In particular taking T0 g 1
¶(z)

for any T g T0 we have that kT (z, µz) = 0 if

µz ̸= z. Hence for any T g T0 we have

∑

j

h(
rj
T
)|φj(z)|2+

»∑

i=1

1

2Ã

∫

R

h(
r

T
)|EΓ,Ài(

1

2
+ ir, z)|2dr = |Γz|k(0).
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Denote by ¿2 = ¿2(Γ, z) and note that for any ℓ g 0 we can bound h(t) jℓ,h |r|−ℓ. We
can thus bound the contribution of the integrals over Eisenstein series by

1

2Ã

∫

R

h(
r

T
)|EΓ,Ài(

1

2
+ ir, z0)|2dr =

∑

k∈Z

∫ (k+1)T

kT

h(
r

T
)|EΓ,Ài(

1

2
+ ir, z)|2dr

jh T 2¿2+1.

On the other hand, since the right hand side is

|Γz|kT (0) =
|Γz|
2Ã

∫ ∞

0

h(
r

T
)r tanh(Ãr)dr = T 2 |Γz|

2Ã

∫ ∞

0

h(r)rdr +Oh(1),

we can conclude that if ¿2 <
1

2
, then for any ¶ ∈ (0, 1− 2¿2) and any T g T0

∑

j

h(
rj
T
)|φj(z)|2 = T 2 |Γz|

2Ã

∫ ∞

0

h(r)rdr +O¶,h(T
2−¶).

This completes the proof.
□

Reiterating Remark 1.5, if one believes the Phillips-Sarnak conjecture [PS85], then the
convexity L2 bounds on Eisenstein series should be sharp for generic lattices. So (1.3) really
is relying heavily on the arithmeticity of SL2(Z).
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