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Tomato (Solanum lycopersicum) is one of the world’s
most extensively cultivated crops, and has been the sub-
ject of hundreds of years of breeding and selection. Nev-
ertheless, the genetic variability available for the breeding
and improvement of tomato within the confines of the
species is limited. This has been described as a “genetic
bottleneck” (Miller and Tanksley 1990) and is due to the
domestication history of the crop, particularly the trans-
fer of select germplasm from South America to Europe in
the 1500 s, followed by selections and return to the New
World, again of limited germplasm (Knapp and Peralta
2016).

Reaching beyond the S. lycopersicum species as a
source for genetic variability began nearly 100 years ago,
with the introduction of Cladosporium resistance from
S. pimpinellifolium in 1934. As might be expected, the
wild species have contributed to breeding for resistances
in the cultivated tomato. Surprisingly, and counterin-
tuitively, wild species can contribute to the breeding for
improved quality of the fruit (e.g., Rick 1974; Schaffer
et al. 1999; Tiemann et al. 2017; Zhao et al. 2019; Pereira
et al. 2021) even though the wild species fruit are not of
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high quality and some of the more primitive wild species
are inedible and poisonous.

The potential of wild species to contribute quality traits
valuable to tomato improvement is great, but only par-
tially explored and utilized, even since the earlier reali-
zation of this potential (Rick 1974; Zamir 2001). Partial
metabolomic characterizations of fruit of select wild spe-
cies and their respective introgression lines indicate the
potential inherent in wild species germplasm for modi-
fying primary and secondary metabolite levels in tomato
fruit.

The genetic variability for a particular trait can mainly
be attributed to two main features of the gene determin-
ing the trait: the developmental expression levels of the
particular gene, and its sequence polymorphism, which
may lead to functionally significant sequence differences,
either at the nucleotide or amino acid level. Whole tran-
script RNA-seq transcriptome analysis offers the advan-
tage of providing both expression and coding sequence
polymorphism information, and both measures of
genetic variability can be valuable in identifying potential
wild species donors for selected genetic traits.

In this paper we report and make available to the
research community an extensive data of gene transcript
information (whole-transcript RNA-seq) from fruit of
44 tomato accessions, comprising two studies. The first
compares transcriptomes of four stages of fruit devel-
opment, from immature green to ripe, of 16 accessions.
These include 4 lycopersicum, 2 pimpinellifolium, 2 chees-
maniae, 3 chmielewskii, 2 habrochaites, 2 peruvianum
and a single pennellii accession (listed in Supplementary
Table S1). The expression data for the developing fruit are
presented in Supplementary Table S2. The second study
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compares the transcriptomes of ripe fruit of 32 additional
accessions (listed in Supplementary Table S1), compris-
ing 16 pimpinellifolium (8 of Ecuadorian origin and 8
of Peruvian origin), 8 cheesmaniae and 8 galapagense.
These data are presented in Supplementary Table S3. In
total, ~ 1.5 billion reads were obtained from 129 libraries
derived from 93 samples and mapped against the refer-
ence Heinz 1706 genome v4 (Supplementary Table S4).

Irrespective of species group, an initial perusal of the
results can give a global overview of gene expression in
Solanum fruit. Based on the expression results at each of
the four developmental stages, approximately 24,000 of
the ~ 34,000 annotated tomato genes are fruit-expressed
(Fig. 1A). Around 10,000 tomato genes showed no
detectable expression or had very low expression (<10
FPKM) in all the libraries. Most interestingly, expression
of ~6,000 genes were limited to specific stages of devel-
opment, with the ripe fruit stage having the most stage-
specific expression. Of the 24,123 total fruit-expressed
genes the vast majority are expressed in ripe fruit and
only 1620 are not expressed in that stage, while 1274
genes are expressed only in the ripe stage.

The data can be used to screen for natural genetic vari-
ation in both gene expression and gene sequences. Fig-
ure 1B,C illustrate the results of the two screens for the
well-studied soluble vacuolar invertase gene, TIV, con-
trolling sucrose/hexose accumulation in the Solanum
species. Earlier studies (e.g., Schaffer et al. 1999 and
references therein) have shown that genetic variation at
the sucr locus, harboring T1V; is responsible for the high
concentrations of sucrose in the green-fruited species.
Our data are in confluence with these earlier studies that
showed that TIV expression in green-fruited wild spe-
cies remains low during ripening, thereby allowing for
sucrose accumulation in the fruit, whereas gene expres-
sion, and concomitant sucrose hydrolysis, is strongly
upregulated in lycopersicum, leading to hexose accumula-
tion. The data uncovers additional genetic variability for
upregulation, large in pimpinellifolium and galapagense,
but only modest in cheesmaniae. In addition, sequence
polymorphisms of the TIV alleles can similarly be
retrieved (Fig. 1D).

In order to ascertain the significance of transcriptomic
patterns to evolutionary and phylogenetic relationships,
we compared the phylogenetic tree developed from anal-
ysis of transcriptome-derived sequence polymorphisms
to the hierarchical tree based on gene expression pat-
terns. SNP calling detected~2.4 M total SNPs, which
were filtered to comprise~946 K polymorphic sites
identified with a minor allele frequency (MAF) of>5%
across at least 20 accessions (Supplementary file 1). The
filtered SNPs were used for calculating distances between
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each accession to create a neighbor-joining (NJ) tree
(Fig. 1F). In comparison, a hierarchical tree and heatmap
(Fig. 1E) was generated based on the ripe fruit transcrip-
tomes, utilizing the expression patterns of the~7000
genes that showed at least a fourfold differential expres-
sion (adjusted p value<0.001, Supplementary Table S5)
between any of the five species groups. The five species
groups comprise the accessions of lycopersicum, pimpi-
nellifolium, cheesmanaiae, galapagense, and the com-
bined accessions of the primitive green-fruited species,
referred to as ‘green species.

The strikingly similar results between the two
approaches strongly indicate that the presumably unbi-
ased evolutionary relationships based on sequence poly-
morphisms are clearly mirrored by the transcriptional
patterns. The green-fruited species are distinctly claded
separately from the colored-fruited species, and the
colored species exhibit similar relationships between
themselves, with both approaches. Both the sequence-
based tree and the transcriptome-based relationships
point to a common ancestor of the endemic Galapagos
species, presumably the founder transferred from the
mainland, that itself shared a common ancestor with the
green-fruited wild species. Both methods distinguish
between the accessions of the two species endemic to the
Galapagos Islands, cheesmaniae and galapagense. Simi-
larly, the two pimpinellifolium subgroups, representing
Peruvian and Ecuadorian origins (Supplementary Table
S1), are distinguished by both methods.

In conclusion, we present a comprehensive data of
gene transcripts derived from developing and ripe fruit
of cultivated tomato and its wild relatives. The data can
serve as a repository for identifying genetic variability
in both expression levels and sequence polymorphisms.
The latter can identify non-synonymous amino acid
sequence differences with its many implications on pro-
tein function. The data can also be harnessed for improv-
ing the annotated genome, expanding on the Solanum
pan-genome through a pan-transctriptome and, perhaps
most significantly, shedding light on the evolution of the
tomato clade and the relationships between the primitive
green-fruited wild species, the presumably intermediate
stages of tomato evolution (wild, colored-fruited species)
and the cultivated tomato.

We have previously utilized this data for the identi-
fication of tomato genetic variability and gene identifi-
cation. These included studies of the plant cholesterol
biosynthetic pathway by a multi-species gene co-expres-
sion analysis (Sonawane et al. 2016), identification of
genes involved in novel glycoalkaloid metabolism (Son-
awane et al. 2022), surveys of genetic variability for the
SWEET sugar transporter family (Shammai et al. 2018)
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Fig. 1 Gene expression among Solanum accessions. A Venn diagram indicating number of genes expressed in the combined data, arranged
according to developmental stages. B,C Examples of retrievable data for Solyc03g083910 (T1V) for developmental stages (B, Supplementary Table
S2) and ripe fruit (C, Supplementary Table S3). D IGV screen shot of reads for the six wild species (1 accession each) for Solyc03g083910 (TIV). E,F
Genetic relationships based on E) gene expression patterns of ripe fruit and F) sequence polymorphisms

and for the prenyltransferase family, involved in volatile
terpene metabolism (Hivert et al. 2020). Our hope is
that this data, combined with other tomato expression
databases, such as TED (http://ted.bti.cornell.edu/), TEA

(https://tea.solgenomics.net/) and TomExpress (http://
tomexpress.toulouse.inra.fr/) will serve the research and
breeding communities in furthering the study of tomato
genetics and improvement.



Doron-Faigenboim et al. Molecular Horticulture (2023) 3:12

Abbreviations

lyc lycopersicum
che cheesmaniae
gal galapagense
pim pimpinellifolium
chm chmieliewskii
hab habrochaites
per peruvianum
pen pennellii
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Additional file 2: Supplemental Table 1. List of accessions and sources
used in this report. Supplemental Table S2. Gene expression data (FPKM)
for fruit of Solanum accessions at 4 stages of development. Accessions are
listed in Supplemental table S1. Supplemental Table S3. Gene expres-
sion data (FPKM) for ripe fruit of Solanum accessions. Accessions are listed
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libraries used in this study. Supplementary Table S5. Correlation matrix
used for generation of Figure 3A, heata map and hierarchical clustering
based on differential gene expression.
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