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A recent global QCD analysis of jet production and other polarized scattering data has found the
presence of negative solutions for the gluon helicity distribution in the proton,Δg, along with the traditional
Δg > 0 solutions. We consider polarized semi-inclusive deep-inelastic scattering for hadrons produced
with large transverse momentum as a means of constraining the dependence of Δg on the parton
momentum fraction, x. Focusing on the double longitudinal spin asymmetry, we identify the kinematics
relevant for future experiments at Jefferson Lab and the Electron-Ion Collider that are particularly sensitive
to the polarized gluon channel and could discriminate between the different Δg behaviors. We find that a
∼20 GeV beam at the high luminosity Jefferson Lab may be especially well-suited for discriminating
between the positive and negative solutions.
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I. INTRODUCTION

Understanding the proton spin puzzle—the detailed
decomposition of the proton’s spin into its quark and gluon
helicity and orbital angular momentum components—
has been one of the major drivers of new experimental
programs in the nuclear physics community over the past
three decades [1]. Worldwide efforts at various accelerator
facilities have now established fairly comprehensively the
total fraction of the helicity carried by quarks, although some
questions still remain about the detailed flavor decomposi-
tion of the sea quark contributions. A major breakthrough
was made with the observation of significant double spin
asymmetries in inclusive jet production in polarized proton-
proton collisions at RHIC [2], from which the first clearly
nonzero signal for a polarized gluon distribution was
extracted [3]. Subsequent inclusive jet production data from

the STAR [4–6] and PHENIX [7] Collaborations have
reaffirmed these observations, leading to a greater confi-
dence that finally both the quark and gluon helicity content
of the proton may be relatively well understood.
Recently, the JAM Collaboration [8] revisited the analy-

sis of the jet data to examine the extent to which these
results depend on the theoretical assumptions made in the
analysis, such as SU(3) flavor symmetry for the axial vector
charges that constrain nonsinglet combinations of spin-
dependent parton distribution functions (PDFs) [9,10] and
positivity constraints for unpolarized PDFs [11,12]. In
particular, the analysis found that without the PDF pos-
itivity constraints, which are not formally required on
theoretical grounds [12], a second set of solutions is
possible for which Δg < 0, as illustrated in Fig. 1. This
set of solutions is permitted because the double spin
asymmetry for inclusive jet production is quadratic in
the parton polarization. That is, the traditional small and
positiveΔg and the positive quark polarizationΔq combine
to produce an overall positive asymmetry, as observed in
the STAR data. However, the data also allow negative
Δg with larger magnitude, which combines with the
positive Δq to produce a cancellation between a positive
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contribution from the gluon-gluon channel and a negative
contribution from the quark-gluon channel, giving equally
good descriptions of the inclusive jet data.
Earlier, Jäger et al. [13] discussed possible constraints on

the sign of Δg from inclusive pion production in polarized
pp collisions. In particular, they considered PHENIX
data [14] for neutral pions produced with relatively low
transverse momentum, 1 < pT < 5 GeV, within a collinear
factorization framework. While the applicability of collin-
ear factorization in this region may be questionable, Jäger
et al. extracted a small but negative lower bound for the
double spin asymmetry by finding the extremum of the
asymmetry in Mellin space as a function of the moments

of Δg. They found that the extremum corresponds to a
negative gluon helicity, with associated violations of PDF
positivity bounds at higher x values, similar to those found
in the JAM analysis [8].

Moreover, the sign of Δg was investigated by comparing
PHENIX data on inclusive charged pion production
[15,16]. A positive Δgwas expected to produce a hierarchy
of double spin asymmetries with that for πþ > π0 > π−.
In Fig. 2, we show the πþ and π− asymmetries at pp center
of mass energies

ffiffiffi
s

p ¼ 200 and 510 GeV as a function of
xT ¼ 2pT=

ffiffiffi
s

p
, where pT is the transverse momentum

of the final state pion in the laboratory frame, compared
with predictions from the recent JAM analysis [8]. While
the πþ asymmetry in particular has the potential to
discriminate between the different Δg solutions, the uncer-
tainties on these data do not exclude either a positive or
negative Δg.
A possible way to resolve this problem would be to

identify observables that are linear in the gluon polarization
Δg, and where the gluon contribution is not suppressed
relative to the quark contribution, as it is in inclusive deep-
inelastic scattering (DIS). One candidate process is polar-
ized lepton-nucleon semi-inclusive DIS (SIDIS), with
production of hadrons in the final state with large transverse
momentum. Here, the contribution in which the hard
scattering involves an initial state gluon enters at the same
order in the strong coupling αs as the quark scattering
contribution. One therefore expects greater sensitivity to
the Δg PDF at high transverse momentum than at low
transverse momentum.
In this paper, we examine the polarized SIDIS process

for the production of charged pions at large transverse

FIG. 1. Polarized gluon distribution xΔgðxÞ at Q2 ¼ 10 GeV2

from the recent JAM global QCD analysis [8], showing sepa-
rately solutions with Δg > 0 (red lines) and Δg < 0 (blue lines),
and compared with � the unpolarized gluon distribution, xgðxÞ
(green lines).

FIG. 2. Inclusive double spin asymmetry for πþ (left column) and π− (right column) production from the PHENIX experiment [15,16]
at

ffiffiffi
s

p ¼ 200 GeV (top row) and 510 GeV (bottom row) as a function of xT ¼ 2pT=
ffiffiffi
s

p
, compared with the predictions from the JAM

analysis [8] with positive (red bands) and negative (blue bands) gluon helicity.
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momentum, with the aim of assessing its potential impact
onΔg. In Sec. II, we outline the theoretical framework used
in the analysis, including cross section definitions and the
results within collinear factorization in terms of PDFs and
fragmentation functions. The perturbative calculation of the
hard scattering amplitudes is presented in Sec. III for both
spin-averaged and spin-dependent scattering. In Sec. IV, we
discuss the results of our numerical simulations at kin-
ematics relevant for Jefferson Lab with the current 12 GeV
and a possible future energy upgraded 22 GeV electron
beam, as well as at the EIC, with emphasis on the efficacy
of discriminating the two Δg solutions in Fig. 1. Finally, in
Sec. V, we summarize our findings and discuss possible
future extensions of this work.

II. THEORETICAL FRAMEWORK

In this section, we present the theoretical framework
which we use to compute the relevant cross sections in
this analysis. After introducing the basic definitions of the
observables and their kinematics, we then specialize to the
case where these are computed using the collinear factori-
zation approximation.

A. Definitions and kinematics

The process that we consider in this work is the
leptoproduction of a charged hadron h in SIDIS from a
nucleon N,

eðlÞ þ NðPÞ → eðl0Þ þ hðPhÞ þ X; ð1Þ

where l and l0 are the incoming and scattered lepton
four-momenta, P and Ph are target nucleon and produced
hadron four-momenta, respectively, and X denotes unob-
served final state particles. The scattering cross section for
this reaction can be written as a tensor product of a leptonic
tensor Lμν and a hadronic tensor Wμν,

4P0
hE

0 dσh
d3l0d3Ph

¼ 2α2

sQ4
LμνWμν; ð2Þ

where α ¼ e2=4π is the electromagnetic coupling, E0 and
P0
h are the final state lepton and hadron energies, respec-

tively, Q2 ¼ −ðl − l0Þ2 is the squared four-momentum
transfer to the nucleon, and s ¼ ðlþ PÞ2 is the squared
center of mass energy. In terms of Lorentz invariant
variables, after integrating over azimuthal angles, Eq. (2)
can also be written as

dσh
dx dy dz dP2

hT

¼ π2α2y
2zQ4

LμνWμν; ð3Þ

where the transverse momentum of the produced hadron PhT
is defined in the “photon frame”, in which the incoming
nucleon and photon are back-to-back. The Bjorken scaling

variable x, lepton inelasticity y, and fragmentation variable z
in Eq. (3) are defined as

x ¼ Q2

2P · q
; y ¼ P · q

P · l
; z ¼ P · Ph

P · q
; ð4Þ

respectively, where q ¼ l − l0 is the four-momentum trans-
fer. Since we consider the polarizations for the initial lepton
and nucleon, both the leptonic and hadronic tensors can
in general be decomposed into helicity-independent parts,
which are symmetric in the indices fμ; νg, and helicity-
dependent parts, which are antisymmetric,

Lμν ¼ LS
μν þ λlLA

μν; ð5aÞ

Wμν ¼ Wμν
S þ λWμν

A ; ð5bÞ

where λl and λ are the helicities of the incident lepton and
nucleon. As the products between symmetric and antisym-
metric terms vanish, we can write the tensor product as a sum
of purely symmetric and purely antisymmetric components,

LμνWμν ¼ LS
μνW

μν
S þ λlλLA

μνW
μν
A : ð6Þ

The unpolarized cross section is calculated by averaging
over the four possible combinations of the lepton (→) and
nucleon (⇒) helicities,

dσh ¼
1

4

h
dσ⇒

⟶

h þ dσ⇐
⟵

h þ dσ⇐
⟶

h þ dσ⇒
⟵

h

i
; ð7aÞ

leaving only the product from the contraction of the
symmetric parts of the leptonic and hadronic tensors.
For the polarized cross section, one takes the difference
between the aligned and antialigned spin states,

dΔσh ¼
1

4

h
dσ⇒

⟶

h þ dσ⇐
⟵

h − dσ⇐
⟶

h − dσ⇒
⟵

h

i
; ð7bÞ

which gives the contribution from the antisymmetric parts
of the tensors.
Since the helicity dependent terms are proportional to

λlλ, one has dσ
⇒
⟶

h ¼ dσ⇐
⟵

h and dσ⇐
⟶

h ¼ dσ⇒
⟵

h , so that only the
relative handedness of the lepton and nucleon are relevant.
Fixing the initial nucleon to be right-handed, λ ¼ 1, we can
simplify Eqs. (7) to write the cross sections in terms of the
two possible relative alignments,

dσh ¼
1

2

h
dσ⇒

⟶

h þ dσ⇒
⟵

h

i
; ð8aÞ

and

dΔσh ¼
1

2

h
dσ⇒

⟶

h − dσ⇒
⟵

h

i
: ð8bÞ
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In the one-photon exchange approximation, the lepton
tensor is given by

Lμν ¼ 2ðlμl0
ν þ l0

μlμ − gμνl · l0 þ iϵμναβsαqβÞ: ð9Þ

Since the lepton is longitudinally polarized with helicity λl,
the lepton spin vector can be written as sμ ¼ λllμ, and
Eq. (9) becomes

Lμν ¼ 2ðlμl0
ν þ l0

μlμ − gμνl · l0 − iλlϵμναβlαl0βÞ: ð10Þ

Note that we assume a kinematic regime where x and 1=Q
are both small enough that we can neglect the lepton and
parton masses. However, in this study, we keep the nucleon
and final state hadron masses, since terms proportional to
M=Q and Mh=Q in the calculations are not necessarily
insignificant relative to the massless limit at the lower
energy scales of Electron-Ion Collider (EIC) and Jefferson
Lab kinematics. We do not consider other 1=Q corrections,
such as those associated with dynamical higher twists
effects involving multiparton correlations, which would
require a more detailed analysis than that undertaken in
this study.
The hadronic tensor for SIDIS can be written as

Wμν ¼ 1

ð2πÞ4
X
X

Z
d4zeiq·zhP; SjJμðzÞjPh; Xi

× hPh; XjJνð0ÞjP; Si; ð11Þ

where Jμ is the electromagnetic current. In this work, we
will focus on the large transverse momentum region by
using collinear factorization, following a similar procedure
as in Ref. [17]. Since our aim is to compute the total
asymmetry after integration of the angular modulations
between the lepton plane and the hadronic plane, it will not
be necessary to decompose the hadronic tensor into all
possible angular modulations.

B. Collinear factorization

The expressions for the cross sections simplify consid-
erably at large Q2 and large PhT , where they can be
factorized in terms of partonic subprocesses. In particular,
using the factorization formalism from Wang et al. [17],
the hadronic cross sections can be written in terms of
partonic cross sections and the corresponding nonpertur-
bative functions,

4P0
hE

0 dσh
d3l0d3Ph

¼
X
ij

Z
1

x

dξ
ξ

Z
1

z

dζ
ζ2

�
4k01E

0 dσ̂ij
d3l0d3k1

�
fi=NðξÞDh=jðζÞ;

ð12aÞ

and

4P0
hE

0 dΔσh
d3l0d3Ph

¼
X
ij

Z
1

x

dξ
ξ

Z
1

z

dζ
ζ2

�
4k01E

0 dΔσ̂ij
d3l0d3k1

�
Δfi=NðξÞDh=jðζÞ;

ð12bÞ
for unpolarized and polarized scattering, respectively,
where fi=N and Δfi=N are the spin-averaged and spin-
dependent PDFs of flavor i in the nucleon N, and Dh=j is
the fragmentation function for a parton of flavor j to
hadronize to the hadron h. The momentum fractions ξ and ζ
are defined in terms of the incident parton momentum p
and outgoing parton momentum k1 by

p ¼ ξP; k1 ¼
Ph

ζ
: ð13Þ

In analogy with the hadronic cross section, the partonic
cross section can be expressed in terms of the partonic
structure tensor Ŵμν

ij , which describes the interactions in the
hard scattering process at the parton level,

4k01E
0 dσ̂ij
d3l0d3k1

¼ 2α2

ŝQ4
Lμν
bWμν

ij : ð14Þ

Again, in analogy with the hadronic tensor, the partonic
structure tensor is defined as

bWμν
ij ¼ 1

ð2πÞ4
X
X

Z
d4weiq·whpi; sjJμðwÞjk1j; Xi

× hk1j; XjJνð0Þjpi; si: ð15Þ
With the factorization theorem in Eqs. (12), for the spin-
averaged case, we can relate the (symmetric) hadronic and
partonic tensors by

Wμν
S ¼

X
ij

Z
1

x

dξ
ξ

Z
1

z

dζ
ζ2
bWμν

ij fi=PðξÞDh=jðζÞ; ð16Þ

and similarly for the (antisymmetric) spin-dependent ten-
sors. Since the hadronic quantities are calculated from
partonic quantities, it is useful to introduce the partonic
variables,

x̂≡ Q2

2p · q
¼ x

ξ
; ẑ≡ p · k1

p · q
¼ z

ζ
; k1T ≡ PhT

ζ
: ð17Þ

Additionally, it will be convenient to define the scaled
transverse momentum variable,

qT ¼ PhT

z
; ð18Þ
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which provides a scale separation relative to Q, so that in
the regime where qT=Q ∼ 1 one can analyze the reaction
using the collinear framework.

III. HARD SCATTERING AMPLITUDES

The factorized form of the relations in Eqs. (12) allows
us to compute the SIDIS cross section from the parton
level in terms of the partonic structure tensor (15) and the
appropriate PDFs and fragmentation functions. In this
study, the partonic structure tensor, including phase space
constraints,

bWμν
ij ¼

Z
dΠMμ†

i Mν
j ; ð19Þ

is calculated directly at leading order (LO) in the strong
coupling for the 2 → 2 scattering process. A sketch of the
SIDIS process is illustrated in Fig. 3, and the four tree-level
diagrams contributing to the partonic structure tensor
are shown in Fig. 4. Note that the incoming photon and
parton momenta are denoted as q and p, respectively, the
fragmenting parton has momentum k1, while the other
outgoing parton has momentum k2.
Frommomentum conservation, the outgoing two particle

phase space is represented by

dΠ ¼ d3k2
ð2πÞ2k02

δð2Þðqþ p − k1 − k2Þ: ð20Þ

Integrating over k2, we have

Z
dΠ ¼ 2πδþðk22Þ ¼

2πx̂
Q2

δ

�
ð1 − x̂Þð1 − ẑÞ − x̂ ẑ q2T

Q2

�
;

ð21Þ

where the δ function imposes a strict relationship between ζ
and ξ that depends on the hadronic kinematics, and the
subscript “þ” denotes the positive energy solution for k02.
Solving Eq. (21), we find

ζ ¼ z

�
1þ x

ξ − x
q2T
Q2

�
: ð22Þ

Noting that ζ monotonically decreases as a function
of ξ, the lower bound for the factorization integral in ξ
is given by

ξmin ¼ x

�
1þ z

1 − z
q2T
Q2

�
: ð23Þ

In calculating the partonic cross sections, it will be
convenient to use the Mandelstam variables,

s ¼ ðpþ qÞ2 ¼ 2p · q −Q2; ð24aÞ

FIG. 3. Sketch of the diagram representing SIDIS of a lepton
(momentum l) from a proton (P) in the one-photon (q) exchange
approximation, with p the momentum of the initial parton in the
proton and k1 the momentum of the parton fragmenting to the
hadron h (with momentum Ph). The lower blob represents
the soft part of the scattering process, the central blob represents
the hard part of the scattering process, and the upper blob
represents the parton fragmentation to the produced hadron h.

FIG. 4. Diagrams representing squared amplitudes for virtual
Compton scattering from a parton to a two-parton final state, for a
quark (or antiquark) initial state, with quark (or antiquark) (a) or
gluon (b) fragmentation (represented by the black circle), and for
a gluon initial state with quark (c) or antiquark (d) fragmentation.
The gray blobs represent the possible connections within the
diagrams, with the virtual photon (q), initial parton (p), frag-
mentating parton (k1), and nonfragmenting parton (k2) momenta
labeled.
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t ¼ ðq − k1Þ2 ¼ −2q · k1 −Q2; ð24bÞ

u ¼ ðp − k1Þ2 ¼ −2p · k1; ð24cÞ

where we have taken the partons to be massless, with
q2 ¼ −Q2. From Eqs. (24), it is straightforward to verify
that sþ tþ u ¼ −Q2. When calculating the partonic cross
sections, it is more natural to use partonic variables, which
are more directly related to our parton momentum fractions
and hadronic phase space variables. In terms of these, the
relevant Mandelstam variables are given by

s ¼ ð1 − x̂Þ
x̂

Q2; ð25aÞ

t ¼ −Q2 þ ẑðQ2 − q2TÞ; ð25bÞ

u ¼ −
ẑ
x̂
Q2: ð25cÞ

Also, when evaluating the spin-dependent cross sections,
we use the spinor convention,

uðpÞūðpÞ ¼ 1

2
ð1þ λ̂γ5Þ=p; ð26Þ

for quarks, and the polarization vector notation [18],

εμðpÞε�νðpÞ ¼ 1

2

�
−gμν þ iλ̂

p · X
ϵμναβpαXβ

�
; ð27Þ

for gluons, where λ̂ is the helicity of the incoming parton
(which is not necessarily the same as λ defined above
to be the initial state nucleon helicity), and X is an

arbitrary four vector, which does not appear in the final
squared amplitudes.
In our calculation of the unpolarized and polarized

partonic differential cross sections, we may bring the
leptonic tensor inside the phase space integration of
Eq. (19) and contract directly with the scattering amplitudes
calculated from the graphs in Fig. 4,

Lμν
bWμν ¼

Z
dΠHij; ð28Þ

where Hij ¼ LμνM
μ†
i Mν

j . Note that we may write

Mμ†
i Mν

j ¼ ðMμ†
i Mν

jÞU þ λ̂ðMμ†
i Mν

jÞP; ð29Þ

where U and P represent helicity-independent and helicity-
dependent pieces of the scattering amplitude, respectively,
since Eqs. (26) and (27) contain terms independent of and
linearly proportional to λ̂. It is then possible to write

Hij ¼ HU
ij þ λ̂HP

ij; ð30Þ

where

HU
ij ¼ LμνðMμ†

i Mν
jÞU; ð31aÞ

and

HP
ij ¼ LμνðMμ†

i Mν
jÞP: ð31bÞ

The unpolarized contributions to Hij for each of the
channels in Fig. 4 are given by

dHU
qq

dx̂ dy dẑ dP2
hT

¼ 64πα2s
3x̂ð1 − x̂Þy2Q2

1

½ð1þ x̂2ẑ2Þð1þ ȳ2ÞQ4 þ 8x̂2ẑ2ȳQ2q2T þ x̂2ẑ2ð1þ ȳ2Þq4T �; ð32aÞ

dHU
qg

dx̂ dy dẑ dP2
hT

¼ 64πα2s
3ð1 − x̂Þy2Q2

2

½ðð2þ x̂2ẑ2Þð1þ ȳ2Þ − 4x̂ ẑ ȳ−2x̂y2ð1 − x̂ð1 − ẑÞÞÞQ4

þ 2x̂ ẑð4x̂ ẑ ȳþx̂y2 − 1 − ȳ2ÞQ2q2T þ x̂2ẑ2ð1þ ȳ2Þq4T �; ð32bÞ

dHU
gq

dx̂ dy dẑ dP2
hT

¼ 8πα2sQ2

x̂y2Q2
1Q

2
2

½ðð1þ 2x̂2ẑ2Þð1þ ȳ2Þ þ 2x̂2y2ð1 − ẑÞ − 4x̂ ẑ ȳ−2x̂y2ÞQ4

þ 2x̂ ẑð8x̂ ẑ ȳþx̂y2 − 1 − ȳ2ÞQ2q2T þ 2x̂2ẑ2ð1þ ȳ2Þq4T �; ð32cÞ

for the qq, qg, and gq channels, respectively, where αs is the strong coupling constant. For shorthand, here we have defined

Q2
1 ≡Q2ð1 − ẑÞ þ ẑq2T; Q2

2 ≡Q2ð1 − x̂ð1 − ẑÞÞ − x̂ ẑ q2T; ð33Þ
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and ȳ≡ 1 − y. For the polarized case, the corresponding partonic cross sections are given by

dHP
qq

dx̂ dy dẑ dP2
hT

¼ −
64πα2sð2 − yÞ
3x̂ð1 − x̂ÞyQ2

1

½ð1þ x̂2ẑ2ÞQ4 − x̂2ẑ2q4T �; ð34aÞ

dHP
qg

dx̂ dy dẑ dP2
hT

¼ −
64πα2s x̂ð2 − yÞ
3ð1 − x̂ÞyQ2

2

½ð2þ x̂ẑ2 − 2x̂ ẑÞQ4 þ 2ẑð1 − x̂ÞQ2q2T − x̂ẑ2q4T �; ð34bÞ

dHP
gq

dx̂ dy dẑ dP2
hT

¼ 8πα2sð2 − yÞQ2

x̂yQ2
1Q

2
2

½ð2x̂2ẑ2 − 2x̂2ẑþ 2x̂ − 1ÞQ4 þ 2x̂ ẑð1 − x̂ÞQ2q2T − 2x̂2ẑ2q4T �: ð34cÞ

These results are consistent with those obtained previously
by Koike et al. [19]. Furthermore, since we neglect parton
masses in our calculations, the expressions for both the
γg → qq̄ and γg → q̄q channels of Figs. 4(c) and 4(d) are
given by Eqs. (32c) and (34c). With these results for the
hard scattering cross sections, we can proceed to compute
the physical cross sections for the polarized SIDIS pro-
duction of a hadron h, which we turn to in the next section.

IV. NUMERICAL SIMULATIONS

Typically in experiments involving polarization of initial
or final state particles, one defines asymmetries between
cross sections for spin-aligned and antialigned configura-
tions. The relevant asymmetry for the polarized semi-
inclusive electroproduction of a hadron h can be defined
in terms of the differential cross sections dσh and dΔσh
from Sec. II A,

Ah
LL ¼ dΔσh

dσh
: ð35Þ

The results presented in this section will focus on the SIDIS
process for a polarized proton with production of charged
pions in the final state at energies accessible at the current
12 GeV Jefferson Lab, a possible future 20–24 GeV
upgrade, and EIC kinematics.

A. Phase space restrictions

The kinematic phase space for the SIDIS reaction is
four dimensional. We must impose boundaries for each
of the kinematic variables x, y, z, and PhT to take into
account theoretical and physical conditions as well as
constraints imposed by relevant experimental conditions.
For the fragmentation variable, following previous analyses
of SIDIS data [20,21], we impose the restriction
0.2 < z < 0.8, over which good descriptions of data in
terms of leading twist fragmentation functions can be
obtained within the JAM global QCD analysis framework.
For the four-momentum transfer squared, Q2, we

impose a lower bound at the mass of the charm quark,
Q2 > m2

c ¼ ð1.28 GeVÞ2. Furthermore, imposing a cut on

the invariant mass squared of the final hadronic state,
W2 ¼ ðPþ qÞ2 ¼ M2 þQ2ð1 − xÞ=x > W2

min ¼ 4 GeV2,
we obtain the further restriction, Q2 > ðW2

min −M2Þx=
ð1 − xÞ. For EIC kinematics with center of mass energyffiffiffi
s

p ¼ 140 GeV, at each value of x the minimum allowed
value of Q2 is the maximum of these two conditions.
For Jefferson Lab kinematics at a current center of mass
energy

ffiffiffi
s

p ¼ 4.8 GeV and a possible future energy offfiffiffi
s

p ¼ 6.5 GeV (corresponding to laboratory frame electron
beam energies of 12 and 22 GeV, respectively), we impose
a third condition on Q2, noting that the CLAS12 detector
can detect electrons scattered at angles as low as
θ ≳ θmin ≈ 5°, which implies

Q2 >
2E2ð1 − cos θminÞ

1þ ðE=MxÞð1 − cos θminÞ
; ð36Þ

where θmin is the minimum scattering angle and E is the
energy of the electron beam in the laboratory frame. At
these kinematics, the minimum value of Q2 is then the
maximum of these three values at each x. A strict upper
bound for Q2 at each x is obtained simply by requiring that
y < 1, giving

Q2 < Q2
max ¼ ðs −M2Þx: ð37Þ

The values of xmin and xmax are defined as the points where
the Q2 range shrinks to zero, Q2

min ¼ Q2
max. In the neigh-

borhood of xmin, we have Q2
min ¼ m2

c, so that

xmin ¼
m2

c

ðs −M2Þ ; ð38Þ

while in the neighborhood of xmax, we have Q2
min ¼

ðW2 −M2Þx=ð1 − xÞ, so that

xmax ¼
s −W2

s −M2
: ð39Þ

Finally, to avoid regions of low hadron transverse
momenta, where a TMD description would be more
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appropriate, we require qT ≳Q. An upper bound on qT is derived by requiring the mass of the unobserved hadronic
final state, W2

SIDIS ¼ ðPþ q − PhÞ2, to be at least the proton mass. This gives

W2
SIDIS ¼ M2 þM2

h þ
Q2ð1 − x − zÞ

x
þ 2Q2z
ρ2 − 1

 
ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðρ2 − 1Þ M

2
hT

Q2z2

s
− 1

!
; ð40Þ

where M2
hT ≡M2 þ P2

hT is the transverse mass squared of the produced hadron, and we define ρ2 ≡ 1þ 4M2x2=Q2.
Solving the inequality W2

SIDIS > M2 for qT=Q gives then a condition on the maximal value of qT relative to Q,

qT
Q

<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ρ2 − 1

�
1 − ðρ2 − 1Þ M2

Q2z2

�
−
ðρ2 − 1Þ
4ρ2z2

�
1 − x − z

x
þM2

h

Q2
−

2z
ρ2 − 1

�
2

s
: ð41Þ

B. Statistical errors and kinematic bins

The statistical uncertainty for the double-spin asymme-
try, defined in Eq. (35), is given by

δAh
LL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðAh

LLÞ2
N

r
≈

1ffiffiffiffi
N

p if Ah
LL ≪ 1; ð42Þ

where N is the number of events in the kinematic bin in
which the asymmetry is calculated and is related to the
unpolarized cross section σh by

N ¼ Lσh ¼ L
Z
bin

dx dy dz dP2
hT

dσh
dx dy dz dP2

hT

≈ LΔxΔyΔzΔP2
hT

�
dσh

dx dy dz dP2
hT

�
center

; ð43Þ

where L is the integrated luminosity for the scattering
events. The approximation made for the integral giving the
total unpolarized cross section is valid assuming that the
differential unpolarized cross section is roughly constant in
a given bin.
The kinematic bins are then constructed by first gen-

erating a 4 × 4 grid as ½xmin; xmax� × ½Q2
min; Q

2
max� ×

½zmin; zmax� × ½qT;min; qT;max� for the absolute minima and
maxima for each kinematic variable at a given

ffiffiffi
s

p
value.

The z domain is divided into 10 bins, and the qT range is
divided into bins of width 1 GeV. The x and Q2 ranges are
divided into an equal number of bins, nbins, with equal
widths in log space,

nbins ¼
1

Δðlog xÞ log
�
xmax

xmin

�
; ð44Þ

rounded up to the next integer. For the bin width, we choose
Δðlog xÞ ¼ 0.1. The domain is then truncated such that the
midpoint of each bin is kinematically valid with respect to
the phase space restrictions outlined in Sec. IVA.

Plots of these allowed bins in the ðx;Q2Þ, ðx; qTÞ, and
ðz; qTÞ planes relevant for present and future facilities
are shown in Fig. 5. Displayed are the kinematics for
Jefferson Lab with the current 12 GeV electron beam
(
ffiffiffi
s

p ¼ 4.8 GeV), and for a possible future 22 GeVelectron
beam energy (

ffiffiffi
s

p ¼ 6.5 GeV), as well as for the planned
EIC (

ffiffiffi
s

p ¼ 140 GeV). The asymmetry Aπþ
LL is calculated at

the center of the kinematic bins, indicated in Fig. 5 by the
blue dots at the centers of each of the bins (corresponding
approximately to best case scenarios), along with statistical
uncertainties for the asymmetry given by Eq. (42).
Essentially, the size of the asymmetry and uncertainties
associated with the asymmetry are simultaneously maxi-
mized and minimized, respectively, in a kinematic neigh-
borhood of the bins for each chosen center of mass energy
in Fig. 5.
In Fig. 6, we show the projected Aπþ

LL asymmetries at the
Jefferson Lab 12 GeVand 22 GeV, and EIC kinematics. For
the statistical uncertainties on the Jefferson Lab projections,
we take a luminosity of dL=dt ¼ 10−35 cm−2 s−1, which
for 10 days of running would correspond to an integrated
luminosity of ≈86 fb−1. For the EIC statistical uncertain-
ties, we assume an integrated luminosity of L ¼ 10 fb−1,
which is expected to be the achievable luminosity for SIDIS
experiments such as those presented here [22]. The
asymmetries produced at Jefferson Lab 12 GeV kinematics
are relatively large, while their statistical uncertainties are
quite small compared to the scale of the asymmetries. For
most kinematics, the asymmetry bands with positive and
negative polarized gluons overlap significantly, which
would make it difficult to discriminate between the positive
and negative Δg solutions. The separation between the
positive and negative bands becomes clearer at smaller x
values. However, the current 12 GeV electron energy
restricts the range of x down to which the asymmetries
can be probed.
A larger portion of the intermediate- and low-x region

can be accessed, on the other hand, with an energy
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upgraded 22 GeV electron beam. At this energy, and with
the same luminosity, the asymmetry is still sizable and
retains the small statistical uncertainties as for the 12 GeV
case. Therefore, significantly better discrimination between
the positive and negative asymmetry bands is found in this
case, with a clearer separation between the means and the
boundaries of the 1σ region of the two bands.
At the EIC, on the other hand, the calculated double spin

asymmetries are some 1 to 2 orders of magnitude smaller
than the largest asymmetries at Jefferson Lab, for either the
12 GeV or 22 GeV beam energies. Furthermore, with the
lower available luminosity, the statistical uncertainties on
the asymmetry are quite large relative to the size of the
asymmetries and the separation between the positive and
negative Δg bands.
These two observed behaviors are intimately related to

each other through the scaling of the asymmetry with the
center of mass energy,

ffiffiffi
s

p
. In the convolution integrals of

Eqs. (12), the PDFs and fragmentation functions do not
depend on

ffiffiffi
s

p
, so the scale dependence of the unpolarized

and polarized cross sections can only arise from the
hard scattering amplitudes in Eqs. (32) and (34) or the

kinematic factors multiplying the product between the
leptonic and hadronic tensors in Eq. (3). In fact, both of
these depend on the lepton inelasticity y, which is related
to the center of mass energy by y ¼ Q2=½xðs −M2Þ�.
Since the kinematic factors in Eq. (3) are the same for
both the unpolarized and polarized cross sections, they
naturally cancel in the asymmetry. However, it is clear
from the unpolarized and polarized hard scattering
amplitudes that the asymmetry possesses a strong scale
dependence. In the unpolarized expressions, there is a
common factor of 1=y2, while in the polarized expres-
sions the common factor is ð2 − yÞ=y, giving an overall
factor ð2 − yÞy for the asymmetry.

A comparison of the unpolarized and polarized SIDIS πþ
production cross sections, calculated at the Jefferson Lab
22 GeV and EIC kinematics, is shown in Fig. 7. The
polarized cross section here displays a relatively weak
dependence on

ffiffiffi
s

p
, while the unpolarized cross section

depends strongly on
ffiffiffi
s

p
, increasing with larger center of

mass energies. Combined, these behaviors act to suppresses
the double spin asymmetry at larger

ffiffiffi
s

p
. The size of the

statistical uncertainties for the EIC asymmetry in Fig. 6 can

FIG. 5. Available kinematics at Jefferson Lab with a 12 GeV (top row) and 22 GeV (middle row) electron beam and at the EIC (bottom
row) with

ffiffiffi
s

p ¼ 140 GeV. The boxes indicate the available kinematic bins, as discussed in Sec. IV B, and the blue dots represent the
centers of the bins at which the asymmetries are calculated in our analysis (see Fig. 6).
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also be understood by considering the relative uncertainty
of the asymmetry, which is given as

δAh
LL

Ah
LL

¼ 1

Ah
LL

ffiffiffiffiffiffi
Lσ

p ¼ 1

Δσ

ffiffiffiffi
σ

L

r
: ð45Þ

It immediately follows then that the scaling of the relative
uncertainty of the asymmetry is dominated by the scaling offfiffiffi
σ

p
with

ffiffiffi
s

p
.

While a 1%–5% asymmetry is certainly measurable,
at luminosities of the order of 10 fb−1 the resolution of
the positive and negative asymmetry bands becomes quite
poor. In order to discriminate between the two sets of gluon
PDFs at low x, one would require integrated luminosities of
at least 1 order of magnitude larger than what is currently
projected for the SIDIS process at the EIC.

V. CONCLUSION

The proton spin decomposition has remained a funda-
mental challenge for nuclear physics for over 3 decades,
even with the remarkable progress made on both the
experimental and theoretical sides of the problem. The
quest for its understanding at the QCD level continues to
generate surprises, such as the recent realization that the
conventional picture of a positive gluon polarization may
hinge on theoretical assumptions about PDF positivity [8],
the relaxation of which reveals the possibility of solutions
with negative Δg that describe existing data equally well.
In this study, we have considered the double spin

asymmetry for charged pions produced with large trans-
verse momentum in the polarized SIDIS process, which is
particularly sensitive to the gluon channel, as a means of
discriminating between positive and negative Δg distribu-
tions. In particular, we compared the constraining power of
current and future electron scattering facilities, including
Jefferson Lab and the EIC, and found that an ≈20 GeV
beam at the high luminosity Jefferson Lab is especially
well-suited for the discrimination between the positive and
negative solutions. Because of the scaling behavior of the
asymmetry with

ffiffiffi
s

p
, significantly larger integrated lumi-

nosities would be required at EIC energies to overcome the
suppression of the asymmetry and relatively large statistical
uncertainties at these higher energies. Further work is
needed to understand which observables will allow maxi-
mal utilization of the EIC’s reach into low-x kinematics and
the ability to constrain Δg in this region through future
global QCD analyses [22,23].
Independent pathways towards constraining the polari-

zation of the glue could involve inclusive charm meson
production in polarized DIS through the photon-gluon
fusion process [24,25]. Alternatively, lattice data on matrix
elements that are sensitive to the shape and sign of Δg [26]

FIG. 6. Double longitudinal spin asymmetry Aπþ
LL for semi-

inclusive πþ production from a proton, at kinematics indicated in
Fig. 5 at Jefferson Lab (JLab) with both a 12 GeV and 22 GeV
electron beam and at the EIC with

ffiffiffi
s

p ¼ 140 GeV. Note that the
heights of the colored boxes give a 1σ uncertainty in the
asymmetry from the PDF replicas, while the error bars give
the statistical uncertainty of the asymmetry from Eq. (42).

FIG. 7. Unpolarized (solid bands) and polarized (hatched
bands) differential cross sections calculated for semi-inclusive
πþ production at the ðx;Q2; z; qTÞ kinematics displayed in Fig. 5
for Jefferson Lab with a 22 GeV beam energy (green bands) and
EIC center of mass energy

ffiffiffi
s

p ¼ 140 GeV (blue bands).
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may be fitted simultaneously with experimental data in
future global QCD analyses in order to obtain a consistent
picture of the role of gluon polarization in the proton spin
decomposition.
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