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A recent global QCD analysis of jet production and other polarized scattering data has found the
presence of negative solutions for the gluon helicity distribution in the proton, Ag, along with the traditional
Ag > 0 solutions. We consider polarized semi-inclusive deep-inelastic scattering for hadrons produced
with large transverse momentum as a means of constraining the dependence of Ag on the parton
momentum fraction, x. Focusing on the double longitudinal spin asymmetry, we identify the kinematics
relevant for future experiments at Jefferson Lab and the Electron-lon Collider that are particularly sensitive
to the polarized gluon channel and could discriminate between the different Ag behaviors. We find that a
~20 GeV beam at the high luminosity Jefferson Lab may be especially well-suited for discriminating

between the positive and negative solutions.
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I. INTRODUCTION

Understanding the proton spin puzzle—the detailed
decomposition of the proton’s spin into its quark and gluon
helicity and orbital angular momentum components—
has been one of the major drivers of new experimental
programs in the nuclear physics community over the past
three decades [1]. Worldwide efforts at various accelerator
facilities have now established fairly comprehensively the
total fraction of the helicity carried by quarks, although some
questions still remain about the detailed flavor decomposi-
tion of the sea quark contributions. A major breakthrough
was made with the observation of significant double spin
asymmetries in inclusive jet production in polarized proton-
proton collisions at RHIC [2], from which the first clearly
nonzero signal for a polarized gluon distribution was
extracted [3]. Subsequent inclusive jet production data from
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the STAR [4-6] and PHENIX [7] Collaborations have
reaffirmed these observations, leading to a greater confi-
dence that finally both the quark and gluon helicity content
of the proton may be relatively well understood.

Recently, the JAM Collaboration [8] revisited the analy-
sis of the jet data to examine the extent to which these
results depend on the theoretical assumptions made in the
analysis, such as SU(3) flavor symmetry for the axial vector
charges that constrain nonsinglet combinations of spin-
dependent parton distribution functions (PDFs) [9,10] and
positivity constraints for unpolarized PDFs [11,12]. In
particular, the analysis found that without the PDF pos-
itivity constraints, which are not formally required on
theoretical grounds [12], a second set of solutions is
possible for which Ag < 0, as illustrated in Fig. 1. This
set of solutions is permitted because the double spin
asymmetry for inclusive jet production is quadratic in
the parton polarization. That is, the traditional small and
positive Ag and the positive quark polarization Ag combine
to produce an overall positive asymmetry, as observed in
the STAR data. However, the data also allow negative
Ag with larger magnitude, which combines with the
positive Ag to produce a cancellation between a positive

Published by the American Physical Society
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FIG. 1. Polarized gluon distribution xAg(x) at 0> = 10 GeV?
from the recent JAM global QCD analysis [8], showing sepa-
rately solutions with Ag > 0 (red lines) and Ag < O (blue lines),
and compared with + the unpolarized gluon distribution, xg(x)
(green lines).

contribution from the gluon-gluon channel and a negative
contribution from the quark-gluon channel, giving equally
good descriptions of the inclusive jet data.

Earlier, Jager et al. [13] discussed possible constraints on
the sign of Ag from inclusive pion production in polarized
pp collisions. In particular, they considered PHENIX
data [14] for neutral pions produced with relatively low
transverse momentum, 1 < py < 5 GeV, within a collinear
factorization framework. While the applicability of collin-
ear factorization in this region may be questionable, Jiger
et al. extracted a small but negative lower bound for the
double spin asymmetry by finding the extremum of the
asymmetry in Mellin space as a function of the moments

of Ag. They found that the extremum corresponds to a
negative gluon helicity, with associated violations of PDF
positivity bounds at higher x values, similar to those found
in the JAM analysis [8].

Moreover, the sign of Ag was investigated by comparing
PHENIX data on inclusive charged pion production
[15,16]. A positive Ag was expected to produce a hierarchy
of double spin asymmetries with that for 7+ > 7% > 7~
In Fig. 2, we show the z and #~ asymmetries at p p center
of mass energies /s = 200 and 510 GeV as a function of
xr = 2pr/+/s, where pr is the transverse momentum
of the final state pion in the laboratory frame, compared
with predictions from the recent JAM analysis [8]. While
the #* asymmetry in particular has the potential to
discriminate between the different Ag solutions, the uncer-
tainties on these data do not exclude either a positive or
negative Ag.

A possible way to resolve this problem would be to
identify observables that are linear in the gluon polarization
Ag, and where the gluon contribution is not suppressed
relative to the quark contribution, as it is in inclusive deep-
inelastic scattering (DIS). One candidate process is polar-
ized lepton-nucleon semi-inclusive DIS (SIDIS), with
production of hadrons in the final state with large transverse
momentum. Here, the contribution in which the hard
scattering involves an initial state gluon enters at the same
order in the strong coupling «, as the quark scattering
contribution. One therefore expects greater sensitivity to
the Ag PDF at high transverse momentum than at low
transverse momentum.

In this paper, we examine the polarized SIDIS process
for the production of charged pions at large transverse
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FIG. 2.

Inclusive double spin asymmetry for z* (left column) and 7~ (right column) production from the PHENIX experiment [15,16]

at /s = 200 GeV (top row) and 510 GeV (bottom row) as a function of x; = 2p;/+/s, compared with the predictions from the JAM
analysis [8] with positive (red bands) and negative (blue bands) gluon helicity.
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momentum, with the aim of assessing its potential impact
on Ag. In Sec. II, we outline the theoretical framework used
in the analysis, including cross section definitions and the
results within collinear factorization in terms of PDFs and
fragmentation functions. The perturbative calculation of the
hard scattering amplitudes is presented in Sec. III for both
spin-averaged and spin-dependent scattering. In Sec. IV, we
discuss the results of our numerical simulations at kin-
ematics relevant for Jefferson Lab with the current 12 GeV
and a possible future energy upgraded 22 GeV electron
beam, as well as at the EIC, with emphasis on the efficacy
of discriminating the two Ag solutions in Fig. 1. Finally, in
Sec. V, we summarize our findings and discuss possible
future extensions of this work.

II. THEORETICAL FRAMEWORK

In this section, we present the theoretical framework
which we use to compute the relevant cross sections in
this analysis. After introducing the basic definitions of the
observables and their kinematics, we then specialize to the
case where these are computed using the collinear factori-
zation approximation.

A. Definitions and kinematics

The process that we consider in this work is the
leptoproduction of a charged hadron 4 in SIDIS from a
nucleon N,

e(£) + N(P) — e(Z) + h(Py) + X, (1)
where 7 and ¢’ are the incoming and scattered lepton
four-momenta, P and P, are target nucleon and produced
hadron four-momenta, respectively, and X denotes unob-
served final state particles. The scattering cross section for

this reaction can be written as a tensor product of a leptonic
tensor L,, and a hadronic tensor W,

2
4pop - don 20

FeEr, o
n

(2)

where a = ¢?/4r is the electromagnetic coupling, E' and
P2 are the final state lepton and hadron energies, respec-
tively, Q> = —(¢ —¢")? is the squared four-momentum
transfer to the nucleon, and s = (£ + P)? is the squared
center of mass energy. In terms of Lorentz invariant
variables, after integrating over azimuthal angles, Eq. (2)
can also be written as

doy, B zlaty
dxdydzdP?,  2z0* "

WHE, (3)

where the transverse momentum of the produced hadron P,
is defined in the “photon frame”, in which the incoming
nucleon and photon are back-to-back. The Bjorken scaling

variable x, lepton inelasticity y, and fragmentation variable z
in Eq. (3) are defined as

_Pq
y_P ’

AN

respectively, where ¢ = £ — ¢’ is the four-momentum trans-
fer. Since we consider the polarizations for the initial lepton
and nucleon, both the leptonic and hadronic tensors can
in general be decomposed into helicity-independent parts,
which are symmetric in the indices {u,v}, and helicity-
dependent parts, which are antisymmetric,

Ly, =L, + 2L (5a)

Hv

WH = Wi + AW, (5b)
where 1, and A are the helicities of the incident lepton and
nucleon. As the products between symmetric and antisym-
metric terms vanish, we can write the tensor product as a sum
of purely symmetric and purely antisymmetric components,

(6)

The unpolarized cross section is calculated by averaging
over the four possible combinations of the lepton (—) and
nucleon (=) helicities,

L, W = LS,W + 2,ALA, W

uv

1 — — — —
do), = 2 [daf +do,~ +doy- + daf}, (7a)
leaving only the product from the contraction of the
symmetric parts of the leptonic and hadronic tensors.
For the polarized cross section, one takes the difference
between the aligned and antialigned spin states,

1 — — — —
dAc), = 2 [da,? +do;” —do,” — daf} . (7b)

which gives the contribution from the antisymmetric parts
of the tensors.
Since the helicity dependent terms are proportional to

A¢h,onehas do),” = do;~ and do;~ = do)”, so that only the
relative handedness of the lepton and nucleon are relevant.
Fixing the initial nucleon to be right-handed, 4 = 1, we can
simplify Eqs. (7) to write the cross sections in terms of the
two possible relative alignments,

— —

1
do;, = 5 [dof + da}?}, (8a)

and

—

1 —
dAay = 3 [da,? - doﬂ. (8b)
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In the one-photon exchange approximation, the lepton
tensor is given by

L, =2¢,0,+C,— 9.0 -+ ieﬂmﬁs“qﬂ). 9)
Since the lepton is longitudinally polarized with helicity 4.,
the lepton spin vector can be written as s* = A,¢¥, and
Eq. (9) becomes
L, =2, +C,

= Gt -0 —idse

uvofp A f//}) . ( 1 0)
Note that we assume a kinematic regime where x and 1/Q
are both small enough that we can neglect the lepton and
parton masses. However, in this study, we keep the nucleon
and final state hadron masses, since terms proportional to
M/Q and M,/Q in the calculations are not necessarily
insignificant relative to the massless limit at the lower
energy scales of Electron-Ion Collider (EIC) and Jefferson
Lab kinematics. We do not consider other 1/Q corrections,
such as those associated with dynamical higher twists
effects involving multiparton correlations, which would
require a more detailed analysis than that undertaken in
this study.
The hadronic tensor for SIDIS can be written as

x (P, X|J*(0)|P, S). (11)

where J# is the electromagnetic current. In this work, we
will focus on the large transverse momentum region by
using collinear factorization, following a similar procedure
as in Ref. [17]. Since our aim is to compute the total
asymmetry after integration of the angular modulations
between the lepton plane and the hadronic plane, it will not
be necessary to decompose the hadronic tensor into all
possible angular modulations.

B. Collinear factorization

The expressions for the cross sections simplify consid-
erably at large Q? and large Pj,;, where they can be
factorized in terms of partonic subprocesses. In particular,
using the factorization formalism from Wang et al. [17],
the hadronic cross sections can be written in terms of
partonic cross sections and the corresponding nonpertur-
bative functions,

dGh
deaip,

Id Id de;
- Z/ g/ é’_g <4k(1)E/ d3f/d3k >fl/N(§)Dh/J(§),
ij x z

4POE'

and

dAc h
TP,

1d¢é [1d dAsy;
>[5 E S (W i ) AT D1 0)

(12b)

4APOE'

for unpolarized and polarized scattering, respectively,
where f;/y and Af;y are the spin-averaged and spin-
dependent PDFs of flavor i in the nucleon N, and Dy,; is
the fragmentation function for a parton of flavor j to
hadronize to the hadron /. The momentum fractions £ and {
are defined in terms of the incident parton momentum p
and outgoing parton momentum k; by

p:é:P’ klz_

e

In analogy with the hadronic cross section, the partonic
cross section can be expressed in terms of the partonic
structure tensor W’l-‘j”, which describes the interactions in the
hard scattering process at the parton level,

(13)

do;; 202
0 i v
4k1E’Wd3kl SQ4 ;,wwlzlj (14)

Again, in analogy with the hadronic tensor, the partonic
structure tensor is defined as

W = G | Fe sl 0
x (k. X|J*(0)|pi. 5). (15)
With the factorization theorem in Eqgs. (12), for the spin-

averaged case, we can relate the (symmetric) hadronic and
partonic tensors by

ng_z/ldg/ldgwﬂVfl/P )Dh/j(él)’ (16)

and similarly for the (antisymmetric) spin-dependent ten-
sors. Since the hadronic quantities are calculated from
partonic quantities, it is useful to introduce the partonic
variables,

Q2
2p-q

X

| o=
2D
Il
.B .
S
|
TN
K
ﬂ
Il
~—~
—
~
S~—"

Additionally, it will be convenient to define the scaled
transverse momentum variable,

ar = — > (18)
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FIG. 3. Sketch of the diagram representing SIDIS of a lepton
(momentum #) from a proton (P) in the one-photon (g) exchange
approximation, with p the momentum of the initial parton in the
proton and k; the momentum of the parton fragmenting to the
hadron % (with momentum Pj). The lower blob represents
the soft part of the scattering process, the central blob represents
the hard part of the scattering process, and the upper blob
represents the parton fragmentation to the produced hadron h.

\

which provides a scale separation relative to Q, so that in
the regime where g;/Q ~ 1 one can analyze the reaction
using the collinear framework.

III. HARD SCATTERING AMPLITUDES

The factorized form of the relations in Egs. (12) allows
us to compute the SIDIS cross section from the parton
level in terms of the partonic structure tensor (15) and the
appropriate PDFs and fragmentation functions. In this
study, the partonic structure tensor, including phase space
constraints,

Wi = / dIIMS MY, (19)
is calculated directly at leading order (LO) in the strong
coupling for the 2 — 2 scattering process. A sketch of the
SIDIS process is illustrated in Fig. 3, and the four tree-level
diagrams contributing to the partonic structure tensor
are shown in Fig. 4. Note that the incoming photon and
parton momenta are denoted as g and p, respectively, the
fragmenting parton has momentum k;, while the other
outgoing parton has momentum k,.

From momentum conservation, the outgoing two particle
phase space is represented by

&k
Al =56 (g+ p— ki — k).

(27)2k3 (20)

Integrating over k,, we have

(©) (d)

FIG. 4. Diagrams representing squared amplitudes for virtual
Compton scattering from a parton to a two-parton final state, for a
quark (or antiquark) initial state, with quark (or antiquark) (a) or
gluon (b) fragmentation (represented by the black circle), and for
a gluon initial state with quark (c) or antiquark (d) fragmentation.
The gray blobs represent the possible connections within the
diagrams, with the virtual photon (g), initial parton (p), frag-
mentating parton (k), and nonfragmenting parton (k,) momenta
labeled.

X 85 2
/dH:2ﬂ5+(kg) :2Qﬂ';(:6<(1 _)%)(1 _2) _XZQT>’

where the 6 function imposes a strict relationship between ¢
and £ that depends on the hadronic kinematics, and the
subscript “+ denotes the positive energy solution for 9.
Solving Eq. (21), we find

C—z{1+iq—%]. (22)

£-x0Q?

Noting that { monotonically decreases as a function
of £, the lower bound for the factorization integral in &
is given by

2
é:min :X|:1 +Lﬂ:|

o (23)

In calculating the partonic cross sections, it will be
convenient to use the Mandelstam variables,

s=(p+q)?=2p-q- 0% (24a)
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t=(q—k\)*=-2q k —Q* (24b)

u=(p-k))*=-2p-ki, (24c)
where we have taken the partons to be massless, with
g*> = —Q?. From Egs. (24), it is straightforward to verify
that s + ¢ + u = —Q?. When calculating the partonic cross
sections, it is more natural to use partonic variables, which
are more directly related to our parton momentum fractions
and hadronic phase space variables. In terms of these, the
relevant Mandelstam variables are given by

=%

s-—)AC 02, (25a)
1=-0*+2(0° - q7). (25b)
.

U= 5cQ' (25¢)

Also, when evaluating the spin-dependent cross sections,
we use the spinor convention,

u(p)a(p) = (1+Irs)p. (26)

N[ =

for quarks, and the polarization vector notation [18],

iA
X €ﬂuaﬁpaxﬂ> . (27)

e (p)e”(p) = % (—g"” +

for gluons, where 2 is the helicity of the incoming parton
(which is not necessarily the same as A defined above
to be the initial state nucleon helicity), and X is an

dHg,  64zxa?
didydzdPi,  3%(1—32)y*Q?

dHy,  64na?
didydzdP:,  3(1-3)y’Q

dMg, 813 Q?
dédydzdP?, 3?9203

arbitrary four vector, which does not appear in the final
squared amplitudes.

In our calculation of the unpolarized and polarized
partonic differential cross sections, we may bring the
leptonic tensor inside the phase space integration of
Eq. (19) and contract directly with the scattering amplitudes
calculated from the graphs in Fig. 4,

L, W" = / dITH,;, (28)

where H;; = L, M/ T./\/l’;- . Note that we may write

il i gl il
M M = (MY M;’)U + AMY M;)P, (29)
where U and P represent helicity-independent and helicity-
dependent pieces of the scattering amplitude, respectively,
since Egs. (26) and (27) contain terms independent of and
linearly proportional to 2. 1t is then possible to write

Hyj = HY + IHE, (30)
where
HY = L, (M ME)Y, (31a)
and
_ i v
HY = L, (MY MY)P. (31b)

The unpolarized contributions to H;; for each of the
channels in Fig. 4 are given by

(14 5222)(1 + 72)0* + 8322250%¢2 + 222(1 + 72)¢]. (32a)
S22+ 2222 (1+72) — 4225 —23y*(1 - 2(1 - 2)))0*
2
+282(48 2y +2y* — 1 = 77) Q% g% + £222(1 + ¥)q7), (32b)
= [((1423222)(1 4+ 3%) 4+ 23%y%(1 — 2) — 4k 2y —23y?) 0*
+2%5(8% 2y +1y? — 1 —32)Q%q3 + 2%%2%(1 + ¥%) g4, (32¢)

for the qq, qg, and gg channels, respectively, where a; is the strong coupling constant. For shorthand, here we have defined

Q} = 0*(1-2) + 243,

Q=1 -i(1-2)) - ¥247, (33)
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and y = 1 — y. For the polarized case, the corresponding partonic cross sections are given by

dH; 64ra2(2 — y) . .
didy ngP%T T T 3(1 _ )y Q2 [(1+5°2%) 0 - #2747, (34a)
dH, 64nal%(2 — y) o o 3
Tayapy, ~  3(1-)yop (0 T HD0H 21 -0 -3y (34b)
hT 2
dH; 8na2(2—y)0%* .. o » R .
dxdy dﬁgziPZ = )é)EQZQQ) (28222 = 2822 + 28 — 1)0* + 23 2(1 — %) Q% ¢% — 28%2247). (34c)
hT 12

These results are consistent with those obtained previously
by Koike et al. [19]. Furthermore, since we neglect parton
masses in our calculations, the expressions for both the
yg — qq and yg — gq channels of Figs. 4(c) and 4(d) are
given by Eqs. (32¢) and (34c). With these results for the
hard scattering cross sections, we can proceed to compute
the physical cross sections for the polarized SIDIS pro-
duction of a hadron &, which we turn to in the next section.

IV. NUMERICAL SIMULATIONS

Typically in experiments involving polarization of initial
or final state particles, one defines asymmetries between
cross sections for spin-aligned and antialigned configura-
tions. The relevant asymmetry for the polarized semi-
inclusive electroproduction of a hadron & can be defined
in terms of the differential cross sections do;, and dAg,
from Sec. ITA,

(35)

The results presented in this section will focus on the SIDIS
process for a polarized proton with production of charged
pions in the final state at energies accessible at the current
12 GeV Jefferson Lab, a possible future 20-24 GeV
upgrade, and EIC kinematics.

A. Phase space restrictions

The kinematic phase space for the SIDIS reaction is
four dimensional. We must impose boundaries for each
of the kinematic variables x, y, z, and P,y to take into
account theoretical and physical conditions as well as
constraints imposed by relevant experimental conditions.
For the fragmentation variable, following previous analyses
of SIDIS data [20,21], we impose the restriction
0.2 <z < 0.8, over which good descriptions of data in
terms of leading twist fragmentation functions can be
obtained within the JAM global QCD analysis framework.

For the four-momentum transfer squared, Q2, we
impose a lower bound at the mass of the charm quark,
Q? > m? = (1.28 GeV)?. Furthermore, imposing a cut on

the invariant mass squared of the final hadronic state,

W2 =(P+q)*=M*+Q*1-x)/x>W2. =4GeV?,
we obtain the further restriction, Q* > (W2, — M?)x/

(1 —x). For EIC kinematics with center of mass energy
/s = 140 GeV, at each value of x the minimum allowed
value of Q? is the maximum of these two conditions.
For Jefferson Lab kinematics at a current center of mass
energy /s = 4.8 GeV and a possible future energy of
/s = 6.5 GeV (corresponding to laboratory frame electron
beam energies of 12 and 22 GeV, respectively), we impose
a third condition on QZ, noting that the CLAS12 detector
can detect electrons scattered at angles as low as
0 Z Opin ~ 5°, which implies

2E%(1 = cos Opyin)

2
Q> 14+ (E/Mx)(1 = cosOpin)’

(36)

where 6,,;, is the minimum scattering angle and E is the
energy of the electron beam in the laboratory frame. At
these kinematics, the minimum value of Q2 is then the
maximum of these three values at each x. A strict upper
bound for Q? at each x is obtained simply by requiring that
y < 1, giving

Q% < Oy = (s = M?)x. (37)
The values of x,,;, and x,,,«x are defined as the points where
the Q7 range shrinks to zero, Q2. = Q2Z... In the neigh-

min

borhood of x,,, we have Q2. = m2, so that
2
mC
Xmin = (S _ M_z) s (38)

2

while in the neighborhood of x., we have Q:;. =

(W? = M?)x/(1 — x), so that

s — W2

T G9)

Xmax =

Finally, to avoid regions of low hadron transverse
momenta, where a TMD description would be more

034033-7
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appropriate, we require gy 2 Q. An upper bound on gy is derived by requiring the mass of the unobserved hadronic
final state, Wips = (P + g — P;)%, to be at least the proton mass. This gives

X

1 0’2

Q*(1-x—-2z)  20% M
Wiipis = M* + M}, + +,02— p\ 1= =1)F5 1], (40)

where M3, = M? + P2, is the transverse mass squared of the produced hadron, and we define p? = 1 + 4M>x?/Q>.
Solving the inequality W3y, > M? for g/ Q gives then a condition on the maximal value of g relative to Q,

(41)

ar 1 M
Q<\/p2—1{1 0 1)QZZZ]

B. Statistical errors and kinematic bins

The statistical uncertainty for the double-spin asymme-
try, defined in Eq. (35), is given by

5A2L — 1 + (A?AL)Z %L

N VN

where N is the number of events in the kinematic bin in
which the asymmetry is calculated and is related to the
unpolarized cross section o), by

if Al <1, (42)

do
N=Lo,=L drdydzdp?,—— "
o bin v " dxdy dz dP3,

do h

~ 2

cartrscary (o) - @
where L is the integrated luminosity for the scattering
events. The approximation made for the integral giving the
total unpolarized cross section is valid assuming that the
differential unpolarized cross section is roughly constant in
a given bin.

The kinematic bins are then constructed by first gen-
erating a 4 x4 grid as [Xpin, Xmax] X (O Ohae) ¥
[Zmin> Zmax) X [97.min+ 97.max]) fOr the absolute minima and
maxima for each kinematic variable at a given /s value.
The z domain is divided into 10 bins, and the g range is
divided into bins of width 1 GeV. The x and Q? ranges are
divided into an equal number of bins, ny;,, with equal
widths in log space,

1 X
e 1 max 44
Mpins A(lOg x) og (xmin> ’ ( )

rounded up to the next integer. For the bin width, we choose
A(logx) = 0.1. The domain is then truncated such that the
midpoint of each bin is kinematically valid with respect to
the phase space restrictions outlined in Sec. I[VA.

(p*-1) l—x—z+M%’ 2z |2
49272 :

x 2 Pl

Plots of these allowed bins in the (x, Q%), (x,¢qr), and
(z,qr) planes relevant for present and future facilities
are shown in Fig. 5. Displayed are the kinematics for
Jefferson Lab with the current 12 GeV electron beam
(/s = 4.8 GeV), and for a possible future 22 GeV electron
beam energy (/s = 6.5 GeV), as well as for the planned
EIC (/s = 140 GeV). The asymmetry A%, is calculated at
the center of the kinematic bins, indicated in Fig. 5 by the
blue dots at the centers of each of the bins (corresponding
approximately to best case scenarios), along with statistical
uncertainties for the asymmetry given by Eq. (42).
Essentially, the size of the asymmetry and uncertainties
associated with the asymmetry are simultaneously maxi-
mized and minimized, respectively, in a kinematic neigh-
borhood of the bins for each chosen center of mass energy
in Fig. 5.

In Fig. 6, we show the projected A’EL asymmetries at the
Jefferson Lab 12 GeV and 22 GeV, and EIC kinematics. For
the statistical uncertainties on the Jefferson Lab projections,
we take a luminosity of d£/d¢t = 1073 cm™2s~!, which
for 10 days of running would correspond to an integrated
luminosity of ~86 fb~!. For the EIC statistical uncertain-
ties, we assume an integrated luminosity of £ = 10 fb~!,
which is expected to be the achievable luminosity for SIDIS
experiments such as those presented here [22]. The
asymmetries produced at Jefferson Lab 12 GeV kinematics
are relatively large, while their statistical uncertainties are
quite small compared to the scale of the asymmetries. For
most kinematics, the asymmetry bands with positive and
negative polarized gluons overlap significantly, which
would make it difficult to discriminate between the positive
and negative Ag solutions. The separation between the
positive and negative bands becomes clearer at smaller x
values. However, the current 12 GeV electron energy
restricts the range of x down to which the asymmetries
can be probed.

A larger portion of the intermediate- and low-x region
can be accessed, on the other hand, with an energy
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Available kinematics at Jefferson Lab with a 12 GeV (top row) and 22 GeV (middle row) electron beam and at the EIC (bottom

row) with /s = 140 GeV. The boxes indicate the available kinematic bins, as discussed in Sec. IV B, and the blue dots represent the
centers of the bins at which the asymmetries are calculated in our analysis (see Fig. 6).

upgraded 22 GeV electron beam. At this energy, and with
the same luminosity, the asymmetry is still sizable and
retains the small statistical uncertainties as for the 12 GeV
case. Therefore, significantly better discrimination between
the positive and negative asymmetry bands is found in this
case, with a clearer separation between the means and the
boundaries of the 1o region of the two bands.

At the EIC, on the other hand, the calculated double spin
asymmetries are some 1 to 2 orders of magnitude smaller
than the largest asymmetries at Jefferson Lab, for either the
12 GeV or 22 GeV beam energies. Furthermore, with the
lower available luminosity, the statistical uncertainties on
the asymmetry are quite large relative to the size of the
asymmetries and the separation between the positive and
negative Ag bands.

These two observed behaviors are intimately related to
each other through the scaling of the asymmetry with the
center of mass energy, /s. In the convolution integrals of
Egs. (12), the PDFs and fragmentation functions do not
depend on /s, so the scale dependence of the unpolarized
and polarized cross sections can only arise from the
hard scattering amplitudes in Eqgs. (32) and (34) or the

kinematic factors multiplying the product between the
leptonic and hadronic tensors in Eq. (3). In fact, both of
these depend on the lepton inelasticity y, which is related
to the center of mass energy by y = Q%/[x(s — M?)].
Since the kinematic factors in Eq. (3) are the same for
both the unpolarized and polarized cross sections, they
naturally cancel in the asymmetry. However, it is clear
from the unpolarized and polarized hard scattering
amplitudes that the asymmetry possesses a strong scale
dependence. In the unpolarized expressions, there is a
common factor of 1/y?, while in the polarized expres-
sions the common factor is (2 —y)/y, giving an overall
factor (2 — y)y for the asymmetry.

A comparison of the unpolarized and polarized SIDIS z*
production cross sections, calculated at the Jefferson Lab
22 GeV and EIC kinematics, is shown in Fig. 7. The
polarized cross section here displays a relatively weak
dependence on /s, while the unpolarized cross section
depends strongly on +/s, increasing with larger center of
mass energies. Combined, these behaviors act to suppresses
the double spin asymmetry at larger \/s. The size of the
statistical uncertainties for the EIC asymmetry in Fig. 6 can
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FIG. 6. Double longitudinal spin asymmetry A%, for semi-
inclusive z* production from a proton, at kinematics indicated in
Fig. 5 at Jefferson Lab (JLab) with both a 12 GeV and 22 GeV
electron beam and at the EIC with /s = 140 GeV. Note that the
heights of the colored boxes give a lo uncertainty in the
asymmetry from the PDF replicas, while the error bars give
the statistical uncertainty of the asymmetry from Eq. (42).

also be understood by considering the relative uncertainty
of the asymmetry, which is given as

Al 1 1
1) hLL — _ _\/E (45)
ALL A?‘L\/ﬁo Ao\ L

It immediately follows then that the scaling of the relative
uncertainty of the asymmetry is dominated by the scaling of
Vo with +/s.

While a 1%-5% asymmetry is certainly measurable,
at luminosities of the order of 10 fb~! the resolution of
the positive and negative asymmetry bands becomes quite
poor. In order to discriminate between the two sets of gluon
PDFs at low x, one would require integrated luminosities of
at least 1 order of magnitude larger than what is currently
projected for the SIDIS process at the EIC.

10—13.

. \

1071 [ JLab22
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d(A)o /dz dy dz dgp (fb GeV™H)

FIG. 7. Unpolarized (solid bands) and polarized (hatched
bands) differential cross sections calculated for semi-inclusive
7" production at the (x, 02, z, g7 ) kinematics displayed in Fig. 5
for Jefferson Lab with a 22 GeV beam energy (green bands) and
EIC center of mass energy /s = 140 GeV (blue bands).

V. CONCLUSION

The proton spin decomposition has remained a funda-
mental challenge for nuclear physics for over 3 decades,
even with the remarkable progress made on both the
experimental and theoretical sides of the problem. The
quest for its understanding at the QCD level continues to
generate surprises, such as the recent realization that the
conventional picture of a positive gluon polarization may
hinge on theoretical assumptions about PDF positivity [8],
the relaxation of which reveals the possibility of solutions
with negative Ag that describe existing data equally well.

In this study, we have considered the double spin
asymmetry for charged pions produced with large trans-
verse momentum in the polarized SIDIS process, which is
particularly sensitive to the gluon channel, as a means of
discriminating between positive and negative Ag distribu-
tions. In particular, we compared the constraining power of
current and future electron scattering facilities, including
Jefferson Lab and the EIC, and found that an ~20 GeV
beam at the high luminosity Jefferson Lab is especially
well-suited for the discrimination between the positive and
negative solutions. Because of the scaling behavior of the
asymmetry with /s, significantly larger integrated lumi-
nosities would be required at EIC energies to overcome the
suppression of the asymmetry and relatively large statistical
uncertainties at these higher energies. Further work is
needed to understand which observables will allow maxi-
mal utilization of the EIC’s reach into low-x kinematics and
the ability to constrain Ag in this region through future
global QCD analyses [22,23].

Independent pathways towards constraining the polari-
zation of the glue could involve inclusive charm meson
production in polarized DIS through the photon-gluon
fusion process [24,25]. Alternatively, lattice data on matrix
elements that are sensitive to the shape and sign of Ag [26]
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may be fitted simultaneously with experimental data in
future global QCD analyses in order to obtain a consistent
picture of the role of gluon polarization in the proton spin
decomposition.
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