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Convolutional Forward Models for X-Ray Computed Tomography⇤

Kai Zhang† and Alireza Entezari†

Abstract. This paper presents a framework for e�cient and accurate computation of X-ray optics, a key in-
gredient in optimization-based computed tomography (CT) reconstruction algorithms. Based on
an algebraic framework for directional convolution in image space and detector space, we construct
forward models for X-ray imaging whose computational cost can be optimized for each specific CT
geometry. While the framework allows for modeling various sources of blur in the X-ray imaging
process for any CT geometry, we demonstrate and characterize its e↵ectiveness in fan-beam and
cone-beam geometries with flat detectors. The experiments show improvements in computational
e�ciency as well as accuracy, in optics calculations and reconstruction error, of the proposed pro-
jector compared to the state-of-the-art methods used in forward- and back-projection algorithms.
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1. Introduction. A wide range of applications in science and engineering use principles of
computed tomography (CT) and tomographic reconstruction algorithms to form images from
projection data [43]. By acquiring X-ray projections from a large, uniformly distributed, set
of viewing angles, the filtered back-projection (FBP) algorithm provides a classical choice for
image reconstruction. Remarkable technology developments, mainly in hardware, have made
CT the modality of choice in a growing list of applications not only in diagnostic but also
in image-guided radiation therapy and surgery [27, 29]. Besides the widespread applications
in medicine, imaging techniques in biology, seismology, and astronomy use CT reconstruction
algorithms.

Imaging from a low-dose X-ray source and/or limited projection views has been the holy
grail of CT research for the past several decades. Techniques from applied mathematics, sig-
nal processing, and, more recently, machine learning have contributed to formation of modern
iterative CT reconstruction algorithms. Model-based iterative reconstruction (MBIR) meth-
ods have shown great promise for enabling low-dose imaging by incorporating models of data
acquisition and image priors into the CT reconstruction process [4, 17, 54]. Despite promising
dose-reduction results from these iterative image reconstruction algorithms [39, 42], the FBP
algorithm and its variants, which require high-dose X-ray data, are commonly used in com-
mercial scanners [23, 45, 57]. One of the main impediments in translating MBIR algorithms
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1954 KAI ZHANG AND ALIREZA ENTEZARI

to practice has been their computational cost (i.e., long reconstruction time) compared to
analytical methods [25, 38, 46].

The success of deep learning in computer vision and image analysis problems has
motivated numerous attempts for leveraging neural networks for image reconstruction
[32, 54, 58, 60, 61, 66]. These methods use deep learning to improve the image quality by
postprocessing of FBP reconstruction from low-dose data or preprocessing projection data in
the sinogram domain (and combinations of post- and preprocessing). End-to-end approaches
for leveraging deep learning (e.g., [66]) are impractical and di�cult to train [35] since they are
computationally expensive. Plug-n-play approaches [28, 61] use deep learning for data-driven
image priors that are used in MBIR reconstruction. Despite the variety of approaches for re-
construction in CT, MBIR algorithms are considered as the gold standard [53] as robustness
to noise, reliability, and image quality issues are well understood [39, 42].

Model-based iterative reconstruction. MBIR formulates the image reconstruction as an op-
timization problem:

(1.1) arg min
c2RN

kAc� bk2Q + �R(c).

The system matrix A is a forward model of the continuous-domain X-ray optics (see section 2)
on a discretized N -pixel/voxel attenuation coe�cient vector c, measured by detector cells,
on various viewing angles, leading to the observations b. Here R is a regularization term
incorporating image priors (e.g., neural-network-based, total-variation, sparsity in a transform
domain, or Markov random fields) into reconstruction. The parameter � controls the trade-
o↵ between regularization and fidelity of the solution. The fidelity term above is usually a
quadratic form to model the noise characteristics of the measurement system with krk2Q =
rTQr, where the operator Q models the (co)variance in the noisy observations, b, whose
noise is often modeled by a (compound) Poisson distribution [33, 56]. The reconstruction
process can also be formulated in a Bayesian framework, often with a penalized likelihood
objective, where the solution provides a maximum a posteriori estimate given the observations
[16, 20, 47, 52].

For practical imaging resolutions, the size of the system matrix A is prohibitively large to
be stored in main memory and reused during iterations. In a common imaging setup [18, 49],
the two-dimensional (2-D) fan-beam forward model requires about 1.6GB per viewing angle
for a moderate imaging resolution of N = 512 ⇥ 512. This per-viewing-angle cost increases
to 528TB for a 3-D cone-beam forward model at the resolution of N = 512 ⇥ 512 ⇥ 512.
Despite utilizing sparse representation, these memory requirements are already impractical
for GPU or main memory even in few-view imaging [45] and larger resolutions of up to 4096
with thousands of views are of practical importance [48, 49]. For that reason, in practical
applications iterative reconstruction requires the computation of the forward model A in
each iteration for carrying out forward-projection c 7! Ac and back-projection r 7! AT r.
Conceptually, this on-the-fly computation is similar to the application of the fast Fourier
transform (FFT) algorithm for computing the discrete Fourier transform (DFT) that avoids
storage of the DFT matrix. However, unlike the Fourier transform that lends itself to a divide-
and-conquer approach leveraged in the FFT algorithm, the X-ray transform has no known
fast discrete transform—necessitating approximations [2, 5, 6, 12]. Earlier research focused
on leveraging hardware acceleration (e.g., GPU, multicore) for forward- and back-projection,
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CONVOLUTIONAL FORWARD MODELS FOR X-RAY CT 1955

which provided a set of useful acceleration tools [3, 41, 46, 55, 59]. However, the physical
barriers in increasing clock frequency and the memory latency bottleneck in GPU/parallel
computing impose limits in the power of hardware acceleration in addressing computational
challenges in clinical-scale CT problems [36].

Forward models and image discretization. The simulation of the acquisition process mathe-
matically models the relationship between the image (i.e., attenuation coe�cient map) defined
in the continuous domain and the (discrete) detector measurements. This process introduces
(at least) two transformations to the image, namely projection of the image domain signal
to the sinogram domain followed by the detector’s sampling process. The projection step is
often modeled by a linear approximation to the Lambert–Beer law, and the detector’s sam-
pling process is modeled by the integration of the sinogram domain signal across a detector
cell that introduces a blur [62]. While the linearization of the Lambert–Beer law introduces
an approximation error that causes various artifacts [11, 24] such as the exponential edge
gradient e↵ect [31], it underlies most projection/back-projection methods that are used in
practice [38].

Leveraging this mathematical model of acquisition in forward- and back-projection steps
of an optimization process requires discretization of the image by its expansion in a set of
(basis) functions defined in the continuous domain. This expansion in a basis set is then
used to build the forward model, A, that relates the (discrete) coe�cients of the image
in the expansion, c (e.g., pixel values), to the (discrete) detector measurements, b, in the
sinogram domain Ac = b. Common choices, in CT, for basis functions are the pixel- and
the voxel-basis as well as spherical extension of Kaiser–Bessel functions (aka blobs) that have
been proposed for smoother image representations [34]. While the choice of pixel-/voxel-
basis provides a partition of unity that guarantees first-order approximation to the underlying
continuous-domain image, Kaiser–Bessel functions do not form a partition of unity and require
filtering operations [44] to minimize discretization errors. A di↵erent class of basis functions,
called box splines, have been proposed in [13] for image discretization in the context of CT
reconstruction. This class includes the pixel-basis (in two dimensions) and voxel-basis (in
three dimensions) as first-order box splines as well as tensor-product B-splines as special
cases. From a signal processing perspective, an advantage of representing the image in a basis
set is that continuous-domain linear transformations introduced in the imaging pipeline such
as projection or blurring e↵ects (e.g., detector blur or focal-spot or motion) can be modeled
by corresponding linear transformations applied to the basis functions.

Contributions. In this paper, we demonstrate a continuous-domain framework for direc-
tional convolution that allows for incorporation of many linear transformations into the for-
ward model with pixel- and voxel-basis functions (as well as general box splines) in a com-
putationally e�cient manner. While previous work has shown e�cient X-ray projection with
box splines that were limited to parallel geometries [13], the significance of the present frame-
work lies in its flexibility to model divergent ray geometry, making it practical for common
scanner geometries. Moreover, the algebraic framework of directional convolutions allows for
modeling detector blur into the forward model in a computationally e�cient manner. While
directional convolutions allow for computationally e�cient forward models for any CT geom-
etry, we demonstrate their advantages for fan-beam and cone-beam geometries with flat and
equispaced detectors.
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1956 KAI ZHANG AND ALIREZA ENTEZARI

Existing techniques for e�cient computation of X-ray optics in forward- and back-
projection model detector blur by postprocessing the sinogram domain signal. Earlier pixel-
driven and ray-driven techniques used interpolation techniques to estimate detector mea-
surements (forward-projection) or pixel corrections (back-projection) from signals sampled at
detector or pixel centers, respectively [7, 30, 37, 51]. The distance-driven method uses the
image/sinogram signals sampled at pixel/detector boundaries that are then projected to a
common plane according to the CT geometry. Then the extent of the overlap between pixels
and detectors in that plane is used for the e�cient computation the forward model [10]. The
drawback in the distance-driven strategy is that it approximates the projection of a pixel/voxel
(aka footprint) as a constant function over its support. To improve that approximation, the
separable footprints (SF) method [38] provides a separable approximation to footprints and
has been demonstrated to be the most accurate among existing methods. A separable ap-
proximation to footprints of high order B-splines (as opposed to pixel/voxel) has also been
considered in [40]. The quality of this approximation requires higher order B-splines (e.g.,
cubic) as the support of the tensor product concentrates over a somewhat more isotropic set.
This limits the applicability to CT imaging since high order B-splines cannot accurately rep-
resent biomedical images that typically contain homogeneous regions with sharp boundaries.
Their approximation power can only be realized (for accurate discretization) when the un-
derlying function is smooth (i.e., C2 for cubic B-splines). More recently a lookup-table-based
integration (LTRI) approach was proposed [25] that precomputes the projection of pixels to
detectors on a predetermined set of directions and provides speedups at the cost of further
errors in approximating the optics.

Our experiments show the computational e�ciency of the resulting projectors in com-
parison to state-of-the-art methods, namely SF and LTRI, and demonstrate that the compu-
tational e�ciency is achieved without compromising the accuracy in modeling X-ray optics
in divergent geometries with detector blur. The experiments also show improvements in
the accuracy of forward-projection that also translate to observable improvements in recon-
structed images.1 We remark that our framework provides for exact computation of footprint
(of pixel/voxel or higher order box splines) in parallel and divergent geometries as well as
exact computation of blur in parallel geometries.

2. X-ray transform. As discussed before, forward models in iterative reconstruction tech-
niques provide a mathematical model for simulating the acquisition process on an image by
relating it to what is being measured in the projection domain. Forward models are designed
for each particular CT geometry and their computation requires specification of X-ray source
and detector geometries on a discretized image.

2.1. Geometry specification. We introduce symbols to describe fan-beam (d = 2) and
cone-beam (d= 3) geometries with a common algebraic notation. To help with this notation,
we include a glossary of symbols in Appendix A. Let u 2Rd denote a viewing direction that is
a unit vector from rotation center to source. We denote ✓ as the projection angle of source from

1A preliminary version of this paper in fan-beam geometry was presented at the ISBI conference [65].
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Figure 1. Fan- and cone-beam geometries with flat detectors.

the x-axis (positive counterclockwise), and the vector u is represented as u=
⇥
cos✓ sin✓

⇤T
in

two dimensions and u=
⇥
cos✓ 0 sin✓

⇤T
in three dimensions with T denoting the transpose.

The point p=Dsou rotating around a circle trajectory of radius Dso is the source.
The 1-D detector plane is represented by the local coordinate s in fan-beam geometry,

as in Figure 1, left, and (s, t) are the local coordinates of the 2-D detector plane in cone-
beam geometry as in Figure 1, right. We use the symbol ! to denote the detector-space
coordinates: ! = s in fan-beam and ! =

⇥
t s

⇤T
in cone-beam geometries. Together with

u, this coordinate system can be described by a view-transformation matrix in fan-beam and
cone-beam geometries:

(2.1) Bp =


cos✓ � sin✓
sin✓ cos✓

�
, Bp =

2

4
cos✓ 0 � sin✓
0 1 0

sin✓ 0 cos✓

3

5 ,

where in cone-beam geometry, the detector plane and the t-axis are parallel to the x2-axis. Let
x 2 Rd be the image domain coordinates, so it can be parameterized as x= p+ �r(!). The

vector r(!) is a unit direction of each ray calculated by r(!) = unit(Bp
⇥
Dsd !

⇤T �p), where
Dsd is the distance from source to detector plane, and unit() returns a unit-length vector by
normalizing its input.

2.2. Analytical model. When considering an ideal point source (i.e., no focal-spot e↵ect),
the d-dimensional fan-beam/cone-beam X-ray transform P maps f(x), x2Rd, into the set of
its line integrals to form the projection:

(2.2) Pu{f}(!) =

Z 1

0
f(p+ �r(!))d�.

We refer to the above map as Pu{f} for short.
In a simple model of forward-projection, one can do point-sampling on the projected

function Pu{f}, whereas in more realistic modeling of the transform model the projections
are integrated across a detector cell with a finite width. To represent the cell width in each
dimension, we use a vector ⌧ , in a local coordinate system in the detector plane. In fan-beam
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1958 KAI ZHANG AND ALIREZA ENTEZARI

geometry, ⌧ = [⌧s] is a vector in R1, whereas in cone-beam, ⌧ = [⌧ s,⌧ t] is a join of two 2-D
vectors describing the detector cell orientation and size. To model g✓—the signal observed
by the detector in the sinogram domain (i.e., detector space) at viewing angle ✓ with viewing
direction u—(2.2) can be extended to model detector blur [62] as

g✓(!) =Pu,⌧{f}(!) =

Z
h⌧ (!�!0)Pu{f}(!0)d!0

= (Pu{f} ⇤ h⌧ ) (!).
(2.3)

For a detector located at !I, where detector index I = i in fan-beam and tuple I = (i, j)
in cone-beam, respectively, the response is modeled by sampling: g✓(!I). The detector blur
function, h⌧ (!), is supported over its cell of width ⌧ . Convolution in (2.3) shows the response
of the Ith detector cell as a 1-D convolution in fan-beam and 2-D convolution in cone-beam
geometries.

2.3. Discretized model. Discretization or a finite-dimensional approximation of a
continuous-domain signal (image) f utilizes expansion in a basis set:

fN (x) =
NX

n=1

cn'(x� kn).

This expansion allows for derivation of a discretized forward model. Here ' is a basis function,
and cn is the expansion coe�cient corresponding to the nth basis function 'n := '(· � kn),
which is the translation of ' to the grid point kn. The combination of integral transform
(which is linear) and this expansion provides the discretized forward model:

(2.4) Pu,⌧{fN}(!I) =
NX

n=1

cnPu,⌧{'n}(!I),

where

Pu,⌧{'n}(!I) =

Z
h⌧ (!I �!)Pu{'n}(!)d!

=(Pu{'n} ⇤ h⌧ )(!)
(2.5)

is the detector blur of a basis function and Pu{'n}(!) is called the footprint of the nth
basis function 'n. Therefore, the linear model (2.4) indicates that the forward-projection of
the discretized model is the linear combination of the detector blur of basis functions. For a
discretized model with N basis functions and a set of M detector measurements (M = number
of viewing angles ⇥ number of detectors ), the forward model is an M ⇥N matrix A which
is calculated using (2.5) during forward- and back-projection. Specifically the contribution of
the nth pixel (1  n  N) to the mth measurement (1  m  M) coming from the detector
cell at I on the viewing direction u (with m being a linearized indexing of the detector
and viewing direction indices), we have [A]m,n = Pu,⌧{'n}(!I). E�cient calculation of this
forward model eliminates the need for precomputation and storage of A by allowing for on-
the-fly computation during the forward- and back-projection (i.e., matched pair) steps for
solving (1.1).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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CONVOLUTIONAL FORWARD MODELS FOR X-RAY CT 1959

The most common choice of basis function ' is the pixel-basis in two dimensions and the
voxel-basis in three dimensions that are simply 1 inside the pixel/voxel and 0 outside. As de-
scribed in (2.5), the footprint and detector blur transform the basis function ' defined in image
space to a function defined in the detector space Pu,⌧{'}. The significance of this function
is that it determines the contribution of a pixel/voxel to a particular detector. E�cient com-
putation of Pu,⌧{'} is key to fast computation of projectors in forward- and back-projection.
Since the ray direction u in line integrals and convolution directions ⌧ in detector blur do not
align with pixel/voxel orientations, Pu,⌧{'} is a nonseparable function. Approximating this
function by separable functions has been considered for e�ciency purposes [38]. We demon-
strate that this nonseparable function Pu,⌧{'} can be computed algebraically by directional

convolution in the continuous domain (see (4.2) in section 4). The directional convolution of
footprint and blurring e↵ects (e.g., detector blur) with pixel and voxel basis result in special
piecewise polynomial functions whose structure we use for e�cient computation of detector
blur and footprint transformations. Other sources of blur such as focal-spot and motion blurs
can be integrated into the forward model by space-varying directional convolutions transform-
ing the image domain basis into piecewise polynomials with higher degrees; however, in this
paper we limit the discussion to the detector blur for simplicity of presentation.

3. Directional convolution and parallel projection. Box splines are piecewise polynomial
functions that are defined based on a number of directions. The pixel- or voxel-basis itself can
be viewed as simple (piecewise constant) box splines with unit orthogonal directions in two
and three dimensions (see Figures 3 and 4). The benefit of viewing pixel- or voxel-basis as box
splines becomes apparent once we establish that their footprint and detector blur integrals
in Pu,⌧{'} result in a box spline whose directions are formed by the union of detector blur
directions ⌧ with the unit orthogonal directions in pixel-/voxel-basis projected along the ray
direction u.

3.1. Algebra of directional convolutions. Box splines generalize B-splines to the multi-
variate setting where they include tensor-product B-splines as a special case, but are generally
nonseparable functions. An elementary box spline, M⇠, associated with a vector ⇠ 2 Rd can
be thought of as the indicator function of the set {t⇠|0  t < 1} and is formally defined as
a Dirac-line distribution (generalized function) by its directional convolution with a (test)
function f(x) in Rd: (M⇠ ⇤ f)(x) =

R 1
0 f(x� t⇠)dt. Given a set of N � d directions, arranged

in columns, as ⌅ := [⇠1,⇠2, . . . ,⇠N ], the associated piecewise polynomial function is defined
by

(3.1) M⌅(x) = (M⇠1
⇤ · · · ⇤M⇠N

)(x),

and this is illustrated, for d = 2, in Figure 2. When the directions are orthogonal, M⌅ is a
tensor-product B-spline with the repeats of a direction elevating the degree of the B-spline.
A box spline M⌅ can be evaluated using de Boor–Höllig recurrence relations [9] that are
in general computationally expensive. E�cient evaluation for a given set of directions ⌅ is
possible by leveraging their piecewise polynomial forms [15, 21].

3.2. Projection in parallel geometry. Previous work [13] has demonstrated that in parallel

geometry the projection of a box spline M⌅ defined in image space (e.g., pixel/voxel) results
in another box spline, MZ in the detector space. The directions Z of the latter in detector

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Figure 2. Directional convolution along a set of vectors with pixel basis viewed as a box spline corresponding
to two unit orthogonal vectors.

⇤)

⇠2
⇠1

BT
p ⇠2 BT

p ⇠1

⇠2
⇠1

BT
p ⇠2 BT

p ⇠1

✓

Figure 3. Parallel projection of pixel basis, '=M⌅ viewed as a directional convolution.

space are the geometric projection of the directions ⌅ in image space. Let Ru denote the
parallel projection for a viewing direction specified by vector u, then we have

(3.2) Ru{M⌅}=MZ =M⇣1
⇤ · · · ⇤M⇣N

,

where ⇣n :=BT
p ⇠n(1̃) (for 1 nN) is the geometric projection of the vector ⇠n by dropping

the first coordinate of BT
p ⇠n after view transformation by BT

p . By this notation, we have
Z := BT

p ⌅(1̃). Figure 3 shows the pixel-basis viewed as a box spline, ' =M⌅, defined in R2

specified by two directions ⌅= [⇠1,⇠2] with ⇠1 =
⇥
1 0

⇤T
, and ⇠2 =

⇥
0 1

⇤T
. When projected

to the detector space, the projection is a box spline, MZ, defined in R1 with two directions
Z = [⇣1, ⇣2] = [cos✓,� sin✓] = BT

p ⌅(1̃), which is the 1-D convolution of two elementary box
splines. Similarly in three dimensions, as shown in Figure 4, the voxel-basis can be viewed
as a box spline, ' = M⌅, defined in R3 specified by three directions ⌅ = [⇠1,⇠2,⇠3] where

⇠1 =
⇥
1 0 0

⇤T
, ⇠2 =

⇥
0 1 0

⇤T
, and ⇠3 =

⇥
0 0 1

⇤T
. Its projection in the detector space

is described again by a box spline MZ where Z = [⇣1, ⇣2, ⇣3] = BT
p ⌅(1̃) are the geometric

projection of directions in ⌅ by view-transformation Bp.
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Figure 4. Parallel projection of voxel basis as convolution.

3.3. Detector blur. Having the footprint represented as a directional convolution in the
detector space allows us to model detector blur with additional directional convolutions aligned
with detector cells ⌧ . The detector sensitivity is often modeled as a constant function over
the detector cell or with a drop-o↵ at the cell boundary [22], and the blur function h⌧ can be
modeled as an elementary box spline: h⌧ =M⌧ . Sensitivity functions with a faster decay on
cell boundary can also be modeled with higher order box splines. The parallel beam projection
of pixel-/voxel-basis with detector blur is a directional convolution in the detector space:

(3.3) Ru,⌧{M⌅}=Ru{M⌅} ⇤M⌧ =MZ ⇤M⌧ =M[Z,⌧ ].

This allows for adding detector blur (and similarly focal-spot blurs) to previous results in
parallel beam geometry [13]; moreover, we can leverage the geometric relationship between
directions of blur in image space and detector space to extend this result to divergent geome-
tries. To that end let ⌫ be a vector in image domain parallel to the detector plane whose
geometric projection coincides with detector blur directions: ⌧ = BT

p ⌫(1̃). Using the Fourier
slice-projection theorem we can show that projection commutes with convolution. This allows
us to show that the detector blur ⌧ can also be modeled by additional directional blurs ⌫,
applied to basis ', in the image domain:

(3.4) Ru,⌧{M⌅}=M[Z,⌧ ] =Ru{M[⌅,⌫]}.

An illustration is presented in Figure 5, where ⌫ = [⌫s,⌫t].

4. Directional convolution in divergent ray geometries. In fan-/cone-beam geometries,
the divergent nature of rays prevents a direct application of directional convolution equivalence
in image and detector spaces since rays are not perpendicular to the detector plane. To
circumvent this problem, we formulate the projection in a coordinate system designed for
each ray.
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Figure 5. Parallel projection of voxel-basis with detector blur.

4.1. Virtual detector plane and ray coordinate system. The coordinate systems for par-
ticular rays are shown as theRU-axis in green in Figure 1, left, and theRUV-axis in Figure 1,
right. Given a point in detector space with coordinate !, the R-axis in this coordinate system
has the ray’s orientation, in the reverse direction: R(!) = �r(!). We refer to the plane or-
thogonal to the ray as the virtual detector plane denoted by R(!)?. In the fan-beam case, a
unit vector U(!) in the virtual detector plane defines the ray-dependent view-transformation
matrix B! =

⇥
R(!) U(!)

⇤
. In the cone-beam case, we pick a pair of orthogonal vec-

tors in the virtual detector space that form the ray-dependent view-transformation matrix:
B! =

⇥
R(!) U(!) V(!)

⇤
. As illustrated in Figure 6 the intersection of virtual detector

and real detector planes includes !.

4.2. Projection in divergent ray geometry. In parallel geometry the relationship between
directions in image space (e.g., voxel directions) and directions in detector space (e.g., blur
directions) was fixed for all rays in a particular viewing angle. This relationship was char-
acterized by a single Bp which implied footprint and detector blurs are precisely box splines
as shown in (3.2) and (3.4). The coordinate system defined for each ray provides a similar
transformation, B!, that we leverage for relating the directional convolutions in image and
detector spaces. However, since the ray coordinate system changes for each point ! in the
detector space, this relationship is no longer constant for a viewing angle. Nonetheless, we
show that the resulting footprint function can be evaluated by a transformation of directional
convolution.2

Theorem 4.1. In a divergent ray geometry, the footprint of image space directional convo-

lution is a space-varying directional convolution:

(4.1) Pu{M⌅}(!) =MZ!
(p!).

2A preliminary approach experimented with fan-beam geometry was presented in a conference talk [64].
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u

R(!)

R(!)?
u?

p

!

Z![1]

Z![2]Z![3]

Figure 6. Cone-beam projection of voxel-basis in the real detector plane (white) u? at a point ! computed
via the projection of source p on the virtual detector plane (green) R(!)?. The intersection of the two planes
contains the detector point !.

Here the image space directions ⌅ are projected on the virtual detector plane R(!)? as Z! :=
BT
!⌅(1̃), and the resulting directional convolution is evaluated at the projection of the source,

p, on the virtual detector plane p! :=BT
!p(1̃).

The arguments for establishing this result are detailed in Appendix B. A direct implication
is that the footprints of a pixel-basis in the fan-beam and a voxel-basis in the cone-beam are
space-varying directional convolutions with two and three directions, respectively. The cone-
beam projection of the voxel-basis is illustrated in Figure 6.

4.3. Detector blur via image space e↵ective blur. Since the set of directions Z! in the
footprint function vary with the detector space coordinates !, a further convolution with
detector function h⌧ (with fixed directions ⌧ ) cannot be formed directly by joining the direc-
tions as in (3.3). Since (4.1) provides exact projection not only for the voxel-basis but also for
any set of directions, ⌅, we can back-project the detector cell directions, ⌧ , to the voxel and
augment the voxel directions with the back-projected detector cell directions before applying
the exact footprint computation (4.1). The divergent nature of rays leads to a perspective
scaling of the detector blur directions ⌧ during back-projection. Considering parallel planes
perpendicular to the ray slicing a single voxel, the perspective scaling varies for each slice
depending on its depth. We introduce the notion of e↵ective blur that applies perspective
scaling according to the center slice (passing through the center of voxel) for back-projection
of detector blur. Figure 7 shows the back-projection of detector cell ⌧ to a plane parallel
to the virtual detector plane running through the center of the pixel/voxel resulting in the
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s
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Figure 7. E↵ective blur, ⌧ 0, via back-projection of detector cell directions, ⌧ , to a plane, orthogonal to
ray direction R, slicing the voxel/pixel at its center. The area surrounded by dashed lines represents the real
base area of a cone-beam intersecting with the voxel center plane, while the area surrounded by the solid lines
represents the e↵ective blur.

e↵ective blur directions ⌧ 0 shown in red. E↵ective blur takes the average blur across the voxel
slices and introduces an approximation to the exact detector blur integral. This is a very
e↵ective approximation as the averaging is performed across the slices within a single voxel.

This formulation allow us to augment the directional convolutions in the image space ⌅
(e.g., voxel directions) together with the e↵ective blur ⌧ 0 directions, and to leverage the exact
footprint computation (4.1) for detector blur computation from (2.5):

Pu,⌧{M⌅}⇡Pu{M[⌅,⌧ 0]}.(4.2)

Since in practical fan-beam and cone-beam geometries source-detector distance is larger than
pixel/voxel sizes, the e↵ective blur results in a highly accurate approximation of the detector
blur. This geometric observation is confirmed in the experiments in the following section.

The approach proposed in the distance-driven method uses the extent of the overlap
between the detector cell and the pixel/voxel when projected to a common plane. In other
words, the footprints of pixel and detector in the common plane are approximated as a constant
function. While the back-projection of the detector cell into the central slice, in our approach,
brings the detector’s e↵ect in the image domain, the key distinction is that the addition of
these directions (in the central slice) leads to actual convolutions that model the detector blur
by introducing a directional blur to the pixel/voxel only along the central slice.

5. Experiments and results. To examine the merits of our convolutional framework for
building e�cient projectors, we analyze its performance with respect to the state-of-art al-
gorithms designed for e�cient computation of forward- and back-projection, namely SF [38]
and LTRI [25]. For a reference projector (Ref), we use exact line integrals together with
numerical integration for detector blur in (2.3) and (2.5). This projector provides computa-
tionally expensive forward- and back-projection operators that serve as references for assessing
the accuracy of the fast projectors: SF, LTRI, and our proposed convolutional nonseparable
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footprint (CNSF).3 As it has been demonstrated that LD (LTRI) and TR (SF) are the most
time-e�cient methods in LTRI and SF, and LL (LTRI) and TT (SF) are the most accu-
rate methods in LTRI and SF, respectively, we choose the LD method in the computational
e�ciency experiments and LL and TT in all accuracy experiments.

All fast projectors designed for practical forward- and back-projection strike a balance
between computational cost and accuracy of projection in (2.3). Our experiments, below,
demonstrate CNSF provides significant improvements in computational e�ciency that are
achieved without compromising the accuracy. Indeed, we observe slight improvements in
accuracy of forward-projection that impact reconstruction accuracy.

5.1. Forward-projection: A single voxel study. To assess the accuracy of forward-
projection, we first examine a “microscopic” view of a single voxel when projected by di↵erent
methods. We simulate a cone-beam system with a flat detector with a single voxel centered at
radiation isocenter with size 1 mm3. The detector bin width ⌧ = (⌧ s,⌧ t) = (0.5 mm,0.5 mm),
the source to rotation center distance Dso = 5 mm, and the source-detector distance Dsd = 11
mm. In practice the detector bin width ⌧ is identical to the sampling distance � in the detec-
tor space (i.e., sinogram domain). In this study, however, in order to illustrate the di↵erences
in a close-up view of projection of a single voxel, we oversample the continuous sinogram
domain by choosing a very small �= (0.01 mm,0.01 mm).

We used the MIRT toolbox [19] and LTRI [26] systems to generate the comparisons and
we implemented the CNSF projector in CUDA by organizing the voxels intersecting a ray in
a block to utilize the warp shu✏e feature. Figure 8 shows the profile from the projection of
voxel-basis for the four projectors with detector blur. The first column shows the ground truth
projection from di↵erent viewing angles and the three columns show the absolute errors made
by each fast projector. This study shows that the proposed method consistently provides the
most accurate projector in all of the viewing angles.

5.2. Forward-projection: A field-of-view study. The previous study focused on showing
the accuracy of the projection of a single voxel, in a restricted geometric setting designed
to enlarge errors in projectors. To assess the accuracy in a more realistic geometric setting,
we focus on the performance of projectors across di↵erent angles and spatial distribution of
errors made in various locations in the field of view. In this experiment we study forward-
projection of a cubic region of size 32 mm3 located at the radiation isocenter. To analyze
spatial distribution of errors, we discretized the cube at the resolution of (323) such that the
size of each voxel is 1 mm3, and the attenuation coe�cient of each voxel was (1/mm). The
source-rotation center distance Dso = 200 mm, source-detector distance Dsd = 261 mm, and
detector bin width ⌧ was (1 mm ⇥ 1 mm). To cover the field of view, we used an array of
detectors of size (Ns ⇥Nt) = (123⇥ 109) and placed each of them at the distance of 1 mm in
each of the s and t directions. In order to analyze performance of projectors in di↵erent spatial
positions (voxels), we picked the density in the cubic region to be constant across all voxels.

To investigate the global accuracy performance of all methods, we categorized the
experiments into two groups that show di↵erent aspects of projectors. In the first group,

3We focus on cone-beam geometry, as experiments in fan-beam geometry appeared in a conference pro-
ceedings [65].
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Figure 8. Accuracy of forward-projection from the viewing angles: 0�, 15�, 35�, and 45� (rows 1 through 4).
Columns 2 through 4 are the absolute di↵erence images between di↵erent approximated projectors and reference
projector. The unitless color bar values are accumulated values by voxels along each ray.

we show the root mean square error (RMSE) in the detector plane for each viewing angle
✓ : RMSE(✓) = ( 1

N

PN
i=1(g✓(!i)� g̃✓(!i))2)1/2, where g is the response of the reference

projector according to (2.3) and g̃ is the response provided by the fast projectors in
our study. In the second group, to illustrate spatial distribution of errors, we character-
ize the error in each detector bin along di↵erent viewing angles. This is measured by
RMSE(!) = ( 1

N

PN
i=1(g✓i(!)� g̃✓i(!))2)1/2. The results of these measurements are shown

in Figure 9. This study shows that the error of each projector fluctuates depending on
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Figure 9. Average projection error (unitless) over detector space for each viewing angle (leftmost) and over
viewing angles for each detector space point (the rest).

Table 1
Average fan-beam projection time in milliseconds.

Resolution 2562 5122 10242 20482 40962

System Size 102.2M 815M 6.3G 50.7G 355.4G

LTRI (LD) 0.136 0.310 1.000 3.950 14.080
CNSF 0.002 0.011 0.038 0.124 0.446

projection angles and spatial locations, with our proposed method showing consistently
smaller distribution of errors in both the angular and spatial dimensions.

5.3. Computational e�ciency. The computational e�ciency of our approach stems from
e�cient computation of the right-hand side of (4.2) that relies on evaluation of a box spline
in (4.1), which, in turn, translates to evaluating a specific polynomial determined from the
directions of convolution. The polynomial computation eliminates the need for accessing
memory hierarchy (e.g., a lookup table in LTRI) that limits the GPU performance. In
this experiment, we constructed a fan-beam system with flat detectors for pixels of size
1 mm2 with Ns = 409,815,1627,3250,6499 detectors with ⌧ = 1 mm corresponding to
image resolutions of 2562,5122,10242,20482, and 40962. For the 2562 resolution we had
Dso = 200 mm,Dsd = 400 mm, which were doubled for each of the higher resolutions. We
measured average projection time for 360 views, which are displayed in Table 1.

As the GPU implementation of the SF method is protected by a patent, it is not possible
to perform GPU comparisons. However, its CPU implementation is available as part of the
MIRT package [19]. We implemented our CNSF method with the Intel Threading Building
Blocks library to compare the run time with SF with CPU execution in a fan-beam geometry
setup. In the CPU experiment, we simulated a fan-beam system with flat detectors for pixel
sizes of 1mm2 with Ns = 125,251,409,815,1627,3250 detectors with ⌧ = 1 mm correspond-
ing to image resolutions of 642,1282,2562,5122, 10242, and 20482. For the 642 resolution we
have Dso = 50 mm, Dsd = 100 mm, which were doubled for each of the higher resolutions.
Figure 10 shows the speedup of average projection of 360 views over SF. Since the compu-
tational resources on CPU are limited, the CPU speedups are less significant than those ac-
complished by GPU computation of CNSF. Nevertheless, this experiment shows the projector
reduces the computational burden of fan-beam projectors by a factor of 2 compared to the SF
method.
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Figure 10. CPU run time comparisons with SF.

Table 2
Average cone-beam projection time (milliseconds) in GPU execution.

Resolution 163 323 643 1283 2563

System Size 16.52M 528.64M 16.52G 528.64G 16.52T

LTRI (LD) 1.18 1.54 2.34 6.88 27.26
CNSF 0.04 0.07 0.21 0.30 17.89

We also set up a cone-beam flat detector X-ray CT system for voxels of size 1 mm3 with
(Ns ⇥Nt) = (31⇥ 32), (63⇥ 65), (126⇥ 130), (252⇥ 261), (505⇥ 523) detectors corresponding
to image resolutions of 163, 323, 643, 1283, and 2563. For all these experiments, Dsd =
1300 mm,Dso = 1000 mm, ⌧ was (1 mm ⇥ 1 mm), and we observed the average projection
time using 360 views.

The computational demands for cone-beam geometry makes it impractical to compare
the fast projectors in CPU computations. Table 2 documents the average time in forward-
projection for various resolutions in GPU execution. As discussed before, the GPU implemen-
tation of the SF method is unavailable for comparison in this experiment. However, it has
been argued previously [25] that both LD (LRTI) and TR (SF) are the most e�cient projec-
tors, and that they perform similarly in GPU computations. Therefore, we only conducted
comparisons with LTRI (LD) as reported in this table. Yet for a specific comparison with SF,
based on a recent GPU improvement that reduces memory access [8], we note that at 2563

resolution the average projection time for SF is reported to be 129msec (corresponding to the
last column in the table). All experiments were performed on an NVIDIA-TitanX GPU with
CUDA 11.2, Intel i7 6-core CPU. As a reference, the System size row in the table documents
the memory size necessary to store the forward model, a limitation that fast projectors avoid
by enabling on-the-fly computation of the forward model.

Eliminating the need to access a lookup table explains the observed performance improve-
ments in the GPU implementation of our approach compared to LTRI. As the polynomial
computation (4.1) is carried out using the registers available to the CUDA kernel, with in-
crease in resolution, the number of threads in a block increases the demand for registers, which
in turn hampers the performance as slower memory is used more frequently. As the speedup
attained by our method shown in Table 2 at 643 or 1283 compared to 2563 shows, availability
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of more registers/kernels (e.g., GPUs more recent than ours) is necessary to maintain an or-
der of magnitude speedup over LTRI. Without having access to more resourceful GPUs, one
can also minimize the number of registers necessary for computing the polynomials in (4.1)
to boost parallel computations. This may be done using symbolic manipulation as well as
compiler optimization tools.

5.4. Reconstruction. We have observed improvements in accuracy of the forward model
provided by the directional convolution framework over other projectors. To assess whether
these improvements can impact the image reconstruction, in the presence of regularization or
the nonlinearity in the Lambert–Beer law, the following study compares the reconstruction
accuracy of the fast projectors. In terms of accuracy, the reference reconstructions, provided
by the computationally expensive reference projector, provide upper bounds on the practical
projectors SF (TT), LTRI (LL), and CNSF in this study.

5.4.1. 2-D reconstruction. As mentioned, our framework in 2-D fan-beam geometry was
presented in a conference paper [65]. For assessing the impact of accurate forward-projection
on reconstruction with regularization, we present a similar study using the Forbild head phan-
tom [63], designed for assessment of image reconstruction algorithms, and refer to [65] for more
studies. In this experiment, we obtained the sinogram data by evaluating the line integrals
(2.2) analytically followed by numerical integration across each detector cell. The solver we
used for iterative reconstruction is ASD-POCS [50] and we optimized the hyperparameters
(i.e., total-variation regularization parameter and number of iterations) separately for the
lowest value of objective function possible in each case.

The size of the phantom we used is 25 mm ⇥ 25 mm, and we reconstructed it by using an
image at the resolution of 512⇥ 512 resulting in 0.0488 mm ⇥ 0.0488 mm pixels discretizing
the object. We simulated a flat detector fan-beam CT system with Dsd = 78.125 mm and
Dso = 39.0625 mm, and a flat detector with 1627 bins (i.e., Ns) and 0.0488 mm bin size (i.e.,
⌧ ). The reconstruction result is shown in Figure 11. The insets show the close-up views of
ROI in Figure 11. The result achieved by the reference projection is almost perfect with some
small artifacts due to the limited number of views available. The images reconstructed by
all the other methods contain heavier artifacts around the right black dots; as evident in this
experiment CNSF provides an image that is closest to the reference reconstruction, compared
to other projectors.

We also conducted an experiment to examine the impact of improved accuracy of projec-
tors in presence of the nonlinearity brought about by the Lambert–Beer law that is always
present in practice. In this experiment, we obtained the sinogram data by evaluating the line
integrals (2.2) analytically whose exponentials were integrated numerically across each detec-
tor cell. We removed regularization in this experiment to better study the di↵erence between
projectors (CNSF, SF, and LTRI) when nonlinearity in data is present. Using 360 uniformly
spaced projections, we employed a commonly used iterative solver (i.e., the simultaneous alge-
braic reconstruction technique [1]) for each projector. While the presence of artifacts coming
from the nonlinearity makes the visual di↵erences between reconstructions more subtle, the
improvements brought about by CNSF are observable in error images, as shown in Figure 12.
While in our experiments we observed CNSF needed fewer iterations, compared to LTRI and
SF, to reach a desired error level (due to di↵erences in spectra of forward models), we ran all
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Figure 11. Reconstruction of FORBILD head phantom from 36 uniformly spaced projections using ASD-
POCS. The RMSE measures deviation from reconstruction provided by the reference projector (top left). The
insets in the center are the zoomed-in view of the green box area.

methods to a large number of iterations (i.e., 2000) so the reconstructions reflect the highest
accuracy possible for each projector. We also observed that, in this experiment, applying the
regularization makes the errors even smaller but again CNSF achieves the lowest error among
the fast projectors.

5.4.2. 3-D reconstruction. In this experiment, we used Shepp–Logan with resolution
of 5123 and 1mm3 voxel size as the benchmark dataset. The simulated flat detector X-ray
system was configured with Ns = 600 and Nt = 700, Dso = 970 mm, Dsd = 1337 mm. The
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Figure 12. Reconstruction of FORBILD head phantom from 360 uniformly spaced projections, in the pres-
ence of the nonlinearity in the Lambert–Beer law, using SART with 2000 iterations. The reconstruction by the
reference projector is shown in the top left image and its di↵erences with reconstructions from fast projectors
are shown in the other three images.

detectors were spaced by � =
⇥
1 1

⇤T
mm with bin width ⌧ =

⇥
1 1

⇤T
mm and 360 views

were uniformly spaced over 360�. To avoid providing data from the discretized solution to
the inverse problem, the projection data was generated by the reference projector acting on
an image with a higher resolution that mismatches the reconstruction resolution. Moreover,
to assess the impact of inaccuracies in fast projectors on the final reconstructed images, we
avoided the use of (explicit) regularization in this experiment and used the SART solver.
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Figure 13. RMSE of 3-D reconstructions by LTRI and CNSF projectors.
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Figure 14. A slice from the 3-D cone-beam reconstruction, by SART, at resolution 512⇥ 512⇥ 512. Re-
construction by the reference projector (a) and di↵erences between reconstructions by LTRI (b) and our CNSF
(c) from the reference reconstruction.

Figure 13 shows an assessment of accuracy in reconstruction by these projectors from 360
views, where the reference projector reconstruction shows the highest accuracy achievable
from the given data. The result shows that, numerically, the quality of the projector does
contribute to the accuracy of the reconstruction, and CNSF’s improvements in the forward
model are observable in the final reconstruction. A slice of this 3-D reconstructed image is
shown in Figure 14 along with the absolute di↵erences from reference reconstruction which
are scaled by 512 for visualization purposes.

The imperfect reconstruction achieved by the reference projector in Figure 14(a) illustrates
the best reconstruction possible from the given projection views, if we are not concerned about
computational cost. The approximations introduced by fast projectors further reduce the
reconstruction accuracy. This experiment shows that the CNSF method provides quantifiable
improvements over LTRI and results in a reconstruction that achieves near identical quality
as the one provided by the reference projector in this experiment.
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6. Conclusion and future work. This paper introduces a directional convolution frame-
work for modeling X-ray optics for iterative methods in CT reconstruction. The framework
allows for modeling projection as well as detector blur in a computationally e�cient manner
into the forward model commonly used in MBIR. While the framework has the flexibility to
model any CT geometry and any integral transform (e.g., blur e↵ects) in the continuous do-
main, we demonstrated its e↵ectiveness in fan-beam and cone-beam geometries with detector
blur. From the computationally e�ciency viewpoint, we demonstrate the method provides
a significant speedup compared to state-of-the-art methods in fan-beam and cone-beam CT.
Our experiments show that the observed speedup is accomplished without compromising the
accuracy in modeling X-ray optics, and also the accuracy improvements were observed both
in forward-projection and in the final reconstructed images.

Our current CUDA implementation can be optimized in terms of register allocation and
other strategies exploiting the access pattern of ray-volume intersection that increase the
throughout for boosting performance. Moreover, other sources of blur such as focal-spot and
motion blur can be integrated into the directional convolution framework.

Appendix A. Glossary of symbols.

Glossary.
M⌅ Box spline associated with direction set ⌅.
Pu,⌧ Fan-/cone-beam X-ray transform from direction u with detector blur of cell width ⌧ .
Pu Fan-/cone-beam X-ray transform from direction u.
Ru Parallel beam X-ray projection from direction u.

Ru,⌧ Parallel beam X-ray projection from direction u with detector of cell with ⌧ .
⌅ A set of vectors in image space arranged in columns of matrix ⌅ for directional con-

volution.
Z A set consists of geometric projection of directions in ⌅ onto detector space.

⇠ 2⌅, A d-dimensional unit direction vector in image space.
⇣ 2 z, A d� 1-dimensional unit direction vector in sinogram domain.

! Coordinates in detector space.
p Location of source.
r Unit direction of each X-ray.
⌧ Vector(s) representing detector cell boundary (detector bin).
u Unit viewing directions.
x Coordinate in image space.

Dsd Distance from source to the detector plane.
Dso Distance from source to the rotation center.
Bp The transformation matrix mapping coordinates from image space to detector space.
✓ Viewing angle.
' Image space basis function.
h⌧ Detector blur function over support of ⌧ .
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Appendix B. Proof of Theorem 4.1.

Proof. As in (2.2), the line integral of a box spline is

(B.1) Pu{M⌅}(!) =

Z 1

0
M⌅(p+ �r(!))d�.

The line equation l!(�) = p + �r(!) can also be reparameterized by changing the starting
point and the direction to l!(�) = B![ 0⌫ ] � �r(!), where ⌫ 2 Rd�1 is the local coordinate
on a virtual plane that can be computed by the orthogonal projection of p to the virtual
plane: ⌫ =B!p(1̃). For simplicity, as the virtual plane is orthogonal to the R-axis, we use the
notation R? 2Rd⇥(d-1) to represent the basis of the virtual plane. According to the definition
of R-axis whose direction is the opposite of the ray direction, we have R=�r(!). Therefore,
the line equation becomes

(B.2) Pu{M⌅}(!) =

Z 1

0
M⌅(R

?⌫ + �R)d�,

which is the exact form of the X-ray projection of box spline in parallel geometry in [14] and
[13]. Therefore the right-hand side of (B.2) can be derived as

Z 1

0
M⌅(R

?⌫ + �R)d�= RR{M⌅}(⌫)

= MBT
!⌅(1̃)(⌫)

= MZ(!)(⌫).

(B.3)

Thus we can conclude that Pu{M⌅}(!) = MZ(!)(⌫) by combining (B.2) and (B.3)
(see Figure 6).
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[57] M. J. Willemink and P. B. Noël, The evolution of image reconstruction for CT from filtered back
projection to artificial intelligence, Eur. Radiol., 29 (2019), pp. 2185–2195.

[58] T. Würfl, M. Hoffmann, V. Christlein, K. Breininger, Y. Huang, M. Unberath, and A. K.
Maier, Deep learning computed tomography: Learning projection-domain weights from image domain
in limited angle problems , IEEE Trans. Med. Imaging, 37 (2018), pp. 1454–1463.

[59] G. Yan, J. Tian, S. Zhu, Y. Dai, and C. Qin, Fast cone-beam CT image reconstruction using GPU
hardware, J. X-Ray Sci. Technol., 16 (2008), pp. 225–234.

[60] D. H. Ye, G. T. Buzzard, M. Ruby, and C. A. Bouman, Deep back projection for sparse-view CT
reconstruction, in Proceedings of the Global Conference on Signal and Information Processing, IEEE,
2018, pp. 1–5.

[61] D. H. Ye, S. Srivastava, J.-B. Thibault, K. Sauer, and C. Bouman, Deep residual learning for
model-based iterative CT reconstruction using plug-and-play framework , in Proceedings of the Inter-
national Conference on Acoustics, Speech and Signal Processing, IEEE, 2018, pp. 6668–6672.

[62] H. Yu and G. Wang, Finite detector based projection model for high spatial resolution, J. X-Ray Sci.
Technol., 20 (2012), pp. 229–238.

[63] Z. Yu, F. Noo, F. Dennerlein, A. Wunderlich, G. Lauritsch, and J. Hornegger, Simulation tools
for two-dimensional experiments in x-ray computed tomography using the FORBILD head phantom,
Phys. Med. Biol., 57 (2012), pp. N237–52, https://doi.org/10.1088/0031-9155/57/13/N237.

[64] K. Zhang and A. Entezari, Box spline projection in non-parallel geometry , in Proceedings of the 16th
International Symposium on Biomedical Imaging, IEEE, 2019, pp. 1844–1847.

[65] K. Zhang and A. Entezari, A convolutional framework for forward and back-projection in fan-beam
geometry , in Proceedings of the 16th International Symposium on Biomedical Imaging, IEEE, 2019,
pp. 1455–1458.

[66] B. Zhu, J. Z. Liu, S. F. Cauley, B. R. Rosen, and M. S. Rosen, Image reconstruction by domain-
transform manifold learning , Nature, 555 (2018), pp. 487–492.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/1

1/
24

 to
 1

28
.2

27
.1

71
.7

3 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1088/0031-9155/57/13/N237

	Introduction
	X-ray transform
	Geometry specification
	Analytical model
	Discretized model

	Directional convolution and parallel projection
	Algebra of directional convolutions
	Projection in parallel geometry
	Detector blur

	Directional convolution in divergent ray geometries
	Virtual detector plane and ray coordinate system
	Projection in divergent ray geometry
	Detector blur via image space effective blur

	Experiments and results
	Forward-projection: A single voxel study
	Forward-projection: A field-of-view study
	Computational efficiency
	Reconstruction
	2-D reconstruction
	3-D reconstruction


	Conclusion and future work
	Acknowledgment
	References
	Appendix A. Glossary of symbols
	Glossary

	 Appendix B. Proof of Theorem 4.1

