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ARTICLE INFO ABSTRACT

Keywords: Background: Multivoxel pattern analysis (MVPA) examines fMRI activation patterns associated with different
EMRI cognitive conditions. Support vector machines (SVMs) are the predominant method in MVPA. While SVM is
Multivariate pattern analysis intuitive and easy to apply, it is mainly suitable for analyzing data that are linearly separable. Convolutional
Support \{ector machine neural networks (CNNs) are known to have the ability to approximate nonlinear relationships. Applications of
Convolutional neural network .. 1 s . . e .
Spatial attention CNN to fMRI data are beginning to appear with increasing frequency, but our understanding of the similarities
Emotion processing and differences between CNN models and SVM models is limited.
New method: We compared the two methods when they are applied to the same datasets. Two datasets were
considered: (1) fMRI data collected from participants during a cued visual spatial attention task and (2) fMRI
data collected from participants viewing natural images containing varying degrees of affective content.
Results: We found that (1) both SVM and CNN are able to achieve above-chance decoding accuracies for attention
control and emotion processing in both the primary visual cortex and the whole brain, (2) the CNN decoding
accuracies are consistently higher than that of the SVM, (3) the SVM and CNN decoding accuracies are generally
not correlated, and (4) the heatmaps derived from SVM and CNN are not significantly overlapping.
Comparison with existing methods: By comparing SVM and CNN we pointed out the similarities and differences
between the two methods.
Conclusions: SVM and CNN rely on different neural features for classification. Applying both to the same data may
yield a more comprehensive understanding of neuroimaging data.

1. Introduction neural responses to subtle experimental manipulations and can thus lead

to failure to detect the presence of neural signals; see, e.g., (Haxby et al.,

Functional magnetic resonance imaging (fMRI) exploits blood-
oxygen-level-dependent (BOLD) signals to map neural activities (Mah-
moudi et al., 2012). Conventional analyses of fMRI data using methods
such as the general linear model (GLM) to compare BOLD activities
evoked by different cognitive conditions at the single voxel level or at
the level of a region of interest (ROI) to gain insights into the neural basis
of cognitive functions. These conventional analyses, referred to as the
univariate approach here, have yielded much of our current under-
standing of the neural underpinnings of human cognition. Like any
methods, the univariate approach to fMRI data analysis has limitations.
For example, for a voxel to be considered activated by a cognitive event,
it has to be consistently activated in a population of participants, which
is often difficult to achieve given the idiosyncratic nature of voxel-level
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2011). At the ROI level, univariate analysis entails averaging BOLD re-
sponses across voxels, which disregards the information contained in the
heterogeneous response patterns, again reducing the sensitivity of our
ability to detect the presence of neural signals that exhibit differential
neural response patterns but not overall changes in ROI-level response
magnitude.

Multivoxel pattern analysis (MVPA), which can be performed at the
single subject level and takes into account the spatial variations of the
BOLD activity across voxels, overcomes the limitations of the univariate
approach and have become the main approach for providing informa-
tion that complements the univariate approach (Haynes, 2015;
Lewis-Peacock and Norman, 2014; Mitchell et al., 2003; Norman et al.,
2006; Tagliazucchi and Laufs, 2014; Tagliazucchi et al., 2012).
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Currently, the support vector machine (SVM) (Sain, 1996) is the most
widely used MVPA method for analyzing fMRI data (Bonnici et al., 2013;
LaConte et al., 2005; Song et al., 2011). When decoding between
different cognitive conditions using SVM, a classifier is trained on
training data and tested on testing data, and above-chance level
decoding accuracy is taken as evidence of the involvement of the ROI in
the cognitive function being tested. The MVPA literature has grown
significantly in recent years (Baucom et al., 2012; Kotz et al., 2013; Said
et al.,, 2010; Sitaram et al., 2011). Novel insights not possible with
traditional univariate methods have emerged in all fields of cognitive
neuroscience. For example, we used the MVPA approach to decode
neural responses to natural images containing varying degrees of
emotional content and reveal the existence of affect-specific neural
representations in the retinotopic visual cortex (Bo et al., 2021). In
addition to decoding accuracy, the heatmaps (or weight maps) are
another SVM construct that can be derived from the classifier, which
provide information on the contribution of different voxels to the clas-
sifier performance. Despite their clear importance for developing
cognitive neural models, to date, heatmaps are far less utilized than
decoding accuracy. We have used SVM heatmaps to uncover the mi-
crostructures underlying the control of spatial vs feature attentional in
the dorsal attention network (DAN) (Rajan et al., 2021). Despite SVM’s
successes, the linear nature of the method is both a strength and a
weakness. Being linear, SVM is intuitive to understand and computa-
tionally efficient, which is a strength. On the other hand, being linear,
SVM is effective only when the data is linearly separable. Recent studies
suggest that the mapping between neural activity and cognitive func-
tions may be nonlinear (Birn et al., 2001) and as such linear SVM may
not be able to effectively characterize the underlying brain patterns
(Farahani et al., 2019). Another known weakness of SVM is its limited
ability for handling high-dimensional data; the need for expert feature
selection to reduce data dimensionality may bias the results (Vieira
et al., 2017).

The advent of Al-inspired methods such as deep neural networks
(DNNs) has the potential to overcome SVM’s limitations and provide
information that complements the SVM. DNNs, especially the Con-
volutional Neural Networks (CNNs), have emerged as a technique for
analyzing multivariate neuroimaging data and yielded insights not
possible with other methods (Abrol et al., 2021; Sarraf et al., 2016).
Similar to SVMs, when used to decode different experimental condi-
tions, a CNN model is trained on training data and tested on testing data.
Both decoding accuracy and heatmaps can be derived from the trained
CNN models. Our recent application of CNN models to fMRI data
recorded from patients suffering from trigeminal neuralgia revealed
novel insights into the generation and perception of TN pain that were
not possible with other methods (Liang et al., 2023).

Given the prevalence of SVM and the emerging significance of CNN
in MVPA analysis of neuroimaging data, we consider it both necessary
and timely to compare CNNs and SVMs by applying them to the same
datasets and reveal the similarities and differences between the two
methods. For this purpose, two well-characterized datasets were
considered: (1) fMRI data recorded from participants performing a cued
spatial attentional task (attention dataset) and (2) fMRI data recorded
from participants viewing natural images containing varying levels of
affective content (emotion dataset). For both datasets, the number of
participants is twenty (N = 20), which is typical of many fMRI studies of
cognitive neuroscience problems (Desmond and Glover, 2002). Recog-
nizing that the data from a single subject is not enough to train a robust
CNN model, we have adopted an across-subject approach, in which fMRI
data from 19 subjects were pooled together to train a CNN model which
was then tested on the 20th subject; repeating the process 20 times
yielded robust decoding accuracies and heatmaps. The SVM decoding
followed the same across-subject approach to facilitate comparison. The
main quantities of interest are the decoding accuracy and the heatmap.
Two hypotheses were tested: (1) CNN will achieve higher decoding ac-
curacy than SVM and (2) the heatmaps from the two methods differ,
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namely, CNN and SVM rely on different neural information for decoding
and classification.

2. Materials and methods

Two fMRI datasets were used to compare SVM and CNN decoding. To
facilitate the comparison, recording, preprocessing, and analyses were
carried out identically for both datasets. We note that these datasets
have been used in previous publications to address different questions
(Bo et al., 2021; Meyyappan et al., 2021; Rajan et al., 2021).

2.1. The attention dataset

The experimental protocol was approved by the Institutional Review
Board of the University of Florida. Twenty right-handed healthy vol-
unteers (15 men and 5 women; mean age: 24.65 + 2.87 years) with
normal or corrected-to-normal vision and no history of neurological or
psychological disorders provided written informed consent and partic-
ipated in the study. This dataset has been used in prior publications to
address different questions (Meyyappan et al., 2021).

The participants performed a cued visual spatial/feature attention
experiment while simultaneous EEG-fMRI were recorded (only the fMRI
data were considered here). The start of each trial was signaled by an
auditory cue, which directed the participants to direct their attention to
either a spatial location (left or right) or a color (red or green). Following
a delay period, varied randomly from 3000 to 6600 ms, two colored
rectangles (red or green) were presented for a duration of 200 ms, with
one in each of the two peripheral locations. The subject’s task was to
report the orientation of the rectangle (target) appearing at the cued
location or having the cued color. For feature (color) trials, the two
rectangles displayed were always of the opposite color; for spatial trials,
the two rectangles were either of the same color or the opposite color,
see Fig. 1A (Meyyappan et al., 2021). For this study, we mainly focused
on the cue-related activity, reflecting preparatory or anticipatory
attention, in the spatial attention conditions (Meyyappan et al., 2021);
the feature attention conditions were not considered.

2.2. The emotion dataset

The experimental protocol was approved by the Institutional Review
Board of the University of Florida. A total of 26 healthy volunteers with
normal or corrected-to-normal vision gave written informed consent and
participated in the study. Two participants withdrew from the experi-
ment. Four additional participants were discarded due to excessive
movements inside the scanner. The data from the remaining 20 partic-
ipants were analyzed and reported here (10 men and 10 women; mean
age: 20.4 + 3.1 years) (Bo et al., 2021).

The participants viewed 60 gray-scaled pictures including 20
pleasant, 20 unpleasant, and 20 neutral pictures from the International
Affective Picture System (IAPS) library while simultaneous EEG-fMRI
was recorded (only the fMRI data were considered here (Lang et al.,
1997). There were 5 runs. The 60 pictures were presented in random
order in each run, see Fig. 1B. The participants passively viewed the
images in the scanner. No response was required from them. For this
study, we mainly focused on the unpleasant pictures and neutral
pictures.

2.3. fMRI acquisition and preprocessing

For both datasets, the functional MRI data were collected on a 3 T
Philips Achieva scanner (Philips Medical Systems), with the following
parameters: echo time, 30 ms; repetition time, 1.98 s; flip angle, 800;
slice number, 36; field of view (FOV), 224 mm; voxel size,
3.5 x 3.5 x 3.5 mm; matrix size, 64 x 64. Preprocessing was carried
out using the statistical parametric mapping toolbox (SPM) and custom
scripts written in MATLAB, including the following steps: slice timing
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A Experimental paradigm for the attention dataset
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Fig. 1. Experimental paradigms. (A) Attention dataset. Each trial begins with an auditory cue lasting 500 ms, instructing the subject to covertly attend to a spatial
location (left or right). After a variable cue-to-target delay ranging from 3000 to 6600 ms, two colored rectangles are displayed for 200 ms, one in each of the two
peripheral locations. Participants are then asked to report the orientation of the rectangle (horizontal or vertical) appearing in the cued location. An intertrial interval
(ITI) follows, randomly varied from 8000 to 12,800 ms after the target onset, before the start of the next trial. (B) Emotion dataset. The experiment consisted of five
sessions, each lasting 7 min. In each session, a total of 60 International Affective Picture System (IAPS) pictures, including 20 pleasant, 20 unpleasant, and 20 neutral,
were presented in random order. Each picture was displayed for 3 s, followed by a fixation period referred to as inter-trial interval (ITI) lasting 2.8 or 4.3 s. Par-
ticipants were required to fixate on the cross in the center of the screen throughout the session.

correction, realignment, spatial normalization, and smoothing. Slice
timing correction was conducted using sinc interpolation to correct for
differences in slice acquisition time within an EPI volume. The images
were then spatially realigned to the first image of each session by a 6-
parameter rigid-body spatial transformation to account for head move-
ment during data acquisition. Each participant’s images were then
normalized and registered to the MNI space. All images were further
resampled to a voxel size of 3 x 3 x 3 mm and spatially smoothed using
a Gaussian kernel with 7 mm FWHM. The preprocessed signal was
further passed through a high-pass filter with a cutoff frequency set at 1/
128 Hz to attenuate lower frequency noise.

2.4. Regions of interest (ROIs)

For both datasets, the stimuli are visual, and as such the primary
visual cortex (V1) plays an essential role in extracting and processing
basic visual features of the stimuli. It is also known that V1 is subject to
influence and modulation of higher-order visual structures depending
on the task conditions. We first performed the comparison between SVM
and CNN in primary visual cortex (V1). The goal was to examine
whether SVM and CNN exhibit comparable classification performance
and make classifications of cognitive states based on similar visual fea-
tures. V1v (V1 ventral) and V1d (V1 dorsal) in a recently published
probabilistic visual retinotopic atlas (Wang et al., 2015) were combined
to form the V1 ROI (Fig. 2A). We next performed the comparison be-
tween SVM and CNN at the whole brain level because cognitive func-
tions such as attention and emotion engage large-scale distributed brain
networks. The goal was to examine whether SVM and CNN exhibit
similar classification performance and make classifications of cognitive

states based on similar brain regions. The 129 brain regions in the
Lausanne Brain Atlas are combined to form the whole brain ROI
(Daducci et al., 2012); see Fig. 2B.

2.5. Univariate analysis with GLM

As a starting point, we first analyzed the data using the univariate
approach, in which we adopted the standard GLM method, as imple-
mented in the SPM toolbox. For the attention dataset, eight task-related
events were included as regressors in the GLM model, including five
regressors to model the cue-related BOLD activity, two regressors to
account for BOLD responses evoked by validly and invalidly cued targets
separately, and one regressor to model trials with incorrect responses.
For the emotion dataset, four task-related events were included as re-
gressors in the GLM analysis, including three stimuli-related regressors
and one fixation regressor. For both datasets, the Hemodynamic
Response Function (HRF) used in the GLM analysis was the default HRF
provided by the SPM toolbox, with a delay of 6 s. At the group level,
fMRI activation maps were obtained by applying a parametric one-
sample t-test and thresholded at a significance level of p < 0.05 after
correcting for multiple comparisons using the false discovery rate (FDR)
method.

2.6. Single-trial estimation of fMRI-BOLD

Since MVPA is performed at the single-trial level, we applied a beta
series regression method to estimate the BOLD response on each trial in
every voxel for both attention and emotion datasets (Mumford et al.,
2012). Specifically, for both datasets, the trial of interest was
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Regions of interest : V1

Fig. 2. Regions of interest. (A) V1 ROIL (B) Whole brain ROI based on Lausanne Atlas (129 regions).

represented by one regressor, and all the other trials were represented by
another regressor. Six motion regressors were also included to account
for any movement-related artifacts during the scan. The process was
repeated for all trials. The single-trial beta responses were fed into SVM
and CNN for decoding analysis and heatmap generation.

2.7. MVPA: SVM

The SVM algorithm as implemented in the LibSVM (Chang and Lin,
2011) was used to decode cue left vs. right (spatial attention control) for
the attention dataset in both the V1 ROI and the whole brain. For the
emotion dataset, we decoded the brain patterns evoked by unpleasant
vs. neutral stimuli. A leave-one-participant-out across-subject approach
was adopted. Specifically, for the 20 participants in each dataset, the
data from 19 were used to train a SVM classifier, which was then tested
on the remaining participant to obtain decoding accuracy. Here the
decoding accuracy is defined by the below formula:

Correctly predicted trials

Decoding - Accuracy = Total number of tested trials

This process was repeated 20 times and the 20 decoding accuracies
were averaged to yield the group-level average decoding accuracy. The
reason we took the across-subject decoding approach rather than the
more conventional within-subject approach is because for training CNN
models (see below), larger amount of data were required, which means
that the within-subject analysis was not viable for CNN analysis and the
across-subject approach needs to be used to increase the size of training
data. Although the SVM approach has been mainly applied in a within-

subject fashion, for an equitable comparison, we applied the SVM
decoding in this study using the same across-subject decoding approach
as the CNN.

In addition to decoding accuracy, the heatmap is another critical
aspect of the SVM technique, which can be used to attribute functional
significance to voxels inside an ROI. To compute the SVM heatmap in-
side an ROI, we applied the transformation proposed by Haufe et al. to
the weight vectors computed from the SVM (Haufe et al., 2014). The
absolute value of the resulting weight in each voxel measures the
contribution of the voxel to the decoding performance (Lee et al., 2010;
Mourao-Miranda et al., 2005).

2.8. MVPA: CNN

Widely used CNNs such as ResNet (He et al., 2016) take two
dimensional (2D) images, such as those from the ImageNet (Deng et al.,
2009) or Cifarl0 (Krizhevsky and Hinton, 2009), as input and produce
recognition of the object in the image as output. But f{MRI data from the
brain are three dimensional (3D). We thus changed all the 2D con-
volutional filters in the ResNet18 structure to 3D convolutional filters;
see Fig. 3A. The process of 3D convolutions entails the application of 3D
convolutional filter to the 3D imaging dataset, with the filter traversing
in three orthogonal directions (x, y, and z), to yield low-level feature
representations used by subsequent layers for more in depth processing
and classification. In addition, to make the comparison with the SVM
approach equitable, we modified the kernel size of the first convolu-
tional layer, changing it from the original kernel size of 7 to the kernel
size of 1. The detailed filter and dimension size was listed in Table 1. The
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CNN structure

Softmax
Attend Left / Unpleasant

Attend Right / Neutral

Layer 2 Layer3 Layer4

Dense

Visualizing heatmaps with occlusion-based approach
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Fig. 3. Pipeline for Convolutional Neural Network (CNN) analysis. (A) CNN model was trained to predict attention control or emotional processing from fMRI data.
(B) An occlusion approach was carried out to evaluate the contribution of different brain regions or voxels to CNN model classification performance. The detailed

filter size and feature map dimension are listed in Table 1. Acc: accuracy.

N

2

Layer2 Layer3 Layer4 Average Pooling
F N F N F N SoftMax
128 2 256 2 512 2

Table 1
Detailed structure of the proposed ResNet-18. F is the number of feature channels, and N is the number of blocks in each layer.
Model Block Convl Layerl
F
ResNet-18 ResNet Conv,1x1x1, 64, stride 2, padding 3 64

same leave-one-participant-out approach as in SVM analysis above was
used here for both datasets. The decoding was also defined in the same
way as the SVM decoding accuracy.

For heatmaps, we applied an occlusion approach. Specifically, for V1
decoding, after a CNN model was trained and the decoding accuracy
obtained, we removed a sphere with a radius of 6 mm (2 voxels) around
each voxel (i.e., change the activity level in the voxels inside the sphere
to 0) and fed the fMRI BOLD into the trained CNN network to obtain
decoding accuracy. The decrease in decoding accuracy, which is taken as
the weight of the voxel in the heatmap, is considered a measure of the
significance of the voxel. For whole-brain decoding, after a CNN model
was trained and the decoding accuracy obtained, we removed a ROI by
setting the activity level in all the voxels in the ROI to 0 and fed the fMRI
BOLD into the trained CNN network to obtain decoding accuracy. The
decrease in decoding accuracy is taken as a measure of the weight of the
ROI in the heatmap, see Fig. 3B. The logic here is that the more the
decoding accuracy decreased following occlusion, the more significant
the voxel or ROI contributed to the decoding performance, and the more
highly weighted the voxel or ROI is in the heatmap.

3. Results
3.1. Attention dataset: decoding attentional control in V1

According to the prevailing theory of attention control, following an
attention directing cue, top-down signals from frontoparietal attention
control areas propagate to visual cortex to bias the sensory neurons to
enhance attended information and suppress distraction (Corbetta et al.,
2008; Liu et al., 2003; Wang et al., 2016). To what extent such signals
reach the level of the primary visual cortex (V1) is not well established.

Using V1 as the ROI, we decoded spatial attention control (cue left vs.
cue right) using SVM and CNN, and compared the decoding accuracies.
As shown in Fig. 4A, both SVM and CNN had decoding accuracy
significantly above chance level of 50% (p < 0.0001), with the CNN
decoding accuracy significantly higher than the SVM (p < 0.002), sug-
gesting that attention control signals can reach the level of V1 and CNN
has stronger abilities to detect these signals. Correlating the decoding
accuracies between SVM and CNN, we found that the two decoding
accuracies were not significantly correlated (R=0.12, p = 0.62), sug-
gesting that these two methods may emphasize different data features to
achieve their respective decoding performance, see Fig. 4B.

To further examine whether different features drove the decoding
performance for the two different kinds of MVPA methods (SVM vs
CNN), we compared the top 20% voxels (80 voxels) from the heatmap of
SVM and that of CNN; see Fig. 4C. Intuitively the heatmaps look quite
different. To quantify the extent of overlap/nonoverlap of two sets of
voxels in the two heatmaps, the Jaccard index (JI) was computed, where
a JI of 0 or 1 indicates no overlap or total overlap (Levandowsky and
Winter, 1971). We found JI= 0.10 to be the overlap between the top 80
voxels from the SVM heatmap and that from the CNN map. To better
understand the meaning of this number, we randomly chose two sets of
80 voxels and computed the JI. Repeating this procedure 10000 times,
the average random permutation JI was found to be 0.11 £ 0.025.
Comparing JI=0.10 from the actual data with the JI from random
permutation yielded no significant difference (p = 0.65). We take this as
evidence that SVM and CNN rely on different feature information for
making classification of the two attentional states. Extending the percent
of voxels included in the overlap analysis to [10%,90%], we found that
the JI is an increasing function of the percent threshold, as shown in
Fig. 4D, and at every threshold, the JI from the data is not significantly
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Fig. 4. Decoding attention control in V1. (A) SVM versus CNN decoding. Both decoding accuracies are significantly above chance level (p < 0.0001), with CNN
decoding accuracy higher than SVM decoding accuracy (p < 0.002). (B) Correlation between SVM and CNN decoding accuracies. The decoding accuracies from the
two methods are not significantly correlated (R=0.12, p = 0.62). (C) The heatmaps underlying spatial attention control by SVM and CNN. The two heatmaps have
limited overlap for the top 20% of voxels (JI=0.10), suggesting that the two methods emphasize different features for making predictions. (D) The average random
permutation JI and the JI from the data at different thresholds from 10% to 90%. None of the thresholds showed significant differences between the random

permutation JI and the JI from the data. JI: Jaccard Index. * *p < 0.002.

different from the JI of two sets of randomly chosen voxels (p > 0.05,
FDR corrected). These additional experimental results confirm that SVM
and CNN rely on different voxel features for representing different
attentional control states (attend left vs attend right).

3.2. Attention dataset: decoding attentional control over the whole brain

Traditional whole-brain univariate analysis was done first to provide
a basis for comparison with the subsequent multivariate analysis. As in
previous work, the whole-brain responses evoked by spatial cues (left
cue and right cue combined) were analyzed using the GLM method. As
depicted in Fig. 5A, the spatial cues activated the precentral/postcentral
cortex, which contains the frontal eye field (FEF), and superior parietal
cortex, which contains the inferior parietal sulcus (IPS)/superior pari-
etal lobule (SPL), which is consistent with previous findings (Giesbrecht
et al., 2003; Rajan et al., 2021; Slagter et al., 2007); FEF and IPS/SPL
comprise the dorsal attention network (DAN) which is known for its role
in attention control. Additionally, other regions such as the putamen,
superior frontal and inferior frontal were also activated, agreeing with
our previous study (Meyyappan et al., 2021). A total of 9 regions are
activated by the spatial cues (see Table 2). However, when the left cue is
contrasted again the right cue or vice versa, no regions appeared in the
activation map, suggesting that the regions that encode the specific
attended information are not discovered by the univariate analysis; see
Figs. 5B and 5C.

In contrast, both the MVPA methods SVM and CNN were able to
decode the two attention control conditions (cue left vs. cue right) in the

whole-brain analysis (p < 0.0001), as shown in Fig. 6A, with the CNN
decoding accuracy significantly higher than SVM decoding accuracy
(p < 0.05). Unlike in V1, over the whole brain, the decoding accuracies
between SVM and CNN were significantly correlated (R = 0.77,
p < 0.0001), suggesting the at the whole brain level, the two decoding
methods may rely more on common input features than totally different
input features; see Fig. 6B.

To further examine the features that drove the classification perfor-
mance, instead of focusing on voxels as in the case of V1, we focused on
the regions of interest for ease of interpretation and comparison with
univariate analysis. For SVM and CNN, we presented the top 9 regions in
the heatmap (which was the same number of regions as those identified
in the univariate analysis) from each method, as shown in Fig. 6C. The
top 9 regions identified by the univariate and each of the two MVPA
methods are listed in Table 2. There were very few overlapping ROIs
among the methods. For example, only lateral occipital, fusiform and
superior parietal regions was identified by both SVM and CNN. The
lateral occipital, fusiform, and insula appeared in both univariate and
SVM analyses, and the precentral, lateral occipital, fusiform and the
rostral middle frontal were the areas appearing in both univariate and
CNN analyses. In summary, each of the three methods provided insights
that are largely not contained in the other methods, suggesting that
combining these methods might be a way to obtain a more compre-
hensive understanding of spatial attention control.
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A Cue left + Cue right
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B Cue left > Cue right Cue right > Cue left
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Fig. 5. Univariate analysis of attention control. (A) Cue-evoked activation map (p < 0.05, FDR) combining cue left and cue right. Several regions, including pre-
central/postcentral, superior parietal, inferior frontal, and putamen, were activated. (B) Cue left > cue right activation map (p < 0.05, FDR). No regions appeared in
the map. (C) Cue right > cue left activation map (p < 0.05, FDR). No regions appeared in the map.

Table 2
Important regions underlying attention control identified by univariate and
MVPA analysis.

Cue left vs Cue SVM CNN
right
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3.3. Emotion dataset: decoding emotion processing in V1

Conventionally, the primary visual cortex (V1) is thought to mainly
play the role of extracting basic visual features from sensory input and
send them to higher order visual areas for further processing. Our recent
work where decoding is applied in a within-subject manner found affect-
specific neural representations in V1 when participants viewed natural

images containing varying degrees of affective content (Bo et al., 2021).
Here, for the same dataset, as shown in Figs. 7A and 7B, both SVM and
CNN, when applied in a across-subject fashion, exhibited decoding ac-
curacies between unpleasant and neutral images that were significantly
higher than chance level of 50% (p < 0.0001), with CNN decoding ac-
curacy significantly higher than that of SVM (p < 0.002), further con-
firming that V1's role is not limited to extracting visual features and it
forms an integral part of the neural network that represents the affective
significance of natural images.

To test whether the same or different features drove the SVM vs CNN
classification performance, we compared the heatmaps from the two
methods. The top 20% of voxels (84 voxels) from the SVM heatmap and
CNN heatmap were shown in Fig. 7C. Intuitively, there is little overlap
between the two sets of voxels; quantitatively, the JI= 0.09. Choosing
two random sets of 84 voxels and computing the JI 10000 times, the
average JI was found to be 0.11 & 0.024. The JI of 0.09, which is not
significantly different from the overlap between two sets of random
voxels (R=0.28, p = 0.24). Extending the voxel selection threshold from
10% to 90% and computing the JI index for each threshold, we found
that the JI value increased as percentage threshold was increased, as
would be expected, but for every threshold, the JI from the data is not
significantly different from the overlap of two random sets of voxels
(p > 0.05, FDR corrected); see Fig. 7D. These results suggest that the
features driving the prediction of SVM and CNN differ.

3.4. Emotion dataset: decoding emotional processing over the whole brain

We first conducted a whole-brain univariate analysis by contrasting
unpleasant images against neutral images. In comparison to neutral
pictures, unpleasant pictures evoked activations in the precentral,
insula, putamen, amygdala, and inferior temporal cortices, as shown in
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p < 0.0001). (C) The heatmaps underlying spatial attention control. The two heatmaps have several overlapping ROIs, including the fusiform, lateral occipital, and

superior parietal cortex. * *p < 0.002 *p < 0.05.

Fig. 8A. On the other hand, relative to unpleasant pictures, neutral
pictures activated the lateral orbitofrontal, superior frontal, middle
temporal and parahippocampal regions, as illustrated in Fig. 8B. The
univariate activation map in Fig. 8 was thresholded at p < 0.05 FDR.
The regions in Figs. 8A and 8B are given in Table 3. Prior empirical
investigations have provided strong evidence for the pivotal roles of the
amygdala, insula and parahippocampal in the processing of pain and
emotion. Our univariate analysis results are thus consistent with the
reports in the literature.

Both MVPA methods SVM and CNN achieved decoding accuracies
that were significantly higher than chance level (p < 0.0001), with the
CNN decoding accuracy significantly higher than that of SVM
(p < 0.05); see Fig. 9A. No significant correlations were found between
the decoding accuracies of SVM and CNN in Fig. 9B (R=0.07, p = 0.78).
To what extent this finding implies that the two methods relied on
different features to perform classifications was examined next using the
heatmap.

To identify the essential ROIs driving the prediction performance in
both SVM and CNN, we selected the top 11 ROIs (same as the number of
ROI identified in the univariate analysis) based on the Lausanne atlas as
critical ROIs for generating the heatmaps, as shown in Fig. 9C. Regions
including fusiform, lateral occipital, inferior parietal and precuneus

were detected by both approaches. See Table 3.
4. Discussion

MVPA methods are now widely used in neuroimaging. SVM has been
the mainstay in MVPA analysis of fMRI data since the early 2000 s. In
more recent years DNNs especially CNNs have been added to the
MVPA’s toolchest and are gaining importance due to its ability to take
into account of nonlinear relationships between neural patterns and
cognitive functions. To date no systematic comparisons between these
two classes of methods have been carried out. To fill this gap, using two
well-characterized fMRI datasets, we compared the decoding perfor-
mance and heatmaps derived from SVM and CNN, and reported the
following results. First, both SVM and CNN are able to achieve above
chance level decoding accuracies for attention control and emotion
processing in both the primary visual cortex and the whole brain, and
the CNN decoding accuracies were consistently higher than that of the
SVM. Second, the SVM and CNN decoding accuracies are generally not
correlated, and the heatmaps derived by SVM and CNN, which
emphasize the importance of certain voxels or brain regions over others
in decoding performance, were shown to be not significantly over-
lapping, suggesting that SVM and CNN may rely on different brain
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Fig. 7. Decoding emotion processing in V1. (A) Decoding unpleasant vs neutral images in V1 by SVM and CNN. Both decoding accuracies are significantly above
chance level (p < 0.0001). CNN decoding accuracy is higher than SVM decoding accuracy (p < 0.002). (B) Correlation between SVM and CNN decoding accuracies.
The decoding accuracies from the two methods are not significantly correlated (R=0.28, p = 0.24). (C) The heatmaps underlying decoding by SVM and CNN. The two
heatmaps have limited overlap for the top 20% of voxels (JI=0.09), suggesting that the two methods may emphasize different features for making predictions. (D)
The average random permutation JI and the JI from the data at different thresholds from 10% to 90%. None of the thresholds showed significant differences between
the random permutation JI and the JI from the data. JI: Jaccard Index. * *p < 0.002.

activity patterns to predict cognitive conditions.

4.1. Analysis in V1

The primary visual cortex (V1) is the first stage of the cortical visual
processing system (Hubel and Wiesel, 1977). As such its role is often
thought to be limited to extracting visual features from input and
passing them up the visual hierarchy for further processing. For both
datasets analyzed here, our results demonstrate that V1's role goes
beyond simple feature extraction. In the case of visual spatial attention,
while attentional modulation of neuronal responses has been reported in
many extrastriate cortical areas such as V2, V4, temporal-occipital area
(TEO), and middle temporal area (MT), evidence of attentional modu-
lation in V1 has been relatively scarce (Pessoa et al., 2003), even though
it is well known that V1 receives feedback connections from higher-level
visual areas, allowing its activity to be modulated by top-down atten-
tional control signals (Juan and Walsh, 2003). In the present study, both
SVM and CNN achieved above-chance decoding accuracies between two
preparatory attention conditions (attend left vs attend right) using only
the voxels extracted from V1, demonstrating a role of V1 in attention
control. Furthermore, owing to the across-subject decoding approach
adopted here, the patterns of the attention control signals are found to
be shared by the participants (Martinez et al., 1999). This finding ex-
tends a recent study by Meyyappan et al. where an within-subject
decoding approach was employed to show that V1 is engaged in visual
spatial attention control (Meyyappan et al., 2023). In the case of visual
emotion processing, the role of V1 is not well understood, and findings
from different studies have been inconsistent. Generally, univariate

BOLD analyses have not found differential activations by differently
valenced emotional images (e.g., unpleasant vs neutral) in early visual
areas such as V1 (Sabatinelli et al., 2009). Using a within-subject
decoding approach, our previous analysis of the same emotion dataset
shows that there are affect-specific neural representations in the reti-
notopic visual cortex, which includes V1 (Bo et al., 2021). In the present
study, applying an across-subject approach using two different decoding
methods, we again found evidence to support the notion that the pri-
mary visual cortex V1 plays a role in the representation of the emotional
significance of natural images and these representations are shared by
participants. It is worth noting that for both datasets, the heatmaps
derived from SVM and CNN are largely nonoverlapping, suggesting that
these two classes of methods may rely on different features for decoding.

4.2. Analysis over the whole brain

At the whole brain level, we first performed the traditional univar-
iate analysis to provide a departure point for the comparison of the two
MVPA methods. For the attention dataset, when attend left cue and
attend right cue were combined, the frontal eye field and the IPS/SPL
were found to be activated. These regions are part of the dorsal attention
network (DAN) whose role in the control of spatial attention, feature
attention, and object attention is well established (Corbetta et al., 2005;
Giesbrecht et al., 2003; Morishima et al., 2009; Slagter et al., 2007).
Additional areas activated by the combined cues include inferior frontal
cortex, which are associated with cognitive control and response inhi-
bition, both being integral parts of attention (Forstmann et al., 2008).
When we contrasted attend left cue against attend right cue, however,
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Fig. 8. Univariate analysis of emotion processing. Activation map (p < 0.05, FDR) contrasting (A) unpleasant > neutral (B) neutral > unpleasant pictures.

no brain activations were found, suggesting that the univariate analysis
is not able to discover the signals that are specific to the attended in-
formation (e.g., attend left vs attend right). In contrast, both SVM and
CNN were able to decode attend left vs attend right using the whole
brain as the ROL In particular, these MVPA analyses were able to unveil
brain regions whose involvement in attention control was not uncovered
by the conventional univariate analysis, including the inferior parietal
cortex and inferior temporal cortex. Recent studies utilizing imaging
techniques and lesion investigations have provided insights into the
functional properties of inferior parietal regions and found that they
contribute to the maintenance of attention, detection of salient events
within a sequence, and exertion of control over attentional mechanisms
(Husain and Nachev, 2007). Moreover, event-related fMRI in-
vestigations have identified a network of cortical areas, including the
inferior parietal cortex, that play a role in top-down attentional control
(Hopfinger et al., 2000) and attentional shifting (Corbetta et al., 1993).
In terms of the univariate activation map and the heat maps derived
from the two MVPA methods, similar to V1, there is limited overlap
among the regions identified by each of the three methodologies (i.e.,
univariate, SVM, and CNN) as being important for spatial attention
control, suggesting that combining these methods may afford us the
ability to more comprehensively identify important neural substrate of
cognitive functions. One observation worth noting is that the DAN did
not appear in the heatmap of either of the two MVPA methods. This is in
contrast to our previous decoding analysis in DAN, which, using a
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within-subject approach (Rajan et al., 2021), demonstrated the exis-
tence of a microstructure for attention control in DAN, consistent with
an extensive literature (Giesbrecht et al., 2003; Morishima et al., 2009).
The findings reported here may be taken to imply that the microstruc-
ture of attention control exhibits a high degree of individual variability,
which renders the across-subject decoding approach not effective in
revealing its involvement in attentional control.

For the emotion dataset, the univariate analysis revealed activations
in multiple brain areas when contrasting unpleasant images against
neutral images, including the insula, precentral gyrus, amygdala, fusi-
form gyrus, superior frontal gyrus, and middle temporal gyrus, as re-
ported in our previous study (Bo et al., 2021). The amygdala and insula
are widely recognized as key brain regions involved in processing
emotional information especially negative emotions (Kesler et al.,
2001). The superior frontal region is implicated in the cognitive ability
to infer the mental states of others and other social functions where
emotion processing is critical (Mak et al., 2009; Vollm et al., 2006).
Notably, the retinotopic visual cortex is not engaged in representing the
emotional significance of visual processing according to the univariate
analysis, contrary to the theoretical argument. Specifically, the signal
reentry hypothesis suggested that subcortical structures, such as the
amygdala, may send feedback signals into the visual cortex upon
receiving initial sensory input to enhance the processing of emotionally
salient visual stimuli (Keil et al., 2009; Lang and Bradley, 2010; Saba-
tinelli et al., 2009). In both SVM and CNN analysis, the visual cortex was
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Table 3
Important regions underlying emotion processing identified by univariate and
MVPA analysis.
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found to contribute to the decoding performance, in agreement with our
previous study using a within-subject decoding approach (Bo et al.,
2021). In light the across-subject employed here, this result further
suggests that the neural representations of the emotional significance of
natural images are shared across participants. Furthermore, the
involvement of the precuneus in representing emotion was found by
both SVM and CNN, but was not revealed by univariate analysis. The
precuneus region, along with activity in the right anterior insular cortex
and ventromedial prefrontal cortex (VMPFC), has been linked to the
evaluation of emotional states (Terasawa et al., 2013). Critchley et al.
(Critchley et al., 2001) provides evidence that the precuneus plays a
critical role in transforming interoceptive information into subjective
emotions.

4.3. Methodological considerations

Two methodological issues are worth considering. First, the findings
of the current study suggest that CNN performed better than SVM in all
decoding tasks. This advantage of CNN can be attributed to its superior
learning abilities relative to SVM (Khodatars et al., 2021); SVM can be
considered as having a single-layer architecture and is thus less
computationally capable compared to a multi-layered system such as the
CNN (Kim et al., 2019). Consistent with this, recent work has found that
combining SVM with nonlinear kernels did not result in superior
decoding performance (Misaki et al., 2010), suggesting that the superior
learning ability made possible by the multiple-layered architecture of
the CNN, along with CNN’s ability to model nonlinear functions, un-
derlie the CNN’s superior performance observed in our study. However,
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CNN, having multiple layers of computational units (neurons), has a
large number of parameters; it is known that as the number of param-
eters is increased, overfitting is more likely to occur. We applied
cross-validation, batch normalization, and dropout to minimize over-
fitting (loffe and Szegedy, 2015; Srivastava et al., 2014). Second, we
utilized an across-subject decoding approach rather than the more
traditional within-subject decoding approach. In the within-subject
decoding approach, patterns of neural activity are collected for each
individual during a specific experimental condition or task, and then
subjected to decoding or classification analysis. The across-subject
approach, which is adopted here to cope with the fact that training
CNN models requires larger amount of data than can be expected from a
single subject in typical neuroimaging studies, involves pooling data
from multiple participants performing the same experiment, and then
performing decoding or classification of the patterns; the decodable
patterns in this case are patterns that are common across the group. The
within-subject and across-subject decoding approaches each have their
advantages and limitations. Within-subject decoding allows for inves-
tigating individual differences and can provide insights into the neural
mechanisms that are specific to each individual. It is less affected by
inter-individual variability and can potentially capture more
fine-grained individual-specific information. The wuse of an
across-subject approach in fMRI research also has advantages. For
example, pooling data from multiple subjects can increase the statistical
power of the analysis, making it more likely to detect subtle or complex
effects that may not be apparent in individual subjects due to variability
or noise in the data.

4.4. Summary and future directions

In this work we showed that: (1) both SVM and CNN are effective
methods for analyzing neuroimaging data with CNN exhibiting superior
performance by consistently outperforming SVM in terms of decoding
accuracy, (2) SVM and CNN may rely on different neural features for
making classifications of brain states, (3) Jaccard index can be combined
with random permutation to assess the overlap between SVM and CNN
heatmaps, and (4) SVM and CNN can yield novel neuroscience insights
not possible with conventional fMRI analysis. It is worth noting that
these results were obtained on datasets with modest sample size
(n = 20). Therefore they should be viewed as being preliminary. Future
work with substantially larger samples sizes is required to reach defin-
itive conclusions. In addition, these results were achieved by applying
SVM and CNN independently. A fruitful future direction may lie in
combining the two methods in the same analysis pipeline: apply SVM
first to model the linearly decodable components of the data and CNN
next to model the residual nonlinear components of the data. Further-
more, regarding the application of CNNs to neuroimaging datasets, in
addition to across-subject decoding and rigorous cross validation,
methods such as L1 and L2 norm regularizations, as well as data
augmentation techniques, may also be considered to address the issue of
relatively small sample sizes. Finally, one of our main findings is that the
features that drive SVM decoding and that drive CNN decoding appear
to be not the same. The neuroscientific significance of these features
remains not clear. Progress on this issue may lead to a better under-
standing of the neural substrate of cognitive phenomena and the
development of novel cognitive neuroscience theories.
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