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Abstract. Elastic constants of splay K;;, twist K,,, and bend K33 of nematic liquid crystals are
often assumed to be equal to each other in order to simplify the theoretical description of complex
director fields. Here we present examples of how the disparity of K;; and K33 produces effects
that cannot be described in a one-constant approximation. In a lyotropic chromonic liquid crystal,
nematic droplets coexisting with the isotropic phase change their shape from a simply-connected
tactoid to a topologically distinct toroid as a result of temperature or concentration variation. The
transformation is caused by the increase of the splay-to-bend ratio K;;/K33. A phase transition
from a conventional nematic to a twist-bend nematic implies that the ratio K, /K33 changes from
very large to very small. As a result, the defects caused by an externally applied electric field
change the deformation mode of optic axis from bend to splay. In the paraelectric-ferroelectric
nematic transition, one finds an inverse situation: K;;/K33 changes from small to large, which
shapes the domain walls in the spontaneous electric polarization field as conic sections. The
polarization field tends to be solenoidal, or divergence-free, a behavior complementary to

irrotational curl-free director textures of a smectic A.
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INTRODUCTION

Orientational ordering of liquid crystals brings about an important concept of Frank elastic
constants Kj; describing the energy cost of the gradients in molecular orientations. The Frank
constants are of the dimension of a force, and thus can be represented as the ratio of some energy
U to a characteristic length [. In a conventional uniaxial nematic (Ny) formed by rod-like
molecules, the latter can only be the molecular length, [~1 nm. The energy U, as suggested by P.G.
de Gennes [1], should be on the order of kzT,., where kg is the Boltzmann constant and T is the

clearing temperature at which the nematic transitions into an isotropic fluid. For T,~300 K, one
finds Kil-~%~4 pN, which is close to the experimentally measured values. For example, elastic

constants of pentylcyanobiphenyl (5CB) are listed [2] at 305 K (about 4 K below the clearing point)
as K;; = 4.5 pN for splay, K,, = 3 pN for twist, and K33 = 5.5 pN for bend. In 5CB, as in many
other nematics formed by rod-like molecules, the constants follow the trend K33 > K;; > K5, [3,

4, 5, 6]. A relevant geometrical parameter is the aspect length/diameter ratio, which justifies

% < 13,4, 5]. K;, is somewhat smaller than the other two moduli, which explains why twist
33

often replaces splay and bend in nematic samples deformed by confinement, such as droplets of
thermotropic [7, 8, 9, 10, 11] and lyotropic nematics [12, 13]. Although the occurrence of twist in
chemically achiral materials [14, 15] is a very interesting topic awaiting its further exploration in
the newly discovered ferroelectric nematics [16, 17], this review limits itself to recently described
effects caused by a disparity of the splay K;; and bend K33 moduli. The Frank-Oseen free energy
density corresponding to different bulk modes of distortions writes

f= %Kll(div n)? + %Kzz(ﬁ - curl f)? + %K33(ﬁ x curl i)2. (1)
The splay and bend geometries are schematized in Fig.1.

There are numerous reasons why K;; and K33 can be different. If one assumes that the
molecules are rigid, then the increase of the length/diameter aspect ratio might decrease K;,/K33.
However, as noted by R.B. Meyer [18], nematics formed by very long polymer chains should
exhibit K;; > K33 since splay creates empty spaces, which must be filled by the ends of molecules
to keep the material’s density constant. If the molecules are banana-like in shape, a similar
inequality, K;; > K33, 1s found experimentally [19, 20, 21, 22, 23, 24, 25,26, 27] and theoretically
[4, 28, 29, 30]; see also the recent reviews [31, 32]. An opposite and even stronger disparity of

elastic constants is observed in an Ny formed by acute-angle bent core molecules of a shape
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resembling a letter A [33]. The measured splay constant is anomalously weak, K;; = 2 pN,
significantly smaller than the bend constant K33 = 15 pN and even the twist constant K,, = 5 pN.
The smallness of K;; leads to a pronounced bias of defects towards configurations with splay [32,
33].

The low energy cost for bend in banana-like molecules inspired R.B. Meyer [18], 1. Dozov
[34], R. Memmer [35], and S. M. Shamid et al. [36] to predict the so-called twist-bend nematic
(NtB), experimentally found in materials formed by flexible dimeric [29, 37, 38] and rigid bent-
core [39] molecules. Another notable result emerging from the smallness of K35 is the formation
of an oblique helicoidal cholesteric in an external electric [40, 41] or magnetic field [42], predicted

by R.B. Meyer [43] and P.G. de Gennes [44].

Fig.1. Director field in (a) splay and (b) bend.

In what follows, the presentation discusses (1) topological transformation of a lyotropic chromonic
nematic droplet from a tactoid into a toroid driven by the increase of K;, /K33 changes from large

to small, (2) the geometry of defects formed in response to an electric field , which is controlled

% > 1 to %<<1 as a result of the nematic-to-twist-bend nematic phase
33 33

by a change from

transition, and (3) conic sections such as parabola and hyperbola, which represent domain walls in

thin films of ferroelectric nematics (Nr) shaped by % > 1.
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1. Tactoid to toroid reshaping of a nematic droplet: From K;; =

K33 to K11 > K33.

A lyotropic chromonic liquid crystal (LCLC) represents a dispersion of disk-like organic
molecules in water. Hydrophobic cores of the molecules stack on top of each other, forming
elongated aggregates which align parallel to each other [45]. Elastic constants in the Ny phase
depend strongly on the concentration and temperature [2, 46, 47]. One notable experimental
finding is that the twist constant K5, in the chromonic Ny is anomalously low, less than 1 pN [2,
46, 47]; similar trend is established also for two other lyotropic systems, namely, solutions of the
polymer poly-gamma-benzyl-glutamate [48] and the Nu formed by disk-like micelles of surfactant
molecules [49]. The strong dependence of K;; and K33 on the temperature and concentration can
be interpreted in terms of the varying contour length of the aggregates L and their persistence
length 4, i.e., bending flexibility, K1, /K33 o« L/A [2, 46]. The increase of K;; with L is expected
on the grounds of the R.B. Meyer’s argument that splay of long molecules is difficult from the
entropy point of view, as it creates vacancies that should be filled with the ends of the molecules
(or aggregates in the case of LCLCs) [18, 50]. Bend of long rigid rods might create similar
problems, but these could be avoided if the molecules (aggregates) are easy to bend, i.e., when A4
is small. The anomalous smallness of K, can be qualitatively explained by the fact that twist does
not create any “vacancies” if the aggregates arrange in layers perpendicular to the twist axis.

LCLCs exhibit broad biphasic regions in which the Ny (or columnar) phase coexists with
the isotropic phase. In coexistence, the aggregates are partitioned between the ordered and
disordered phases, with longer aggregates residing in the condensed phase. Prior studies
established that the increase of the chromonic concentration ¢ in a homogeneous Ny phase of
DSCG increases K;1 /K33 [46]. In the condensed Nu droplets, an increase of the temperature results
in a higher concentration of DSCG [51, 52], which in its turn, produces a larger K;;/K33
responsible for the transformation of the Ny droplets from a sphere-like tactoid to a torus-like
toroid [12, 52], Fig.2. These two shapes are topologically distinct, as described by Euler
characteristic y, calculated as y = 2 — 2g, where g is the number of “handles”; a sphere has no
handles, thus y=2, while a torus is a single handle, thus y=0.

The biphasic LCLC in Fig.2 represents a water dispersion of disodium cromoglycate

(DSCQG), of a concentration ¢ = 0.34 mol/kg, with an added polyethylene glycol (PEG) as a



condensing agent, at the concentration 0.012 mol/kg. The specimen is made deliberately thin so
that the transformation of a thin disk-like tactoid into a torus with a well-defined and wide isotropic
central region is clearly visible under a microscope, Fig.2. It starts with the detachment of the two
surface point defects-boojums from the cusps of tactoid, making them two disclinations of strength
+1/2 each. The disclinations approach each other and coalesce, forming a toroid with a large central
isotropic region. A similar transformation is observed when the concentration of PEG increases

[52].

(a)

(b)

Fig.2. Temperature-triggered tactoid-to-toroid transformation: (a) experimental PolScope textures

visualizing the director field; (b) director schemes for analytical estimates. Data from Ref. [52].

As follows from Eq.(1), the elastic energy of a toroid of a radius a and a thickness h with

the director written in cylindrical coordinates as i = {nr, My nz} = {0,1,0}, depends only on the
elastic constant of bend, F;,, = mhK33In (ri), where 7; is the radius of the isotropic core. The
i

energy of a circular tactoid of the same volume hA = wha? and the same surface area A depends
also on Kj4, since splay is present at the cusps, Fig.2b: Fy,. = %hKnlnrz—a + %hK33(1 —In2),
cb

where 1., is the radius of the core of the boojums [52]. As K;,/K33 increases, the first term in the
energy Fy,. increases and the tactoid becomes less energetically favorable as compared to the
toroid. The transition condition is K;; /K33 > 2 for a =15 pum, r; = r,;, =2 pum. Surface tension
can also contribute to the transformation scenario, but its effect is weaker than that of the elasticity

[52]. Numerical simulations, which account for both the elastic and surface energy consideration,



provide a more accurate description of the transition, including the appearance and coalescence of

the /2-disclinations [52].

Out-of-equilibrium and living systems show topological transformations in which y
changes. A cell dividing into two increases the net Euler characteristic from y=2 to y=4. An
inverse process, a reduction of y, in which holes are pierced into a sphere, is involved in
morphogenesis of multicellular organisms that develop from a spherical cell into torus-like or more
complicated multiply-connected bodies [53, 54]. The mechanisms by which living matter employs
surface and bulk forces to change topology, especially by decreasing y, are far from being
understood.

Liquid crystal droplets represent a simple model system in which the effect of the bulk and
surface forces on the shapes and the internal structure is, in principle, tractable. Droplets of
thermotropic liquid crystals dispersed in an immiscible isotropic fluid such as glycerin [55] or in
a polymer matrix [56] exhibit a spheroidal shape, y = 2, imposed by a strong interfacial tension,
with a complex interior pattern of molecular orientation that depends on the preferred alignment
at the surface. Wei et al. [57] and Peddireddy et al. [58] report on the shape change of Ny droplets
from a sphere to branched filamentous networks as a result of a reduction of surface tension. This
transformation preserves y=2. Liquid crystal droplets could also divide at phase transitions, thus
increasing y from 2 to 4, 6, etc., as demonstrated for cholesteric droplets during a transition to a
smectic A phase [59]. The tactoid-to-toroid topological transformation [52] adds to this list. When
K;1~Kj33, the droplet accommodates both splay and bend of the director n within a simply-
connected tactoid; when K, increases, the droplet could afford only bend, which results in a torus-

like shape with a hole in the center, Fig.2.

2. Nematic to twist-bend nematic: From K{; > K33 to K{; < K33.

The twist-bend nematic (NtB) formed by flexible dimers or banana-like molecules exhibits
a director field in the shape of a helicoid, maintaining a constant oblique angle 0 < 8, < /2 with
the helix axis ), which we direct along the 2z axis: h= {nx, ny, nz} =
{sin@,sin @, sinf,cos¢, cos By}, where @ =t;,z is the azimuthal angle, t;, = 27/psp,
Pep~10 nm is the pitch of the helicoid. The reason for this structure is the tendency of molecules

to induce a local bend [18, 34, 35, 36]. A pure bend of a constant curvature |fi X curlfi| = const,
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however, cannot fill the space. Geometrically, bend i X curlil is a vector along the principal
normal to the line that envelops the spatially-varying director [60]. The length of this vector at
point M is the bend curvature of the line at that point. To maintain a constant bend in space, the
line should be of a helicoidal shape. Such a line can be defined on a circular cylinder surface,
directed at a constant angle to the axis [31]; this geometry implies twist, which enables a constant
bend, hence the name of Ntg.

The NtB is typically observed upon cooling of an Ny; in the latter, the bend tendency
manifests itself in a very small K33, which makes K;, /K33 as high as 30 [25], [31]. Once the Nts
emerges upon cooling, the bend could exist only as a nanoscale deformation of the director i but
not as a macroscopic deformation of the helicoidal axis ¥. The reason is that ) is perpendicular
to surfaces of a constant azimuthal angle ¢: any bend or twist of ¥ changes the equilibrium py,,
i.e., violates the equidistance of the nanoscale Ntg pseudolayers. As a result, the optic axis in the
Nu, which is the director 1, and the optic axis in the Ntg, which is ¥, show dramatically different
textures in response to confinement or to an external field, Fig.3.

In the Ny of an Nrtg-forming mesogen, such as DTC-C9 in Fig.3g, whenever there is a
choice between splay and bend, the latter is realized. A good illustration is a Frederiks transition
in a sandwich-type cell with homeotropic anchoring. If the material is of a negative dielectric
anisotropy, Ae < 0, an electric field applied along the normal to the cell causes bend distortions in
the vertical plane, which appear as umbilics of a topological charge +1, Fig.3a,e [38]. In the plane
of the cell, the director around +1 defects show a clear preference for bend, Fig.3a, which is
understandable since K33 << K;;. Once the material is cooled down to the Ntg phase, the electric
field-induced textures of ¥ are very different, Fig. 3b,c,d,f. Above some threshold voltage, the
NrtB nucleates circular domains structurally similar to toric focal conic domains in a smectic A,
Fig.3c. Further increase of the voltage transforms the circular domains into elongated “oily
streaks” which expand and fill the space between the bounding plates [38, 61]. The textures of the
optic axis ¥ show a clear preference to splay, both in the plane of the cell, Fig.3b,c,d, and in the
vertical cross-section, Fig.3f. In other words, the Nu-to-Ntg transition is accompanied by a change
K11 K

K

from - 1 for the director fi in the Ny to =+ <« 1 for the helicoidal axis ¥ of the Ng.

33 33
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Fig.3. Electric field response of the Ny and Nts with negative dielectric anisotropy in a
homeotropic cell: (a) umbilics of the bend Frederiks transition in the Ny caused by the electric
field; note the predominance of bend around +1 defect; (b) a field-induced texture of the
heliconical axis )y in the Ntg; note the predominance of splay; (c¢) nucleation and (d) expansion of
the realigned Ntg structure with splay of ¥; (e) a scheme of bend in an Ny umbilic; (f) splay of
X in the vertical cross-section of the cell; (g) chemical structure of the Ntg-forming composition

DTC-C9:MTC5=7:3 by weight. Data from Ref. [38].



3. Nematic to ferroelectric nematic: From K;; < K33 to K1 >

K33-

Pioneering exploration [62] of the nematic RM734 formed by molecules with a strong longitudinal
dipole moments, ~10 D, revealed that the splay constant K, is very small in the Ny phase of this
material. The new phase that emerged from the Nu upon cooling, later identified as the uniaxial
ferroelectric nematic Nr [63], exhibited textures of domains with oppositely directed spontaneous
electric polarization P in planar cells.

In the N¥, the polarization vector is collinear with the director i. Splay is difficult since it
produces a bound charge of density p, = —div P, which increases the electrostatic energy. As
envisioned by R.B. Meyer [64] and detailed theoretically in the subsequent studies [65, 66, 67],
K, associated with (div fi)? is renormalized for the distortions developing over length scales
longer than the Debye screening length Ap: Ky = Ky (1 + 25/&2), where K, is the bare
modulus, of the same order as the one normally measured in a conventional paraelectric Nu, ép =

# is the so-called polarization penetration length, €¢g, is the dielectric permittivity of the
P

. . . / kpT . . .
material, &, is the electric constant, Ap = gi‘ief , e 1s the elementary electric charge, n is the

concentration of ions. For polarization density [68] P =5 x 1072C/m? and assumed
2
£€0~1O"9]>C<—m and K~10"11 N, one finds a very short &, ~2 nm. At the same time, the Debye

screening length is expected to be larger: At T=400 K, and n <10%3/m3, 1, >

2
10 nm. Therefore, the enhancement factor A—’j could be strong and the ratio K; /K5 in N could be

P

significantly larger than 1.

Very little is known about the elastic constants in the Nu phase of ferroelectric materials
and practically nothing is known about the elasticity of Nr. Chen et al [69] measured K; = 10K,
in the Ny phase of ferroelectric material DIO and expected [67] K; = 2 pN. Mertelj et. al. [62]
reported that in the Nu phase of RM734, K is even lower, about 0.4 pN. Since the bend constant
K3 of NF is not expected to experience electrostatic renormalization, it could be a few tens of pN;

Mertel;j et. al. [62] found K5 ~10-20 pN for the Ny phase of RM734.



The role of space charge in shaping elastic anisotropy of bend vs splay has been extensively
studied in the past for the ferroelectric chiral smectic C* (SmC*) [66, 70, 71, 72, 73]. Since the
polarization vector in SmC* is perpendicular to the long axes of molecules, electrostatic effects
lead to a large K3, as discussed by Link et al. [71] and Pattanaporkratana et al. [72] for -1
disclinations, Zhuang [70] and Dolganov et al. [74] for 2r domain walls. In the NF, electrostatic
effects increase K; rather than K3 since P is parallel to the long molecular axes; besides, these
effects might be stronger than in the SmC* since the polarization of the Nr is higher.

A qualitative evidence that K; > K5 in the Nr is presented by the textures of planar
monocrystalline Nr samples with air bubbles trapped between glass plates [75], Fig.4, domain
walls in planar cells with rubbed substrates [76] and walls in thin azimuthally degenerate films in
which the spatial variations of the polarization are not restricted by the externally imposed rubbing

directions, Fig.5 [77].

| | $§4‘ _____________
4: —————
Py oy
\A

\’_,’>\P2 /// v '\\
\ /By FRAARRRA LN
W ' SPASPASPASY '
A (R 1 T YV V'V S Sy
AIR BUBBLE N \\\ @ @ @ @ I,
My RRRRRRR P2 .
R S S » PR

Fig.4. Parabolic domain walls caused by an air bubble in a planar Nr cell. The parabola
bisects the two polarization fields, a uniform P; and a circular P,. The inset shows how the in-
plane realignment of P leads to two sheets of opposite charges which attract each other thus
stabilizing the wall. R is the rubbing direction on both plates of the sandwich-type sample; v is an

axis perpendicular to the wall. Redrawn from [75].

In a planar cell with a trapped air bubble, Fig.4, the polarization vector is subject to a
frustration between the unidirectional rubbing of the substrates which aligns P uniformly along

the rubbing direction R, and the circular interface of the bubble, which aligns P tangentially to
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itself. The frustration is resolved by four parabolic branches, emerging from the poles of the droplet
and separating the domain of a circular P, around the air bubble and the uniform far-field P;
dictated by the rubbing, Fig.4. This structure avoids splay thus the space charge is minimum, and
the parabolic domain walls avoid being charged since they bisect the uniform and circular
polarization fields [75]. In the description of the domain wall defect, one often assumes that the
polarization vector remains in the plane of the wall [70, 72, 75], i.e., in the plane of Fig.4. If that
is the case, then the projection P - v = P, of the polarization vector onto the axis v normal to the
wall increases while transitioning from P; to P,. As a result, the derivative —dP, /dv, which is the
space charge density, produces two oppositely charged sheets attracting each other [70, 72, 75].
Electrostatic attraction is opposed by orientational elasticity [70, 72, 75]. The balance of the two

yields an estimate of the domain wall width as the polarization penetration length [70], &p =

ggoK
p2

~1 nm, which is very short [70, 72, 75].

It turns out that parabolic as well as hyperbolic domain walls could form in the absence of
externally imposed unidirectional rubbing and the entrapped air bubbles, as an intrinsic feature of
the distorted polarization fields P(r) in samples in which the boundary conditions impose no
restriction on the in-plane alignment of P, Fig.5 [76, 77]. The polarization field tends to form
vortices to reduce the effects of depolarization field. Consider two situations. In one, the Nr
polarization within a sample of an area A = L? and thickness h, is uniform, P = {Px,Py,PZ} =

P{1,0,0}. It means that the two yz sides of the sample are charged with the surface densities +P.

The corresponding depolarization field and the electrostatic energy are then Epp = —5 and
0

PZL%n . . . T . .
Upp = W respectively. There is no elastic energy as the polarization is uniform. Consider now
0

a circular disk sample of the same area A = L? and thickness, in which P forms a circular vortex;
in cylindrical coordinates, P = {PT,Pw,PZ} = P{0,1,0}. Since P is everywhere tangential to the
surface and since there is no splay, the only energy is that one of the elastic bend [60]: Upepng =

L .
nK35hln T—+Ucore, where 7, and U,,..~TK33h are the molecular scale radius and the energy
core

ofthe vortex’ core, respectively; U, brings an inessential contribution to Uy and can be absorbed

. . . . U P22
into the rescaled 7,,,. The ratio of the energies of the two structures is then —2= =

L
bend meggK331n
Tcore
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. With L = 10 um, In——~10, and the estimates above, UUD £ ~10°, a huge number. It is only

Tcore bend
when L~10 nm, close to &p, that the two states show a similar energy. Of course, the surface

polarization charges can be screened by charges of free ions, so that the depolarization field is

P+o
reduced to Epp = ——
€&

. The typical surface charge of adsorbed ions reported for nematics [78,

79] is rather weak, o,~(10"* —107>)Cm™2, smaller than P =~ (4 —6) X 1072 Cm™2.
Although higher values of g, are possible, see the discussion below, one might still expect that
vortex states of Nr films with azimuthally degenerate anchoring are energetically similar or even

preferrable than extended areas of a uniform polarization.

(b) Ng,45°C
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Figure 5. DIO Nr thin films at a glycerin substrate. (a) Nu film with 27 splay-bend domain walls;
(b,c), Nr texture of conic-sections with prevailing circular bend and parabolic (b) or (c) hyperbolic
domain walls; 11 is depicted by white lines in (a-c); (d) parabolic domain wall separating a +1
vortex from a relatively uniform domain; note a composite defect representing a T-wall limited by
two -1/2 disclinations, visualized by PolScope; (e) eccentricity of different parts of the parabolic
wall in (d); (f) fitting the conic in (d) with directrix and eccentricity. Data from Ref.[77].
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The samples are prepared by spreading a thin (few micrometers) film of Nr onto the surface
of immiscible fluid, such as glycerin. Alternatively, one can use coatings with polymers such as
polystyrene that impose no in-plane azimuthal preference for the orientation of Ny [80] and Nr
[77]. Since the Nr exhibits no crystallographic axes, these Nr samples set no preferred direction of

P, except that P tends to be tangential to the interface to avoid depositing charges on it.

Figure 5a-c shows the textures of thin DIO films spread onto the surface of glycerin; the
upper surface is free. In the Nu phase, hybrid alignment of the director, tangential at the glycerin
and homeotropic at the free surface, leads to 2w domain walls of the “W” director geometry [81];
these 2 domain walls contain both splay and bend and are clearly distinguished in Fig.5a as bands
with four extinction bands. In the NF, the director and P are tangential to both the Ng-glycerin and
Ne-air interfaces. The most important feature is that the curvature lines of P and i in the N are
close to circles and circular arches, which implies prevalence of bend and formation of +1 vortices
P= {Pr, Py, PZ} = P{0,1,0}, Fig.5b,c. Each vortex is separated from a uniform or nearly uniform
P by walls shaped as parts of ellipses and parabolas, Figs. 5b, while two neighboring +1 vortices
are separated by hyperbolic walls, Fig. 5c.

The shapes of domain walls are verified with an equation of a conic, written in polar

coordinates (r,1) centered at the core of a circular vortex, as

£=2—cosy, )
where e is the eccentricity, d is the distance from the core to the directrix. The domain walls satisfy
Eq.(1) with either e = 1 (parabolic, or P-walls) or e > 1 (hyperbolic, or H-walls) everywhere,
except for the tip regions. Near the tips, the fits yield a much smaller e characteristic of elliptical
and circular arcs; these arcs are abbreviated as T-walls. The T-walls are 180° DWs, separating two
antiparallel polarizations, P and —P, and limited by two -1/2 disclinations.

The shapes of P- and H-walls are dictated by the Nr tendency to form vortex states and
avoid bound electric charge [77]. The equivalent of the bulk bound electric charge is the interfacial
charge of density g, = (P, — P,) - ¥;, where ¥, is the unit normal to a domain wall, pointing from
domain 2 towards domain 1. Away from the domain walls and the cores of circular vortices, |P;| =

|P,| = P. To be uncharged, a domain wall must bisect the angle between P; and P,, so that P; -

13



v, = P, - ¥,, which means that the components of the polarization along the normal to the wall

are continuous and equal each other while the projections onto the wall are antiparallel.

The remarkable bisecting properties of conics, elucidated millennia ago by Apollonius of
Perga [82], are often formulated in terms of light reflection [83]. Consider a parabola, Fig.6a. Light
emitted from a focus, which is the core of the circular vortex in the Nr case, is reflected by the
parabola along the lines parallel to the symmetry axis. A tangent to a parabola at a point (x,y)
makes equal angles with the radius-vector directed from the focus and with the reflected beam.
Equivalently, the angle 8, between P; and the P-wall and the angle 8, between P, and the P-wall

are equal, Fig.6a,

0, = 0, = arctan \/;, 3)

where 1 = and the origin of the Cartesian coordinates (x,y) is at the conic’s vertex. Therefore,
when a P-wall separates a circular vortex of P, from a uniform domain with P; orthogonal to the
parabola’s axis, its parabolic shape guarantees that P, - ¥; = P, - ¥, and carries no surface charge,
0, = 0. The bulk charge p,, is also zero since there is no splay of P; and P,. The H-wall features

a similar bisecting property which assures a zero g;, at the boundary between two vortices, Fig.6b.

One expects that the variation of the projection of P onto ¥; across the wall would create
two sheets of opposite charges if P remains in the plane of the sample [70, 72, 75], as in a Néel

wall in ferroelectric crystals; these two charged sheets are shown in Fig.4. Note that in the textures

in Fig.5, the width w of the P- and H- walls is ~10 pm [77], much wider than ép~ /&;OZK ~1 nm.

One reason is that the polarization is screened by ions, so that the domain width can be estimated

as w~ With egy~10~ 9 — K~ 107 N, w~10 pm, one finds P + ¢ = 107> =, a three

(P+ )2
orders of magnitude reduction from the un-screen polarization. One should not exclude also the
possibility of the twist of P, either around an in-plane axis, as in a Bloch wall, or around the twist

axis which is perpendicular to the film.

The combined defects representing a T-wall sandwiched between two -1/2 disclinations

are caused by the fact that the bend angle § between the vectors P; and P, near the vertex
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increases, making the polarization field “hairpin”-like, Fig.6¢. The -1/2 disclinations replace this

large bent angle § = m — 26 with two small angles 8 = 6, thus reducing the bend energy [77].

(c)

T-wall
p~o 2% - wa
- =

—

o0 (o

-1/2

P-wal R’@ 8(x > ©) >0 ‘ |x
Fig.6. Schemes of (a) parabolic, (b) hyperbolic, and (c) T-walls sandwiched between two -1/2

disclinations. Data from Ref.[77].

The composite defects representing T-walls bounded by half-integer disclinations have
been predicted for Nr [84, 85] as analogs of the domain walls seeded by cosmic strings in the
early Universe models [86] and of domain walls bounded by half-quantum vortices recently found
in a superfluid *He [87, 88]. In the Universe and *He scenarios, the composite domain walls appear
after a phase transition from a symmetric phase that contains isolated strings/disclinations. In the
less symmetric phase, the isolated disclinations are topologically prohibited and must be connected
by a domain wall. In contrast, the -1/2 disclinations at the ends of T-walls described by Kumari et
al. [77] serve to reduce the elastic energy of strong bends, Fig.6¢, and appear without any reference

to the potential seeds in the more symmetric phase.

In 1910, G. Friedel and F. Grandjean [89] described ellipses and hyperbolas seen under a
microscope in a liquid crystal of a type unknown at that time. A later analysis [90, 91] revealed
that these conics are caused by a layered structure of the liquid crystal known nowadays as a

smectic A (SmA). The layers are flexible but preserve equidistance when curled in space. The
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director 1 is normal to the equidistant layers and can experience only splay but not twist nor bend.
The families of flexible equidistant surfaces form focal surfaces at which the layers curvatures
diverge. To reduce the energy of these singular focal surfaces, the SmA reduces them to lines of
confocal conics, such as an ellipse-hyperbola or two parabolas [92]; these pairs form the frame of
the celebrated focal conic domains (FCDs) [60]. Gray lines in Fig. 6 could be interpreted as cuts
of smectic layers wrapped around a parabola and hyperbola of FCDs, Fig.7. The Nr conics are
shaped by a different mechanism, rooted in the avoidance of the space charge. In the Nf, fi(r) and
P(r) tend to be solenoidal, divii = divP = 0, while the director in SmA is irrotational, curlii =
0. Besides this difference in physical underpinnings, there is also a distinction in how the conics
in the Nr and SmA heal cusp-like singularities. In the Nr, the cusps are attended by a bend of the
polar vector P, which necessitates the -1/2 disclinations and the T-walls at the tips of the conics,

while in the SmA, a similar cusp could be healed by weak splay of the apolar director i = —n.

Fig. 7. Smectic A textures of focal conic domains with (a) ellipses in the plane of the sample; (b)
hyperbolas in the plane of the sample; (c,d) two 3D views of SmA domain walls formed by focal

conic domains.
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CONCLUSION

As indicated by de Gennes [1], the full form of the Frank-Oseen energy (1) is “too complex
to be of practical use,” either because the values of the corresponding elastic constants are not
known or because the equations are prohibitively difficult to solve. One often resorts to the so-
called one-constant approximation in which all constants are assumed to be equal. The presented
examples underscore the importance of elastic constants disparity. The problems might still be
“simple” when only a few types of distortions are at play, such as splay and saddle-splay in the
description of FCDs in SmA [93]. So far, the textures of the Nr have been explored for relatively
thin quasi-2D films. Bulk samples with a 3D divergence-free polarization field might reveal more
complex structures. For example, 1. Luk’yanchuk et al. [94] predicted that a small spherical particle
of solid ferroelectrics should produce a hopfion, which is a set of interlinked circles. Hopfions
have been already observed in liquid crystals such as nematic-based ferromagnets by I.I. Smalyukh
etal. [95, 96, 97]. A need for a hopfion in 3D can be justified by the argument that P is everywhere
tangential to the spherical surface but instead of forming a singular vortex-like disclination, it
features a core with P escaped into the third dimension [94], a notion well known in the physics

of disclinations in liquid crystals [98, 99]. Droplets of Nr might be a natural home for hopfions.

The list of new discoveries has been recently extended by the twist-bend ferroelectric
nematic Ntgr, synthesized at the Military University of Technology in Poland [100]. The new
phase, formed by achiral polar molecules, with a spontaneous electric polarization along the
heliconical axis, is a ferroelectric analog of the paraelectric Nts. The pseudolayers of the Nrtgr,
associated with the constant phase of the molecular tilts, tend to keep equidistance, which hinders
the twist and bend of the heliconical axis. On the other hand, splay of this axis is also hindered,
since it creates space charge. Remarkably, the pitch of heliconical Nrtgr structure is in the
submicron range and changes under an externally applied dc electric field. At higher field, the
structure shows a shorter pitch and a smaller conical angle, eventually unwinding into a uniform
nematic structure, a behavior analogous to the paraelectric response of the oblique helicoidal

cholesteric [40, 41, 101].

The author is thankful to N. A. Clark, D. Golovaty, A. Jékli, M.O. Lavrentovich, L.
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