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On the topology of the space of bi-orderings of a free
group on two generators

Serhii Dovhyi and Kyrylo Muliarchyk

Abstract. Let G be a group. We can topologize the spaces of left-orderings LO(G) and bi-orderings
O(G) of G with the product topology. These spaces may or may not have isolated points. It is known
that LO(F, ) has no isolated points, where Fy, is a free group on n > 2 generators. In this paper, we
show that O(Fy) has no isolated points as well, thereby resolving the second part of Conjecture 2.2
by Sikora [Bull. London Math. Soc. 36 (2004), 519-526].

1. Introduction

Given a group G, a linear order < is a left order if it is invariant under left multiplication,
i.e., x < y implies zx < zy for all x, y,z € G. A group that admits a left order is called
left-orderable. Elements that are bigger or smaller than the identity element of a group are
called positive and negative, respectively.

Another way to define left-orderability is as follows:

Proposition 1.1. A group G is left-orderable if and only if there exists a subset P C G
such that

(1) P-PCP;
(2) forevery g € G, exactlyoneof g =1, g € P or g~ € P holds.

Such a subset P is called a positive cone.

For a given order < on a group G, the positive cone P~ associated with this order
is defined by P~ := {g € G | g > 1}. For a given positive cone P C G, the associated
order <p is defined by x <p y if x~'y € P. A group that admits a linear ordering which
is invariant under both left and right multiplication is called bi-orderable or just order-
able.

Proposition 1.2. A group G is orderable if and only if it admits a subset P satisfying
conditions (1) and (2) in Proposition 1.1, and in addition, the condition

(3) gPg ' C Pforallg €G.
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Proposition 1.3. The family of orderable groups is closed under the following operations:
taking subgroups, direct products, free products (first proved in [10]), quotients by normal
convex subgroups. Moreover, orders on G X G, and Gy * G, can be taken as the exten-
sions of orders on G| and G,. The order on G/N can be defined as follows: gN is positive
in S/y if g is positive in G and g ¢ N.

In particular, free groups are orderable as free products of copies of the (orderable)
group Z.

Let X be any set, and P(X) be its power set. The spaces LO(G) C P(G) (resp. O(G) C
P(G)) of all left-invariant (bi-invariant) positive cones in G was defined in [9]. As there is
a one-to-one correspondence between left-orderings (bi-orderings) of G and left-invariant
(bi-invariant) positive cones in G, it is natural to describe LO(G) (resp. O(G)) as the space
of all left-orderings of G (the space of all bi-orderings of G).

We follow [1] in our exposition below. The power set can be identified with the set
of all functions X — {0, 1}, via the characteristic function y4: X — {0, 1} associated
to a subset A C X. Endow {0, 1} with the discrete topology, and then one can consider
P(X) as a product of copies of {0, 1} indexed by the set X. The product topology is
defined as the smallest topology on the power set P(X) such that for each x € X the sets
Ur={ACX|xeA}and Ul ={A C X | x ¢ A} are open. A basis for the product
topology can be obtained by taking finite intersections of various Uy and U¢.

It is then natural to ask:

Question 1.4. How does the topological space LO(G) (resp. O(G)) look like for a given
group G?

The following theorem was proved in [9]:

Theorem 1.5. Let G be a countable orderable group. Then the space LO(G) is a compact
totally disconnected Hausdorff metric space. The space O(G) is a closed subset of LO(G).

Let < be a left-ordering of a group G, and let a finite chain of inequalities g9 < g1 <
-+« < g, be given. Then the set of all left-orderings in which all these inequalities hold
forms an open neighborhood of < in LO(G). The set of all such neighborhoods for all
finite chains of inequalities is a local base for the topology of LO(G) at the point <.

Remark 1.6. Instead of a chain of inequalities gg < g; < --- < g, equivalently we can
consider the sequence x; = gglgl >1,...,xp, = g;llgn > 1,s0{x1,...,x,} C P< for
the positive cone P~ associated with the order <.

A left-ordering of G is isolated in LO(G) if it is the only left-ordering satisfying some
finite chain of inequalities. Some groups G have isolated points in LO(G), while others
do not. Thus, by Theorem 1.5 for a left-orderable (bi-orderable) countable group G, the
space LO(G) (resp. O(G)) is homeomorphic to the Cantor set if and only if it has no
isolated points. We would, therefore, like to address the existence of isolated points in the
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space LO(G) (resp. O(G)) as the first step towards understanding the structure of LO(G)
(resp. O(G)).

It was established in [9] that a free abelian group 74 , d > 2 has no isolated orderings,
and, therefore, the space LO(Z%) = O(Z%) is isomorphic to the Cantor space. The funda-
mental group of the Klein bottle K = (x,y | xyx~! = y~!) has isolated orders [1]. In fact,
K admits only finitely many (four) left-orders, all of them are isolated. The Thompson’s
group F has eight isolated bi-orders while O(F) is uncountable [6].

Another important object is the free group on two generators F,. The following the-
orem was firstly proved in [4]:

Theorem 1.7. The space LO(F3) has no isolated points.

Later, Theorem 1.7 has been proved in many different ways. We are mostly interested
in the idea presented in [5]. A slightly modified strategy of this proof (see [, The-
orem 10.15]) is as follows:

Sketch of the proof of Theorem 1.7. Let < be a left order on the free group F5.
Step 1. Embed F; into a countable dense left-ordered group G.
Step 2. Construct an order-preserving bijection t: G — Q.

Step 3. F, acts on G by left multiplication. Using ¢ transform it to the action on Q.
Namely, for g € F; let p(g)(¢(h)) = t(gh) where & runs over G and so ¢ (h)
runs over Q. Extend p(g) to an action R — R.

Step 4. Let a and b be the generators of a free group F5. Then p(a) and p(b) generate
its copy in the group Homeo (R) of orientation-preserving homeomorphisms
of R. Let «, B € Homeo (R) be “small” perturbations of p(a), p(b), respect-
ively. Consider a subgroup H = («, ) of Homeo (R) with the induced left
order <.

Step 5. It remains to check that for an appropriate choice of «, 8, H is a free group,
and the new left order < on it is “close” but different from the initial left
order < on F>». [

The critical part of the above proof is the construction in steps 1-3. More generally,
each countable left-ordered group order-preserving embeds into Homeo (R) in a similar
way. This embedding is called the dynamical realization of a left-ordered group.

In this paper, we study the space O(F,) of orderings of a free group F> on two gener-
ators.

The main result of this paper is the following theorem:

Theorem 1.8. The space O(F>) of orderings of a free group on two generators has no
isolated points.

Remark 1.9. Although in this paper we prove Theorem 1.8 only for O(F3), all arguments
can be appropriately adapted for all O(F,), n > 2.
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We will follow the strategy from the above proof of Theorem 1.7 in our proof. Simil-
arly to step 1 from the above proof, we need to embed F, into a group with some density
property. Our construction requires a stronger condition than a simple density. We will
call this strong density. It is discussed in Section 3. Also, we prove that every countable
bi-ordered group embeds into a countable strongly dense group.

Following steps 2 and 3, in Section 4 we construct two dynamical realizations of bi-
ordered groups, one with action on Q x Q equipped with lexicographic order, and another
with action on R. Equivalently, we construct embeddings of a countable ordered group G
into the group Homeo (Q x Q) of the order-preserving homeomorphisms of Q x Q and
Homeo (R). An important difference between bi-ordered and left-ordered cases is that
Homeo4 (Q x Q) and Homeo (R) are left-ordered but not bi-ordered groups. Therefore,
not every faithful action on Q x Q or R generates an order.

Finally, in Section 5 we show how to perturb a given order on F,. We begin with
a dynamical realization of F, (as an action on Q x Q). Then, we define a family of
admissible changes of this action. Every member of this family will generate an order
on F,. To finish the proof of Theorem 1.8, we will choose a new order that sufficiently
approximate the original order on F5.

2. Further notation

Let (G, <) be an ordered group, and g, 7 € G. We will use the following notations:

(1) We denote the conjugation by g” := hgh™!.

(2) A subset A C G is said to be convex if for any f,h € X, f < h, every element
g € G satistying f < g < h belongs to A.

(3) We denote by I'; = I'g (G, <) the largest convex subgroup of G that does not con-
tain g € G \ {1}. We denote the set of all such subgroups by I' = I'(G, <). Simil-
arly, we denote by Ty the smallest convex subgroup of G containing g € G \ {1},
and by I the set of all such subgroups. The group G acts on I’ by conjugation.
This action satisfies (Fg)h = I'gn. The set I is naturally ordered by inclusion. The
action of G by conjugation preserves this order.

(4) We will write g < h when I'y & T'j,, or, equivalently, g € T'.

(5) We say that the elements of G are equivalent if they define the same convex sub-
group. Namely, g ~ hif I’y = I'p.

3. Strongly dense groups

Definition 3.1. An ordered group (G, <) is called strongly dense (with respect to the
order <) if the following conditions are satisfied:

(1) Vgi1,82 € G, g1 K g2,3g3 € G suchthat g1 K g3 K g2;
(2) Vg1 € G3g2,83 € G such that g, K g1 K g3.
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In other words, the group G is strongly dense if the corresponding set of convex sub-
groups I, ordered by inclusion, is dense and does not contain the smallest and largest
elements. Replacement of the relation < with the relation < in Definition 3.1 above leads
to the definition of a dense group. In the definition of a dense group, the second condition
is omitted because the analogous condition is automatically satisfied.

Another approach to defining strongly dense groups is given below.

Definition 3.2. Let (H, <) be an ordered group.
(1) Apair (W', h"),h',h" € H,h' < h",is called a gap if there is no h € H such that
h < h < h”.Equivalently, (h', ") is a gap if Ty» = Tp.
(2) An element h € H is called a peak if there is no hy € H such that i < h;.
Equivalently, £ is a peak if [, = H.
(3) Anelement i € H is called a bottom if there isno iy € H \ {1} such that i > h;.
Equivalently, /4 is a bottom if I, = {1}.

It is easy to see that an ordered group is strongly dense if and only if it contains no
gaps, peaks, and bottoms.
The following theorem is the key result of this section.

Theorem 3.3. Any countable ordered group F embeds in some countable strongly dense
ordered group G.

Our plan for proving this theorem is to eliminate peaks, gaps, and bottoms consecut-
ively. By eliminating a peak, gap, or bottom of a countable group H, we understand the
embedding H in a countable ordered group H; without this peak, gap, or bottom. For
example, if we want to eliminate a gap (A’,h”) in H, then we construct H; so there is
hy € Hy suchthath’' < hy < h”.

The next lemma states that we can always eliminate gaps, peaks, and bottoms.

Lemma 3.4. For any countable ordered group H and any peak, gap, or bottom in H,
there is its countable extension H without this peak, gap, or bottom.

Firstly, we prove that Lemma 3.4 implies Theorem 3.3.

Proof of Theorem 3.3. Assume that we can eliminate gaps, peaks, and bottoms in any
countable ordered group. Since F is a countable group, it contains at most countably
many gaps, peaks, and bottoms. So we can enumerate all of them. Consider the chain
F =Gy = G(()O) < G(()l) < G(()z) < --- of groups, constructed in the following way: if the
group G((,i) contains the gap, peak, or bottom with number i then we eliminate it, otherwise
we set G(giﬂ) = Géi). The group G(()i) is countable ordered and does not contain the ith
gap, peak, or bottom of the group F = Gy.

Let G; = |J; Gé’). The group G is a countable ordered group without any gap, peak,
and bottom of F' = Gy, but possibly with new gaps, peaks, and bottoms. Similarly, con-
struct anew chain G| = G§°) < Gfl) <---.Geta countable ordered G, = | J; Gfi) without
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any gaps, peaks, and bottoms of G;. Then construct the chain F = Gy < G <--- of count-
able ordered groups, where G; 4 does not contain any gap, peak, and bottom of G;. Let
G = |J; Gi. Then G is a countable ordered group.

Assume that G is not strongly dense. Then it contains some gap, peak, or bottom. Let
it be the gap (g1, 82), where g1 € G;, g2 € G;. Then (g1, g2) is a gap in Gy, j3, SO it
has been eliminated during construction of Gpax{;, j3+1- This means G > Gpaxgi, j3+1 does
not contain the gap (g1, g2). Contradiction. Similarly, the cases where G contains a peak
or a bottom are also impossible.

So G is a countable strongly dense group. ]

It remains to prove Lemma 3.4.

Proof of Lemma 3.4. How to eliminate a peak h € H ? The group Z x H, where Z = (z)
is an infinite cyclic group ordered lexicographically, does not have the peak & € H, since
z> h,YVh € H.

How to eliminate a bottom h € H ? The group H x Z ordered lexicographically does
not have the bottom & € H, since z < h,Vh € H \ {1}.

How to eliminate a gap (h', h'"")? To remove the gap (h’, "), we want to construct
a new ordered group H; > H, with order < on H; as an extension of the order < on H,
and there is an element z € H such that i/ <« z < h” in H,. We will search for H; as
a restricted wreath product Zwrg H, where Z = (z) is the infinite cyclic group. In fact,
we add a new generator z to H and put it between A’ and 4" to remove the gap.

Remark 3.5. The orderability of a restricted wreath product has been proved in [7]. How-
ever, the order used in [7] does not eliminate gaps.

We think of H; as a free product H * Z quotient by some relations. When may an
element & € H commute with z? Elements z and 4 commute if and only if z# = z. Since
the group H; supposed to be ordered, ' < z < h” implies (W')" < z* = z < (W")".
This is possible only if conjugation by 4 preserves the classes Cy and Cpr.

Let M be a set of all those &, i.e., M := {h € H | (h')" ~ h'}. Note that M is a sub-
group of G. Conjugation by any # € H preserves the order < and the class Cy/. Since
(W', h") is a gap, Cp» is the smallest class larger than Cj,. Therefore, conjugation by A
also preserves the class Cpr. This gives

M=1{heH|0H) ~h".

Each element i € H * Z could be written in the form & = ho(z81)"1 ... (%) where
n>0,hg,hy,....h, € H g e {£l},i=1,...,n.

Remark 3.6. Now we are ready to define H; as a restricted wreath product. Let €2 be the
set of left cosets of M in H. The action of H on Q is left multiplication. Then H; :=
Zwrqo H .
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Recall that by definition H; = K x H, where K := @weg Z, is the direct sum of
copies of Z,, := Z indexed by the set ©2. Note that each w € Q has a form w = hM
for some h € H. We will use notation (zK)* | k e Z, for elements of Z,. Then z1M
h2M commute for all hi1,h, € H.In addition, z™ and m commute for allm € M.
Taking into account the above notation, we can rewrite H; as

and z

Hy = {ho(FymM  (ZFnytmM |y >0, ho,....hy e H ki €Z,i =1,...,n}.
The multiplication e in H; comes from it being a restricted wreath product:
M M [ORC) @ @ @ @
(h(()l)(Zkl )hl M o (anl )hn1 M) ° (h(()Z) (Zkl )hl M o (anz )hnzM)

1) 2 (2) (1) (1) 72, (1) 2 5, 2) (2
_ h(()l)h(()z)(Zkl )ho hi’'M o (anl )ho hny M(Zk1 )h1 M o (Zk"2 )hnzM.

Then the inverse is defined as follows:

(h()(Zkl)th o (an)h,,M)—l — ho—l(z—kl)halth o (Z_k")halh”M.

Let us define the order on H. Firstly, we extend the relation <« from H to H; by the
following rules:
(1) zmM « M 5f (<« (W) (or, equivalently, (h")" < (h”)"2) and
hy'hy & M,
() h < zMM it h <« ()", and h > zZMM i b (B

Remark 3.7. From the definition of M, one can see that for every /1, h, € H exactly one
of MM « oM oM ;M op b M = hy M holds. Therefore, all 2™ 1y € H,
are comparable with each other with respect to the relation <. Also every z"'"™ h, € H,
is comparable with every h € H.

Keeping Remark 3.7 in mind, we can define the positive cone P; of H; now as fol-
lows: For h = ho(zk1 )M (zkn)inM < H et "M be the largest (with respect to the
relation <) of M j =1,...,n. Now we say that i € P; if either iy > zhiM gand
hg € P (where P is the positive cone of H), or hy <K zhiM and k; > 0.

Checking the properties of Proposition 1.2 for P is straightforward.

Finally, note that /’ < z™ <« h”, so the group H; does not contain the gap (h’, h").
This completes the proof of Lemma 3.4. ]

Let F be an ordered group and G be its ordered extension. We say that a positive
element g € G is small with respect to F if g < f for any positive f € F.

Lemma 3.8. Let F be an ordered group with no bottoms, and let G > F be its strongly
dense extension constructed as in Theorem 3.3. Then the group G does not contain ele-
ments that are small with respect to F.

Proof. Assume that there is an element g € G that is small with respect to F in G. Recall
that G = Ui G;,with F = Gy < G| < G, < ---. Let G; be the first group in the chain that
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contains g. Let G; = |J; Gl(i )1 with G; | = G}S)l < Gl-(i)l < Gl-(i)l < ---,and let Gl(i )1 be
the first group in the chain that contains g. The group Gl-(i )1 is constructed from the group
Gl-(i Il) by eliminating one of its gaps, peaks or bottoms as in Lemma 3.4.

Since every bottom of Gl(i Il) is small with respect to F, the group Gi(i Il) has no
bottoms. Peak elimination clearly does not add small elements.

Let Gl-(i )1 eliminate the gap (g1, g2) of Gl-(i Il). Then, as was shown in Lemma 3.4,

g€ Gl(i )1 can be written as

g = ho(ZFymM  (KnyhnM

where hg, hy, ..., h, € Gl.(i:l).
Let hg be the largest in ho, (zK1)M . (zK»)mM This means ho > (ho),i =
1,...,n,and hy > 1 as g > 1. Then

g> = (ho(ZH)MM (gl M2
— hg((zkl)hoth o (an)h()hnM)((Zkl)th o (an)hnM)

— ho(l’l()(Zkl)hOth o (an)hohnM(Zkl)th o (an)hnM).

Note that hg 3> ()" since hg > (h2)", so

ho(zkl)h()h]M o (an)hohnM(Zkl)th o (an)hnM > 1

and g2 > hy.
Similarly, if (Zki)hiM is the largest in Ao, (Zkl)th, o, (zk")h”M, then
) h;
g > ("M > g,
In both cases, g is grater than some positive element g’ € Gi(i Il). Since Gl(i Il) has no
small with respect to F elements, g’ > f’ > 1 for some f’ € F. Since F has no bottoms,
f'> f > 1forsome f € F.So

g2>g > f'>f?
and g > f. Thus g is not small with respect to F. ]

Corollary 3.9. Let F, be an ordered free group, and let G > F, be its strongly dense
extension as in Theorem 3.3. Then G has no small with respect to F, elements.

Proof. This is true since F, with any order has no bottoms. Indeed, let f* € F, be a bottom.
Let g € F, be any element that does not commute with f. We may assume f > & > 1.
Otherwise, we replace g with g~!. Then f, € r 'r. It follows from [3, Theorem 2.3.1]
that the group I'y is normal in ff and the quotient 7 /p , is abelian. Since f is a bot-
tom, 'y = {1} and I fry = . But I's is not abelian since it contains non-commutative
elements f and f&.So F, has no bottoms. |
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4. Dynamical realization of bi-ordered groups

The dynamical realization of a left-ordered group G rises from the action of G on itself
by left multiplication. If G is a bi-ordered group, then it acts order-preserving on I'. This
action corresponds to the action on Q as in the standard dynamical realization construction
for left-ordered groups. However, this action is insufficient to construct a sort of dynamical
realization. For instance, if G is abelian, then the conjugation action is always trivial, so it
provides no information about the order of G. Hence we need a more complicated action.
In this section, we will construct an action of G on Q x Q to prove the following theorem.

Theorem 4.1. A countable group G is bi-ordered if and only if it acts on Q X Q in the
following way:
@ the image of each layer ¢ x Q, g € Q is also a layer, and the induced action
of G on the set {q x Q} of layers preserves the natural order;

()  for any layer g x Q, the action by any element g € G on the second component
of ¢ X Q is either trivial, increasing, or decreasing;

(IIl) for each g € G \ {1} there is a layer qg x Q such that the fixed points under
the action by g are exactly the pairs (q, p) € Q x Q withq > qg.

Proof. We prove the “if” part by showing that any group of all such actions on Q x Q is
ordered. Let F be the set of all such actions on Q x Q, and let H C F be a group. We
say g € H is positive (negative) if it increases (decreases) the second component in the
layer g; x Q. Clearly, every nontrivial action is either positive or negative. Consider two
positive elements g, n € H. Then g5, = max{qg, qr} and the action of gh increases the
second component in the layer g5 x Q. So, gh is a positive element. Consider a positive
g€ Handany h € H. Then gon X Q = h(gg x Q), and the action of g" on Ggn X Q is
the conjugated action of g on gz x Q. So, it increases the second component. Then, ghis
positive. Thus, H is an ordered group.

It remains to prove the “only if” part of the theorem. Using Theorem 3.3, we may
assume that the group G is strongly dense. Then, by Cantor’s back and forth argument [2],
the set of convex subgroups I' = I'(G) is order-preserving isomorphic Q. We associate T’
with the first components in Q x Q. We plan to construct an ordered dense group S and
associate it with the second components in Q x Q. Thus, constructing the action on Q x Q
is equivalent to constructing the action on I" x S. We are looking for the action o of G
on I' x § of the following form. Let g be an order-preserving action of G on I', and
let {ar ) be a collection of order-preserving actions of G on S. Then the action « is
given by

a(g, (T,s)) = (xo(g,T),ar(g,s)), geG, Tel, ses. 4.1

We require the actions «g, ar to satisfy the following conditions:

(1) for every g € G \ {1}, there exists a convex subgroup I'(g) € I such that
ap(g,I') =T forallT" > I'(g);
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(2) each action ar(g, -) is either trivial, increasing, or decreasing;

(3) the action ar(g, ) is trivial if and only if ' > I'(g) or g = 1;

(4) the action ar(g)(g,-) is increasing for g > 1 and decreasing for g < 1;
(5) apr(g,ar(h,s)) = ar(gh,s), forallg,h e G,s € S, T €T
Condition (5) implies that & defined by (4.1) is a group action. Indeed,

g-(h-(T.s))=g-(h-T.ar(h,s)) = (g-(h-T),anr(g ar(h,s)))

= ((gh) - I'.ar(gh.s)) = (gh) - (T.s).

Conditions (1)—(3) mean that the action « satisfies conditions (I)—(III) of the theorem.

We have
D

axn

(IID)

the action « order-preservingly permutes layers I' x S according to the ac-
tion a;

for a fixed layer I' x S the action ar(g, ) is either trivial, increasing, or de-
creasing by condition (2);

foreach g € G \ {1}, there is a layer I"(g) x S such that the fixed points under
the action a(g, -) are exactly the pairs (I, s) € I' x S with " > T'(g);

Condition (4) gives a characterization of the order

av)

g > 1 (respectively, g < 1) if the action o (g)(g, -) is increasing (respectively,
decreasing).

Next, we are going to build the group S and such actions. For ¢y we take the conjuga-
tion action g (g, ") = (I')&. We will take each action (g, -) to be a left multiplication by
some sg r € S. Then, with I'(g) = I'g, conditions (1) and (2) are automatically satisfied.
Conditions (3)—(5) are transformed into

(3") sgr =1lifandonlyif g € T;

(4') sg,r, > 1forallg > 1,and sy r, < 1forall g < 1;

(5") Sgryn + Snr = sgn,r forallg,h € G, T eT.

The action «g splits I" into orbits. Orbits are equivalence classes and they partition
I'=0; U, U ---. For each orbit O;, we choose a representative I'; € ;. Let also
G; = Ng(T') be the normalizer of I'; in G. Clearly, G; < G, and the order on G induces
the order on G;. Then I'; is a normal convex subgroup of G;. Therefore, the quotient group
H; =Y /r, is ordered with the order given by hT; € H; is positive if & is positive in G;
and h ¢ T;.

For each I" € ©;, we choose hr € G such that (I')*T = T;. For a pair (g,T') € G x 0;
consider the element s r = h(r)z ghy'. We have

) =T, (THE' = ()%, and ()'sr = (D)F)'os =T,

So hg’r € G;.
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Let S = (x; H;) * Foo, Where Foo = (fr | I € ') is an infinitely generated free group.
The group S is ordered as a free product of ordered groups; the order on S extends the
orders on each H; and is necessarily dense since the center of S is trivial. Indeed, if the
order on § is not dense, then there is the smallest positive element g € S. But then for any
h € S, not commuting with g, either 1 < g < gorl < ghi1 < g holds.

Remark 4.2. The action @: G x (I" x §) — T’ x S obviously extends to the action &’: G x
(T'x 8’y - I’ x S’ for any S’ > S. The action ¢’ is given by

o'(g,(T,5)) = (o(g, 7). ar(g,5)), g€G, Tel, ses.

Thus, in this construction, we can replace S with any countable ordered dense group
S’ > 8S.
We set
ser = foye(herT) fr'. (8.T) € G x 0.
It remains to verify that the elements s,  satisfy conditions (3")—(5").

Condition (3'): sg,r = 1 if and only if g € I'. If (') # T, then sgr # 1 since
Jaye # Sr. In this case, g ¢ I'. Assume that (I')¥ = I". Then sz r = 1 is equivalent
tohgr=gmeT;iorge (TP =T. So sgr = lifandonlyif g € T.

Condition (4'): sg.r, > 1 for g > 1. Since (Tg)¢ = Ty, sgr, = (hg,r, i) s > 1
when hg r, I > 1in H;. Note that g ¢ T'g. So by 3" sgr, 7 land hg 1, I'; # 1. Then
her,Ti > lin H; ifhgr, > 1in G. Buthgr, = g"™ > lasg > L.

Condition (5'): Sg, ()22 * Sg,,T' = Sg,g,,T'- We have

Sgr e - Sgar = (fimymya (g, (=T fp)e) - (firye (g, r Ti) fr1)
= furyeyer (hgy (rye2 i) (hgy i) f1!
= firyre2 (hg, (rye2 - hgy 0 Ti) frt
= fiys (hrys2ys g1l rys, - hrys2 g2 Ti) fr!
= fyme (hryns (§182)hr ' T) fr!

= Sgig2.T-
This completes the proof of Theorem 4.1. ]

Although the dynamical realization constructed in Theorem 4.1 is sufficient for the
purposes of this paper, it may be inconvenient for others. For example, the actions on
Q x Q are not continuous (if Q x Q is granted with the standard topology). Therefore,
we construct an alternative dynamical realization, with an action on R, similarly to the
standard dynamical realization of left-ordered groups. We will show that every countable
ordered group embeds into Homeo (R) granted with an order defined below.

Leta set P C Homeo4 (R) be given by

P := {f € Homeot (R) | sup{x: f(x) > x} > sup{x: f(x) < x}}. 4.2)
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Here we consider the supremum of the empty set to be —oco. It is easy to see that P satisfies
the following properties:

() P-PCP;
(2) fPf~' C P forevery f € Homeo (R);
3 PNnP =g
So, P defines a partial order on Homeo (R) given by f < g when f~1g € P.

Theorem 4.3. Every countable ordered group G embeds into Homeo (R) taken with the
partial order defined by the positive cone P given by (4.2).

Proof. By Theorem 4.1, there is a special action o of G on Q x Q. Consider Q x Q with
lexicographic order. Then it is an unbounded dense countable set, therefore, by Cantor’s
back and forth argument [2], it is order equivalent to Q. Let £: Q x Q@ — Q be an order-
preserving bijection. For each g € G, we define the map p(g): R — R firstly on Q by the
rule

p(g)(t(q.r)) = t(a(g,(q.7))),

then we extend it continuously to the action on R. Then g + p(g) is the embedding of G
into Homeo (R). |

Remark 4.4. The order on G may be considered to be a left order. Then the standard
dynamical left-ordered realization p;: G — Homeo (R) of the bi-ordered group G proves
Theorem 4.3. In fact, for every g > 1 in G, the graph of p;(g) is above the line y = x.
Therefore, we have

sup{x: p(g)(x) > x} = 400 and sup{x:p;(g)(x) < x} = —o0.

However, the properties of p and p; are quite different.

Consider a layer ¢ x Q. It corresponds to rational points on the interval

1, = (inf{t(q.r):r € Q},sup{t(q.r):r € Q}).

Let I := {l;:q € Q} be the set of all such intervals. Then it is easy to see that
(a) forany g € G and I € I wehave p(g)(1) € I;

(b) forany g € G and I € I inequalities p(g)(x) > x or p(g)(x) < x hold for all
x € I simultaneously;

(c) forany g # 1 there is an interval I; = I;, = (p,q) € I such that p(g)(x) = x
for x > q;

(d) forany g # 1 and any I < I there is x € / such that p(g)(x) # x;
(e) forany g > landanyx € I, g(x) > x.
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5. Changing the order

In this section, we prove our main result, Theorem 1.8. That is, any given order < on
F, = (a,b) is notisolated in O(F3). For any collection of positive elements g1,...,g, > 1,
we need to construct a new order < # < such that g1, ..., g, > 1.

Let F, embed into a strongly dense countable group G, and the order < on G extend
the order < on F,. Everywhere in this section, we let I'y; = I'g (G, <) and ' = (G, <)
be considered with respect to the group G and order < on it. We consider the dynamical
realization of G.

Recall that the dynamical realization was constructed in Section 4 using the action o
of G > F, on ' x S. By Remark 4.2, we may replace the group S with any countable
ordered dense extension S’ > S in this construction. We consider S’ = S * Fo(g ) & Fo(g ),
where Fég) = (far | ell), Féé’) = (fp.r | I €T) are infinitely generated free groups.
The group S’ is ordered since it is a free product of ordered groups, and we choose an
order on S’ to extend the order on S. Moreover, this order is dense since the center of S’
is trivial. We will construct a family of alternative actions of F, on I’ x S’, where S’ is
a countable ordered extension of S.

The action o’ was constructed through the (conjugation) action ag of G on I’ and
a collection of (left multiplications by s r) actions {a.} . on S’. Namely,

g-(T,s)=(T)%,sgrs), g€F, el ses.

For simplicity, we will write « instead of o'

Similarly to the construction in Theorem 4.1, we build alternative actions F, on I’ x S’.
Similarly to «, the new action S is defined by an action 8¢ of G on I, and a collection of
actions {Br }pc on S’. Each action Br (g, ) is the left multiplication by s, € S".

To construct the action § of the group F» = (a, b), we need to define the actions of its
generators a, b. We begin with defining the action ¢ on the set of convex subgroups I
Fix some convex subgroup 'y € . We define

Bo(e,T)=c-T =), T>ToU (o) , celaatbb ).

In other words, ¢ - I' = (I')¢ for 'y < (I')° N I". We extend the action By so that
Bo(a,-) and Bo(b,-) are order-preserving bijections I' — I'. We can always extend these
actions using Cantor’s back and forth argument. Moreover, for any I' < I'yp U (1"0)5_1
we can choose ¢ - I' to be any convex subgroup < (I'g U (I‘o)”_l)" =Ty U Ty’ c €
{a,a”',b,b71}.

Everywhere below, g - I means Bo(g,I") and g - (T, s) means B(g, (T, 5)).

Let us now define the actions Br. Recall that the action Sr is a multiplication by
s;,r € §'.For ¢ € {a, b}, we define

J ser. T'>ToU (o),
T\ for. T <ToU Ty
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and

-1
Sl =0l p) = Seemrrs T>To U (To),
emnl Mol -1 [ < Ty U (Tp)°.

C,C71~F’

We also denote f.-1 p := f~', . Thenforc € {a,a™',b,b™"}

c,cL.T”

ser., T'>ToU () ",
sér={c’r o U (I'o) 5.1

fer. T <TouU (o)< .

In other words, the new actions B (c, -) are equal to the old actions ar (¢, -) for sufficiently
large I'’s, and are multiplications by f.r € Fo(g ) % Fég ) < S for sufficiently small I"’s.
Forg=cp...c1,c; €{a,a”',b,b71},i =1,...,n, wehave

g-(T,s) =c,,...cz-c1-(F,s)=cn...cz-(c1-F,sé1s) =...

=(cn...c1-T.s, ...5..9).

We denote
I o /
Sg T =S¢, Ty Sei, Ty (5.2)

Then we have
g-(T,s)=(g-T,syrs), gekFy, Tel, seSs. (5.3)

Remark 5.1. The constructed action S depends on the choice of the order on S’, the
convex subgroup I'y, and the actions of a and b on the small convex subgroups.

Since IT and S’ are countable dense sets, we can see 8 as an action on Q x Q instead
of ' x §’.

Theorem 5.2. For any choice of the order on S’, Ty, and any actions of a, b on T,
the constructed as above action B satisfies conditions (1)-(I11) from Theorem 4.1, and,
therefore, B defines some order < on Fj.

Proof. Recall that by (5.3), forany I" € T, we have g - (I',s) = (g - T, s;,rs). Similarly
to the proof of Theorem 4.1, we will show that for any g € F, \ {1} there is a convex
subgroup I'y such that s;,  # lifandonly if ' < I'y,and g - I' = I" for I > T’ Then
the action 8 defines the order < on F3, given by g > 1 when s; > 1inS"

g

Recall that the initial order < is given by g > 1 when sg,r, > 1 in S’. Consider
g=¢Cn...c1 #1,¢; €{a,a™',b,b™'}. Recall that then by (5.2)

) ’
Sg,I = S¢,,Ty + -+ Sey, Ty

. P
In this product, each s, . is either sc;,r; or fe; ;. Let

8 =Ci—1...C1
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be the word containing the last i — 1 letters of the word g. In particular, g; = 1 is the
trivial word. Note that I'; = g; - T". Recall that by (5.1)

-1 _ -1
Ser, =Ser; < Ti >ToU @)% & T'>git- (U (Ip) ).

Let
: _ -1
I =gt (To U (To) ).

Then I" = Fg) is the largest convex subgroup such that the i th from the right letter séi r;
in the word s;, risan f-letter (i.e., equal to f¢, ;). Also, for a set of indices

I={i1,i2,...,ik|1§i1 <i2<"'<ik§n}

we denote
and

We claim that for g € F; either g = 1 or the convex subgroup Fé, is one of the Fé(,i)’s
or Fél)’s. Namely, the largest of them such that Sé,r = 1. We prove this statement by
induction on the length of g. The base case g = 1 holds trivially.

Let g # 1 be a reduced word and assume that for any shorter word / # 1 there exists
a convex subgroup I'; € {F;(,l)v 1",(!1)} such that S;z,r # lifand only if ' < T/, and

h-T=T forl >Tj.

Let Iy y < T, <+ < T} y be the convex subgroups I‘g)’s and Fé(,l)’s ordered by
inclusion. '
Consider the case I' < I‘é’l. Then " < Fg), 1 <i < n, and therefore

r_ ’ _
Sg,r - Sc,,,l"n t 'Scl,Fl - an,Fn s ]{CI,FI

isan f-word, i.e., every letter of it is an f -letter (an element of Fo(g) * Fo(g)). So s;,’r #1
as a nontrivial reduced word in the free group Fo(g ) x Fo(cl,’ ). In particular, s;,’rg . # 1.

Consider the case I" > I‘;jN. Then I" > Fg), 1 <i < n, and therefore

/ — o / —_ —
Sg’l" - SCn,Fn . 'Sclsrl - Scnarn .. 'SC1,F1 - Sg’l".

AlsoT > I with I = {1.2.....n}.Sos, . = ser = 1.

It remains to consider I' € (Iy |, I'; y]. If s o # 1 for all ' € (I'y ;, Ty ] then
theorem is proven with T'y = Ty . LetI" € (l“g,’k, F;’kH] and s, - = 1. We choose the
smallest k for which such I' exists. So s}, - # 1 forall I € (I'; ;, F;,’k]. We will show
T, =T/
g g.k’

In the word s’

o0 We combine consecutive s-letters and f'-letters. Write

Sgr = S1f152f2 .51 fiS141
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where s; € S and f; € Fég ) % Fs O All of s;’s and f;’s are nonempty words except
possibly s; and s;4;. Note that all f;’s are nontrivial as elements of the free group
Fo(g) * Fo(f So sg r = lis possible only if some s5; = 1. Let

’ _ _
S; = Sc, T, -+ S¢,. Ty =S¢ ,Ty -+ S¢, Ty = 1.

Here s; is an s-subword so all its letter are s- letters This means I > Fé’ ), j=r, L.
Also s¢, r, ...Sc, r, = lifand only if I" > Fg with I = {r, ..., t}. Since

Ie gy gl

we have I‘;,k > min{ré(])’ I‘(r)7 e Fg)}.
We write
g = uvw,
where

U=Cp...Crq1, V=Cr...C;, and w =cs—1...C1.

Then we have
Si =Sy, =S, pr =Sowl = 1. (5.4)

Consider a convex subgroup r>1 ek and let 5; = s ~ . .s’ ~ be the subword

of sg 7 whose letters are located at the same positions in sg f "as the Tetters of s; in s/ gl
Here

Fl = F, F,'.:,_l =C(i- Fl‘.
Then, since [ > min{F(r), el Fg)}, 5; is an s-word, and, since I > Fé,]), 5; = 1. Sim-
ilarly to (5.4), we have

5i = Sl/) = S;,w F=Swi =1
Note that we also have
veo(w-IN=w-IN'=w-T
Therefore,
ve(w-T,s)=(w-T,5s)=w-T,s) (5.5)

whenever I' > F/
Let & be obtamed from g by removing the subword v. We have

h=(cy...cr41)(Ct=1...c1) = uw.
Note that the word £ is shorter than g. We claim that for r> F;, x we have
h-(T,s)=g-(T.s).
Consider h~lg = (uw) 'uvw = w™lvw. We have

hlg. (Tos)=wvw-(T,s) = wlv- (w- f’sw,fs)'
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Using (5.5), we get
Wlg- Ty =w™-(w-Tos, 55) = [T.9).

Thus,
g (T,9)=h-(h1g-(T,s))=h-(T,s).
Ifh =1, welmmedlatelyhavesgﬁ —s 5= =land g- F=1.T=TforallT > F'
Recall that s, 1. # 1 for I' < F’ Therefore Iy = F’
Leth # 1 Then, after applylng the 1nduct1ve assumpt10n we obtain

s ==s =1 and g-T=h-T=T

/

g,f‘ h,T

for all T > I' ek U I}. Here I = I for some m. Note that every I} ; is one of
the I'; ;’s. Andshr = 1 implies I, < Fék+1 So T < F’ . Then T/ ok UF’ = F/
Aga1nsg~—landg F—Fforalll">1"k,sol"/—f" l

Now we can prove the main result of this paper.

Proof of Theorem 1.8. We need to show that a given order < on F is not isolated. That
is for any sequence of positive elements gy, ..., gx there is another order < < satisfying
g1,---,8k > 1. We consider the order < to be associated with the action 8 as in The-
orem 5.2. We need to choose a convex subgroup I'g € I, an order on S’, and an action S
of F, on I'. By choosing sufficiently small T'y, we guarantee gi,..., gx > 1, and by
choosing appropriate order on S’ and action 8, we make the new order < different from
the old order <.
For g; = c,(fl) . ci’), =1,....k, by (5.2) we have

/ / /
S, =S iy oS i
giTg = Se® r® 50 po

I =Tg. T =¢”.T®, j =1.....n; — 1. Then, if [y < (\;_, T'\", we have
O _ O 6 _ @y _
FJIH = c’ F i (th )c,(l) and s;](_,-) = scl(_i).
Therefore,

’ o ’ e o
Sgi’rgi = sc,(lll),l—‘,(lll) N S(;Y)’FY) = SCy(lli),Fr(Lli) e SCY),FP) Sgi’ng > 1.

Similarly, for I' > T, we have s; 1 = sg;r = 1. In this case, Iy, = I'g; and g; > 1.
By choosing

k n;
ro< ("
i=1j=1
we get g1,..., gk > 1 for any order on S’ and any action Sy.

By Corollary 3.9, there is a nontrivial element h € F, N (5, Nis, I’;i). Without
loss of generality, we can assume & > 1. Let i = ¢y, ... ¢1. Consider two cases:
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Case 1. T, = (T'y)* = (I'y)?. In this case, I'j, is a normal convex subgroup of Fs.
We obtain the new order < by reversing the signs of elements of I'j,. In other words,
the new order < is generated by the positive cone

P.=(P<\Ty) U(PZ' NTy).

where P is the positive cone of the order <. Clearly, this does not affect the signs of
g1,---,8k- Also, the new order < is different from the old order < since I'j, is nontrivial
by Lemma 3.8.

Case 2. Ty, # (Ty)® or T, # (I'y)?. Consider a total left preorder <j, given by x <j, y
when (I'y)* < (T'y)”. Recall that a preorder is a reflexive and transitive relation for which
x <y and y < x may hold simultaneously. Note that the left preorder <j, is completely
determined by the action oy and the convex subgroup I';,. Namely, x <j y if and only
if ag(x, T'y) = (Tp)* < (T'h)” = ao(y, I'y). The similarly defined left preorder < for
an order < described in Theorem 5.2 depends only on the action By and the convex sub-
group I';.

In order to change the order <, we change the induced left preorder <j. First, we
choose sufficiently small Tp so that I'; = T';. By the above discussion, it is sufficient to
take Iy < ﬂ i1 1“(] ) Then, we change the left preorder <; by changing the action «.
We will use the method similar to the argument for showing that free products do not
admit isolated left-orders [8]. For its adopted version for the free group F3, see [1, The-
orem 10.15].

We construct sequences dy, d>, ... and x1, X3, ... as following:

Let x; = d, € {a,a',b,b~'} be the minimal letter with respect to <j. We choose
d; € {a,a™', b, b~} to minimize x; := d;x;_1, i = 2,3, ... with respect to <j,. Note
that x; is a minimal (but not necessarily the smallest) word of length i in <j. Equivalently,
X; minimizes oo (x;, ['). Note that because 'y, is not normal in F,, we have 1 > x; >,
Xp Sp e

Let 'y = (I'p)*. Then, Ty < (I'y)*, for any word x of length less than m. In particu-
lar, 'y < F(J) j =1,...,m. Thus, for an order < as in Theorem 5.2, we have 1"}’1 =TIY.
Also, since Fo <Iy < ﬂl 1 ﬂ F(Z), g1,...,&k > 1 holds.

Letd = dp41 and d’ € {a,a S b b='3\ {d,d ™"} be such that x,,, 41 = dxp, <j,
d'xm <p Xm. Then, since x,,+1 <p Xm, We have

Xma1 <p max{c X, xm), c=d.d.
In terms of the conjugation action, for I' = (I'y,)*+! this means
F<F0U(F0)C, C:d,d/.

Therefore, for the new action B¢y, we may choose 8(d,T") and B(d’, T') to be any sulffi-
ciently small (for instance, < I') convex subgroups.
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We build B so that

Bo(d1.Th) = ao(d1,Th) = (Tp)™",
Bo(dz, (Tp)*") = ag(da, (Tp)*") = (T')™2,
Bo(ds, (Tp)*?) = ao(ds, (Tp)*2) = (Tp)™2,

Bo(dm, (Tp)™ ") = ao(dm, (Tp)™1) = (Tn)™",

and
Bo(d. (Tp)™) > Bo(d', (Tp)*™).

In terms of the left preorder <, the last means dx,, > d’x,, while in the left preorder <y,
we have dx,, <j d’x,,. Clearly, then the left preorders <j; and =<, are different, and,
therefore the orders < and < are different.

Remark 5.3. In terms of the order <, for a positive / the condition dx,, <j, d’'x, means
hxm < (4 Xmyn (5.6)

for sufficiently large n € N. In the order <, the inequality (5.6) is reversed.

So we can take the order < different from the order <, but still satisfying

g1,---,8% > 1.
Therefore, the order < is not isolated in O(F3). [

Corollary 5.4. The space O(F,) is homeomorphic to the Cantor set.
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