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heterospecific frequency on herbivory.

3. Density and frequency varied in the direction and function of their effects on her-
bivory depending on the plant species and attacking herbivore. As expected, Piscidia
piscipula frequency had a negative linear effect on M. zapota leaf-chewer damage,
whereas conspecific density did not affect chewer damage on this species. In con-
trast, density and frequency had non-linear effects on C. dodecandra chewer dam-
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dondecandra damage by leafhoppers.
4. These findings call for more work jointly assessing plant inter-specific variation in
density- and frequency-dependent variation in herbivory and its underlying drivers.
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INTRODUCTION Hambick, Bjorkman, & Hopkins, 2010), abundance or density

(e.g., Rausher & Feeny, 1980; Underwood & Halpern, 2012), genotypic

Plant populations and communities vary in numerous features that
have important ecological impacts on herbivores and, thus, on the
outcome of plant-herbivore interactions. Population-level factors

involving conspecific plants include patch size (e.g., Bach, 1988;

diversity (e.g., Abdala-Roberts & Mooney, 2014; Hughes, Inouye, John-
son, Underwood, & Vellend, 2008), and patch spatial distribution and
connectivity (e.g., Tack & Roslin, 2010). Among these, plant conspecific

density, i.e.,, number of individuals of a species per unit of area, has
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been one of the most studied (Bach, 1980; Hamback et al., 2010; Shea,
Smyth, Sheppard, Morton, & Chalimbaud, 2000; Underwood &
Halpern, 2012) and lies at the center of theoretical and empirical work
on topics such as herbivore functional responses (Abdala-Roberts &
Mooney, 2015) and plant population regulation mediated by herbivory
(Wright, 2002). On the other hand, community-level characteristics
involve interactions among heterospecific plants and include features
such as plant species richness (e.g., Andow, 1991; Loreau et al., 2001),
functional diversity (e.g., Schuldt et al., 2014), and species composition
(Vehvildinen, Koricheva, & Ruohoméki, 2007). This line of research has
shed insight into how habitat complexity, mediated by variables such as
species relative frequencies or commonness, affects plant-herbivore
interactions and the role plant trait inter-specific variation plays in shap-
ing such interaction outcomes (Agrawal, Lau, & Hambick, 2006; Mor-
eira, Abdala-Roberts, Rasmann, Castagneyrol, & Mooney, 2016).
Combined, research on population- and community-level effects has
deepened our understanding of plant bottom-up controls on herbivory
and how interaction outcomes affect ecological communities and
ecosystems.

Studies on the effects of conspecific plant density on herbivores
have found contrasting results. For example, a number of investi-
gations have reported that herbivore attack rates decrease with
host plant density indicative of a negative density-dependent
response (e.g., Type Il, i.e., non-linear saturating, functional response
depictive of herbivore satiation; Holling, 1966; Abdala-Roberts &
Mooney, 2013), producing a so-called resource dilution effect (Kim &
Underwood, 2015; Otway, Hector, & Lawton, 2005), whereas others
have found increasing attack with host plant density, that is, a
resource concentration effect (Kim & Underwood, 2015; Root, 1973)
(Table S1). The latter pattern, termed positive density-dependence, is
Model 1971;

Janzen, 1970), which predicts that herbivory decreases with distance

expected under the Janzen-Connell (Connell,
from parental trees mediated by decreasing density of seeds or seed-
lings away from fruiting adults (reviewed by Hyatt et al., 2003; Car-
son, Anderson, Leigh, & Schnitzer, 2008). Resource concentration
effects may occur, for example, through higher herbivore recruitment
or greater residence time on high-density host plants or patches
(Hamback, Inouye, Andersson, & Underwood, 2014; Kim &
Underwood, 2015). In contrast, dilution effects can arise, for example,
if herbivores avoid high densities when competition results in reduced
plant growth (and nutritional status) and/or higher defences (Halpern,
Bednar, Chisholm, & Underwood, 2014). In addition, both processes
can be also influenced by how herbivore dispersal rates relate to
patch size or distance between patches, where different scaling rela-
tionships as a function of herbivore movement lead to one or the
other outcome (Hambidck & Englund, 2005; Hambick, Vogt,
Tscharntke, Thies, & Englund, 2007). Despite abundant evidence for
herbivore (positive or negative) density-dependent responses, rela-
tively few studies have experimentally manipulated conspecific plant
density (see studies in Abdala-Roberts, Parra-Tabla, Moreira, &
Ramos-Zapata, 2017), and this includes Janzen-Connell work (but see
Bagchi et al., 2010; Germany, Bruelheide, & Erfmeier, 2019). Efforts
to manipulate multiple levels of conspecific plant density are required
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to establish a causal link between plant density and herbivory as well
as to robustly assess the strength and type of density-dependent
responses and their ecological significance.

Host plant frequency or relative density, that is, how abundant a
species is relative to other co-occurring species (“heterospecific fre-
quency “hereafter), is an important community-level driver of her-
bivory which often varies with plant diversity or composition
(reviewed by Hamback et al, 2014; Underwood, Inouye, &
Hamback, 2014). Here, increasing heterospecific frequency can drive
reductions in herbivory on focal species by interfering with
the detection of host plants through mechanisms such as chemical
masking or physical interference (e.g., Abdala-Roberts et al., 2015;
Castagneyrol, Giffard, Péré, & Jactel, 2013; Hambick, Agren, &
Ericson, 2000), resulting in so-called associational resistance
(reviewed by Barbosa et al., 2009; Underwood et al, 2014)
(Table S1). In other cases, however, a higher frequency of heterospe-
cifics may increase damage on host plants when plant species
(e.g., closely related taxa) share herbivores which spill over from
neighboring heterospecifics to focal hosts, resulting in associational
susceptibility or apparent competition (Barbosa et al., 2009; Holt &
Bonsall, 2017) (Table S1). This body of research has contributed to
understand and predict herbivore responses to plant community
Abdala-Roberts, &
Mooney, 2017), and how herbivory in turn mediates plant diversity

complexity (Moreira, Pérez-Ramos,
and species composition (Wright, 2002).
Conspecific density and heterospecific frequency effects on her-
bivory have historically been studied separately (see Kim &
Underwood, 2015). For example, Janzen-Connell studies testing for
seedling conspecific density effects usually do not experimentally
account for heterospecific frequency effects, whereas work testing
for associational effects has not accounted for changes in focal plant
densities (but see Bach, 1980). Addressing these factors separately
can lead to erroneous conclusions regarding their influence on
herbivory, one reason being that they are likely to be correlated. For
example, all else being equal, increasing host plant density is directly
related to decreasing heterospecific frequency if the density of
neighbours remains constant. Accordingly, if herbivory increases with
conspecific density, it is unclear whether this is evidence of density-
dependent foraging (as predicted by the Janzen-Connell Model) or if
this pattern is due to greater apparency mediated by lower heterospe-
cific frequency. At the same time, however, these factors can also
vary independently; for example, if both host plant density and het-
erospecific density increase, thenheterospecific frequency would
remain constant. In addition, another important consideration is that
each driver may influence herbivory differently owing to different
underlying mechanisms, which can only be teased a part by experi-
mentally manipulating both factors. For instance, herbivores rely on
different chemical and physical cues for locating host plants in con-
specific versus heterospecific patches (Hamback et al., 2014); the for-
mer involves selecting host plants in response to intra-specific
variation whereas the latter involves the detection of host plants
within a matrix of heterospecific neighbouring plants. Overall, studies

testing both factors for multiple co-occurring plant species are needed
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to address patterns of inter-specific variation and its underlying
drivers, as well as increase inference on variability or similarity in the
outcomes of plant-herbivore interactions.

We conducted a field experiment in a tropical dry forest site in
Yucatan (Mexico) to test for conspecific tree seedling density and
heterospecific frequency effects on insect leaf herbivory on Cordia
dodecandra and Manilkara zapota (“focal species” hereafter), co-
occurring species that are rare at the study site. These species are
generally rare in tropical dry forests in Yucatan (Pennington &
Sarukhan, 2005), including the study site (L. Abdala-Roberts pers.
obs.), and have undergone population reductions due to anthropo-
genic pressures such as logging (Cadmara-Romero, Jiménez-Osornio,
Estrada-Medina, & Hernandez Garcia, 2021; Weterings, Weterings-
Schonck, Vester, & Calmé, 2008). A third more common species,
Piscidia piscipula, was used to test for heterospecific effects on these
focal species and is highly common in tropical dry forests in the
northern Yucatan Peninsula (often as a dominant species; Penning-
ton & Sarukhan, 2005) and is therefore likely to be a neighbour of
the other two in understory patches across sites in the region
(Pennington & Sarukhan, 2005). Based on this, understanding con-
specific and heterospecific seedling interactions associated with C.
dodecandra and M. zapota has important implications for conserva-
tion and restoration practices involving these species. To this end,
we measured leaf damage by chewing insects on both focal species
as well as leafhopper damage on one of them (C. dondecandra).
Specifically, we asked: (i) Does conspecific seedling density of the
focal species influence insect herbivory? (ii) Does the frequency of
P. piscipula influence herbivory on the focal species? And (iii) Are
density and frequency effects similarly common and do their effects
vary in strength or function depending on the plant or herbivore spe-
cies? Higher heterospecific frequency was predicted to negatively
influence herbivory on the focal species (i.e., associational resistance)
as the tree species seedlings did not share insect herbivores at the
study site. We did not have predictions for conspecific density
effects given lack of information on behaviour and other traits
influencing functional responses of the observed herbivores attack-
ing focal species. Resulting patterns can inform further work on
causes behind any such plant-based bottom-up controls on

herbivory.

MATERIALS AND METHODS
Study system

The study was conducted at the San Nicolas Preserve (20°55'53.1"N,
88°33'3"W), a c. 500-ha protected site managed by the Centro de
Educacion Ambiental de la Peninsula de Yucatan (CEAPY) located
nearby the town of Cenotillo, Yucatan (Mexico). This study area con-
sists mainly of secondary tropical dry forests protected since 2007.
Piscidia piscipula (Fabaceae) is highly common at several sites (L.
Abdala-Roberts, pers. obs.), and is likewise highly common in tropical

dry forests of the northern Yucatan Peninsula (Pennington &
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Sarukhan, 2005). There are also a number of species which are rare at
the study site, including focal species C. dodecandra (Boraginaceae)
and M. zapota (Sapotaceae), but are important food sources for local
vertebrate fauna, including birds and mammals (Cancino, 2017) and
highly valued timber species (Canché-Colli, Rodriguez, & Canto, 2020).
Both focal species have been strongly negatively impacted by illegal
logging and land use change in the Yucatan Peninsula (Camara-Romero
et al, 2021; Weterings et al., 2008) as well as at the study site (L.
Abdala-Roberts, pers. obs.).

Observations during the study indicated that M. zapota was only
attacked by chewing insects, mainly leaf cutter ants (Acromyrmex
octospinosus), whereas C. dodecandra was heavily attacked by sap-
feeding insects (order Heteroptera), mainly a leafhopper, Idona
sp. (Hemiptera, Cicadellidae), and in the case of chewing insects by
chrysomelid beetles (Coleoptera, Chrysomelidae). On the other hand,
P. piscipula (i.e., the heterospecific neighbour) does not share
herbivores with the former two, as it was attacked mainly by a leaf
miner (Lepidoptera, Gelechioidea) and by grasshoppers (Orthoptera,
Acrididae), and to a lesser extent by beetles (Coleoptera, Curculioni-
dae). The most common herbivores attacking each plant species were
therefore different, suggesting little to no overlap among tree species

in associated herbivore communities.

Experimental design and response variables

Seeds were obtained from 6 to 7 adult trees of each species sourced
from tropical dry forest remnants or edges near the town of Bacalar,
in southern Quintana Roo (Mexico), ca. 250 km south of San Nicolas.
In early July 2021, we pooled seeds across parental trees and germi-
nated them in a greenhouse at the Preserve. In late August 2021,
once seedlings were 1-1.5 months old, we planted them in 1 by 1 m
understory quadrats (units of replication) of varying densities of each
focal species and frequencies of P. piscipula. For each focal species,
we established 12 density by frequency combinations (sensu Kim &
Underwood, 2015), involving eight levels of focal species density (1, 2,
3, 4, 6,9, 12 and 18 individuals per 1-m? quadrat) and six levels
(0, 0.25, 0.33, 0.50, 0.67, and 0.75 per m? quadrat) of P. piscipula fre-
quency (see Table S2; Figures S1 and S2; in the case of heterospecific
frequency, values were obtained from dividing the number of seed-
lings of P. piscipula by the total number of seedlings in the plot). This
design was replicated across six nearby sites which were similar in for-
est physiognomy and understory conditions (L. Abdala-Roberts, pers.
obs.). Overall, study sites were composed of successional tropical dry
forest vegetation (c. 20- to 30-year-old) with some elements of older
vegetation (larger trees), and the understory was partially shaded with
some canopy openings (Figure S2). For quadrats with M. zapota, each
level of density or frequency was replicated 3-6 times and 3-12 times,
respectively, whereas for quadrats with C. dodecandra, 4-10 and 4-15
times, respectively. We established at total of 96 quadrats (N = 949
plants), 53 of which tested for effects of conspecific plant density and
heterospecific frequency on C. dodecandra (568 plants: 369 of C. dode-
candra and 199 of P. piscipula) and 36 used to test for density and
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TABLE 1 Results from general linear models selected based on AIC and likelihood ratio test comparisons (see Table S3) testing for the effects
of conspecific density of the focal plant species and heterospecific (Piscidia piscipula) frequency on percent of leaf area removed by chewing
insects (chewer damage) on Manilkara zapota (model conditional R? = 0.19) and Cordia dodecandra (conditional R? = 0.34) seedlings, and on
chlorosis severity due to leaf hopper feeding (leafhopper damage) on C. dodecandra seedlings (conditional R? = 0.58).

Manilkara zapota

Cordia dodecandra

Chewer damage

Chewer damage

Leafhopper damage

DFnum,den F p DFnum.den
Plant Height 1,29 1.12 0.299 1,47
Density 1,29 2.07 0.161 1,45
Density? - - - 1,45
Frequency 1,29 4.26 0.048 1,46
Frequency? - - - 1,46

F p DFnum,den F p
8.16 0.006 1,47 0.16 0.694
7.84 0.007 1,47 433 0.043
11.34 0.002 - - -
4.65 0.036 1,47 5.56 0.023
472 0.035 - - -

Note: F-values, degrees of freedom (DF,,um, den) and associated p-values for each factor are shown. Significant p-values (<0.05) are shown in bold. Models
also included plant height as a covariate, as well as the random effect of site and its interactions with density and frequency (see Section 2).

frequency effects on M. zapota (381 plants: 255 of M. zapota and
126 of P. piscipula). Seedling height ranged from c. 7 to 20 cm depend-
ing on the species (see ahead). Distance between quadrats at each site
was ca. 2 m, and plants were spaced by ca. 25 cm within each quadrat.
Past studies testing for density and/or frequency effects using seed-
lings or herbs have used similar inter-plot distances (e.g, Hambéck
et al, 2000; Kim & Underwood, 2015; Moreira, Mooney, Zas, &
Sampedro, 2012), whereby adjacent plots may not always be indepen-
dent (e.g., depending on herbivore mobility). Quadrats was weeded
1 month prior to transplantation. Distance between sites was at
least 20 m.

In late November 2021, 2 months after transplantation, we
selected a random subsample of one to three seedlings for quadrats
with focal species densities of 1-9 individuals, and five seedlings for
quadrats with focal species densities of 12 and 18 (N = 107 M.
zapota seedlings and 168 C. dodecandra seedlings). For both M.
zapota and C. dodecandra, we visually estimated the percent of leaf
area removed by chewing insect herbivores (chewer damage hereaf-
ter) for all leaves per plant (in all cases by the same experienced
observer, LAR). In addition, for C. dodecandra we visually scored the
whole-plant level of chlorosis (scale: 1-4, ranging from a small
amount of chlorosis on some leaves to extensive chlorosis on all
leaves) caused by leafhopper feeding (leafhopper damage hereafter),
which fed exclusively on this species. All visual estimates of leaf
damage were based on exact estimates which have been shown to
be equally (or more) accurate than binned estimates (i.e., based on a
scale; see Johnson, Bertrand, & Turcotte, 2016). In addition, we ran
a regression on actual vs. visually estimated values of percent leaf
area loss for C. dodecandra using leaves from saplings which were
not part of the experiment, and found a strong relationship
(R? = 0.94, N = 40). Actual percent leaf area loss for this subsample
was estimated using BioLeaf - Foliar Analysis™ a professional
mobile application (Brandoli Machado et al., 2016). It was not possi-
ble to estimate visual estimates precision for M. zapota since there
were no available seedlings or saplings for leaf collection. We did
not collect leaves from experimental seedlings of either species as
this would likely affect future growth or survival (particularly for M.

zapota which had 2-3 leaves), thus compromising data collection
planned for the following seasons. For both focal species, we mea-
sured plant height at the beginning of the experiment (M. zapota:
7.59 £ 0.24 cm [mean + SE]; C. dodecandra: 27.95 + 0.53 cm; P. pis-
cipula: 21.55 + 0.59 cm). Seedling mortality throughout the experi-
ment was negligible (<5%) and therefore did not influence treatment

effects.

Statistical analyses

We ran general linear mixed models jointly testing for the effects of
conspecific plant density and heterospecific frequency (number of P.
piscipula individuals divided by the total plant number per quadrat),
both treated as continuous variables, on chewer damage separately for
each focal species, and in the case of C. dodecandra also on leafhopper
damage. Accordingly, by simultaneously testing for both factors, ana-
lyses test for each driver while holding the other constant. In all cases,
we used mean values across plants per quadrat. Models also included
site (random) as a spatial block (dropped for the M. zapota model as it
did not explain any variance) as well as plant height as a covariate to
control for effects of focal plant size on herbivory. Chewer damage was
square-root transformed to normalize model residuals (Figure S3). We
tested for quadratic terms and an interaction between linear terms for
density and frequency on all responses. Specifically, we compared qua-
dratic models and those with interactions against the simplified model
with linear terms for frequency and density using likelihood ratio tests
and selected those with the lowest AIC (see Table S3 for model struc-
tures and comparisons). In the case of chewer damage on C. dodecan-
dra, the model with quadratic terms for both density and frequency
outperformed the simplified model with linear terms (LRT x? = 11.88,
p = 0.003, AIC = 127.62; see Table S3) and was thus chosen. Models
including the density by frequency interaction never outperformed the
simplified linear model (Table S3) and were thus rejected.

We visualized the effects of density and frequency on chewer and
leafhopper damage on each focal species by plotting partial residuals

(i.e., model estimates after removing the effects of covariates and fixed
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FIGURE 1 Partial residuals graphs (estimates after removing the effects of additional covariates and fixed and random effects in selected
models - See Table 1) showing the effects of conspecific density of focal plant species and frequency of heterospecific (Piscidia piscipula)

on percent of leaf area removed by chewing insects (‘“chewer damage”) for Manilkara zapota and Cordia dodecandra seedlings, and on damage by
leaf hoppers (“leafhopper damage”) for C. dodecandra seedlings. (a) Density effects (non-significant) on chewer damage on M. zapota.

(b) Frequency effects on chewer damage on M. zapota. (c) Density effects on chewer damage on C. dodecandra. (d) Frequency effects on

chewer damage on C. dodecandra. (e) Density effects on leaf hopper damage on C. dodecandra. (f) Frequency on leafhopper damage on C.
dodecandra. Densities are the number of individuals of each focal species m~2 and frequencies the proportion of individuals represented by

P. piscipula m—2.

and random effects) against each predictor. All models were ran in RESULTS
R software version 3.06.0 (R Core Team, 2013) using the Imer
function from the ImerTest package (Kuznetsova, Brockhoff, & Leaf damage by chewing insects on M. zapota was on average 4.53

Christensen, 2017). +1.11% and ranged from O and 22.67% across quadrats, whereas
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mean chewer damage on C. dodecandra was 2.65 + 0.39% and ranged
from O to 15.36%. In addition, the mean score of leafhopper damage,
which was exclusive to C. dodecandra, was 2.66 + 0.15 and ranged
from 1.00 to 4.00.

Results from the linear mixed models showed that both conspe-
cific plant density and heterospecific frequency significantly affected
insect herbivory on M. zapota and C. dodecandra, but effects were
contingent on the plant species and herbivore type. In the case of M.
zapota, we found no effect of conspecific plant density on chewer
damage (Table 1; Figure 1a). However, as predicted, the frequency of
heterospecifics had a significant negative effect on damage by chew-
ing insects (Table 1; Figure 1b). For C. dodecandra, however, conspe-
cific density and heterospecific frequency had contrasting non-linear
effects on chewer damage (Table 1; significant quadratic effects of
density and frequency; AAIC = —7.88 relative to simplified model
with no quadratic terms, Table S3). Specifically, conspecific density
exhibited a hump-shaped relationship with chewer damage on C.
dodecandra whereby damage was highest at intermediate densities
(Figure 1c). In contrast, the P. piscipula frequency effect, albeit weaker,
depicted a U-shaped relationship whereby chewer damage on C.
dodecandra was highest at both low and high of the former species
(Figure 1d). Finally, conspecific density and heterospecific frequency
both had positive linear effects leafhopper damage on C. dodecandra
(Table 1; Figure 1e,f).

DISCUSSION

Our study allowed to jointly assess and separate the independent
influences of conspecific density and heterospecific frequency on her-
bivory. In short, results indicated contrasting effects of plant conspe-
cific density and heterospecific frequency on insect leaf herbivory for
seedlings of the studied focal tree species. Specifically, and as pre-
dicted, chewer damage on M. zapota decreased with increasing fre-
quency of P. piscipula indicative of associational resistance, but was
not affected by conspecific density. In contrast, chewer herbivory on
C. dodecandra showed non-linear patterns, whereby damage was
highest or lowest at intermediate values of density and frequency
(respectively), suggesting that multiple mechanisms could be simulta-
neously at work in each case. In addition, leaf hopper damage
increased with C. dodecandra density consistent with a resource con-
centration effect as well as increased with P. piscipula frequency sug-
gesting associational susceptibility. Together, these findings depict
variable outcomes whereby density and frequency effects on chewers
varied in strength, direction, and function both within and between
focal tree species, as well as also varied between herbivore types
(chewers vs. leafhoppers) within C. dodecandra.

We observed contrasting effects of seedling conspecific density
and heterospecific frequency on chewer damage within each focal
plant species as well as for each predictor across species. On the one
hand, conspecific density of M. zapota seedlings had no effect on
chewer damage, largely leaf cutter ants (not strictly herbivores), sug-

gesting attack by these insects behaved in a density-independent
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manner. This result contrasts with abundant evidence for density-
dependent herbivory, often resulting in resource concentration effects
(i.e., positive density-dependent herbivory; Kim & Underwood, 2015;
Forrister, Endara, Younkin, Coley, & Kursar, 2019), or, perhaps more
commonly, dilution effects (negative density-dependence; Abdala-
Roberts & Mooney, 2013, 2015). The small size of M. zapota seedlings
(e.g., 7.5 cm high, on average) might explain this finding, resulting
in low detectability (through plant traits that mediate attraction;
Hamback et al., 2000) and thus herbivory rates not being high enough
(4.53% on average) to produce density-dependence (see Ctvrtecka,
Sam, Brus, Weiblen, & Novotny, 2014). Further work testing exclu-
sively for density effects which includes a greater range of density
levels could provide a more robust assessment of this factor. By con-
trast, P. piscipula frequency drove, as predicted, a decrease in chewer
damage on M. zapota, indicating an associational resistance effect.
The mechanism behind this pattern requires further investigation but
could involve lowered apparency or interference (physical or chemical)
for chewers (e.g., leaf cutter ants or beetles) feeding on M. zapota
(e.g., Castagneyrol et al., 2013; Hambéack et al., 2000), particularly
given the size difference and growth rate compared to considerably
larger P. piscipula seedlings.

We found non-linear and yet contrasting effects of each factor
on C. dodecandra chewer damage. Non-linear saturating herbivore
responses to conspecific plant density are common and indicate herbi-
vore satiation (Abdala-Roberts & Mooney, 2013; Holling, 1966). How-
ever, in our case the relationship was hump-shaped, with a peak in
damage at intermediate densities and a decrease at high C. dodecandra
densities. This pattern suggests an additional mechanism (besides sati-
ation) by which damage decreases at high densities, that is, a resource
dilution effect. For example, the observed shift from resource concen-
tration at low densities to dilution at high densities could respond to
an herbivore-related mechanism leading to chewer satiation (mobility,
feeding time, etc.) or to reductions in leaf quality (lower nutrients or
higher defences) due to increased seedling competition at high den-
sity (see Halpern et al., 2014). In addition, this hump-shaped pattern
could have also arisen from temporal dynamics in herbivore recruit-
ment to plant patches whereby herbivore abundances equilibrate fas-
ter at low host plant densities than at high host plant densities
(Hambick et al., 2007). On the other hand, we also found a non-linear
effect of P. piscipula frequency on chewer damage on C. dodecandra,
though in this case an inverse pattern depicting a U-shaped relation-
ship suggests a different underlying process. By comparison, Kim and
Underwood (2015) found a hump-shaped relationship between het-
erospecific frequency and leaf herbivory on Solanum carolinense. They
attributed this pattern to concomitant effects of inter-specific compe-
tition causing reductions in plant defence allocation at low to interme-
diate frequencies and an indirect negative effect of heterospecifics on
herbivores due to spillover of a plant pathogen at high frequencies. In
our case, and albeit a rather weak effect (R? = 0.12), the observed U-
shaped pattern suggests instead associational resistance at low P. pis-
cipula frequencies (as predicted) which then shifts to associational
susceptibility at moderate to high frequencies. It is possible that some

form of interference by heterospecifics rather than inter-specific
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competition drove reductions in C. dodecandra (associational resis-
tance) chewer damage from low to intermediate heterospecific fre-
guencies, but that inter-specific competition turned important at high
heterospecific frequencies leading to reductions in C. dodecandra
seedling defences and thus associational susceptibility. Alternatively,
P. piscipula is a nitrogen-fixing species and high frequencies may have
increased M. zapota nitrogen leaf content and thus nutritional quality
to chewing insects. Further work is needed to test and tease apart
these mechanisms. Together, the observed patterns nonetheless high-
light that non-linear effects of conspecific density and heterospecific
frequency are potentially common as well as governed by potentially
different mechanisms.

In contrast to the non-linear responses of chewers feeding on C.
dodecandra, there were positive linear effects of both conspecific den-
sity and P. piscipula frequency on leaf hopper damage, indicating a
resource concentration effect (positive density dependence) and asso-
ciational susceptibility (respectively). This difference in leaf hopper
response to host plant density relative to chewers suggests different
underlying traits and drivers within this tree species. Relative to
chewers, leafhoppers reached outbreak levels during the study and
given high dispersal were possibly better able to track host plant
abundance resulting in a resource concentration effect across the
range of host plant densities. On the other hand, the observed effect
of associational susceptibility by P. piscipula is interesting considering
little to no overlap in herbivore communities between this species and
C. dodecandra. As discussed above for chewers feeding on C. dodecan-
dra, it is possible that P. piscipula increased leaf nitrogen content in
this species, leading to greater preference and damage by leaf hop-
pers. In this case, leaf hoppers could have been especially sensitive to
any such trait changes in C. dodecandra (Hubberty & Denno, 2006),
leading to a consistent (linear) increase in damage across the range of
P. piscipula frequencies. Follow-up controlled experiments testing for
this and other plant-trait-based mechanisms are needed to test this.

We note that one limitation of our study is we lack information on
the spatial scale at which seedling conspecific density and frequency
effects on insect herbivores are strongest. Previous work has shown
that the strength or function of conspecific density and heterospecific
frequency effects may vary across scales (Hambick, Bjorkman,
Ramert, & Hopkins, 2009; Xiao et al., 2017). Therefore, testing for den-
sity and frequency effects at different scales (e.g., replicating different
quadrat sizes as well as distance between quadrats) can help under-
stand which insect host finding or selection processes as well as plant-
based features are most important at each scale for different herbivore
species (Hambick et al., 2014; Kim & Underwood, 2015), and in turn
result in observed patterns of herbivory. Studies that include multiple
plant and herbivore species or guilds can provide further insights into

how traits at each trophic level shape scale-dependent responses.

Conclusions and applied prespective

The present study deepens our understanding of plant-based resource

heterogeneity effects on herbivory by teasing a part the effects
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conspecific density and heterospecific frequency, as well as by com-
paring responses across tree species and for different herbivore with
contrasting traits. Results point out a range of possible outcomes for
the strength and function of seedling conspecific density and hetero-
specific frequency on insect herbivory, suggesting different underlying
mechanisms depending on the plant species and type of herbivore.
Further work assessing the role of plant (e.g., defences) and herbivore
(e.g., diet breadth) species traits and their relation to spatial scale, is
needed to shed mechanistic insight on the drivers of interaction
outcomes.

It is important to also stress that the focal species studied, C. dode-
candra and M. zapota are of conservation concern given their dwindling
populations in substantial portions of the Yucatan Peninsula, including
the study region. Proper management and recovery of their populations
requires information on the predictors of seedling recruitment and
establishment success, among which negative impacts of herbivory can
be decisive especially during early stages of plant development. In this
sense, an understanding of herbivore responses to seedling density and
heterospecific neighbours can provide a useful framework for under-
standing how plant-based bottom-up drivers naturally contribute to
seedling recruitment success. Knowledge gained can in turn inform and
optimize reforestation practices in recovering tropical dry forests from
a perspective of herbivory mitigation, e.g., in enrichment planting
designs using differing densities customized based on the main herbi-
vores present and the type of responses to plant density they exhibit,
or the use of heterospecific neighbours (e.g., common or likely neigh-
bours in regenerating forests) to reduce herbivory via associational

resistance mechanisms.
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