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SUPER-POLYNOMIAL ACCURACY OF ONE DIMENSIONAL

RANDOMIZED NETS USING THE MEDIAN OF MEANS

ZEXIN PAN AND ART B. OWEN

Abstract. Let f be analytic on [0, 1] with |f (k)(1/2)| � Aαkk! for some
constants A and α < 2 and all k � 1. We show that the median estimate of
μ =

∫ 1
0 f(x) dx under random linear scrambling with n = 2m points converges

at the rate O(n−c log(n)) for any c < 3 log(2)/π2 ≈ 0.21. We also get a super-
polynomial convergence rate for the sample median of 2k− 1 random linearly
scrambled estimates, when k/m is bounded away from zero. When f has a p’th
derivative that satisfies a λ-Hölder condition then the median of means has
error O(n−(p+λ)+ε) for any ε > 0, if k → ∞ as m → ∞. The proof techniques
use methods from analytic combinatorics that have not previously been applied
to quasi-Monte Carlo methods, most notably an asymptotic expression from
Hardy and Ramanujan on the number of partitions of a natural number.

1. Introduction

In this paper we introduce and study a median-of-means approach to randomized
quasi-Monte Carlo (RQMC) sampling. Specifically, for f : [0, 1] → R we let μ̂r

for r = 1, . . . , 2k − 1 be independent estimates of μ =
∫ 1

0
f(x) dx computed

using the random linear scrambling of [22] applied to a (0,m, 1)-net in base 2
and our estimate of μ is μ̂(k) = med(μ̂1, . . . , μ̂2k−1). We find for some infinitely
differentiable integrands that this median-of-means approach converges faster than
any polynomial rate in n = 2m. By this we mean that for some c > 0 the probability
of an error larger than n−c log(n) approaches zero as the number of sampled points
n = 2m → ∞.

A key ingredient in the proofs is the formula by Hardy and Ramanujan [13] for
the number p(n) of ways to partition the natural number n into a sum of natural
numbers. Their formula for this is

p(n) ∼ 1

n4
√
3
exp

(

π
(2n

3

)1/2)

.

We believe that this use of analytic combinatorics in RQMC is new and we expect
further connections to develop.

There have been several recent results on super-polynomial convergence for quasi-
Monte Carlo (QMC). Suzuki [27], working in a weighted space of infinitely differ-
entiable functions on [0, 1]d, proved the existence of digital nets with worst case
error C(d) exp(−c(d) log(n)2). Under further conditions on the weights defining the
space, a dimension free worst case error C exp(−c log(n)p) holds for some 1 < p < 2.
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806 ZEXIN PAN AND ART B. OWEN

Dick et al. [6] give a construction of a super-polynomially convergent method. At
a cost of O(nd log(n)2) they use a component-by-component construction to get
dimension-independent super-polynomial convergence using interlaced polynomial
lattice rules. These are higher order digital nets. A higher order digital net can
attain an error of Õ(n−α) when the integrand’s mixed partial derivatives of total

order up to the integer α � 1 are all in L2[0, 1]d [5]. Here Õ means that loga-
rithmic factors are not shown. Under scrambling, [5] shows that the root mean

squared error (RMSE) is Õ(n−α−1/2). To obtain super-polynomial convergence [6]
must let the order of their higher-order digital nets increase with n. The median-
of-means formulation allows one to use ordinary scrambled Sobol’ points though
in some uses we must take a median of a (slowly) growing number k of replicates.
The LatNet builder tool of [20] constructs QMC and RQMC point sets using some
random searches. Those searches seek to optimize a figure of merit (FOM) that
quantifies worst case error over a class of integrands. For the precise definitions of
each FOM, see that paper. Figure 1 there shows some examples where the median
FOM shows curvature on a log-log scale for dimension d = 6. This is consistent
with super-polynomial accuracy, though they present a median FOM instead of the
FOM of a median estimate.

The algorithm we study here provides another approach. We will see that when f
is smooth, most of the randomized net estimates are very close to the true value, for
large m. The variance is dominated by a relatively small number of bad outcomes.
By taking the median of a number of independent estimates we can reduce the
impact of the few bad outcomes. Each RQMC estimate is a mean of function
evaluations. Then our combined estimates are a median of means.

Median-of-means algorithms have many uses in theoretical computer science,
though the means used there have not usually been based on RQMC. See for ex-
ample, [16] and [19]. Kunsch et al. [18] present several uses of the median of means
in two stage numerical integration algorithms and they give further references to
the literature. Since our preprint appeared, there has been further work on me-
dian methods for QMC by [11]. They choose rank one lattice generating vectors
completely at random for integration problems in Korobov spaces and they choose
polynomial lattice rules randomly for some weighted Sobolov spaces. By taking
the median of a number of such randomly generated estimates they attain the best
convergence rates possible for the smoothness levels they study and they are able
to avoid complicated parameter searches. Hofstadler and Rudolf [15] use median
of means to get some strong laws of large numbers for integration methods. Gobet
et al. [9] use median of means to get robust RQMC estimates.

An outline of this paper is as follows. Section 2 provides some notation and
definitions of the scrambling we use and the resulting estimates. One key quantity
is a scrambling matrix M with m columns and entries in {0, 1}. The accuracy of
RQMC is limited by phenomena where for some nonempty L ⊂ N, the rows of M
for � ∈ L sum to 0 in Fm

2 . Section 3 explains this bottleneck to convergence and
Theorem 3.1 writes the RQMC error as a sum of random variables, one for each
problematic subset L. This section is less technical than the later ones with our
proofs. Section 4 has a one dimensional numerical example. We see super-linear
convergence for the median of 11 RQMC replicates, up to a point. The RMSE
reaches an asymptote for a Sobol’ sequence computed to 32 bits. Switching to a 64
bit computation, the super-linearity continues to some higher sample sizes. There
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MEDIAN OF MEANS FOR RANDOMIZED NETS 807

is also a six dimensional example, where the standard deviation of median estimates
drops faster than that of mean estimates. Section 5 studies the population median
of scrambled nets for dimension d = 1. This is the median of the distribution of the
RQMC estimate. Theorem 5.6 establishes a super-polynomial rate for that quantity
for certain infinitely differentiable functions. A critical step there is to bound the
number of nonempty subsets L ⊂ N that have a small value of

∑

�∈L �. We do this
using combinatorial results including the one by [13]. The comprehensive reference
is [8]. Theorem 5.10 provides super-polynomial convergence for the median of 2k−1
independently generated RQMC estimates. Section 6 considers the case where the
p’th derivative of f satisfies a λ-Hölder condition for 0 < λ � 1. Theorem 6.1
bounds the probability that the error is much more than n−p−λ with corollaries
showing super-polynomial convergence for the population median and the median
of 2k − 1 independent estimates.

We close this section with a few contextual remarks. In the one dimensional
setting, there are already very accurate integration rules for extremely smooth
integrands [4]. The RQMC method here has an advantage in being an equally
weighted average of the n function values, instead of having large weights of both
positive and negative signs. The one dimensional case will take on greater interest
if the findings and proofs in this article can be generalized to d � 1. The multidi-
mensional example in Section 4 is therefore encouraging as are the empirical results
in [20].

One of the original motivations for RQMC was to get error estimates. It later
emerged that randomizing QMC can also increase accuracy [23]. Error estimation
for a median of independently sampled means is more complicated than for a mean
of such means. We can readily get a nonparametric confidence interval for the
population median of the μ̂r, using the binomial distribution because the true
median θ satisfies Pr(μ̂r < θ) = 1/2. However, the quantity of most direct interest
is E(μ̂r), not med(μ̂r).

We had initially considered the case where instead of a random linear scramble
we had taken a completely random generator matrix with all entries independent
and identically (IID) U{0, 1} random variables. A similar result holds: the median
estimate converges with super-polynomial accuracy for certain infinitely differen-
tiable f , though of course the bad outcomes can be even worse. For instance, there

is a 2−m2

probability that the upper m ×m submatrix of the generator matrix is
all zeros. Then all n = 2m RQMC points would lie in the interval [0, 1/n] and the
resulting error would generally fail to vanish as n → ∞.

2. Notation and background

We study the random linear scrambling of [22] including a digital shift, in one
dimension. Our focus is on base 2 apart from a few remarks later. For an in-

tegrand f : [0, 1] → R we will estimate μ =
∫ 1

0
f(x) dx assumed to exist by

μ̂ = (1/n)
∑n−1

i=0 f(xi) for carefully chosen points xi ∈ [0, 1].
We use N for the set of positive integers. For m ∈ N, we let [m] denote the set

{1, . . . ,m} and for n ∈ N we let Zn denote the set {0, 1, . . . , n− 1}. We investigate
a scrambled digital net of n = 2m points xi ∈ [0, 1) for i = 0, 1, . . . , n− 1.

We will make frequent use of sets L ⊂ N of finite cardinality. We write |L| for
their cardinality as well as ‖L‖1 =

∑

�∈L � and some additional notation about these
sets L will be introduced as needed. For a matrix M we use M(L, :) to denote the
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808 ZEXIN PAN AND ART B. OWEN

submatrix whose row indices are in L and to extract a single row we write M(�, :)
instead of M({�}, :).

The indicator function of the event E is sometimes written 1{E}. This quantity
takes the value 1 when E holds and 0 otherwise.

We assume throughout that C ∈ {0, 1}m×m is a nonrandom matrix that is of
full rank m over F2, that is, it has full rank in arithmetic modulo 2. This matrix C
defines the ‘unscrambled’ version of our QMC points which will be a (0,m, 1)-net
in base 2. For instance C could be the m × m identity matrix as it would be for
the van der Corput points.

For i ∈ Z2m we let �i = (i1, i2, . . . , im)T where i = i1 + 2i2 + 4i3 + · · ·+ 2m−1im.
For a =

∑m
k=1 ak2

−k ∈ [0, 1) we let �a = (a1, a2, . . . , am)T. These two definitions
intersect only for {0} where they both yield 0. The representation for a ∈ [0, 1)
can be taken to any finite number E � m of bits that we denote by �a[E] when we
need to specify the precision. When a has two base 2 representations, we work with
the one that has finitely many nonzero bits. The points of the unscrambled net are
given by ai ∈ {k/2m | k ∈ Z2m} ⊂ [0, 1) that satisfy

�ai = C�i for i ∈ Z2m

so that

ai =
m
∑

k=1

2−kaik for bits aik =
k

∑

j=1

Ckjij mod 2.

In our presentation below we will omit noting that bitwise arithmetic is done modulo
two, when that is clear from context.

To scramble the points, we introduce a random matrix M ∈ {0, 1}E×m for
E � m. The upper triangular elements of M are all 0, the diagonal elements of M
are all 1, and the elements below the diagonal are IID U{0, 1}.

We also introduce a random digital shift D =
∑∞

k=1 2
−kDk with bits Dk that are

independent U{0, 1} variables independent of M . Note that Pr(0 � D < 1) = 1.
The random digital shift serves to make the estimates μ̂ unbiased estimates of μ
and our proofs require that property.

For i ∈ Z2m , linearly scrambled points xi to precision E without a digital shift
are defined by

(2.1) �xi = �xi[E] = M�ai = MC�i

for bits

aik =
k

∑

j=1

Ckjij and xik =
k

∑

j=1

Mkjaij .

When we add the random digital shift, we randomize infinitely many bits. We
define scrambling of precision E to mean that xi has bits

(2.2) xik = xik[E] =

{

∑k
j=1 Mkjaij +Dk, k � E,

Dk, k > E.

We will use the term ‘random linear scrambling’ to refer to linear scrambling that
includes the digital shift. This usage is common. Another usage calls that affine
scrambling with linear scrambling excluding the digital shift.
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MEDIAN OF MEANS FOR RANDOMIZED NETS 809

Let f : [0, 1] → R. We need to specify the precision of our estimates and to do
this, we define

μ̂E = μ̂E(f) =
1

n

n−1
∑

i=0

f(xi),

where the bits of xi are given by (2.2). When f is continuous on [0, 1], define

μ̂∞ = lim
E→∞

μ̂E .

Later when we replicate these quantities, the replicates will be denoted by μ̂E,r and
μ̂∞,r. We let ωf (t) denote the modulus of continuity of f over [0, 1]. Later, ωf (1)
will be a convenient shorthand for sup0�x�1 f(x)− inf0�x�1 f(x).

Lemma 2.1. For any M ∈ {0, 1}∞×m and D ∈ [0, 1)

|μ̂∞ − μ̂E | � ωf

( 1

2E

)

,

where μ̂E is constructed using the first E � m rows of M .

Proof. Let xi[E] be xi under scrambling with precision E and xi[∞] be xi under
scrambling in the infinite precision limit. For any given M and D in random linear
scrambling, xi[E] has the same first E bits as xi[∞], so

∣

∣xi[E]− xi[∞]
∣

∣ �

∞
∑

k=E+1

1

2k
|xik[E]− xik[∞]| � 1

2E
,

where k indexes the bits of xi[E] and xi[∞]. Hence

|μ∞ − μE | �
1

n

n−1
∑

i=0

|f(xi[E])− f(xi[∞])| � ωf

( 1

2E

)

. �

The main object of our study is the median of 2k − 1 independently sampled
replicates of a randomized QMC algorithm on m points. We may take k to be a
function of m. We write k = Ω(m) to mean that lim infm→∞ k(m)/m > 0 and
similarly k = Ω(m2) means that lim infm→∞ k(m)/m2 > 0. In practice k would be
nondecreasing in m though our results do not require this.

3. A bottleneck in convergence

It is well known that the variance of μ̂ under nested uniform scrambling attains
O(n−3) convergence when d = 1 and f ′ ∈ C[0, 1], a great improvement upon the
O(n−1) rate of naive Monte Carlo. Corollary 3.8 of [28] shows that random linear
scrambling with a digital shift has the same variance as nested uniform scrambling
for (0,m, 1)-nets. Increased smoothness does not improve this rate outside of trivial
settings with zero variance. Here we give a simple argument to illustrate that
limitation. Understanding such bounds leads us to an expression for the integration
error below, on which we base our study of medians.

If n = 2m and M(m+ 1, :) happens to be 0, then by the relationship xi,m+1 =
∑m+1

j=1 Mm+1,jaij +Dm+1, we immediately see that xi,m+1 = Dm+1 for all i. Geo-

metrically, this means for each interval [i/n, (i+1)/n), the samples are either all in
the left half interval (if Dm+1 = 0) or all in the right half interval (if Dm+1 = 1).
If we assume for simplicity that Dm+1 = 1 and the scrambling has precision m+1,
then each sample is actually uniform on the right half of the interval it lands in and
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we can approximate the error by its expectation given that M(m + 1, :) = 0 and
Dm+1 = 1 as:

μ̂m+1 − μ ≈
n−1
∑

i=0

2

(∫
i+1
n

i+0.5
n

f(x) dx−
∫

i+1
n

i
n

f(x) dx

)

≈
n−1
∑

i=0

∫
i+1
n

i+0.5
n

f
( i+ 0.5

n

)

+ f ′
( i+ 0.5

n

)(

x− i+ 0.5

n

)

dx

−
n−1
∑

i=0

∫
i+0.5

n

i
n

f
( i+ 0.5

n

)

+ f ′
( i+ 0.5

n

)(

x− i+ 0.5

n

)

dx

=
1

8n2

n−1
∑

i=0

f ′
( i+ 0.5

n

)

.

If instead Dm+1 = 0, then all the xi fall in the left half interval and the expected
error is like that above, but with the opposite sign. Hence the conditional expec-
tation of |μ̂RQMC − μ| cannot be of lower order than n−1 when M(m + 1, :) = 0.
Because each entry of M(m + 1, :) is independently 0 or 1 with equal probability,
Pr(M(m + 1, :) = 0) = 2−m and those rare outcomes alone make Var(μ̂RQMC) at
least of order 2−m(n−1)2 = n−3. Theorem 3.1 makes the above reasoning rigorous.

The main takeaway is that the rare event M(m + 1, :) = 0 makes a major
contribution to the variance. Curious readers may ask what happens if we explicitly
avoid the event M(m+ 1, :) = 0. This is indeed what is done in the affine striped
matrix (ASM) scrambling from [24]. For base 2, the matrixM of ASM scrambling is
nonrandom and described by Mkj = 1 for k � j and Mkj = 0 for k < j. Therefore
M(m + 1, :) = 1 and ASM scrambling is able to attain the Var(μ̂) = O(n−4)
convergence rate when f ′′ is bounded on [0, 1) [24, Proposition 3.7].

A similar question arises: can ASM scrambling converge faster than O(n−4)
under stronger smoothness assumptions? The answer is again no. Assume for
simplicity thatDm+1 = Dm+2 = 0 and that the scrambling has precision E = m+2.
Because M(m+ 1, :) = M(m+ 2, :),

xi,m+1 =
m+1
∑

j=1

Mm+1,jaij =
m+1
∑

j=1

Mm+2,jaij = xi,m+2.

Now within each interval [i/n, (i+1)/n), the sampling is either uniform in the left-
most quarter [i/n, (i+0.25)/n) or uniform in the rightmost quarter [(i+0.75)/n, (i+
1)/n). Suppose without loss of generality that the sampling for interval i is in the
rightmost quarter. Then as in the analysis of random linear scrambling, we can
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approximate the integration error over [i/n, (i+ 1)/n) by

4

∫
i+1
n

i+0.75
n

f(x) dx−
∫

i+1
n

i
n

f(x) dx

≈ 4

∫
i+1
n

i+0.75
n

f
( i+0.5

n

)

+f ′
( i+0.5

n

)(

x− i+0.5

n

)

+
1

2
f ′′

( i+0.5

n

)(

x− i+0.5

n

)2

dx

−
∫

i+1
n

i
n

f
( i+0.5

n

)

+f ′
( i+0.5

n

)(

x− i+0.5

n

)

+
1

2
f ′′

( i+0.5

n

)(

x− i+0.5

n

)2

dx

=
3

8n2
f ′
( i+ 0.5

n

)

+
1

32n3
f ′′

( i+ 0.5

n

)

.

When sampling for observation i is in the leftmost quarter the approximate error
as above is

− 3

8n2
f ′
( i+ 0.5

n

)

+
1

32n3
f ′′

( i+ 0.5

n

)

.

The f ′ terms each contribute an error of O(n−2). The sign of the f ′ terms depends
on the nonrandom ai. Carefully chosen ai could possibly bring cancellation among
the f ′ terms, leaving a total error o(n−2) from the f ′ terms. However, no such
cancellation is possible for the f ′′ terms. Therefore, if we did manage to cancel the
f ′ terms we would still have an error

μ̂m+2 − μ ≈ 1

32n3

n−1
∑

i=0

f ′′
( i+ 0.5

n

)

.

This implies that |μ̂RQMC − μ| is at least of order n−2, and so Var(μ̂RQMC) cannot
converge faster than O(n−4). Notice that in this case M is nonrandom, so we do
not need to multiply that squared error by an event probability like 2−m as we did
in the previous example.

One may summarize from the above heuristic reasoning that whenever a set L of
rows of M satisfies

∑

�∈L M(�, :) = 0, there is an associated error of order 2−
∑

�∈L �.
This is indeed true by Theorem 3.1. Before stating Theorem 3.1 we introduce some
notation. Let

L = {L ⊂ N | 0 < |L| < ∞}.
Each L ∈ L identifies a set of row indices for M . Each of these finite nonempty
subsets of natural numbers potentially contributes an error that scales like 2−‖L‖1

where ‖L‖1 =
∑

�∈L �. We also use ‖D(L)‖1 =
∑

�∈L D�. This quantity will appear
as the exponent of −1 where only its value modulo two matters.

Theorem 3.1. Let f be analytic on [0, 1] with |f (k)(1/2)| � Aαkk! for some con-

stant A, some α < 2 and all k ∈ N. If C ∈ {0, 1}m×m is nonsingular, then

μ̂∞ − μ =
∑

L∈L
1
{

∑

�∈L

M(�, :) = 0
}

SL(D) 2−‖L‖1BL,(3.1)

where

SL(D) =
∏

�∈L

(−1)D�(3.2)
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812 ZEXIN PAN AND ART B. OWEN

and scalars BL from Appendix A satisfy

|BL| � 6A
(

|L|
)

!
( α/2

1− α/2

)|L|
.(3.3)

Proof. See Appendix A. �

Remark 3.2. Notice that |f (k)(1/2)| � Aαkk! for all k ∈ N is not really a more
stringent assumption than f being analytic on [0, 1]. To be analytic on a closed
interval requires f to be analytic on some open interval containing it. Then for the
Taylor expansion of f centered at 1/2 to have a radius of convergence larger than
1/2, it is necessary that |f (k)(1/2)| � Aαkk! for some constant A and α < 2.

We see that for each L ∈ L, the corresponding term in (3.1) contains a factor
depending on M times a factor depending on D. It helps that M and D are
independent random quantities.

4. Numerical examples

The function f(x) = x exp(x) has integral μ = 1 over [0, 1]. We selected this f
because it is infinitely differentiable as our theory requires, and it is not a polynomial
and is not symmetric or antisymmetric. Those are factors that might make a
function artificially easy to integrate by a specially tuned numerical method. There
is also no special feature in the function at values like 1/2 or more generally integers
divided by a power of 2 that might confer an advantage for Sobol’ points which are
generated in base 2.

We sampled this function with random linear scrambling for 0 � m � 15. For
this we used the Sobol function in the QMCPy software of [3]. We took the median
of k = 11 RQMC integral estimates R = 250 times.

Figure 1 shows how the RMSE of the median of 11 RQMC estimates decreases
with n as open circles connected by dashed lines. It appears to decrease at a super-
polynomial rate until it reaches a limit of about 10−9. The Sobol’ points in QMCPy
default to 32 bits for the linear scramble with the digital shift carried out more bits.
Our theory is for infinitely many bits. We redid the computations using 64 bits for
the linear scramble, resulting in the solid points connected by solid lines. With 64
bits the apparent super-polynomial convergence holds through the entire range of
sample sizes in Figure 1.

Figure 1 also shows the RMSE of a single RQMC estimate of which there were
250×11 = 2750. There is a reference curve at the n−3/2 rate interpolating the value
for n = 1. A dashed line below that by a factor of

√
11 corresponds to accuracy

using an average of 11 RQMC estimates that could have been done at the same
cost as the median of 11 RQMC estimates. In the next sections we prove that the
median RQMC estimate converges at a super-polynomial rate. We also show that
the sample median of k RQMC estimates attains such a rate when k grows slowly
with m.

At tiny sample sizes like 1, 2 and 4 we see that a mean of 11 RQMC estimates
was more accurate than a median of 11 RQMC estimates. By n � 16, we see the
median doing better than the dotted reference line applicable to the mean of 11
RQMC estimates.

We also investigated a six dimensional function that computes a midpoint voltage
for an output transformerless (OTL) push-pull circuit. The function is given by [26]
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RMSE for Median of 11 RQMC, 32 bit

RMSE for Median of 11 RQMC, 64 bit

Figure 1. The dashed line with open points shows the RMSE of
250 integral estimates, each of which is the median of 11 RQMC
estimates. Those computations were done with M = 32-bit Sobol’
points. The solid line with solid points repeats that calculation
using 64 bits instead of 32. The dashed line with solid points con-
nects RMSEs of 2750 RQMC estimates without taking a median.
The solid reference line is proportional to n−3/2, running through
the plain RQMC value for n = 1. The dashed line is lower by a
factor of

√
11 to estimate the RMSE that a mean of 11 estimates

would have.

which includes a link to describe the electronics background as well as some code.
The results are shown in Figure 2. We used scrambled Sobol’ points from QMCPy.
Because the true mean is not known, we plot the standard deviation instead of the
RMSE. While the curve shows an apparent better rate in this multivariate problem
it does not account for the bias induced by taking a median instead of a mean.
That issue is outside the scope of the present article.

We note in passing that graphical rendering applications of QMC while not
having much smoothness can also benefit from using a large number E of bits. See
[17] for a discussion of QMC for rendering.
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Figure 2. The solid line with solid points shows the standard
deviation among 100 replicates that each take the median of 11
independent RQMC estimates. The dashed line with solid points
has the standard deviation of 1100 replicates divided by

√
11 to

reflect the accuracy of a mean of 11 RQMC estimates. The solid
reference line is proportional to n−3/2 and passes through the point
for n = 1 and the mean of 11 RQMC estimates.

5. Convergence rate of the median

As we see in Theorem 3.1, sets L with
∑

�∈L M(�, :) = 0 contribute to the

RQMC error and the upper bound on that contribution contains the factor 2−‖L‖1 ,
so that sets L with small ‖L‖1 are of great concern. In the examples in Section 3
we saw that this can be the major source of error in both scrambled nets and ASM
sampling. Is there a way to avoid such bad events? One approach is to redesign
the scrambling to avoid

∑

�∈L M(�, :) = 0 for certain L. See for instance the higher
order digital nets of [5] and polynomial lattice rules in [10]. Another approach,
which is the main focus of this paper, is to take the median instead of the mean
of several QMC simulations. Below we show that the median of random linear
scrambling with infinite precision converges to μ at a super-polynomial rate when
f satisfies the condition in Theorem 3.1.
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In random linear scrambling, because M([m], :) is nonsingular and M(�, :) for
� > m has each entry independently U{0, 1},

Pr

(

∑

�∈L

M(�, :) = 0

)

=

{

0, L ⊆ [m],

2−m, L � [m].
(5.1)

As a result, the event
∑

�∈L M(�, :) = 0 is unlikely to happen for a set L with small
‖L‖1. We use Lemma 5.1 to control the number of L ∈ L with small ‖L‖1.
Lemma 5.1. Let λ = 3(log(2))2/π2 ≈ 0.146. Then

(5.2) lim
m→∞

√
m2−m

∣

∣{L ∈ L | ‖L‖1 � λm2}
∣

∣ =
31/4

2πλ1/4
.

Moreover, for 1 � m � 512,
∣

∣{L ∈ L | ‖L‖1 � λm2}
∣

∣ <
0.4× 2m√

m
.(5.3)

Proof. See Appendix B. �

The limit in (5.2) holds with m → ∞ through real values. Our primary use of it
is for integers m � 1 but we will also use it for nonintegers.

Remark 5.2. The sequence in equation (5.2) is in fact monotonically decreasing for
20 � m � 512, so one can reasonably guess that the bound in equation (5.3) applies
to m > 512 as well, although we do not have a proof for this.

Lemma 5.3. In random linear scrambling, there exists a constant C such that for

all m � 1 and any 0 � ε < 1,

Pr

(

min
{

‖L‖1
∣

∣ L ∈ L,
∑

�∈L

M(�, :) = 0
}

� λ(1− ε)m2

)

<
C

(1− ε)1/4
√
m
2−εm/2.

When m � 512, we can choose C to be 0.4.

Proof. Equation (5.2) implies that there exists a constant C such that
√
m2−m

∣

∣{L ∈
L | ‖L‖1 � λm2}

∣

∣ � C for all m � 1. We apply this inequality with m replaced by

m
√
1− ε and apply the union bound to all events

∑

�∈L M(�, :) = 0 with ‖L‖1 �

λ(1− ε)m2. We then get

Pr
(

∃L ∈ L, ‖L‖1 � λ(1− ε)m2,
∑

�∈L

M(�, :) = 0
)

�
∑

{L∈L | ‖L‖1�λ(1−ε)m2}
Pr

(

∑

�∈L

M(�, :) = 0

)

(i)
<

C2m
√
1−ε

(1− ε)1/4
√
m
2−m

(ii)

�
C

(1− ε)1/4
√
m
2−εm/2,

where (i) follows from equation (5.1) and (ii) follows from 1−
√
1− ε � ε/2. When

m � 512, equation (5.3) shows we can choose C = 0.4. �

Remark 5.4. We will mostly use Lemma 5.3 for ε = 0, in which case

Pr
(

min
{

‖L‖1
∣

∣ L ∈ L,
∑

�∈L

M(�, :) = 0
}

� λm2
)

<
0.4√
m

when 1 � m � 512 and is O(m−1/2) as m → ∞.
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We are going to apply Chebyshev’s inequality to bound the probability that
μ̂∞ is far from μ. For that, we first prove that the random sign terms SL(D) =
(−1)‖D(L)‖1 in Theorem 3.1 are pairwise independent Rademacher (i.e., U{−1, 1})
random variables.

Lemma 5.5. For L ∈ L, let SL(D) be as in equation (3.2). Then for L,L′ ∈ L
Pr(SL(D) = 1) = Pr(SL(D) = −1) = 1/2 and for L �= L′

Pr(SL(D) = 1, SL′(D) = 1) =
1

4
.

Proof. The entries of D are D�
iid∼ U{0, 1}, so (−1)D�

iid∼ U{−1, 1} and then

E(SL(D)) =
∏

�∈L

E((−1)D�) = 0.

This combined with SL(D) ∈ {−1, 1} implies that Pr(SL(D) = 1) = 1/2. If L �= L′,
then letting 
 denote the symmetric difference of sets,

E
(

SL(D)SL′(D)
)

=
∏

�∈L�L′

E
(

(−1)D�
)

= 0.(5.4)

Now let Pr(SL(D) = 1, SL′(D) = 1) = 1/4+ δ. From the symmetry of Rademacher
random variables, we get Pr(SL(D) = 1, SL′(D) = −1) = 1/4− δ and Pr(SL(D) =
−1, SL′(D) = 1) = 1/4−δ. Then by subtraction we have Pr(SL(D) = −1, SL′(D) =
−1) = 1/4 + δ. From (5.4) we get δ = 0 so Pr(SL(D) = 1, SL′(D) = 1) = 1/4
meaning that SL(D) and SL′(D) are independent. �

Now we are ready to prove the main theorem concerning the super-polynomial
convergence rate of the median of random linear scrambling. Then we will have
one corollary for m � 512 and another for m → ∞.

Theorem 5.6. Let the integrand f satisfy the conditions of Theorem 3.1 with

constants A and α given there. Let λ be as in Lemma 5.1 and set θ = α/(e(2−α)).
Then for any η > 0 and m � 3, the random linear scrambling estimate μ̂∞ satisfies

Pr
(

|μ̂∞ − μ| > A√
η
2−λm2

√

Cθ(θ
√
2λm)2

√
2λm + 64

)

< η +
C√
m
,(5.5)

where Cθ is a positive number depending only on θ, defined in equation (5.12) and
C is the constant from Lemma 5.3. If m � 512, we can replace C by 0.4. If also

m � max((
√
2λθ)−1, 3 log(θm) + 3), then we can replace Cθ by 3770max(1, θ−1).

Proof. First we condition on M and apply Chebyshev’s inequality. For c > 0

Pr
(

|μ̂∞ − μ| > c |M
)

�
Var(μ̂∞ − μ |M)

c2
.

By Theorem 3.1 and Lemma 5.5,

Var(μ̂∞ − μ |M) = Var

(

∑

L∈L
1

{

∑

�∈L

M(�, :) = 0

}

BLSL(D)2−‖L‖1 |M
)

=
∑

L∈L
1

{

∑

�∈L

M(�, :) = 0

}

B2
L4

−‖L‖1 .
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Let H be the event
{

min{‖L‖1 | L ∈ L,∑�∈L M(�, :) = 0} > λm2
}

. By

Lemma 5.3, Pr(Hc) � C/
√
m. Conditioning on H, we see that

E

(

∑

L∈L
1

{

∑

�∈L

M(�, :) = 0

}

B2
L4

−‖L‖1
∣

∣H

)

=
∑

L∈L
Pr

(

∑

�∈L

M(�, :) = 0 |H
)

B2
L4

−‖L‖1

=

∞
∑

N=	λm2


1

4N

∑

L∈L, ‖L‖1=N

Pr

(

∑

�∈L

M(�, :) = 0
∣

∣H

)

B2
L.(5.6)

Now

(5.7) Pr

(

∑

�∈L

M(�, :) = 0
∣

∣H

)

�
Pr(

∑

�∈L M(�, :) = 0)

Pr(H)
�

2−m

Pr(H)
.

Furthermore,

‖L‖1 �

|L|
∑

�=1

� =
|L|(|L|+ 1)

2
.

So |L| <
√
2N when ‖L‖1 = N . Let �

√
2N� be the largest integer no larger than√

2N . Then according to (3.3)

B2
L � (6A)2

(

(|L|)!
( α/2

1− α/2

)|L|)2

< (6A)2
(

(�
√
2N�)!

( α/2

1− α/2

)�
√
2N�)2

+ (6A)2,(5.8)

where the last inequality uses the fact that factorial (or rather the Gamma function)
is logarithmically convex, which implies the maximum is attained at either |L| = 0

or |L| = �
√
2N�. By Stirling’s approximation

(�
√
2N�)! <

√

2π�
√
2N�

(�
√
2N�
e

)�
√
2N�

e1/12.

Applying the above to the bound for BL in equation (3.3) we get

B2
L < (6A)22π�

√
2N�

(�
√
2N�
e

)2�
√
2N�

e1/6
( α/2

1− α/2

)2�
√
2N�

+ (6A)2

< 2πe1/6(6A)2max(1, θ−1)
√
2N

(

θ
√
2N

)2
√
2N

+ (6A)2.(5.9)

Next, by Corollary 2 of Bidar [2]

(5.10)
∣

∣{L ∈ L | ‖L‖1 = N}
∣

∣ �

π exp
(

π
√

N
3

)

2
√
3N

.

This problem that Bidar studies is different from that of Hardy and Ramanujan,
because the elements of L must be distinct while Hardy and Ramanujan’s formula
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involves sums of not necessarily distinct numbers. Combining equations (5.7), (5.9),
and (5.10)

∑

L∈L,‖L‖1=N

Pr

(

∑

�∈L

M(�, :) = 0 |H
)

B2
L

�
2
√
2π2e1/6(6A)2max(1, θ−1)

2
√
3Pr(H)2m

(θ
√
2N)2

√
2N exp

(

π

√

N

3

)

+
π(6A)2

2
√
3N Pr(H)2m

exp
(

π

√

N

3

)

=

√
2π2e1/6(6A)2max(1, θ−1)√

3Pr(H)2m
p(N) +

π(6A)2

2
√
3N Pr(H)2m

exp
(

π

√

N

3

)

,(5.11)

for

p(N) = (θ
√
2N)2

√
2N exp

(

π

√

N

3

)

.

Now define

(5.12) Cθ = sup
m�1

12
√
6π2e1/6 max(1, θ−1)

p(λm2)4−λm2

∞
∑

N=	λm2


p(N)

4N
.

To see that Cθ is indeed finite, notice that (θ
√
2N)2

√
2N = exp(2

√
2N log(θ

√
2N)),

so p(N) grows at a sub-exponential rate in N . More explicitly, for some ρ > 1 we
want to find conditions onm so that p(N+1)/p(N) < ρ forN � �λm2�. It is enough
to have d log(p(N))/dN < log(ρ) for N � λm2, where we let p take positive real

valued arguments. To further simplify the calculation, we assume m � (
√
2λθ)−1

so that θ
√
2N � 1 for N � λm2. Then d log(p(N))/dN is decreasing in N and

we only need to verify that d log(p(N))/dN < log(ρ) at N = λm2. A lengthy but
straightforward calculation shows that this holds when

log(ρ)m > log(θm)

√

2

λ
+

2 + log(2λ)√
2λ

+
π

6

√

3

λ
.

To present the above inequality in a simpler form, we choose ρ = 4/1.1 and approx-
imate the inequality numerically with a sufficient condition that m � 3 log(θm)+3.

In summary, when m � max((
√
2λθ)−1, 3 log(θm) + 3), then p(N + 1)/p(N) <

4/1.1 for N � λm2 and

12
√
6π2e1/6

∞
∑

N=	λm2


p(N)/p(λm2)

4N−λm2 � 12
√
6π2e1/6

∞
∑

N=	λm2

1.1λm

2−N

� 3770.(5.13)
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We see that Cθ is finite and then

∞
∑

N=	λm2


1

4N

√
2π2e1/6(6A)2max(1, θ−1)√

3Pr(H)2m
p(N)

�
CθA

2

Pr(H)

p(λm2)4−λm2

2m

=
CθA

2

Pr(H)
4−λm2

(θ
√
2λm2)2

√
2λm2 1

2m
exp

(

π

√

λm2

3

)

=
CθA

2

Pr(H)
4−λm2

(θ
√
2λm)2

√
2λm,

where the last equality follows from λ = 3(log(2))2/π2. This bounds the first term
in (5.11) when summed over N as in (5.6).

For the second term, we use the inequality
√
x+ a �

√
x + a/(2

√
x) for a � 0

with x = λm2/3 and a = (N − λm2)/3 to get

π

√

N

3
� π

√

λm2

3
+ π

N − λm2

2
√
3λm2

.(5.14)

Then using (5.14) and 2m = exp(π
√

λm2/3) and the assumption that m � 3,

∞
∑

N=	λm2


1

4N
π(6A)2

2
√
3N Pr(H)2m

exp
(

π

√

N

3

)

�
π(6A)2

2
√
3λm2 Pr(H)2m

exp
(

π

√

λm2

3

)

4−λm2
∞
∑

N=	λm2

exp

(( π

2
√
3λm2

−log(4)
)

(N−λm2)
)

�
A2

Pr(H)
4−λm2 36π

2
√
27λ

∞
∑

N=	λm2

exp

(( π

2
√
27λ

− log(4)
)

(N − λm2)
)

�
64A2

Pr(H)
4−λm2

.

Using the bounds for both terms

E
(

Var(μ̂∞ − μ | M) |H
)

�

∞
∑

N=	λm2


1

4N

∑

L∈L,‖L‖1=N

Pr

(

∑

�∈L

M(�, :) = 0
∣

∣H

)

B2
L

�
CθA

2

Pr(H)
4−λm2

(θ
√
2λm)2

√
2λm +

64A2

Pr(H)
4−λm2

.(5.15)

Finally,

Pr(|μ̂∞ − μ| > c) � Pr(|μ̂∞ − μ| > c |H) Pr(H) + Pr(Hc)

�
1

c2
E(Var(μ̂∞ − μ |M) |H) Pr(H) + Pr(Hc).(5.16)

The bound (5.5) follows by choosing

c =
A√
η
2−λm2

√

Cθ(θ
√
2λm)2

√
2λm + 64

Licensed to Stanford Univ. Prepared on Thu Aug  3 16:13:41 EDT 2023 for download from IP 171.66.13.39.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



820 ZEXIN PAN AND ART B. OWEN

and noting that Pr(Hc) < C/
√
m by Lemma 5.3. That we can take C = 0.4 for

m � 512 follows by Lemma 5.3. That we can take Cθ = 3770max(1, θ−1) under
the given conditions follows by (5.13). �

We can interpret Theorem 5.6 as placing some control on the probability that

the error |μ̂∞−μ| is appreciably larger than 2−λm2

= n−λ log2(n). That probability
cannot be larger than η + O(1/

√
m) for any η > 0. Corollaries 5.7 and 5.8 show

that this provides some control on the distribution of |μ̂∞−μ|. The median of that
distribution must converge rapidly to zero. Then further below we translate this
property into a property of the sample median.

Corollary 5.7. Under the conditions of Theorem 5.6 let med(μ̂∞) be the median

of the distribution of μ̂∞. Then for 3 � m � 512

|med(μ̂∞)− μ| � 2A2−λm2
√

Cθ(θ
√
2λm)2

√
2λm + 64.

Proof. Choose η = 1/2− 0.4/
√
3 and apply Theorem 5.6, we see that

Pr
(

|μ̂∞ − μ| > 2A2−λm2
√

Cθ(θ
√
2λm)2

√
2λm + 64

)

< η +
0.4√
3
=

1

2
,

where we have used η = 1/2 − 0.4/
√
3 > 1/4 to replace 1/

√
η by 2, m � 512 to

replace C by 0.4 and m � 3 to bound 0.4/
√
m by 0.4/

√
3. This conclusion follows

once we notice the above probability must exceed 1/2 if med(μ̂∞) falls outside that
interval. �

Corollary 5.8. For f analytic on [0, 1],

|med(μ̂∞)− μ| = o(2−(λ−ε)m2

)

for any ε > 0.

Proof. Remark 3.2 shows such f satisfies the assumption of Theorem 5.6 for some

A and α, so equation (5.15) shows E
(

Var(μ̂∞ − μ | M) |H
)

= 4−λm2+O(m log(m)).

Let c = 2−(λ−ε)m2

. As in equation (5.16)

Pr(|μ̂∞ − μ| > c) �
1

c2
E(Var(μ̂∞ − μ |M) |H) Pr(H) + Pr(Hc)

=
4−λm2+O(m log(m))

4−(λ−ε)m2 +O
( 1√

m

)

= o(1),

where we have used Lemma 5.3 to bound Pr(Hc). The same argument in Corol-
lary 5.7 shows |med(μ̂∞)− μ| < c for large enough m. �

Remark 5.9. Because

2−λm2

= 2− log2(n)
23(log(2))2/π2

= n−(3 log(2)/π2) log(n) ≈ n−0.21 log(n),

Corollary 5.8 shows that the median of μ̂∞ converges to μ faster than any polyno-
mial rate.

In practice, one can only use finite-precision scrambling and estimate the popu-
lation median of μ̂ by the median of a finite number of replicated samples. Below
we present results for the sample median.
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Theorem 5.10. Suppose the scrambling has precision E and let μ̂
(k)
E be the sample

median of 2k − 1 independently generated values of μ̂E. Under the conditions of

Theorem 5.6, for any η > 0 and m � 3

Pr
(

|μ̂(k)
E − μ| > A√

η
2−λm2

√

Cθ(θ
√
2λm)2

√
2λm + 64 + ωf

( 1

2E

))

<

(

2k − 1

k

)

(

η +
C√
m

)k

.

Proof. Let μ̂E,r for r = 1, . . . , 2k−1 be independently sampled estimates of μ using
linear scrambling of precision E with n = 2m. For each of these, let μ̂∞,r be the
corresponding infinite precision sample value obtained from the same scrambling
matrix M and digital shift D that μ̂E,r uses. The median of the μ̂∞,r is denoted

by μ̂
(k)
∞ . By Lemma 2.1, |μ̂E,r − μ̂∞,r| � ωf (2

−E) for 1 � r � 2k − 1 and so

|μ̂(k)
E − μ̂

(k)
∞ | � ωf (2

−E).
In order to have

|μ̂(k)
∞ − μ| > ρ :=

A√
η
2−λm2

√

Cθ(θ
√
2λm)2

√
2λm + 64,

there must be at least k of the μ̂∞,r with |μ̂∞,r −μ| > ρ. By applying Theorem 5.6
to each μ̂∞,r, we find that

Pr(|μ̂∞,r − μ| > ρ) � η +
C√
m
.

The result follows using the union bound on all
(

2k−1
k

)

possible sets of k estimates

μ̂∞,r with errors above ρ along with |μ̂(k)
E − μ| � |μ̂(k)

E − μ̂
(k)
∞ |+ |μ̂(k)

∞ − μ|. �

Corollary 5.11. Under the conditions of Theorem 5.10 suppose that 8 � m � 512
and E � �λm2�. Then

Pr
(

|μ̂(k)
E − μ| >

(

5A

√

Cθ(θ
√
2λm)2

√
2λm + 64 + ‖f ′‖∞

)

2−λm2
)

<
(3

4

)k

,

where ‖f ′‖∞ = sup0�x�1 |f ′(x)|.

Proof. We begin by noting that
(

2k−1
k

)

< 4k holds for integers k � 1. It holds for
k = 1 and to complete an induction argument we find for k � 1 that

(

2k + 1

k + 1

)

/

(

2k − 1

k

)

=
(2k + 1)(2k)

k(k + 1)
< 4.

We choose η = 1/25 in Theorem 5.10. Then for 512 � m � 8
(

2k − 1

k

)

(

η +
0.4√
m

)k

� 4k
( 3

16

)k

=
(3

4

)k

,

where m � 8 was used to make η + 0.4/
√
m � 3/16. Now the conclusion follows

because 2−E � 2−λm2

and ωf (t) � ‖f ′‖∞t. �

Corollary 5.12. Assume that E � �λm2� and that k is nondecreasing in m. Then

E(|μ̂(k)
E − μ|2) � 4−(1− 4λm

k+4λm )λm2+O(m log(m)).
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822 ZEXIN PAN AND ART B. OWEN

In particular, when k = Ω(m), the MSE of μ̂
(k)
E converges to μ at a super-polynomial

rate. If further k = Ω(m2), then

E(|μ̂(k)
E − μ|2) � 4−λm2+O(m log(m)).

Proof. We first introduce a parameter 0 � ε < 1 and change the event H we used
in the proof of Theorem 5.6 to be

H =
{

min{‖L‖1 | L ∈ L,
∑

�∈L

M(�, :) = 0} > λ(1− ε)m2
}

.

Then as in equation (5.16), we can choose

c =
A√
η
2−λ(1−ε)m2

√

Cθ(θ
√
2λm)2

√
2λm + 64

and conclude that Pr(|μ̂∞ − μ| > c) < η + Pr(Hc). By Lemma 5.3,

Pr(Hc) <
C

(1− ε)1/4
√
m
2−εm/2,

so we can choose η such that

η + Pr(Hc) =
2C

(1− ε)1/4
√
m
2−εm/2.

With this choice, c = 2−λ(1−ε)m2+O(m logm) and a similar reasoning as in Theo-
rem 5.10 shows

E(|μ̂(k)
E − μ|2) � Pr

(

|μ̂(k)
E − μ| > c+ ωf

( 1

2E

))

ωf (1)
2(5.17)

+ Pr
(

|μ̂(k)
E − μ| � c+ ωf

( 1

2E

))(

c+ ωf

( 1

2E

))2

�

( 8C

(1− ε)1/4
√
m

)k

2−
kεm
2 ωf (1)

2 + 4−λ(1−ε)m2+O(m log(m)),(5.18)

where we have used ωf

(

1
2E

)

= O(2−λm2

) when E � �λm2� and
(

2k−1
k

)

< 4k as in
Corollary 5.11.

If we choose ε = 4λm/(k + 4λm) so that 2−kεm/2 = 4−λ(1−ε)m2

, then

4C

(1− ε)1/4
√
m

=
(k + 4λm

k

)1/4 4C√
m

� (1 + 4λm)1/4
4C√
m

= o(1).

So the second term in equation (5.17) dominates. When k = Ω(m2), we choose

ε = 0 and notice that in this case (4C/
√
m)k = o(4−λm2

). �

Our proof strategy generalizes to digital nets with prime base b � 3, as we now
sketch. Let F∗

b be the nonzero elements in field Fb, let yL = (yL,1, . . . , yL,|L|) be a

length |L| vector with entries in F∗
b and let F∗|L|

b be the set of all such length |L|
vectors. One can show that

μ̂∞ − μ =
∑

L∈L

∑

yL∈F
∗|L|
b

1

{

∑

�∈L

yL,�M(�, :) = 0

}

BL,yL
ζL,yL

(D)b−‖L‖1 ,

where ζL,yL
(D) is a complex number of modulus 1 (actually an integer power of

exp(2π
√
−1/b)) and BL,yL

is a constant obeying a bound similar to that in The-
orem 3.1. After applying the union bound as in Lemma 5.3, one can prove that
with high probability all b−‖L‖1 are small and the convergence of the median is
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MEDIAN OF MEANS FOR RANDOMIZED NETS 823

super-polynomial. However, the constant c in |med(μ̂∞)− μ| = O(n−c log(n)) must
be smaller. To see this, notice that each L is associated with (b− 1)|L| distinct yL,
so

|{yL ∈ F∗|L|
b , L ∈ L | ‖L‖1 = N}| =

∑

L∈L
1‖L‖1=N (b− 1)|L|

which is obviously smallest and simplest for b = 2. Let q(N) =
∑

L∈L 1‖L‖1=N be
the number of L with ‖L‖1 = N . We know that

q(N) ∼ C

N3/4
exp

(

π

√

N

3

)

for some constant C from VIII.24 of [8]. Applying the arithmetic versus geometric
mean inequality

1

q(N)

∑

L∈L
1‖L‖1=N (b− 1)|L| � (b− 1)

1
q(N)

∑
L∈L 1‖L‖1=N |L|.

Now q(N)−1
∑

L∈L 1‖L‖1=N |L| is the average length of L with ‖L‖1 = N , and

that equals (2
√
3 log(2)/π)

√
N + o(

√
N) by VII.28 of [8]. So roughly speaking,

|{yL ∈ F∗|L|
b , L ∈ L | ‖L‖1 � N}| is lower bounded by exp(κb

√
N) for

κb = π

√

1

3
+

2
√
3 log(2) log(b− 1)

π
.

By setting exp(κb

√
N) = bm, we see that the union bound can at best guarantee no

L with ‖L‖1 � (log(b)/κb)
2m2 would satisfy

∑

�∈L yL,�M(�, :) = 0 for any yL and

the error bound for |μ̂∞ − μ| is at best O(b−(log(b)/κb)
2m2

) = O(n−(log(b)/κ2
b) log(n)).

One can prove that log(b)/κ2
b is larger for b = 2 than for any integer b > 2. To

prove this, let h(b) = log(b)/κ2
b be a function of b ∈ [2,∞). The derivative h′ is

negative for b > b∗ with a modest value b∗ and we can check all integers in the
interval [2, b∗] finding that b = 2 is the maximizer. Also log(2)/κ2

2 = 3 log(2)/π2 is
the rate constant that Remark 5.9 shows is attained for the base 2 case up to an
arbitrarily small ε.

To be clear, the above heuristic reasoning does not prove the asymptotic conver-
gence rate of the median of random linear scrambling with base b � 3 is slower. It
only suggests the proof strategy used in our paper cannot produce a better upper
bound than the base 2 case. Results may change if one can reason more cleverly
and replace the union bound with a tighter bound.

6. Convergence rate under finite differentiability

Although our method is designed for smooth target functions, in applications
one may not know the exact smoothness but still want to apply this method. In
this section, we show that the median converges at almost the optimal rate for
the class of p times differentiable functions Cp([0, 1]) whose p’th derivatives are
λ-Hölder continuous. The λ in Hölder continuity should not be confused with the
λ from Lemma 5.1.

First we state the counterpart to Theorem 5.6 in this setting. By a partition of
[0, 1] we mean a sequence of increasing numbers 0 = x0 < x1 < · · · < xN = 1 where

Licensed to Stanford Univ. Prepared on Thu Aug  3 16:13:41 EDT 2023 for download from IP 171.66.13.39.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



824 ZEXIN PAN AND ART B. OWEN

N ∈ N. For 0 < λ � 1 and a function f over [0, 1], we use the λ-variation measure

Vλ(f) = sup
P

N
∑

i=1

|xi − xi−1|
|f(xi)− f(xi−1)|

|xi − xi−1|λ

from [7] [7, Chapter 14.4], in which P is the set of all partitions of [0, 1]. Notice
that when λ = 1, V1(f) is the total variation of f . If f is λ-Hölder continuous,
namely |f(xi)− f(xi−1)| � C|xi−xi−1|λ for some constant C, then Vλ(f) is finite.

Theorem 6.1. Let f ∈ Cp([0, 1]) for p � 1 with Vλ(f
(p)) < ∞ for some 0 < λ � 1.

Further assume that supx∈[0,1] |f (d)(x)| � A for 1 � d � max(p−1, 1). For random
linear scrambling

Pr
(

|μ̂∞ − μ| > C1√
η
2−(p+λ)(1−ε)m +

C2√
η
2−2

(1−ε)m
p

−1
)

< η + C32
−εm(6.1)

holds for any η > 0 and 0 � ε < 1, where

C1 =
2p+λ+2

√
p(p− 1)!

Vλ(f
(p))

( ∞
∑

N=p

Np−1
(1

2

)
N

p+λ

)
1
2

,

C2 = 4
√
6Vλ(f

(p)) + 8
√
6A, and

C3 =
(p+ λ)p

(p!)2

∞
∑

k=1

kp

2k
+ e− 1.

Proof. The proof resembles that of Theorem 5.6 and is given in Appendix C. �

We have the following immediate consequences.

Corollary 6.2. Let med(μ̂∞) be the median of the random variable μ̂∞. Then

under the conditions of Theorem 6.1

|med(μ̂∞)− μ| = o(2−(p+λ)m+ε′m)

for any ε′ > 0.

Proof. Apply Theorem 6.1 with η = 1/m and 0 < ε < ε′/(p+ λ). The probability
on the right hand side of (6.1) is below 1/2 and the given bound for |μ̂∞ − μ| is
o(2−(p+λ)m+ε′m). �

Turning to the sample median, the smoother f is, the smaller are the probable
errors. If we want to control the expected squared error of the sample median, then
we will need k to be large enough and smoother f will demand larger k as shown
next. We do not need k to grow without bound.

Corollary 6.3. Suppose that the scrambling has precision E and μ̂
(k)
E is the sample

median of 2k − 1 independent copies of μ̂E. Under the conditions of Theorem 6.1,
(i) for any ε > 0, when m is large enough so that C32

−εm < 1/16,

Pr
(

|μ̂(k)
E − μ| > 4C12

−(p+λ)(1−ε)m + 4C22
−2

(1−ε)m
p

−1

+ ωf

( 1

2E

))

<
(1

2

)k

and

(ii) for any ε′ > 0, if k = k(m) satisfies lim infm→∞ ε′k � 8(p + λ)2 and

E � (p+ λ)m, then

E(|μ̂(k)
E − μ|2) = o(2−2(p+λ)m+ε′m).
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Proof. By the argument in the proof of Theorem 5.10, the probability in (i) is
bounded by 4k(η + C32

−εm)k where C3 is from Theorem 6.1. Claim (i) follows

once we choose η = 1/16 (making η + C32
−εm � 1/8) and apply |μ̂(k)

E − μ| �

|μ̂(k)
∞ − μ|+ ωf (2

−E).

To prove claim (ii), first notice that f (1) is either λ-Hölder continuous or differ-
entiable, so it must be bounded over [0, 1] and ωf (2

−E) � C2−E for some constant

C. Then E � (p+ λ)m implies that ωf (2
−E) = O(2−(p+λ)m). Now choose

ε ∈
( ε′

4(p+ λ)
,

ε′

2(p+ λ)

)

and η = 2−εm. Similar to the way equation (5.17) separates contributions from
large and small errors,

E(|μ̂E − μ|2) = O(2−2(p+λ)(1−ε)m) + 4k(η + C32
−εm)k‖f (1)‖2∞

= o(2−2(p+λ)m+ε′m) + 2−εmk+O(k).

Since

lim inf
m→∞

εk � lim inf
m→∞

ε′k

4(p+ λ)
� 2(p+ λ),

we see that 2−εmk+O(k) = o(2−2(p+λ)m+ε′m). This proves the claim. �

We know that when f ∈ Cp([0, 1]) and f (p) is λ-Hölder continuous, the optimal
convergence rate is O(n−p−λ). See [14]. Since a λ-Hölder continuous function has
finite Vλ(f), Corollary 6.3 shows that if k → ∞ as m → ∞, then the sample
median converges at the rate o(n−p−λ+ε) for any ε > 0, so it converges at almost
the optimal rate. The cost of computation grows proportionally to nk. Taking
k = Ω(m) leads to a cost of O(n log(n)).

Appendix A. Proof of Theorem 3.1

Here we establish some lemmas and then prove Theorem 3.1. First, we introduce
and slightly modify the Walsh function notation for base 2 from Appendix A of [7]
who credit [25]. For k ∈ N, we write k = k1 +2k2+ · · ·+2q−1kq with kq = 1. Then
the k’th Walsh function is

walk(x) = (−1)k1x1+···+kqxq = (−1)
	k·	x

with both �x and �k taken to q = q(k) bits. The slight difference in our notation is

that both of our vectors �x and �k are indexed starting from 1 while [7] index the
bits of k from zero and the bits of x from 1. We also put wal0(x) = 1 for all x.

Now for integers k > 0, define Lk = {� ∈ [q(k)] | k� = 1} ∈ L. This Lk will
correspond to a set of row indices of M when we interpret the binary expansion of
k as a 0–1 coding for which rows are included. Next, let Lk(j) be the j-th largest
element of Lk, 1 � j � |Lk|, and for 1 � u � |Lk| let ‖Lk‖1,u be the sum of the
largest u elements of Lk, namely ‖Lk‖1,u =

∑u
j=1 Lk(j). Finally, define χr,k to be

χr,k =

∫ 1

0

xrwalk(x) dx.

Lemma A.1. If 0 � r < |Lk|, then χr,k = 0.

Proof. This follows from Lemma A.22 of [7]; see also Section 14.3 in that reference.
�
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Lemma A.2. For any u such that 1 � u � |Lk|

|χr,k| �
r!

(r − u+ 1)!

(

u
∏

w=1

1 + 4−w+1
)

2−‖Lk‖1,u−u.

Proof. The following proof uses the same proof strategy as that of Lemma 14.10 of
[7].

By equation (14.5) of [7] for b = 2

(A.1) χr,k = − r

2Lk(1)+1

(

χr−1,k−2Lk(1) −
∞
∑

c=1

1

2c
χr−1,k+2c+Lk(1)

)

.

When u = 1, notice that for any k

|χr−1,k| �
∫ 1

0

xr−1 dx =
1

r
.

Applying the above bound, we get

|χr,k| �
r

2Lk(1)+1

(1

r
+

∞
∑

c=1

1

2cr

)

=
2

2Lk(1)+1
.

This proves the base case. Next we prove the bound for u � 2 by induction on u.
If |Lk| � u, then |Lk−2Lk(1) | = |Lk|−1 � u−1 and |Lk+2c+Lk(1) |+1 = |Lk|+1 �

u − 1. Hence we can apply the induction hypothesis with u − 1 to equation (A.1)
to get

|χr,k| �
r

2Lk(1)+1

{

(r − 1)!

(r − u+ 1)!

( u−1
∏

w=1

1 + 4−w+1

)

2
−‖L

k−2Lk(1)‖1,u−1−u+1

+
∞
∑

c=1

1

2c
(r − 1)!

(r − u+ 1)!

( u−1
∏

w=1

1 + 4−w+1

)

2
−‖L

k+2c+Lk(1)‖1,u−1−u+1
}

=
r!

(r − u+ 1)!2u

( u−1
∏

w=1

1 + 4−w+1

)

×
{

2
−‖L

k−2Lk(1)‖1,u−1−Lk(1) +

∞
∑

c=1

1

2c
2
−‖L

k+2c+Lk(1)‖1,u−1−Lk(1)
}

.

Now notice that

Lk(1)− Lk(u) =

u−1
∑

j=1

Lk(j)− Lk(j + 1) � u− 1

and then

‖Lk+2c+Lk(1)‖1,u−1 + Lk(1) = ‖Lk‖1,u + c+ 2Lk(1)− Lk(u− 1)− Lk(u)

� ‖Lk‖1,u + c+ 2u− 3.
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We also have ‖Lk−2Lk(1)‖1,u−1 + Lk(1) = ‖Lk‖1,u. Hence

|χr,k| �
r!

(r − u+ 1)!2u

( u−1
∏

w=1

1 + 4−w+1

)

{

2−‖Lk‖1,u +

∞
∑

c=1

1

2c
2−‖Lk‖1,u−c−2u+3

}

=
r!

(r − u+ 1)!2‖Lk‖1,u+u

( u−1
∏

w=1

1 + 4−w+1

)

{

1 +

∞
∑

c=1

1

4c
2−2u+3

}

�
r!

(r − u+ 1)!

( u
∏

w=1

1 + 4−w+1

)

2−‖Lk‖1,u−u.

This completes the proof. �

Lemma A.3. Assume that f is analytic on [0, 1] and |f (d)(1/2)| � Aαdd! for some

constants A and α < 2 and all d � 1. Then

|f̂(k)| � 6A(|Lk|)!
( α/2

1− α/2

)|Lk|
2−‖Lk‖1 .

Proof. First we split f̂(k) into two parts:

|f̂(k)| =
∣

∣

∣

∫ 1

0

f(x)walk(x) dx
∣

∣

∣

�

∣

∣

∣

∫ 1/2

0

f(x)walk(x) dx
∣

∣

∣+
∣

∣

∣

∫ 1

1/2

f(x)walk(x) dx
∣

∣

∣.(A.2)

Let y = 2x − 1 and g(y) = f(y/2 + 1/2). For k = k1 + 2k2 + · · · + 2q−1kq, let
k′ = (k − k1)/2. Then

∫ 1

1/2

f(x)walk(x) dx =

∫ 1

1/2

f(x)(−1)
∑q

�=1 k�x� dx

= (−1)k1

∫ 1

1/2

f(x)(−1)
∑q

�=2 k�x� dx

=
(−1)k1

2

∫ 1

0

g(y)walk′(y)dy

=
(−1)k1

2

∞
∑

r=0

g(r)(0)

r!

∫ 1

0

yrwalk′(y)dy

=
(−1)k1

2

∞
∑

r=0

g(r)(0)

r!
χr,k′ .

Now by Lemma A.1, χr,k′ = 0 if r < |Lk′ |. By Lemma A.2 with u = |Lk′ | and
|g(r)(0)| = |f (r)(1/2)|/2r � Ar!(α/2)r,

∣

∣

∣

(−1)k1

2

∞
∑

r=0

g(r)(0)

r!
χr,k′

∣

∣

∣
�

∞
∑

r=|Lk′ |

Ar!(α/2)r

(r − |Lk′ |+ 1)!

(

|Lk′ |
∏

w=1

1 + 4−w+1
)

2−‖Lk′‖1−|Lk′ |−1

� 3A2−‖Lk′‖1−|Lk′ |−1
∞
∑

r=|Lk′ |

r!(α/2)r

(r − |Lk′ |+ 1)!
,
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where we have used
|Lk′ |
∏

w=1

1 + 4−w+1 < 2 exp

( ∞
∑

w=2

4−w

)

< 3.

Now
∞
∑

r=|Lk′ |

r!(α/2)r

(r − |Lk′ |+ 1)!
= (|Lk′ | − 1)!

∞
∑

r=|Lk′ |

(

r

r − |Lk′ |+ 1

)

(α/2)r

= (|Lk′ | − 1)!(α/2)|Lk′ |−1
∞
∑

r=1

(

r + |Lk′ | − 1

r

)

(α/2)r

(i)
= (|Lk′ | − 1)!(α/2)|Lk′ |−1

( 1

(1− α/2)|Lk′ | − 1
)

= (|Lk′ |)!
( α/2

1− α/2

)|Lk′ | 1− (1− α/2)|Lk′ |

|Lk′ |α/2
(ii)

� (|Lk′ |)!
( α/2

1− α/2

)|Lk′ |
,

where (i) uses the Taylor expansion of (1−x)−n around x = 0 evaluated at x = α/2
and n = |Lk′ | and (ii) uses 1− (1− x)n � nx for x � 0. Therefore

∣

∣

∣

(−1)k1

2

∞
∑

r=0

g(r)(0)

r!
χr,k′

∣

∣

∣ � 3A(|Lk′ |)!
( α/2

1− α/2

)|Lk′ |
2−‖Lk′‖1−|Lk′ |−1.

From the definition of Lk, it is easy to see |Lk| − 1 � |Lk′ | � |Lk| and
‖Lk′‖1 =

∑

�∈Lk′

� =
∑

�∈Lk

(�− 1) = ‖Lk‖1 − |Lk|,

from which we get
∣

∣

∣

∫ 1

1/2

f(x)walk(x) dx
∣

∣

∣ � 3A(|Lk|)!
( α/2

1− α/2

)|Lk|
2−‖Lk‖1 .

We can bound |
∫ 1/2

0
f(x)walk(x) dx| in a similar way. Now the conclusion follows

from equation (A.2). �

Proof of Theorem 3.1. By the Walsh function decomposition,

f(x) =
∞
∑

k=0

f̂(k) walk(x)

and so

μ̂∞ − μ =
∞
∑

k=1

f̂(k)
1

2m

2m−1
∑

i=0

walk(xi).

Now by equation (2.2),

walk(xi) = (−1)
∑

�∈Lk
xi,� = (−1)

∑
�∈Lk

M(�,:)	ai+
∑

�∈Lk
D� .

If
∑

�∈Lk
M(�, :) = 0, then

1

2m

2m−1
∑

i=0

walk(xi) =
1

2m

2m−1
∑

i=0

(−1)
∑

�∈Lk
D� = (−1)‖D‖1 .

Licensed to Stanford Univ. Prepared on Thu Aug  3 16:13:41 EDT 2023 for download from IP 171.66.13.39.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



MEDIAN OF MEANS FOR RANDOMIZED NETS 829

Otherwise at least one entry of
∑

�∈Lk
M(�, :) is nonzero. Because C is nonsingular

and �ai = C�i, {�ai | 0 � i < 2m} = {0, 1}m, and so

1

2m

2m−1
∑

i=0

walk(xi) = (−1)‖D‖1
1

2m

2m−1
∑

i=0

(−1)
∑

�∈Lk
M(�,:)	ai

= (−1)‖D‖1

m
∏

q=1

(1 + (−1)
∑

�∈Lk
M(�,q)

)

= 0.

Therefore,

(A.3)

∞
∑

k=1

f̂(k)
1

2m

2m−1
∑

i=0

walk(xi) =

∞
∑

k=1

1

{

∑

�∈Lk

M(�, :) = 0

}

f̂(k)(−1)‖D‖1 .

The conclusion follows once we define BLk
= f̂(k)2‖Lk‖1 and notice that {Lk | k �

1} = L. The bound on BLk
follows directly from Lemma A.3. �

Appendix B. Proof of Lemma 5.1

Let q(N) = |{L ∈ L | ‖L‖1 = N}|. Each L with ‖L‖1 = N corresponds to a
partition of N into distinct positive integers. It is known from combinatorics that

q(N) ∼ 1

4× 31/4N3/4
exp

(

π

√

N

3

)

,(B.1)

where ∼ means asymptotically equivalent (the ratio of the two sides converges to
1 as N → ∞). See note VII.24 in [8]. Because each q(N) is positive and the sum
∑N

n=1 q(n) grows to infinity as N → ∞, sums of the first N members of the left
hand side of (B.1) are asymptotic to the corresponding sums of the right hand side:

∣

∣{L ∈ L | ‖L‖1 � N}
∣

∣ =

N
∑

n=1

q(n) ∼
N
∑

n=1

1

4× 31/4n3/4
exp

(

π

√

n

3

)

.

Because the function x−3/4 exp(π
√

x/3) has positive derivative for x > 33/2/(2π) ≈
0.82, we have

∫ N

1

1

x3/4
exp

(

π

√

x

3

)

dx �

N
∑

n=1

1

n3/4
exp

(

π

√

n

3

)

�

∫ N+1

1

1

x3/4
exp

(

π

√

x

3

)

dx,(B.2)

where the first inequality follows from integrating x−3/4 exp(π
√

x/4)1{x � 1} over

[0, N ]. By the change of variable y = (π2x/3)1/4, we get

∫ N

1

1

x3/4
exp

(

π

√

x

3

)

dx = 4
( 3

π2

)1/4
∫ (π2N/3)1/4

0

ey
2

dy +O(1).

We will use the Dawson function

Daw(z) = e−z2

∫ z

0

ey
2

dy(B.3)
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for z � 0. For large z there is an asymptotic expansion

Daw(z) ∼ 1

2z
+

1

22z3
+

1 · 3
23z5

+
1 · 3 · 5
24z7

+ · · ·

from [21]. The first order approximation Daw(z) ∼ 1/(2z) is enough for our pur-
poses. Using (B.3) we can write

∫ (π2 N
3 )1/4

0

ey
2

dy = exp
(

π

√

N

3

)

Daw
((

π2N

3

)1/4)

∼ 1

2(π2N/3)1/4
exp

(

π

√

N

3

)

.

So we conclude that
∫ N

1

1

x3/4
exp

(

π

√

x

3

)

dx ∼ 2× 31/2

πN1/4
exp

(

π

√

N

3

)

.

From equation (B.2), the sum has the same asymptotic growth rate. Hence

∣

∣{L ∈ L | ‖L‖1 � N}
∣

∣ ∼
N
∑

n=1

1

4× 31/4n3/4
exp

(

π

√

n

3

)

∼ 31/4

2πN1/4
exp

(

π

√

N

3

)

.

In other words,

lim
N→∞

N1/4 exp
(

−π

√

N

3

)

∣

∣{L ∈ L | ‖L‖1 � N}
∣

∣ =
31/4

2π
.

Now define λ = 3(log(2))2/π2. Let N = λm2 in the above equation and notice that

π
√

N/3 = m log(2),

lim
m→∞

λ1/4
√
m2−m

∣

∣{L ∈ L | ‖L‖1 � λm2}
∣

∣ =
31/4

2π
.

A numerical calculation summing the PartitionsQ function of Mathematica from 1
to N shows that

∣

∣{L ∈ L | ‖L‖1 � N}
∣

∣ <
0.242

N1/4
exp

(

π

√

N

3

)

for 1 � N � 40,000. Because λ(512)2 ≈ 38,284, the above inequality shows that

∣

∣{L ∈ L | ‖L‖1 � λm2}
∣

∣ <
0.242× 2m

λ
1
4
√
m

<
0.4× 2m√

m

for 1 � m � 512. This completes the proof. �

Appendix C. Proof of Theorem 6.1

Our proof strategy is essentially the same as that of Theorem 5.6. First we
establish the counterpart of Theorem 3.1 when f is only finitely differentiable.
Recall that in Appendix A, we defined L(j) to be the jth-largest element of L and
‖L‖1,u to be the sum of the largest u elements of L.
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Lemma C.1. Assume that f ∈ Cp([0, 1]) for p � 1 and Vλ(f
(p)) < ∞ for some

0 < λ � 1. Further assume that supx∈[0,1] |f (d)(x)| � A for 1 � d � max(p− 1, 1).
Then

μ̂∞ − μ =
∑

L∈L
1{|L| � p,

∑

�∈L

M(�, :) = 0}BL(−1)‖D(L)‖12−‖L‖1

+
∑

L∈L
1{|L| > p,

∑

�∈L

M(�, :) = 0}BL(−1)‖D(L)‖12−‖L‖1,p−λL(p+1),

where BL is a coefficient depending on L that satisfies

(C.1) |BL| �
{

4Vλ(f
(p)) + 8A, if |L| � p,

4Vλ(f
(p)), if |L| > p.

Proof. If |Lk| > p, then by the first part of [7, Theorem 14.15], with b = 2,

|f̂(k)| � 4Vλ(f
(p))2−‖L‖1,p−λL(p+1).

For |Lk| = p and |Lk| > p, the second and third parts, respectively, of [7, Theorem
14.15] apply. We will use the larger upper bound from the third part. Because we
assume that supx∈[0,1] |f (r)(x)| � A for 1 � r � max(p− 1, 1),

|f̂(k)| � 2−‖Lk‖1

(

4Vλ(f
(p))2−λLk(p) + 3

p−1
∑

r=|Lk|

|f (r)(0)|
(r − |Lk|+ 1)!

+
∣

∣

∣

∫ 1

0

f (|Lk|)(x) dx
∣

∣

∣

)

� 2−‖Lk‖1

(

4Vλ(f
(p)) + 3A

∞
∑

r=1

1

r!

+ min
(

sup
x∈[0,1]

|f (|Lk|)(x)|, |f (|Lk|−1)(1)− f (|Lk|−1)(0)|
))

< (4Vλ(f
(p)) + 8A)2−‖Lk‖1

because 3(e − 1) + 2 < 8. We add 2 instead of 1 here to handle the case |Lk| = p,
where |f (p−1)(x)| < A but |f (p)(x)| might not be smaller than A.

The conclusion follows once we use this estimate for f̂(k) in equation (A.3)

and define BLk
= f̂(k)2‖Lk‖1 if |Lk| � p and BLk

= f̂(k)2‖Lk‖1,p+λLk(p+1) if
|Lk| > p. �

Next we prove the counterpart of Lemma 5.3. To shorten some lengthy expres-
sions we use the notation

L(M) =
{

L ∈ L
∣

∣

∑

�∈L

M(�, :) = 0
}

.(C.2)

Lemma C.2. In random linear scrambling, when m � 1, for any 0 � ε < 1

Pr
(

min
{

‖L‖1 | L ∈ L(M), |L| � p} � 2
(1−ε)m

p

)

< (e− 1)2−εm,(C.3)

and

(C.4)

Pr
(

min
{

‖L‖1,p+λL(p+1)
∣

∣ L ∈ L(M), |L| > p
}

� (1−ε)(p+λ)m
)

< Cp,λ2
−εm,

where Cp,λ is given by equation (C.8).
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Proof. We will make frequent use of this quantity:

q(N, d) =
∣

∣

{

L ∈ L
∣

∣ |L| = d, ‖L‖1 = N
}∣

∣.

Now let
⎛

⎜

⎜

⎜

⎜

⎜

⎝

K(1)
K(2)
...

K(d− 1)
K(d)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

L(1)
L(2)
...

L(d− 1)
L(d)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

−

⎛

⎜

⎜

⎜

⎜

⎜

⎝

d− 1
d− 2
...
1
0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

This provides a bijection between strictly decreasing positive integers L(j) that
sum to N and nonincreasing positive integers K(j) that sum to N − d(d− 1)/2. It
follows that q(N, d) equals the number of ways to partition N − d(d− 1)/2 into d
positive integers. Hence by [1] [1, 4.2.6]

(C.5) q(N, d) � pd(N − d(d− 1)/2) =
1

d!

(

N − 1

d− 1

)

,

where pM (n) is Andrews’ notation for the number of partitions of n into M positive
integers. Therefore

|{L ∈ L | |L| = d, ‖L‖1 � N}| =
N
∑

n=1

q(n, d) �

N
∑

n=1

1

d!

(

n− 1

d− 1

)

=
1

d!

(

N

d

)

�
Nd

(d!)2
,

(C.6)

where we have used the ‘upper summation’ identity for binomial coefficients [12] to
simplify the sum over n.

Now we take the union bound and use Pr(
∑

�∈L M(�, :) = 0) � 2−m, to get

Pr
(

min
{

‖L‖1 | L ∈ L(M), |L| � p} � 2
(1−ε)m

p

)

�
1

2m

p
∑

d=1

2
d(1−ε)m

p

(d!)2
�

1

2m

p
∑

d=1

2m(1−ε)

(d!)2
�

1

2εm

∞
∑

d=1

1

d!
= (e− 1)2−εm,

establishing (C.3).
For (C.4) we must count the sets L with ‖L‖1,p + λL(p + 1) � N . We make a

separate count for each value of L(p+1). Let L(p+1) = k. Similar to the bijection
above, we can make a one to one correspondence between L(1), . . . , L(p) that are
strictly decreasing, larger than L(p + 1) = k and sum to ‖L‖1,p � N − �λk� and
integers L(1)−k > L(2)−k > · · · > L(p)−k > 0 with a sum at most N−�λp�−kp.
The smallest relevant |L| is p+ 1. For that we get

∣

∣{L ∈ L
∣

∣ |L| = p+ 1, L(p+ 1) = k, ‖L‖1,p + λL(p+ 1) � N}
∣

∣

�

N
∑

n=1

q(n− kp− �λk�, p) =
N−kp−	λk


∑

n=1

q(n, p) �
(N − kp− �λk�)p

(p!)2
(C.7)

by the bound from (C.6). Now if we allow |L| > p, the largest |L| could be is p+k−1
because L(p+ 1) = k and L(j) are strictly decreasing. Each of the distinct values
k − 1 through 1 could either appear or not appear among the L(j) for j > p + 1.
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Those that do appear must do so in strictly decreasing order. As a result, including
cases with |L| > p raises the count by a factor of 2k−1. Summing over k we get

∣

∣

{

L ∈ L
∣

∣ |L| > p, ‖L‖1,p + λL(p+ 1) � N
}∣

∣

�

N
∑

k=1

1{kp+ �λk� � N} (N − kp− �λk�)p
(p!)2

2k−1.

Letting K∗ = �N/(p+ λ)� and k′ = K∗ − k + 1,

N
∑

k=1

1{kp+ �λk� � N}(N − kp− �λk�)p2k−1

�

K∗
∑

k′=1

(N − (p+ λ)(K∗ − k′ + 1))p2K
∗−k′

� 2K
∗

(p+ λ)p
∞
∑

k′=1

k′p2−k′

.

The last sum is clearly convergent. Therefore

|{L ∈ L | |L| > p, ‖L‖1,p + λL(p+ 1) � N}| � Cp,λ2
N

p+λ ,

where

(C.8) Cp,λ =
(p+ λ)p

(p!)2

∞
∑

k=1

kp

2k
.

Applying the union bound and using Pr(
∑

�∈L M(�, :) = 0) � 2−m,

Pr
(

min
{

‖L‖1,p + λL(p+ 1)
∣

∣ L ∈ L(M), |L| > p
}

� (1− ε)(p+ λ)m
)

�
1

2m
Cp,λ2

(1−ε)(p+λ)m
p+λ = Cp,λ2

−εm.

�

Proof of Theorem 6.1. Using L(M) from (C.2) define the event

H =
{

min{‖L‖1 | L ∈ L(M), |L| � p} > 2
(1−ε)m

p

}

⋂

{

min{‖L‖1,p + λL(p+ 1) | L ∈ L(M), |L| > p > (1− ε)(p+ λ)m
}

.

Lemma C.2 shows that Pr(Hc) < (Cp,λ + e− 1)2−εm.
Now as in equations (5.6) and (5.7),

E
(

Var(μ̂∞ − μ |M) | H
)

�
2−m

Pr(H)

(

∑

L∈L,|L|�p

1
{

‖L‖1 > 2
(1−ε)m

p

}

B2
L4

−‖L‖1

+
∑

L∈L,|L|>p

1
{‖L‖1,p + λL(p+ 1)

p+ λ
> (1− ε)m

}

B2
L4

−‖L‖1,p−λL(p+1)

)

.

Lemma C.1 provides two uniform bounds on B2
L depending on whether |L| � p or

|L| > p. We will bound the sum above exclusive of the B2
L factors for now and

then multiply in those factors below. We can easily bound the first sum above by
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removing the restriction |L| � p and using equation (5.10) to bound the number of
L ∈ L with |L| = N . This yields

∑

L∈L,|L|�p

1{‖L‖1 > 2
(1−ε)m

p }4−‖L‖1

=

∞
∑

N=
⌈

2
(1−ε)m

p

⌉

1

4N
|{L ∈ L | |L| � p, ‖L‖1 = N}|

�

∞
∑

N=
⌈

2
(1−ε)m

p

⌉

1

4N

π exp
(

π
√

N
3

)

2
√
3

=
π

2
√
3

∞
∑

N=
⌈

2
(1−ε)m

p

⌉

exp
(

π

√

N

3
− log(4)N

)

(i)

�
π

2
√
3

∞
∑

N=
⌈

2
(1−ε)m

p

⌉

exp
( π2

12 log(2)
+ log(2)N − log(4)N

)

�
π

2
√
3
exp

( π2

12 log(2)

)

∞
∑

N=
⌈

2
(1−ε)m

p

⌉

1

2N

=
π√
3
exp

( π2

12 log(2)

)

2−
⌈

2
(1−ε)m

p

⌉

� 6× 2−2
(1−ε)m

p
,

where (i) follows from the inequality a � a2/c + c/4 with a = π
√

N/3 and c =
π2/(3 log(2)).

To bound the second sum, we consider separate cases for each value of L(p+ 1)
and ‖L‖1,p. The argument is similar to the one used in Lemma C.2, but not so
similar that we could just cite that lemma. First

∑

L∈L,|L|>p

1

{‖L‖1,p + λL(p+ 1)

p+ λ
> (1− ε)m

}

4−‖L‖1,p−λL(p+1)

=

∞
∑

k=1

∞
∑

N=	(p+λ)(1−ε)m−λk


1

4N+λk

∣

∣

{

L ∈ L
∣

∣ |L| > p,L(p+ 1) = k, ‖L‖1,p = N
}∣

∣.

The bijection used to derive equation (C.7) shows that
∣

∣{L ∈ L
∣

∣ |L| = p+ 1, L(p+ 1) = k, ‖L‖1,p = N}
∣

∣

=
∣

∣{L ∈ L
∣

∣ |L| = p, ‖L‖1,p = N − kp}
∣

∣,

and so by equation (C.5)
∣

∣{L ∈ L
∣

∣ |L| = p+ 1, L(p+ 1) = k, ‖L‖1,p = N}
∣

∣

= q(N − kp, p) �
1

p!

(

N − kp− 1

p− 1

)

.
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The same argument used below equation (C.7) shows that allowing |L| > p raises
the count by a factor of 2k−1. Hence

∞
∑

k=1

∞
∑

N=	(p+λ)(1−ε)m−λk


1

4N+λk
|{L ∈ L | |L| > p,L(p+ 1) = k, ‖L‖1,p = N}|

�

∞
∑

k=1

∞
∑

N=	(p+λ)(1−ε)m−λk


1

4N+λk

1

p!

(

N − kp− 1

p− 1

)

2k−1

(i)

�
1

p!

∞
∑

k=1

2k−1

4(p+λ)k

∞
∑

N=max(	(p+λ)(1−ε)m−λk
,(k+1)p)

1

4N−kp

(N − kp)p−1

(p− 1)!

(ii)

�
1

p!(p− 1)!

∞
∑

k=1

2k−1

4(p+λ)k

∞
∑

N=max(	(p+λ)((1−ε)m−k)
,p)

Np−1

4N
,

where (i) uses
(

N−kp−1
p−1

)

= 0 if N < (k+1)p and
(

N−kp−1
p−1

)

< (N − kp)p−1/(p− 1)!

if N � (k + 1)p and (ii) shifts the index N by kp. Letting k′ = �m(1− ε)� − k, we
see that

∞
∑

k=1

2k−1

4(p+λ)k

∞
∑

N=max(	(p+λ)((1−ε)m−k)
,p)

Np−1

4N

�
2�m(1−ε)�−1

4(p+λ)�m(1−ε)�

�m(1−ε)�−1
∑

k′=−∞

2−k′

4−(p+λ)k′

∞
∑

N=max(	k′(p+λ)
,p)

Np−1

4N

�
2�m(1−ε)�−1

4(p+λ)�m(1−ε)�

∞
∑

k′=−∞

2−k′

4−(p+λ)k′

∞
∑

N=max(	k′(p+λ)
,p)

Np−1

4N

=
2�m(1−ε)�−1

4(p+λ)�m(1−ε)�

∞
∑

N=p

Np−1

4N

� N
p+λ �
∑

k′=−∞
2(2p+2λ−1)k′

=
2�m(1−ε)�−1

4(p+λ)�m(1−ε)�

∞
∑

N=p

Np−1

4N
2(2p+2λ−1)� N

p+λ � 22p+2λ−1

22p+2λ−1 − 1

�
2m(1−ε)−1

4(p+λ)(m(1−ε)−1)

∞
∑

N=p

Np−1(2−
1

p+λ )N × 2,

where the last inequality uses 22p+2λ−1 � 2 because p � 1 and λ > 0.
Therefore,

∑

L∈L,|L|>p

1

{‖L‖1,p + λL(p+ 1)

p+ λ
> (1− ε)m

}

4−‖L‖1,p−λL(p+1)

�
4p+λ2m(1−ε)

p!(p− 1)!4(p+λ)m(1−ε)

∞
∑

N=p

Np−1
(

2−
1

p+λ
)N

.
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Using the bounds on |BL| from Lemma C.1, we conclude that

(C.9) E
(

Var(μ̂∞ − μ |M) | H
)

�
(

4Vλ(f
(p)) + 8A

)2 6

Pr(H)2m
2−2

(1−ε)m
p

+ (4Vλ(f
(p)))2

4p+λ2m(1−ε)

p!(p− 1)! Pr(H)2m

( ∞
∑

N=p

Np−1(2−
1

p+λ )N
)

4−(p+λ)(1−ε)m.

The conclusion follows using equation (5.16) from the proof of Theorem 5.6 with
the event H from this proof for which

Pr(Hc) < (Cp,λ + e− 1)2−εm

and choosing the constant

c =

√
6(4Vλ(f

(p)) + 8A)√
η

2−2
(1−ε)m

p
−1

+
2p+λ+2Vλ(f

(p))√
p(p− 1)!

√
η

( ∞
∑

N=p

Np−1
(1

2

)
N

p+λ

)
1
2

2−(p+λ)(1−ε)m,

where we used the inequality
√
a+ b �

√
a+

√
b and took square roots of the two

long expressions in equation (C.9) separately to make c look simpler. �
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