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MEAN DIMENSION OF RADIAL BASIS FUNCTIONS\ast 
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Abstract. We show that generalized multiquadric radial basis functions (RBFs) on Rd have
a mean dimension that is 1 + O(1/d) as d \rightarrow \infty with an explicit bound for the implied constant,
under moment conditions on their inputs. Under weaker moment conditions the mean dimension
still approaches 1. As a consequence, these RBFs become essentially additive as their dimension
increases. Gaussian RBFs by contrast can attain any mean dimension between 1 and d. We also find
that a test integrand due to Keister that has been influential in quasi-Monte Carlo theory has a mean
dimension that oscillates between approximately 1 and approximately 2 as the nominal dimension d
increases.
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1. Introduction. For high-dimensional functions it is very useful to find param-
eterizations in terms of some vectors of the same dimension as the input space. Two
such parameterizations are ridge functions \phi (\bfitx \sansT \theta ) and radial basis functions (RBFs)
\phi (\| \bfitx  - \bfitc \| ) for vectors \bfitc , \theta of the same dimension as \bfitx and appropriate functions
\phi (\cdot ). In this paper we study RBFs. We are interested in them because they serve as
building blocks for numerical methods used in the mathematical sciences: interpola-
tion, machine learning, Gaussian process regression (kriging), and multidimensional
integration.

There are some results based on concentration of measure wherein high-
dimensional Lipschitz functions become essentially constant as the dimension d of
their domain tends to infinity. See, for example, [3]. In this paper we study the way
in which some of these high-dimensional functions \phi (\cdot ) fluctuate around their nearly
constant value. Our main results are that for certain RBFs these fluctuations must
become essentially additive as d\rightarrow \infty , while others are not so constrained. Our tech-
niques are based on the functional ANOVA decomposition of [9, 26, 4]. A function of
d independent variables has 2d  - 1 nontrivial variance components \sigma 2

u for nonempty
subsets u of variables. The mean dimension is the weighted average of cardinalities
| u| with weights proportional to \sigma 2

u. It can take values between 1 and d. A mean
dimension near one means that the function is nearly additive in a least squares sense.
If a function has mean dimension 1 + \epsilon , then it has an additive approximation that
explains at least 1 - \epsilon of its variance.

Our main result concerns generalized multiquadric RBFs. These take the form
f(\bfitx ) = (a +

\sum d
j=1(xj  - cj)

2)p for a point \bfitc \in Rd, intercept a \geqslant 0, and power
p < 1. We show that under mild assumptions, their mean dimension is at most
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1192 C. HOYT AND A. B. OWEN

1 + (p  - 1)2V/(2M2d) + O(1/d2), where M and V are certain average moments
presented later. As a result these functions become essentially additive in high
dimensions.

The well-known Gaussian RBF (that we define below) need not be of low mean
dimension. We show that it can be parameterized to attain any mean dimension in
the interval (1, d) when the variables in it have continuous distributions. This RBF is
known as the Gaussian RBF in machine learning, and also as the squared exponential
RBF elsewhere in the literature.

To fix ideas, suppose that we have measured values f(\bfitx i) for \bfitx i \in Rd and i =
1, . . . , n. We seek an interpolant \~f(\bfitx ) for \bfitx \in Rd. We might then use

\~f(\bfitx ) =
n\sum 

i=1

\beta i\phi (\| \bfitx  - \bfitx i\| )

after solving n equations in n unknowns to compute \beta = (\beta 1, . . . , \beta n)
\sansT \in Rn. Only

certain special functions \phi are good choices for this usage. We describe some of
those in a later section based on material from [6]. For now we mention generalized
multiquadrics \phi (\| \bfitx \| ) = (a + \| \bfitx \| \vargamma 2)p and Gaussians, \phi (\| \bfitx \| ) = exp( - \| \bfitx \| 2\vargamma 2) for
parameters p\in R \setminus N0 and a\geqslant 0 and \vargamma > 0.

Now suppose that f(\bfitx ) is not nearly additive but all of the \phi (\| \bfitx  - \bfitx i\| ) are
nearly additive. It would still be possible to interpolate if the \beta i took values of
large magnitude with opposite signs that mostly canceled the additive parts in \phi (\cdot ).
We would, however, expect serious numerical conditioning difficulties in that setting.
RBF approximation is often ill-conditioned even with functions that are not nearly
additive. Fitting a nonadditive function by nearly additive basis functions can only
make things worse.

The covariance functions used in Gaussian process regression often take the RBF
form, especially in geoscience. An additive covariance function implies additive re-
alizations of the random field, a potentially serious limitation. This may be why
covariances of product form are more popular than covariance models of the RBF
form in high-dimensional Gaussian process models such as those used in computer
experiments [23].

An important test function for quasi-Monte Carlo (QMC) integration is the Keis-
ter function from [14]. This is a radial basis function. Although it is expressed as a
sinusoidal function of \| \bfitx \| 2 for Gaussian \bfitx , making all d variable equally important,
we will see that it is generally of low mean dimension.

The asymptotic mean dimension of ridge functions was studied in [10] for \bfitx \sim 
\scrN (0, I). If the ridge function \phi (\cdot ) is Lipschitz continuous, then the mean dimension
of f(\bfitx ) = \phi (\bfitx \sansT \theta ) for a unit vector \theta \in Rd remains bounded as the nominal dimension
d \rightarrow \infty . Some discontinuous ridge functions can have mean dimensions that grow
proportionally to

\surd 
d. A form of conditional QMC known as preintegration (see [7])

can convert them into Lipschitz continuous ridge functions, greatly reducing their
asymptotic mean dimension, which then makes them easier to integrate numerically.

An outline of this paper is as follows. Section 2 introduces our notation, gives
some properties of RBFs, and presents the functional ANOVA and related material for
mean dimension. Section 3 shows that, under some moment conditions, generalized
multiquadric RBFs have mean dimension 1+O(1/d) as d\rightarrow \infty with an explicit upper
bound on the implied constant in the O(1/d) term. Under much weaker moment
conditions, the mean dimension still approaches 1 as d \rightarrow \infty . Section 4 shows that
the Gaussian RBFs can attain any mean dimension in the interval (1, d) when the
inputs have continuous distributions with bounded densities having support near \bfitc .
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MEAN DIMENSION OF RADIAL BASIS FUNCTIONS 1193

Section 5 shows that the mean dimension of the Keister function oscillates between
nearly 1 and nearly 2 as the nominal dimension d increases. Section 6 discusses how
mean dimension varies among alternative methods. Finally, there are appendices for
the lengthier proofs.

2. Notation and elementary results. We study functions f : Rd \rightarrow R. The
argument to f is denoted by \bfitx = (x1, . . . , xd). The components of \bfitx are independent
random variables. We use \bfitx \prime to denote another variable with the same distribution
as \bfitx , which is independent of \bfitx . We will use hybrid points \bfitx  - j :\bfitx 

\prime 
j \in Rd that combine

inputs from both \bfitx and \bfitx \prime . If \bfity = \bfitx  - j :\bfitx 
\prime 
j , then yj = x\prime 

j and y\ell = x\ell for \ell \not = j. We
use [d] to denote the set \{ 1,2, . . . , d\} . For u \subseteq [d] we use | u| for the cardinality of u.
The point \bfitx u \in R| u| is comprised of xj for j \in u. The complement [d] \setminus u is denoted
by  - u, and \bfitx  - u consists of those xj with j \not \in u.

2.1. Radial basis functions. The description here is based on [6]. Radial basis
functions are used for scattered data interpolation, also known as mesh-free approx-
imation, meaning that the sample points are not necessarily in a regular structure
like a grid. One strong motivation for them is that polynomial interpolation is not
necessarily well defined for an arbitrary set of points \bfitx i \in Rd for d \geqslant 2, but some
RBFs can interpolate at any distinct points.

The RBF interpolant is of the form
\sum n

i=1 \beta i\phi (\| \bfitx  - \bfitx i\| ). Fasshauer [6] also con-
siders the more general form

n\sum 
i=1

\beta i
\~\phi (\bfitx  - \bfitx i),

where \~\phi (\cdot ) is not necessarily ``radial,"" i.e., not necessarily a function of the norm of
its argument. To interpolate in this more general setting we must solve

K\beta = y(2.1)

for \beta \in Rn, where K \in Rn\times n has ij entry \~\phi (\bfitx i  - \bfitx j) and y \in Rn has ith entry f(\bfitx i).
The function \~\phi is ``radial"" if \~\phi (\bfitx i  - \bfitx j) = \phi (\| \bfitx i  - \bfitx j\| ) for a function \phi : [0,\infty )\rightarrow R.
The function \~\phi is called positive definite if K is always positive semidefinite for any
n \geqslant 1 and any distinct points \bfitx 1, . . . ,\bfitx n \in Rd. If this K is always positive definite,
then \~\phi is strictly positive definite.

Strictly positive definite functions can be used to interpolate any values f(\bfitx i) at
distinct \bfitx i. Chapter 6 of [6] describes conditionally positive definite functions of order
m that can be used to interpolate functions that are orthogonal to all multivariate
polynomials of order less than or equal to m - 1. To use them, one interpolates with
a suitable polynomial plus a conditionally positive definite RBF.

Chapter 3 of [6] provides numerous properties and characterizations of positive
definite functions and strictly positive definite functions. If \~\phi is positive definite, then
| \~\phi (\bfitx )| \leqslant \~\phi (0). A real valued continuous and positive definite function must be even.

Our main interest here is in (strictly) positive definite radial functions. If \~\phi (\cdot ) =
\phi (\| \cdot \| ) is (strictly) positive definite for dimension d, then the same holds (strictly
or not) for all dimensions d\prime \leqslant d. Because we want to study the limit as d \rightarrow \infty we
are interested in \phi that provide strictly positive definite functions for all d \geqslant 1. By
Theorem 3.8 of [6], due to Schoenberg, the function \phi : [0,\infty )\rightarrow R with

\phi (r) =

\int \infty 

0

e - r2t2\mu (dt)(2.2)
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1194 C. HOYT AND A. B. OWEN

provides a strictly positive definite radial function for all dimensions d\geqslant 1 if and only
if \mu is a finite positive Borel measure not concentrated on \{ 0\} . It follows that these
desirable functions \phi can take no negative values, must be strictly decreasing, and
cannot have compact support.

It is clear from (2.2) that the Gaussian RBF \phi (r) = e - r2\vargamma 2

is a strictly positive
definite radial function for \vargamma > 0 in all dimensions d \geqslant 1. So are generalized inverse
multiquadrics

(1 + \| \bfitx \| 2)p, p < 0,

from [6, p. 42].
Table 3.1 of [5] names some of the more widely used generalized multiquadric

RBFs \phi (r):

(1 + \vargamma 2r2) - 1 Inverse quadratic,

(1 + \vargamma 2r2) - 1/2 Inverse multiquadric,

(1 + \vargamma 2r2)1/2 Multiquadric,

with a parameter \vargamma > 0. The last one is the one in the influential paper of Hardy [8].

2.2. ANOVA and Sobol' indices. The analysis of variance (ANOVA) decom-
position of f \in L2([0,1]

d) is in [9, 26, 4]. We use its generalization to measurable
functions f of \bfitx \in Rd where the components xj are independent random variables
and E(f(\bfitx )2)<\infty . This decomposition writes as

f(\bfitx ) =
\sum 
u\subseteq [d]

fu(\bfitx ),

where the ANOVA effect fu is a function that only depends on \bfitx through components
xj for j \in u. In this decomposition, E(fu(\bfitx )fv(\bfitx )) = 0 for u \not = v and f∅ is the constant
function everywhere equal to E(f(\bfitx )). The quantities

\sigma 2
u =Var(fu(\bfitx )) =

\Biggl\{ 
E(fu(\bfitx )2), u \not =∅,

0, u=∅,

are known as the variance components of f . They satisfy \sigma 2 =
\sum 

u\subseteq [d] \sigma 
2
u, where

\sigma 2 =Var(f(\bfitx )).
When 0<\sigma 2 <\infty , we define the mean dimension of f as

\nu (f) =
1

\sigma 2

\sum 
u\subseteq [d]

| u| \sigma 2
u.

The closest additive function to f in mean square is

fadd(\bfitx ) = f∅(\bfitx ) +
d\sum 

j=1

f\{ j\} (\bfitx ).

If \nu (f) is close to one, then f is nearly additive in an L2 sense. More precisely

\nu (f)\leqslant 1 + \epsilon =\Rightarrow Var(f(\bfitx ) - fadd(\bfitx ))

Var(f(\bfitx ))
\leqslant \epsilon .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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MEAN DIMENSION OF RADIAL BASIS FUNCTIONS 1195

We can get a good computational and theoretical handle on the mean dimension
by using Sobol' indices as follows. The unnormalized Sobol' indices of f for u\subseteq [d] are

\tau 2u =
\sum 
v\subseteq u

\sigma 2
u and \tau 2u =

\sum 
v:v\cap u\not =∅

\sigma 2
u,

respectively. Normalized versions \tau 2u/\sigma 
2 and \tau 2u/\sigma 

2 are widely used in global sensi-
tivity analysis. See [22] for context and an extensive bibliography. We will use the
identity

\tau 2u =E(Var(f(\bfitx )| \bfitx  - u)).(2.3)

Our greatest need is for \tau 2\{ j\} , which we abbreviate to \tau 2j .
An elementary result from [15] is that

\nu (f) =
1

\sigma 2

d\sum 
j=1

\tau 2j .(2.4)

Jansen [12] has the useful identity

\tau 2j =
1

2
E
\bigl( 
(f(\bfitx  - j :\bfitx 

\prime 
j) - f(\bfitx ))2

\bigr) 
,(2.5)

which allows sampling-based estimates of \tau 2j . This identity underlies our theoretical
analysis along with the more familiar identity \sigma 2 =E((f(\bfitx ) - f(\bfitx \prime ))2)/2.

3. Generalized multiquadrics. These functions take the form (a + \vargamma \| \bfitx \| 2)p.
We can rewrite them as (a+ \| \bfitx \| 2)p after replacing a by a/\vargamma and rescaling the coeffi-
cients \beta i by a factor of \vargamma p. The cases that interest us most have nonzero p < 1 because
those get the most use. The case p= 1 is obviously of mean dimension one. We will
include cases with a = 0 and p < 0. As [6] notes, these are not well suited to inter-
polation due to their singularities, but they are of interest as generalized Coulomb
potentials.

3.1. Parametrization of generalized multiquadrics. A radial basis function
uses the inputs \bfitx only through

\sum d
j=1(xj  - cj)

2. Here xj is the jth component of \bfitx 
and cj is the jth component of a center point such as \bfitx i. We let

zj =

\Biggl\{ 
a+ (x1  - c1)

2, j = 1,

(xj  - cj)
2 otherwise,

and then we study mean dimension in terms of random \bfitz = (z1, . . . , zd). We have
folded any a > 0 into z1 to remove a from further expressions. The case of a = 0 is
the most challenging because it can produce a singularity at \bfitz = 0 that we don't have
to consider when a> 0.

The RBFs we study are functions of \bfitz , where \bfitz is defined componentwise from
\bfitx . If we use f\ast to represent the RBF in terms of \bfitz , then we find the same mean
and variance components and mean dimension for f\ast as we get for f . For simplicity,
we will use f also for the RBF written in terms of \bfitz \in [0,\infty )d. We retain the
distinction between \bfitx and \bfitz because that makes our input assumptions easier to
interpret. We will study the mean dimension of (

\sum d
j=1 zj)

p for independent not
necessarily identically distributed random zj \geqslant 0 and nonzero p\leqslant 1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1196 C. HOYT AND A. B. OWEN

3.2. Assumptions on \bfitz . We study a collection of independent nonnegative
random variables zj for j = 1, . . . , d. We write \mu j = E(zj) and \sigma 2

j = Var(zj). Some

higher moments are denoted by \mu 
(k)
j =E((zj - \mu j)

k) for positive integers k. For certain
sums we write

z1:d :=
d\sum 

j=1

zj , \mu 1:d :=
d\sum 

j=1

\mu j , \sigma 2
1:d :=

d\sum 
j=1

\sigma 2
j , and \mu 

(k)
1:d :=

d\sum 
j=1

\mu 
(k)
j .

We want to bound the mean dimension of (z1:d)
p. It is convenient to define

f(\bfitz ) =

\biggl( 
z1:d
\mu 1:d

\biggr) p

.(3.1)

This function of \bfitz has the same mean dimension as if we had not scaled the input by
\mu 1:d, and it has the same mean dimension as the original function of \bfitx .

We will use a bounded mean assumption

0<\mu \leqslant \mu j \leqslant \mu <\infty , 1\leqslant j \leqslant d,(3.2)

and a bounded variance assumption

0<\sigma 2
j \leqslant \sigma 2 <\infty , 1\leqslant j \leqslant d,(3.3)

and for some \alpha > 0 a negative moment assumption

E(z - \alpha 
j )\leqslant M\alpha <\infty , 1\leqslant j \leqslant d.(3.4)

For some of our sharper result we will require that

| E((zj  - \mu j)
k)| \leqslant \lambda for 2\leqslant k\leqslant 6(3.5)

hold for some \lambda <\infty .
We do not lose much generality requiring \sigma 2

j > 0 because \sigma 2
j = 0 implies that zj

is redundant. Our main results will still hold if some \sigma 2
j = 0 so long as \sigma 2

1:d > 0.
One very important case has xj \sim \scrN (0,1). Then zj has a noncentral chi-squared

distribution with one degree of freedom and noncentrality parameter c2j . This dis-
tribution satisfies the bounded mean and variance assumptions, provided that c2j is
bounded. It satisfies the negative moment assumption if \alpha < 2 because the central
\chi 2
(1) satisfies that condition and the noncentral distribution is a mixture of central \chi 2

distributions with odd numbers of degrees of freedom. For the case with finite a> 0,
z1 satisfies (3.2), (3.3), and (3.4) if (x1  - c1)

2 does.

3.3. Main result for generalized multiquadrics. Here we present our main
result for mean dimension of generalized multiquadric RBFs. We give moment con-
ditions on zj under which

\nu (f)\leqslant 1 +
(p - 1)2

2

\sigma 2
1:d

(\mu 1:d)2
+O

\biggl( 
1

d2

\biggr) 
.(3.6)

Most of the proof details are in Appendix B. We assume throughout that independent
zj \geqslant 0 satisfy the bounded mean condition (3.2), the bounded variance condition
(3.3), the negative moment condition (3.4), and the sixth moment condition (3.5).
The results in Appendix B depend on some results in Appendix A about positive and
negative moments of sums of zj .
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MEAN DIMENSION OF RADIAL BASIS FUNCTIONS 1197

Theorem 3.1. Let zj \geqslant 0 be independent random variables satisfying assumptions
(3.2) through (3.5). Let f(\bfitz ) = (z1:d/\mu 1:d)

p for nonzero p < 1. Then

\nu (f)\leqslant 1 +
(p - 1)2

2

\sigma 2
1:d

(\mu 1:d)2
+O

\biggl( 
1

d2

\biggr) 
as d\rightarrow \infty .

Proof. The mean dimension equals
\sum d

j=1 \tau 
2
j/\sigma 

2, and we use asymptotic expres-
sions for the numerator and denominator of this ratio. For the numerator, Proposi-
tion B.2 from Appendix B shows that

d\sum 
j=1

\tau 2j \leqslant 
p2\sigma 2

1:d

(\mu 1:d)2

\Biggl( 
1 + (p - 1)(2p - 3)

\sigma 2
1:d

(\mu 1:d)2
+ (p - 1)

\mu 
(3)
1:d

\mu 1:d\sigma 2
1:d

+O(d - 2)

\Biggr) 
.

For the denominator, Proposition A.5 in Appendix A shows that E((z1:p/\mu 1:p)
p)

equals

1 +

\biggl( 
(p)2
2!

\cdot \sigma 2
1:d

(\mu 1:d)2

\biggr) 
+

\biggl( 
(p)3
3!

\cdot 
\mu 
(3)
1:d

(\mu 1:d)3
+

(p)4
4!

\cdot 3(\sigma 
2
1:d)

2

(\mu 1:d)4

\biggr) 
+O(d - 3)

for p < 6 as d \rightarrow \infty . Here (p)k = p(p  - 1) \cdot \cdot \cdot (p  - k + 1). Using this result for
first and second moments of (z1:d/\mu 1:d)

p for p < 1, Corollary B.1 shows that \sigma 2 =
Var ((z1:d/\mu 1:d)

p
) equals

p2\sigma 2
1:d

(\mu 1:d)2

\biggl( 
1 + (p - 1) \cdot 

\mu 
(3)
1:d

\sigma 2
1:d\mu 1:d

+
1

2
(p - 1)(3p - 5) \cdot \sigma 2

1:d

(\mu 1:d)2
+O(d - 2)

\biggr) 
.

Combining the upper bound from Proposition B.2 with the asymptotic variance
in Corollary B.1 we get

\nu (f)\leqslant 
1 + (p - 1)(2p - 3)

\sigma 2
1:d

(\mu 1:d)2
+ (p - 1)

\mu 
(3)
1:d

\mu 1:d\sigma 2
1:d

+O(d - 2)

1 + 1
2 (p - 1)(3p - 5)

\sigma 2
1:d

(\mu 1:d)2
+ (p - 1)

\mu 
(3)
1:d

\sigma 2
1:d\mu 1:d

+O(d - 2)

= 1+
(p - 1)2

2

\sigma 2
1:d

(\mu 1:d)2
+O

\biggl( 
1

d2

\biggr) 
.

Remark 3.2. Under the assumptions we have made, \sigma 2
1:d/(\mu 1:d)

2 =\Theta (1/d).

Remark 3.3. We notice that the bound in Theorem 3.1 can be evaluated for
the degenerate case p = 0. We conjecture that this might be the rate for f(\bfitz ) =
log(z1:d). Our reasoning is that the mean dimension of (z1:d)

p is the same as that of
((z1:d)

p  - 1)/p, which approaches log(z1:d) as p\rightarrow 0.

3.4. Weaker conditions. Theorem 3.1 relies on a sixth moment assumption in
order to get an expression for the coefficient of 1/d in the bound on \nu (f). This section
shows that the mean dimension of generalized multiquadric RBFs tends to 1 as d\rightarrow \infty 
under very mild moment conditions: means and variances of zj bounded uniformly
from 0 and \infty and a finite negative moment. Under these conditions, Lemmas C.4
and C.5 in Appendix C show that

limsup
d\rightarrow \infty 

\sum d
j=1 \tau 

2
j

p2 \cdot \sigma 2
1:d

(\mu 1:d)2

\leqslant 1 and lim inf
d\rightarrow \infty 

Var(f(\bfitz ))

p2 \cdot \sigma 2
1:d

(\mu 1:d)2

\geqslant 1,

respectively.
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1198 C. HOYT AND A. B. OWEN

Theorem 3.4. Let independent random zj \geqslant 0 for j = 1, . . . , d satisfy assumptions
(3.2) through (3.4) and let f(\bfitz ) = (z1:d/\mu 1:d)

p for nonzero p < 1. Then the mean
dimension of f satisfies

lim
d\rightarrow \infty 

\nu (f) = 1.

Proof. By definition \nu (f)\geqslant 1. Next

lim
d\rightarrow \infty 

\nu (f) = lim
d\rightarrow \infty 

\sum d
j=1 \tau 

2
j

Var(f(\bfitz ))
\leqslant 

limsupd\rightarrow \infty 
\sum d

j=1 \tau 
2
j/[p

2\sigma 2
1:d/(\mu 1:d)

2]

lim infd\rightarrow \infty Var(f(\bfitz ))/[p2\sigma 2
1:d/(\mu 1:d)2]

,

which equals 1 by Lemmas C.4 and C.5.

4. The Gaussian RBF. Here we show how the Gaussian RBF is not limited to
low mean dimension as d\rightarrow \infty because the scale parameter can be chosen to control
mean dimension. This makes it very different from multiquadric and related RBFs
where the asymptotic mean dimension must converge to one. The Gaussian RBF is
special in that it can be parameterized as a product:

f(\bfitx ) =

d\prod 
j=1

exp( - (xj  - cj)
2/\vargamma 2)

for \vargamma > 0. We have changed the scaling from (xj  - cj)
2\vargamma 2 to (xj  - cj)/\vargamma 

2 to give \vargamma 2

an interpretation as twice the variance of a Gaussian random variable. We assume
that xj are independent with a continuous distribution. Without loss of generality
we assume that xj have mean zero.

We use three propositions. The product form of the Gaussian RBF allows for
a simplification of the mean dimension. Proposition 4.1 below applies to general
products, not just Gaussian RBFs.

Proposition 4.1. Let f(\bfitx ) =
\prod d

j=1 gj(xj), where xj are independent random
variables with Var(gj(xj)) < \infty and min1\leqslant j\leqslant dVar(gj(xj)) > 0. Then f has mean
dimension

\nu (f) =

\sum d
j=1 \rho j

1 - 
\prod d

j=1(1 - \rho j)
,(4.1)

where

\rho j =
Var(zj)

E(z2j )
\in [0,1].

Proof. This is Proposition 1 of [18].

Proposition 4.2. Under the conditions of Proposition 4.1,

\partial 

\partial \rho k
\nu (f)\geqslant 0.

Proof. The result is trivial for d = 1, so we assume that d \geqslant 2. The partial
derivative is

1 - 
\prod 

j \not =k(1 - \rho j)[1 +
\sum 

j \not =k \rho j ]

[1 - 
\prod d

j=1(1 - \rho j)]2
.
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MEAN DIMENSION OF RADIAL BASIS FUNCTIONS 1199

The denominator above is positive. Letting \=\rho  - k = (d - 1) - 1
\sum 

j \not =k \rho j , the numerator
is at least

1 - (1 - \=\rho  - k)
d - 1(1 + (d - 1)\=\rho  - k)(4.2)

because the geometric mean of 1 - \rho j for j \not = k is no larger than their arithmetic mean.
The expression in (4.2) is increasing in \=\rho  - k over \=\rho  - k \in (0,1) and it equals zero for
\=\rho  - k = 0.

Proposition 4.3. Let x be a random variable with probability density function
h on R. Assume that h(x) \leqslant M and that c \in R belongs to an interval I of length at
least \ell > 0 on which h(x)\geqslant h0 > 0. Then

lim
\vargamma \rightarrow \infty 

E
\Bigl( 
e - 2(x - c)2/\vargamma 2

\Bigr) 
E
\bigl( 
e - (x - c)2/\vargamma 2

\bigr) 2 = 1

and

lim
\vargamma \downarrow 0

E
\Bigl( 
e - 2(x - c)2/\vargamma 2

\Bigr) 
E
\bigl( 
e - (x - c)2/\vargamma 2

\bigr) 2 =\infty .(4.3)

Remark 4.4. The first limit has a mean square over a squared mean approaching
1. Then the variance becomes negligible, so \rho \rightarrow 0 in the above notation. The second
limit has a mean square divided by a squared mean approaching infinity, so \rho \rightarrow 1 in
the above notation.

Proof. The first claim is easy as both numerator and denominator approach 1 as
\vargamma \rightarrow \infty . For the second claim

E(e - (x - c)2/\vargamma 2

) =

\int \infty 

 - \infty 
e - (x - c)2/\vargamma 2

h(x)dx\leqslant M
\surd 
\pi \vargamma .

We let I = (a, b) with b - a= \ell . Next by change of variable

E(e - 2(x - c)2/\vargamma 2

) =
\vargamma 

2

\int \infty 

 - \infty 
e - y2/2h(c+ \vargamma y/2)dy

\geqslant 
\vargamma h0

2

\int \infty 

 - \infty 
e - y2/21c+\vargamma y/2\in I dy

=
\vargamma h0

2

\int 2(b - c)/\vargamma 

2(a - c)/\vargamma 

e - y2/2 dy

= \vargamma h0

\sqrt{} 
\pi 

2

\biggl( 
\Phi 

\biggl( 
2(b - c)

\vargamma 

\biggr) 
 - \Phi 

\biggl( 
2(a - c)

\vargamma 

\biggr) \biggr) 
\geqslant \vargamma h0

\sqrt{} 
\pi 

2

\biggl( 
\Phi 

\biggl( 
2(b - a)

\vargamma 

\biggr) 
 - 1

2

\biggr) 
.

For any \ell = b  - a > 0 we can choose \vargamma small enough to make \Phi (2\ell /\vargamma ) \geqslant 3/4 and
then E(e - 2(x - c)2/\vargamma 2

) \geqslant \vargamma h0

\sqrt{} 
\pi /32. Now the numerator in (4.3) is \Omega (\vargamma ), while the

denominator is O(\vargamma 2) both as \vargamma \rightarrow \infty . The result follows.

In the Gaussian setting, \rho j > 0 and ruling out uninteresting variables with
Var(xj) = 0 we also have \rho j < 1. The mean dimension of f is continuous and non-
decreasing in each \rho j by Proposition 4.2. By Proposition 4.3, each \rho j \rightarrow 1 as \vargamma \rightarrow 0,
when xj has a continuous distribution and so \nu (f)\rightarrow d. Conversely as \vargamma \rightarrow \infty , each
\rho j \rightarrow 0 and then \nu (f) \rightarrow 1. Therefore any mean dimension in (1, d) can be attained
at some value of \vargamma .
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1200 C. HOYT AND A. B. OWEN

5. Keister's function. The Keister function was used by [14] and also [2], to
compare multidimensional quadrature methods. They use

\int 
Rd e - \| \bfitx \| 2

cos(\| \bfitx \| )d\bfitx as
an example of the sort of integration problem arising in atomic, nuclear, and particle
physics. We make a change of variable and consider

f(\bfitx ) = cos(\| \bfitx \| /2)

for \bfitx \sim \scrN (0, I). This f is an RBF but not one of those commonly used for approxi-
mation. References [2] and [14] give precise values for E(f(\bfitx )) at certain values of d,
and [11] gives a recursion for this expectation.

Keister's function has become a test function for QMC since [20]. The success
of QMC on some integrands from finance could possibly be explained by the un-
equal importance of the variables in those integrands. Perhaps many of them were
quite unimportant, leaving an integrand that depends on only a few variables. All
d variables enter Keister's function symmetrically so there would need to be another
explanation for QMC's successes there. The explanation is that it is dominated by
its low-dimensional ANOVA components. Computations in [18] show that for d= 25
(the dimension considered by [20]) and d= 80, over 99\% of the variance of the Keis-
ter function comes from variance components \sigma 2

u with | u| \leqslant 3 making it of effective
dimension 3 in the sense of [1]. Here we study the Keister function's mean dimension
for 2\leqslant d\leqslant 1000.

By symmetry, \tau 21 = \tau 22 = \cdot \cdot \cdot = \tau 2d for the Keister function and so its mean
dimension is \nu (f) = d\tau 21/\sigma 

2. The variance \sigma 2 can easily be approximated by sampling
because \| \bfitx \| 2 \sim \chi 2

(d). For this paper, we used a midpoint rule on n = 214 = 16,384

points in (0,1), transformed them to \chi 2
(d) quantiles, took the square root to get a

sample value for \| \bfitx \| , and then computed the sample variance of the cos(\| \bfitx \| /2) values.
To estimate \tau 21, we find using the Jansen identity (2.5) that

\tau 21 =
1

2
E
\bigl( 
(f(z1 + z2) - f(z1 + z3))

2
\bigr) 

for z1 =
\sum d

j=2 x
2
j , z2 = x2

1, and z3 = x\prime 
1
2
. Now z1 \sim \chi 2

(d - 1), z2 \sim \chi 2
(1), and z3 \sim \chi 2

(2)

are independent random variables. We then estimated \tau 21 by using randomized Sobol'
points in (0,1)3, transforming them to the needed \chi 2 values by inversion of their
cumulative distribution functions and applied the Jansen formula. For this integral
we used a Sobol' sequence [25] with direction numbers from [13] and a nested uniform
scramble of [17] with n= 214 = 16,384 points.

The above computation was replicated five times independently. With a bit of
foresight, we plot the mean dimension of Keister's function in dimension d versus\surd 
d in Figure 1. The plot shows all five replicates, but they overlap each other in

the figure. The mean dimension is not monotone in d. Instead for d \geqslant 2, the mean
dimension oscillates regularly from just over 1 to peaks that are eventually just over 2.

From Figure 1 it becomes clear what is going on. The random variable \| \bfitx \| 2
has a \chi 2

(d) distribution. For large d, this is approximately \scrN (d,2d). Then by the
delta method (Taylor approximation about the mean), \| \bfitx \| /2 has approximately the
\scrN (

\surd 
d/2,1/4) distribution. The central 99.9\% of \scrN (\alpha ,1/4) values belong to the range

\alpha \pm \Phi  - 1(0.9995)/
\surd 
4 or about \alpha \pm 1.65. Then cos(\| \bfitx \| /2) primarily uses the cosine

function over an interval of length about 3.3, roughly half of the period 2\pi of the cosine
function. When

\surd 
d/2 is nearly an integer multiple of \pi , then the cosine function is

being sampled predominantly in a region where it is nearly quadratic and we find
that the mean dimension is close to 2. If instead

\surd 
d/2 is nearly \pi /2 plus an integer
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Fig. 1. The horizontal axis has
√
d for 1� d� 1000. The vertical axis plots five lines, each an

independent randomized QMC estimate of mean dimension versus
√
d. Points mark the average of

the five values. There are dotted horizontal reference lines at levels 1 and 2.

multiple of π, then the cosine is being sampled over a nearly linear range and the
mean dimension is close to 1.

6. Discussion. Much success in high-dimensional numerical methods comes
from the target function having less complexity than we might expect given its nom-
inal dimension. See [1] or [16, Chapter 9] or [24], among other references. In that
literature, tractability results provide sets of assumptions under which there is no
curse of dimensionality for integration. Reference [19] and references therein show
that some weighted Hilbert spaces for which dimension-independent tractability has
been established have very low effective dimension in a superposition sense (e.g., 3
or less from the η = 1 column of Table 1 in [19]). In the definition of that paper, an
effective dimension of 3 implies that there are only negligible contributions to f from
variance components σ2

u with |u|> 3.
The effective dimension is hard to measure empirically. The mean dimension

provides a measure that can easily be estimated through Sobol’ indices and Jansen’s
identity, while also quantifying the extent to which a function is dominated by its
low-dimensional ANOVA effects. For instance, a mean dimension below 1.01 implies
an effective dimension of one in the superposition sense using the definition in [1].

We have given conditions under which generalized multiquadric RBFs have a
mean dimension of 1 + O(1/d). This makes it very difficult for them to be used
in approximations of functions involving even two or three factor interactions. We
believe that this explains why Gaussian RBFs and ridge functions are more commonly
used in machine learning. Gaussian RBFs can attain almost any mean dimension if
their parameters are well chosen, so they do not have the limitation that multiquadric
RBFs do. Ridge functions φ(θTx) with Lipschitz continuous φ(·) and a unit vector θ
attain an O(1) mean dimension automatically, under Gaussian sampling [10], but are
not limited to 1 +O(1/d).

Appendix A. Moments of some sums. Here we provide some moment for-
mulas needed later. We begin by working out some expressions for central moments

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



1202 C. HOYT AND A. B. OWEN

of sums of our random variables. For integers k \geqslant 2 we use \mu 
(k)
j = E((zj  - \mu j)

k) to
denote the kth central moments and

\mu 
(k)
1:d \equiv 

d\sum 
j=1

\mu 
(k)
j .

For k = 1 we use \mu j = E(zj) and \mu 1:d =
\sum d

j=1 \mu j , and for k = 2 we use \sigma 2
j and

\sigma 2
1:d =

\sum d
j=1 \sigma 

2
j . The following theorem simplifies some derivations.

Theorem A.1. For d \geqslant 1, let x1, . . . , xd be independent random variables with
E(| xj | k)<\infty for j = 1, . . . , d and some integer k\geqslant 2. Set x1:d =

\sum d
j=1 xj. If E(xj) = 0

for j = 1, . . . , d, then

E[| x1:d| k]\leqslant c(p)dk/2 - 1
d\sum 

j=1

E[| xj | k]

for some c(k)<\infty .

Proof. This is in [21].

Proposition A.2. For j = 1, . . . , d, let zj be independent random variables with
means \mu j and variances \sigma 2

j . Let z1, . . . , zd satisfy the sixth moment bounds (3.5) for
some \lambda <\infty . Then

E
\bigl[ 
(z1:d/\mu 1:d  - 1)2

\bigr] 
= \sigma 2

1:d/(\mu 1:d)
2,(A.1)

E
\bigl[ 
(z1:d/\mu 1:d  - 1)3

\bigr] 
= \mu 

(3)
1:d/(\mu 1:d)

3,(A.2)

E
\bigl[ 
(z1:d/\mu 1:d  - 1)4

\bigr] 
= 3(\sigma 2

1:d)
2/(\mu 1:d)

4 +O(d - 3),(A.3)

E
\bigl[ 
(z1:d/\mu 1:d  - 1)5

\bigr] 
=O(d - 3), and(A.4)

E
\bigl[ 
(z1:d/\mu 1:d  - 1)6

\bigr] 
=O(d - 3).(A.5)

Proof. The results for exponents k= 2,3,4 are elementary. Theorem A.1 (Petrov)
yields

E

\Biggl[ \biggl( 
z1:d
\mu 1:d

 - 1

\biggr) k
\Biggr] 
\leqslant c(k)dk/2 - 1 \mu 

(k)
1:d

(\mu 1:d)k
\leqslant 

\lambda c(k)dk/2

(d\mu )k
=O(d - k/2).

Taking k= 6 above provides the result (A.5) for the sixth moment.
The case of k = 5 remains. Petrov's theorem would only give us O(d - 5/2). The

difference is that Petrov's theorem is about an absolute moment, and our requirement
is for just for an expected fifth power. For k= 5 we get

E
\bigl[ 
(z1:d  - \mu 1:d)

5
\bigr] 
= 10

\sum 
j1,j2\in [d]
distinct

E
\bigl[ 
(zj1  - \mu j1)

3(zj2  - \mu j2)
2
\bigr] 
+

d\sum 
j=1

E
\bigl[ 
(zj  - \mu j)

5
\bigr] 

= 10\mu 
(3)
1:d\sigma 

2
1:d  - 10

d\sum 
j=1

\mu 
(3)
j \sigma 2

j + \mu 
(5)
1:d,(A.6)

where the factor 10 comes from there being 10 partitions like j1 = j2 \not = j3 = j4 = j5.
The quantity in (A.6) is then O(d2) establishing (A.4).
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MEAN DIMENSION OF RADIAL BASIS FUNCTIONS 1203

The implied constant in the fourth degree term can be taken as 3\lambda . The implied
constant in the fifth degree term can be taken as 10\lambda 2/\mu 5 + \epsilon for any \epsilon > 0. The
implied constant in the sixth degree term can be taken as \lambda c(6)/\mu 6.

For the next result, we prove an upper bound on negative moments. We use the
quantity

\beta :=
1

\mu \alpha 
\surd 
M\alpha 

,(A.7)

recalling that E(z - \alpha 
j ) \leqslant M\alpha < \infty from (3.4). This \beta is useful in providing constant

upper bounds for negative moments.

Proposition A.3. Let z1, z2, . . . , zd be independent nonnegative random variables
that satisfy the mean bounds (3.2) and the negative moment assumption (3.4) for some
\alpha > 0 and M\alpha <\infty , and choose an exponent p < 0. Then E((z1:d/\mu 1:d)

p)\leqslant \beta p for all
d\geqslant  - p/\alpha .

Proof. For d\geqslant  - p/\alpha , we find that \phi (x) = x - \alpha d/p is a convex function. Then using
the mean lower bound (3.2), the arithmetic-geometric mean identity, and Jensen's
inequality, we obtain

E
\biggl[ \biggl( 

z1:d
\mu 1:d

\biggr) p\biggr] 
=

\biggl( 
d

\mu 1:d

\biggr) p

\cdot E
\Bigl[ \Bigl( z1:d

d

\Bigr) p\Bigr] 
\leqslant 

\biggl( 
d

d\mu 

\biggr) p

\cdot E
\Bigl[ 
z
p/d
1 z

p/d
2 \cdot \cdot \cdot zp/dd

\Bigr] 
\leqslant \mu  - p \cdot E

\biggl[ \Bigl( 
z
p/d
1 z

p/d
2 \cdot \cdot \cdot zp/dd

\Bigr)  - \alpha d/p
\biggr]  - p/\alpha d

\leqslant \mu  - p \cdot E
\bigl[ 
z - \alpha 
1 z - \alpha 

2 \cdot \cdot \cdot z - \alpha 
d

\bigr]  - p/\alpha d

\leqslant \mu  - p \cdot (Md
\alpha )

 - p/\alpha d

\leqslant \beta p.

Remark A.4. This result shows that any negative moment of the sample average
is O(1) as d\rightarrow \infty , under the given conditions.

This next result is used to control the Lagrange error term in some Taylor ap-
proximations.

Proposition A.5. Let independent zj \geqslant 0 satisfy the mean bounds (3.2) as well as
condition (3.5) on their first six central moments and the negative moment condition
(3.4). Then for p < 6, E((z1:d/\mu 1:d)

p) equals

1 +

\biggl( 
(p)2
2!

\cdot \sigma 2
1:d

(\mu 1:d)2

\biggr) 
+

\biggl( 
(p)3
3!

\cdot 
\mu 
(3)
1:d

(\mu 1:d)3
+

(p)4
4!

\cdot 3(\sigma 
2
1:d)

2

(\mu 1:d)4

\biggr) 
+O(d - 3)

as d\rightarrow \infty .

Proof. Using a fifth order Taylor expansion, we get\biggl( 
z1:d
\mu 1:d

\biggr) p

=

5\sum 
k=0

(p)k
k!

\biggl( 
z1:d
\mu 1:d

 - 1

\biggr) k

+
(p)6
6!

\biggl( 
z1:d
\mu 1:d

 - 1

\biggr) 6

\cdot \theta p - 6
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1204 C. HOYT AND A. B. OWEN

for some \theta between 1 and z1:d/\mu 1:d. Using the results in Proposition A.2 we find that
the expected value of the sum for 0\leqslant k\leqslant 5 is

1 +

\biggl( 
(p)2
2!

\cdot \sigma 2
1:d

(\mu 1:d)2

\biggr) 
+

\Biggl( 
(p)3
3!

\cdot 
\mu 
(3)
1:d

(\mu 1:d)3
+

(p)4
4!

\cdot 3(\sigma 
2
1:d)

2

(\mu 1:d)4

\Biggr) 
+O(d - 3).

It remains to show that the remainder term with k= 6 is O(d - 3).
We can assume that d\geqslant 2 and then define

Ad =

\sum 
j\in [d],even zj\sum 
j\in [d],even \mu j

, Bd =

\sum 
j\in [d],odd zj\sum 
j\in [d],odd \mu j

, and td =

\sum 
j\in [d],even \mu j

\mu 1:d
.

Here, Ad and Bd are independent random variables, td \in (0,1) is nonrandom, and
z1:d/\mu 1:d = tdAd + (1 - td)Bd. Because \phi (x) = (x - 1)6 is a convex function,\biggl( 

z1:d
\mu 1:d

 - 1

\biggr) 6

\leqslant td(Ad  - 1)6 + (1 - td)(Bd  - 1)6 \leqslant (Ad  - 1)6 + (Bd  - 1)6.

Next, \theta is between 1 and z1:d/\mu 1:d, and so \theta p - 6 \leqslant 1 + (z1:d/\mu 1:d)
p - 6. Since tdAd

and (1 - td)Bd are both lower bounds for z1:d/\mu 1:d, we can take either 1 + tp - 6
d Ap - 6

d

or 1 + (1 - td)
p - 6Bp - 6

d as an upper bound for \theta p - 6.
Because the exponent p - 6 is negative we will need to bound td away from zero

below. Using upper and lower bounds on \mu j we know that

td \geqslant 
((d/2) - 1)\mu 

d\mu 
.

That lower bound is strictly positive for d= 3 and it increases with d, so tp - 6
d =O(1).

A similar argument shows that (1 - td)
p - 6 =O(1) too, and so max(tp - 6

d , (1 - td)
p - 6)\leqslant 

C for some C <\infty and all d\geqslant 3. Therefore, we find that for d large enough

E

\Biggl[ \biggl( 
z1:d
\mu 1:d

 - 1

\biggr) 6

\theta p - 6

\Biggr] 
\leqslant E[((Ad  - 1)6 + (Bd  - 1)

6
)\theta p - 6]

\leqslant E[(Ad  - 1)6 \cdot (1 + tp - 6
d Bp - 6

d ) + (Bd  - 1)6 \cdot (1 + (1 - td)
p - 6Ap - 6

d )]

\leqslant E[(Ad  - 1)6] \cdot (1 +C \cdot E[Bp - 6
d ]) +E[(Bd  - 1)6] \cdot (1 +C \cdot E[Ap - 6

d ]).

Now both E((Ad  - 1)6) and E((Bd  - 1)6)) are O(d - 3) by (A.5) of Proposition A.2
and max(E[Ap - 6

d ],E[Bp - 6
d ]) \leqslant \beta p - 6 = O(1) by Proposition A.3. We also note that

(z1:d/\mu 1:d  - 1)6\theta p - 6 is nonnegative, so the expectation is bounded below by zero.
Therefore, E((z1:d/\mu 1:d  - 1)6\theta p - 6) =O(d - 3), as required.

Remark A.6. The implied constant in the O(d - 3) error term depends only on the
constants in bounds (3.2), (3.4), and (3.5).

Appendix B. Convergence rates for multiquadrics. In this section we
have the main background results to support our finding that \nu (f) = 1 +O(1/d) for
generalized multiquadric RBFs under moment conditions.

For the next result we use falling factorial notation (p)k = p(p - 1) \cdot \cdot \cdot (p - k+1),
where p need not be an integer and k\geqslant 0 is an integer.
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MEAN DIMENSION OF RADIAL BASIS FUNCTIONS 1205

Corollary B.1. Suppose p < 1 and that independent random variables zj \geqslant 0
satisfy assumptions (3.2) through (3.5). Then Var((z1:d/\mu 1:d)

p) is

p2\sigma 2
1:d

(\mu 1:d)2

\Biggl( 
1 + (p - 1) \cdot 

\mu 
(3)
1:d

\sigma 2
1:d\mu 1:d

+
1

2
(p - 1)(3p - 5) \cdot \sigma 2

1:d

(\mu 1:d)2
+O(d - 2)

\Biggr) 
as d\rightarrow \infty .

Proof. Because p < 1 we have both p < 6 and 2p < 6. So we can use Proposi-
tion A.5 with exponents p and 2p to write Var((z1:d/\mu 1:d)

p) as

E

\Biggl[ \biggl( 
z1:d
\mu 1:d

\biggr) 2p
\Biggr] 
 - E

\biggl[ \biggl( 
z1:d
\mu 1:d

\biggr) p\biggr] 2
=

\Biggl( 
1 +

(2p)2
2!

\cdot \sigma 2
1:d

(\mu 1:d)2
+

(2p)3
3!

\cdot 
\mu 
(3)
1:d

(\mu 1:d)3
+

(2p)4
4!

\cdot 3(\sigma 
2
1:d)

2

(\mu 1:d)4
+O(d - 3)

\Biggr) 

 - 

\Biggl( 
1 +

(p)2
2!

\cdot \sigma 2
1:d

(\mu 1:d)2
+

(p)3
3!

\cdot 
\mu 
(3)
1:d

(\mu 1:d)3
+

(p)4
4!

\cdot 3(\sigma 
2
1:d)

2

(\mu 1:d)4
+O(d - 3)

\Biggr) 2

=
p2\sigma 2

1:d

(\mu 1:d)2

\Biggl( 
1 + (p - 1) \cdot 

\mu 
(3)
1:d

\sigma 2
1:d\mu 1:d

+
1

2
(p - 1)(3p - 5) \cdot \sigma 2

1:d

(\mu 1:d)2
+O(d - 2)

\Biggr) 
after some algebra.

Proposition B.2. Let independent random variables zj \geqslant 0 satisfy assumptions
(3.2) through (3.5). Then for p < 1

d\sum 
j=1

\tau 2j \leqslant 
p2\sigma 2

1:d

(\mu 1:d)2

\Biggl( 
1 + (p - 1)(2p - 3)

\sigma 2
1:d

(\mu 1:d)2
+ (p - 1)

\mu 
(3)
1:d

\mu 1:d\sigma 2
1:d

+O(d - 2)

\Biggr) 

as d\rightarrow \infty .

Proof. For each j \in [d] we form a Taylor expansion of (z1:d/\mu 1:d)
p in powers of

zj  - \mu j as follows:

Sp
j +

p

\mu 1:d
Sp - 1
j (zj  - \mu j) +

(p)2
2(\mu 1:d)2

Sp - 2
j (zj  - \mu j)

2 +
(p)3

6(\mu 1:d)3
(S\prime 

j)
p - 3(zj  - \mu j)

3

(B.1)

=: T0 + T1 + T2 + T3,

where

Sj =
(z1:d  - zj) + \mu j

\mu 1:d
and S\prime 

j =
(z1:d  - zj) + \theta 

\mu 1:d

for some \theta between \mu j and zj .
Now \tau 2j = E(Var((z1:d/\mu 1:d)

p | \bfitx  - j), so we begin by bounding the conditional
variances of the terms Tk defined at (B.1). Because Sj is a function of \bfitz  - j , Var(T0 | 
\bfitx  - j) =Var(Sj | \bfitz  - j) = 0. Similarly

Var(T1 | \bfitz  - j) =
p2

(\mu 1:d)2
S2p - 2
j \sigma 2

j .
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1206 C. HOYT AND A. B. OWEN

Next, noting that Var((zj  - \mu j)
2 | \bfitz  - j) =Var((zj  - \mu j)

2)\leqslant \mu 
(4)
j \leqslant \lambda ,

Var(T2 | \bfitx  - j) =
(p)22

4(\mu 1:d)4
S2p - 2
j Var((zj  - \mu j)

2 | \bfitz  - j)\leqslant 
(p)22

4(\mu 1:d)4
S2p - 2
j \lambda .

Turning to the one term with S\prime 
j ,

Var(T3 | \bfitz  - j)\leqslant 
(p)23

36(\mu 1:d)6
E((S\prime 

j)
2p - 6(zj  - \mu j)

6 | \bfitz  - j)

\leqslant 
(p)23

36(\mu 1:d)6
E
\Bigl( \Bigl( z1:d  - zj

\mu 1:d

\Bigr) 2p - 6

(zj  - \mu j)
6 | \bfitz  - j

\Bigr) 
\leqslant 

(p)23
36(\mu 1:d)6

\Bigl( z1:d  - zj
\mu 1:d

\Bigr) 2p - 6

\lambda .

With the above decomposition, we write

\tau 2j \leqslant E(Var(T1 | \bfitz  - j)) +E(Var(T2 | \bfitz  - j)) +E(Var(T3 | \bfitz  - j))

+ 2E(Cov(T1, T2 | \bfitz  - j)) + 2E(Cov(T1, T3 | \bfitz  - j)) + 2E(Cov(T2, T3 | \bfitz  - j)).

Proposition A.5 shows that for q < 0 and large enough d

E[Sq
j ] =E

\biggl[ \biggl( 
z1:d  - zj + \mu j

\mu 1:d

\biggr) q\biggr] 
= 1+

q(q - 1)

2

\sigma 2
1:d  - \sigma 2

j

(\mu 1:d)2
+O

\biggl( 
1

d2

\biggr) 
= 1+

q(q - 1)

2

\sigma 2
1:d

(\mu 1:d)2
+O

\biggl( 
1

d2

\biggr) 
.

In this application of Proposition A.5, the variable zj with variance \sigma 2
j is replaced

by \mu j with variance 0. That proposition does not assume strictly positive \sigma 2
j . Note

that the implied constant within O(1/d2) depends only on moment conditions from
Remark A.6 and can be bounded independently of j.

Also

0\leqslant E

\Biggl[ 
Sp - 1
j

\biggl( 
z1:d  - zj
\mu 1:d

\biggr) p - 3
\Biggr] 
\leqslant E[S2p - 4

j ]

\biggl( 
1 +

\mu 

(d - 1)\mu 

\biggr) 3 - p

= 1+O
\Bigl( 1
d

\Bigr) 
.

Then the expected variances are

E(Var(T1 | \bfitz  - j)) =

\biggl( 
p

\mu 1:d

\biggr) 2

\sigma 2
jE(S

2p - 2
j )

\leqslant 

\biggl( 
p

\mu 1:d

\biggr) 2

\sigma 2
j

\biggl( 
1 +

(2p - 2)(2p - 3)

2

\sigma 2
1:d

(\mu 1:d)2
+O

\biggl( 
1

d2

\biggr) \biggr) 
,

E(Var(T2 | \bfitz  - j))\leqslant 

\biggl( 
(p)2

2(\mu 1:d)2

\biggr) 2

E(S2p - 2
j )\lambda =O

\biggl( 
1

d4

\biggr) 
, and

E(Var(T3 | \bfitz  - j))\leqslant 
(p)23

36(\mu 1:d)6
E

\Biggl( \biggl( 
z1:d  - zj
\mu 1:d  - \mu j

\biggr) 2p - 6
\Biggr) 
\lambda =O

\biggl( 
1

d6

\biggr) 
.

Because Sj is a function of \bfitz  - j ,

Cov(T1, T2 | \bfitz  - j) =
p(p)2

2(\mu 1:d)3
S2p - 3
j Cov

\bigl( 
zj  - \mu j , (zj  - \mu j)

2
\bigr) 

=
p(p)2

2(\mu 1:d)3
S2p - 3
j \mu 

(3)
j ,
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MEAN DIMENSION OF RADIAL BASIS FUNCTIONS 1207

and so

E(Cov(T1, T2 | \bfitz  - j)) =
p(p)2

2(\mu 1:d)3
E
\Bigl( 
S2p - 3
j

\Bigr) 
\mu 
(3)
j

=
p(p)2

2(\mu 1:d)3

\biggl( 
1 +O

\biggl( 
1

d

\biggr) \biggr) 
\mu 
(3)
j .

Similarly

Cov(T1, T3 | \bfitz  - j)\leqslant 
p(p)3

6(\mu 1:4)4
Sp - 1
j

\Bigl( z1:d  - zj
\mu 1:d

\Bigr) p - 3

\lambda and

Cov(T2, T3 | \bfitz  - j)\leqslant 
p(p)2

12(\mu 1:4)5
Sp - 1
j

\Bigl( z1:d  - zj
\mu 1:d

\Bigr) p - 3

\lambda .

so that

E[Cov(T1, T3 | \bfitz  - j)] =O

\biggl( 
1

d4

\biggr) 
and E[Cov(T2, T3 | \bfitz  - j)] =O

\biggl( 
1

d5

\biggr) 
.

Combining all of our bounds, we get

\tau 2j \leqslant 

\biggl( 
p

\mu 1:d

\biggr) 2

\sigma 2
j

\biggl( 
1 + (2p - 1)(p - 3)

\sigma 2
1:d

(\mu 1:d)2
+O

\Bigl( 1

d2

\Bigr) \biggr) 
+

p(p)2
2(\mu 1:d)3

\mu 
(3)
j +O

\biggl( 
1

d4

\biggr) 
.

The implied constants in both O(\cdot ) expressions above can be chosen independently of
j from Remark A.6. Then summing over j yields

d\sum 
j=1

\tau 2j \leqslant 
p2\sigma 2

1:d

(\mu 1:d)2

\Biggl( 
1 + (2p - 1)(p - 3)

\sigma 2
1:d

(\mu 1:d)2
+

p - 1

2

\mu 
(3)
1:d

\mu 1:d\sigma 2
1:d

\Biggr) 
+O

\biggl( 
1

d3

\biggr) 
.

Appendix C. Mean dimension approaching one. Here we prove the lemmas
needed for Theorem 3.4. We have a subsection to prove upper bounds on Sobol'
indices and another for lower bounds on the variance.

C.1. Sobol' index upper bounds. Here we find upper bounds for the Sobol'
indices \tau 2j that form the numerator of \nu (f). We will need some properties of

Td :=

\biggl( 
z1:d  - zJ

\mu 1:d

\biggr) p

,(C.1)

where J \in [d] is a random index with

Pr(J = j) =
\sigma 2
j

\sigma 2
1:d

, 1\leqslant j \leqslant d,(C.2)

chosen independently of \bfitz . In particular, we need to show that E(| Td  - 1| ) \rightarrow 0 as
d\rightarrow \infty .

Proposition C.1. Let independent zj \geqslant 0 satisfy the lower bound condition (3.2)
for some \mu > 0, the variance bounds (3.3), and the negative moment condition (3.4)
for some \alpha > 0 and M\alpha <\infty for all j = 1, . . . , d. If the random index J satisfies (C.2)
and is independent of \bfitz , then for d> 1

E

\Biggl( \biggl( 
z1:d  - zJ

\mu 1:d

\biggr)  - \alpha (d - 1)
\Biggr) 
\leqslant \beta  - \alpha (d - 1)e\alpha ,

where \beta is given in (A.7).
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1208 C. HOYT AND A. B. OWEN

Proof. Directly, we find that

E

\Biggl[ \biggl( 
z1:d  - zJ

\mu 1:d

\biggr)  - \alpha (d - 1)
\Biggr] 
=E

\Biggl[ \biggl( 
z1:d  - zJ
d - 1

\biggr)  - \alpha (d - 1)
\Biggr] 
\cdot 
\biggl( 
d - 1

\mu 1:d

\biggr)  - \alpha (d - 1)

\leqslant E

\left[  \prod 
j\in [d]\setminus \{ J\} 

z - \alpha 
j

\right]  \cdot 
\biggl( 
d - 1

d\mu 

\biggr)  - \alpha (d - 1)

\leqslant (M\alpha )
d - 1 \cdot \mu \alpha (d - 1)

\Bigl( d

d - 1

\Bigr) \alpha (d - 1)

\leqslant \beta  - \alpha (d - 1)e\alpha .

Lemma C.2. Let independent random variables zj \geqslant 0 satisfy the upper and lower
bound mean conditions in (3.2), the variance bounds in (3.3), and the negative moment
condition (3.4) for some \alpha > 0 and M\alpha <\infty . Let the index J be chosen according to
(C.2) independently of \bfitz . If Td is defined by (C.1) with p < 0, then E(| Td - 1| )\rightarrow 0 as
d\rightarrow \infty .

Proof. We will show that Td converges to 1 in probability and that Td is uniformly
integrable for large enough d. Then the result follows by the Vitali convergence the-
orem.

Writing

z1:d  - zJ
\mu 1:d

=
z1:d
\mu 1:d

 - zJ
\mu 1:d

we see that the first term converges to one in probability (by our variance assump-
tions), and the second term converges to zero in probability by our assumptions on
\mu j . Therefore (z1:d - zJ)/\mu 1:d converges to one in probability and then, by continuity
Td, converges to one in probability as d\rightarrow \infty .

Now, we prove that Td is uniformly integrable for all d > \lceil 1  - 2p/\alpha \rceil , so that
1+\alpha (d - 1)/p < - 1. Consider any \epsilon > 0, and select any value M >min(\beta p, \beta 2pe\alpha /\epsilon ).
Noting that x \mapsto \rightarrow x - \alpha (d - 1)/p is a monotonically increasing function and then using
Proposition C.1, we get\int \infty 

M

Pr(| Td| \geqslant z)dz =

\int \infty 

M

Pr

\biggl( \biggl( 
z1:d  - zJ

\mu 1:d

\biggr) p

\geqslant z

\biggr) 
dz

=

\int \infty 

M

Pr

\biggl( \biggl( 
z1:d  - zJ

\mu 1:d

\biggr)  - \alpha (d - 1)

\geqslant z - \alpha (d - 1)/p

\biggr) 
dz

\leqslant 
\int \infty 

M

E

\Biggl[ \biggl( 
z1:d  - zJ

\mu 1:d

\biggr)  - \alpha (d - 1)
\Biggr] 
z\alpha (d - 1)/p dz

\leqslant \beta  - \alpha (d - 1)e\alpha 
\int \infty 

M

z\alpha (d - 1)/p dz

= \beta  - \alpha (d - 1)e\alpha \cdot M1+\alpha (d - 1)/p

 - (1 + \alpha (d - 1)/p)

\leqslant \beta pe\alpha \cdot (M\beta  - p)1+\alpha (d - 1)/p

(as M \beta  - p \geqslant 1 and 1+ \alpha (d - 1)/p\leqslant  - 1)

\leqslant \beta pe\alpha (M\beta  - p) - 1

= \beta 2pe\alpha /M

\leqslant \epsilon 

because M \geqslant \beta 2pe\alpha /\epsilon .
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Therefore
\int \infty 
M

Pr(Td| \geqslant z)dz \leqslant \epsilon . It follows that Td is uniformly integrable for all
d\geqslant \lceil 1 - 2p/\alpha \rceil , which completes our claim.

Proposition C.3. Let h :R2 \rightarrow R be a function where h(\cdot , z) is an M(z)-Lipschitz
function for every z. If x and z are independent random variables, then

E[Var(h(x, z)| z)]\leqslant E[M(z)2] \cdot Var(x).

Proof. First Var(h(x, z)| z)\leqslant M(z)2Var(x| z) =M(z)2Var(x) by independence of
x and z. The result follows by taking the expectation over z.

Lemma C.4. Let independent zj \geqslant 0 satisfy the upper and lower mean bounds in
(3.2) and the upper and lower variance bounds in (3.3). Let f(\bfitz ) = (z1:d/\mu 1:d)

p for
nonzero p < 1. Then

limsup
d\rightarrow \infty 

\sum d
j=1 \tau 

2
j

p2 \cdot \sigma 2
1:d

(\mu 1:d)2

\leqslant 1.

Proof. For all j \in [d],

0\leqslant 
\partial 

\partial zj
f(\bfitz ) =

p

\mu 1:d

\biggl( 
z1:d
\mu 1:d

\biggr) p - 1

\leqslant 
p

\mu 1:d

\biggl( 
z1:d  - zj
\mu 1:d

\biggr) p - 1

,

which we can use as a conditional Lipschitz bound independent of zj . Then using the
identity (2.3) and Proposition C.3

\tau 2j =E
\biggl( 
Var

\biggl( \biggl( 
z1:d
\mu 1:d

\biggr) p

| z - j

\biggr) \biggr) 
\leqslant 

\sigma 2
j p

2

(\mu 1:d)2
E

\Biggl( \biggl( 
z1:d  - zj
\mu 1:d

\biggr) 2p - 2
\Biggr) 
.

Now

1

p2
\sigma 2
1:d

(\mu 1:d)2

d\sum 
j=1

\tau 2j \leqslant 
d\sum 

j=1

\sigma 2
j

\sigma 2
1:d

E

\Biggl( \biggl( 
z1:d  - zj
\mu 1:d

\biggr) 2p - 2
\Biggr) 
,

which we recognize as E(Td) defining Td as in (C.1) but with exponent 2p  - 2 < 0.
Then Lemma C.2 finishes the proof.

C.2. Variance lower bounds. In section C.1 we found an upper bound for a
normalized upper bound of Sobol' indices. Here we get a lower bound for the variance
of the RBFs.

We will use the following inequality. If Yd for d \geqslant 1 are random variables that
have finite variances and converge in distribution to a random variable Y , then

lim inf
d\rightarrow \infty 

Var(Yd)\geqslant Var(Y ).(C.3)

Lemma C.5. Let independent zj \geqslant 0 satisfy the upper and lower mean bounds in
(3.2) and the upper and lower variance bounds in (3.3). Let f(\bfitz ) = (z1:d/\mu 1:d)

p for
nonzero p < 1. Then

lim inf
d\rightarrow \infty 

Var(f(\bfitz )) \cdot 
\biggl( 
p2 \cdot \sigma 2

1:d

(\mu 1:d)2

\biggr)  - 1

\geqslant 1.
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1210 C. HOYT AND A. B. OWEN

Proof. From the mean value theorem

\mu 1:d

\sigma 2
1:d

(f(\bfitz ) - 1) =
\mu 1:d

\sigma 2
1:d

\biggl[ \biggl( 
z1:d
\mu 1:d

\biggr) p

 - 1

\biggr] 
= p\theta p - 1 \cdot z1:d  - \mu 1:d

\sigma 2
1:d

for some \theta between 1 and z1:d/\mu 1:d. That ratio converges to 1 in probability as
d\rightarrow \infty and so \theta \rightarrow 1 in probability. Then by the continuous mapping theorem, p\theta p - 1

converges to p in probability.
Next (z1:d  - \mu 1:d)/\sigma 

2
1:d

d\rightarrow \scrN (0,1) by the central limit theorem, and so, using
Slutsky's theorem,

\mu 1:d

\sigma 2
1:d

(f(\bfitz ) - 1)
d\rightarrow \scrN (0, p2).

Finally, from (C.3)

lim inf
d\rightarrow \infty 

Var(f(\bfitz ))

p2 \cdot \sigma 2
1:d

(\mu 1:d)2

= lim inf
d\rightarrow \infty 

1

p2
Var

\biggl( 
\mu 1:d

\sigma 1:d
[f(z1:d) - 1]

\biggr) 
\geqslant 

1

p2
\cdot Var(\scrN (0, p)) = 1.
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