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Abstract

This study analyses budgets of second-order turbulence moments over a real urban canopy
using large-eddy simulation (LES). The urban canopy is representative of the City of
Boston, MA, United States and is characterized by a significant height variability relative
to the mean building height. The budgets of double-averaged Reynolds-stress components,
scalar fluxes, and scalar variances are examined with a focus on the importance of the
dispersive terms above the mean building height. Results reveal the importance of the wake
(dispersive) production term, in addition to the shear production term, in the turbulent
kinetic energy, streamwise velocity variance and scalar variance budgets well above the
mean building height. In this region, the turbulent and dispersive transport terms are
smaller than the production and dissipation terms. Nonetheless, the dispersive transport
terms in the TKE and scalar variance budgets can be as important as their turbulent
counterparts. The subgrid-scale dissipation term is the main sink in the TKE, vertical
velocity variance and scalar variance budgets. In the momentum and scalar flux budgets,
the pressure-strain correlation term and the pressure gradient-scalar interaction term are the
significant sink terms, respectively. Our analysis highlights the complexity associated with
the budgets of second-order turbulence moments over real urban canopies and has
important implications for developing urban parameterizations for weather and climate

models.
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1 Introduction

Accurate modeling of turbulent flows and associated transport processes within and above
urban environments is crucial for many applications, including the prediction of pollutant
dispersion (Walton et al. 2002; Britter and Hanna 2003; Gromke et al. 2008; Glazunov et
al. 2016; Auvinen et al. 2017), the quantification of pedestrian thermal comfort
(Krayenhoff et al. 2020; Nazarian and Lee 2021), and the estimation of building energy
consumption (Zhao and Magoules 2012; Javanroodi et al. 2022). During the past decades,
substantial efforts have been devoted to characterizing turbulence and turbulent transport
inside the so-called urban roughness sublayer (RSL) (Rotach 1999; Masson 2006;
Fernando et al. 2010). The established paradigm is that the urban RSL spans from the street
level to roughly two to five times the mean building height (Oke et al. 2017); in this layer,
turbulence and its associated transport are strongly influenced by the individual urban
roughness elements (e.g., buildings, trees) and is thus both vertically and horizontally
inhomogeneous (Rotach 1993; Oikawa and Meng 1995; Kastner-Klein et al. 2001; Britter
and Hanna 2003).

The grid resolution in numerical weather prediction (NWP) models is too coarse to
explicitly resolve individual roughness elements (Skamarock et al. 2008). To account for
the impact of the roughness elements on the resolved-scale exchange processes between
the urban canopies and the atmosphere, it is hence common to homogenize the governing
equations at the horizontal grid resolution of NWP models (Chen et al. 2011). The
horizontal grid resolution of NWP models is typically a few kilometers (the neighborhood
scale), over which some degree of statistical homogeneity in the canopy morphology and
resulting flow statistics might be expected (Britter and Hanna 2003). Given that the urban
canopy domain is not simply connected (or it is multiply connected), the coarse-graining
operation has to be based on the volume-averaging theorem (Whitaker, 1967), whose
theoretical and implementation details for flow over rough surfaces are discussed in Nikora
et al. (2007), Mignot et al. (2009), Xie and Fuka (2018) and Schmid et al. (2019). When

time- and spatial-averaging (hereafter double-averaging) operations are performed in a
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multiply-connected domain, additional terms arise in the averaged equations besides the
turbulent fluxes, namely the dispersive fluxes (Mahrt 1987). The turbulent fluxes are
caused by temporal deviations from the temporally-averaged flow, while the dispersive
fluxes arise from the spatial correlations of temporally-averaged flow quantities over the
spatial averaging scale. The dispersive fluxes and related dispersive terms in the budget
equations for turbulence moments remain poorly understood and their contributions to the
flow dynamics are often overlooked.

Previous studies of turbulence moment budgets in flow over urban canopies have
primarily focused on the turbulence kinetic energy (TKE) budget (Louka et al. 2000; Bou-
Zeid et al. 2009; Christen et al. 2009; Giometto et al. 2016; Blackman et al. 2017; Tian et
al. 2021; Blunn et al. 2022). Much less is known about the budgets of momentum and
scalar fluxes, as well as scalar variances over urban canopies. This is in sharp contrast to
the attention these budgets received in studies over vegetative canopies (Meyers and
Baldocchi 1991; Dwyer et al. 1997; Katul et al. 2009, 2013; Viana Parente Lopes et al.
2021; Watanabe et al. 2021). Moreover, motivated by the need to understand the physical
system in its simplest form, the majority of previous studies have considered idealized
urban canopy configurations such as arrays of aligned or staggered cuboids (Castro et al.
2006; Yakhot et al. 2006; Blackman et al. 2017; Tian et al. 2021); these canopies are
characterized by a few length scales and hence lend themselves to analytical treatment. As
shown in recent work, the dynamics of turbulent transport in idealized conditions might
profoundly differ from their real-world counterparts (Giometto et al. 2016; Inagaki et al.
2017; Auvinen et al. 2020; Akinlabi et al. 2022). To bridge this knowledge gap, we conduct
a budget study over a real urban canopy. Specifically, we focus on quantifying the double-
averaged budgets for second-order turbulence moments. We propose to use large-eddy
simulations (LESs) because field studies of turbulence budgets have been restricted to one
or few locations (Rotach 1993; Christen et al. 2009; Santiago and Martilli 2010). The LES
technique has been applied to study the budgets of second-order turbulence moments over
vegetation (Dwyer et al. 1997; Yue et al. 2008; Viana Parente Lopes et al. 2021) and urban
canopies (Bou-Zeid et al. 2009; Giometto et al. 2016; Tian et al. 2021). However, compared

to previous work, our contribution is novel because we examine for the first time the



85
86
87
88
&9
90
91
92
93
94
95
96
97
98
99
100
101

102

103

104
105
106
107
108
109
110
111
112
113

momentum and scalar fluxes, as well as scalar variance budgets over a real urban
environment.

In what follows, a standard notation is used where x; = (x,y, z) are the Cartesian
coordinates (i.e., x,y,z represent the streamwise, spanwise and vertical directions,
respectively), and u, v, w are the streamwise, spanwise and vertical velocity components
(resolved by LES), respectively; and s represent a passive scalar (e.g., the concentration of
pollutants etc). The Einstein summation convention for repeated indices is used. The
overbar () and angular brackets (-) denote time and spatial (volume) averaging,
respectively. Double-averaging (DA) refers to taking the average in time first and then in
space. The prime and double prime denote temporal and spatial deviations, respectively.
Namely, X' = X — X is the temporal fluctuation of X (i.e., deviations from the temporally-
averaged X) and X" = X — (X) is the spatial deviation of X from its spatial average (X).

This paper is organized as follows: Sect. 2 provides the theoretical framework and
presents the double-averaged budgets of second-order moments in a multiply-connected
domain; the large-eddy simulation model and the simulated case are presented in Sect. 3;
Sect. 4 presents the analysis of second-order moment budgets and conclusions are drawn

in Sect. 5.
2 Theoretical Framework

2.1 Volume Averaging

The volume averaging operation is carried out in time and over horizontal slab of thickness
Az. Two types of volume averaging need to be distinguished. The first is intrinsic averaging
(Nikora et al. 2007), where the averaging volume includes the ambient air only. The second
is extrinsic (or superficial) averaging (Schmid et al. 2019), where averaging is performed
over the entire horizontal slab (i.e., including the volume occupied by solid elements such
as buildings and trees). Intrinsic averaging is widely used in the literature to characterize
flow fields over vegetation canopies (Wilson and Shaw 1977; Raupach and Shaw 1982),
gravel beds (Nikora et al. 2007), rigid canopies (Raupach et al. 1991; Coceal et al. 2006;
Xie et al. 2008) and real urban canopies (Giometto et al. 2016; Akinlabi et al. 2022). The

intrinsic averaging operation is the natural approach for this study for two reasons. The
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first is that the resulting statistics are more representative of typical values inside the fluid.
The second is that intrinsically-averaged dispersive fluxes are zero for a constant velocity
field (due to the zero spatial deviation of the constant velocity field from its mean) but the

superficially-averaging dispersive fluxes are not necessarily zero.

For a volume (V) centered at location x; that composes of fluids (with volume V}) and solid

elements (with volume V;), we define the intrinsic average of a temporally averaged variable

F as:

(F)(x) = )

f F(B) dx dy dz.

Vf(xi)
BEV(xy)

2.2 Double-averaged Budgets of Second-Order Turbulence Moments

Double-averaged budgets are obtained by first averaging the flow field in time and then in
space using the intrinsic volume-averaging operations on temporally averaged fields. The
time-averaged budget equations have been extensively studied and can be found in
classical textbooks (Stull 1988; Garratt 1992). Therefore, in the following, we only briefly
discuss the volume-averaging rules for flow in urban canopies (Schmid et al. 2019). We
define a time- and intrinsically-averaged quantity (), where the intrinsic and time-
averaging operations commute. In the following, the quantity (p) is termed the double-
averaged @ . However, based on the volume averaging theorem (Whitaker 1967), the

intrinsically-averaged spatial gradient of ¢ is not equal to the spatial gradient of ({), but

rather
d¢p 1 day,(p) 1 2
=P g as @
X Ay  O0X B EAfs(x)
(¢ p) da 1
- <(’)>+@—”+—j P(B) n; dA
0x; a, dx; V B € Ap(x)
where @, = 1 — A, and 4, is the plan area fraction defined as the fraction of space

occupied by the solid elements in a given averaging volume. The function «,, is needed to

P
account for the change of the fluid volume V; with height, which is important for real urban
canopies (Giometto et al. 2016). For generality, a,, is written as a function of x; in Eq. 2

(and Eq. 5 below) following Schmid et al. (2019). The surface integral represents the effect
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of the solid-fluid interface and is zero when ¢ is any of the velocity components due to the

no-slip boundary conditions. A, (x) is the solid-fluid interface contained in the averaging
volume V (x) while n; is the unit normal vector of A¢g pointing from the fluid phase into

the solid phrase. For more details about the surface integral in Eq. 2, readers are referred
to Mignot et al. (2009) and Schmid et al. (2019).

With these rules, the budget equations for double-averaged second-order moments can
be obtained using the following procedure. First, we average each term in time and space.
Second, we switch the order of spatial averaging and differentiation following Eq. 2. Third,

we expand the spatial averaging of the product of ¢; and ¢; following
(@ 9)) = (@ X@)) + (0. X@)) + (@ Xe,") + (2. 9,") 3)
= (X)) + (0."9,").
Note that (¢'') = 0 due to the averaging rules. The spatial averaging of the product of {,
and the gradient of @, reads

a(’#] _” — Il a_]”>

_ 09 .
<<plaxi>—<<pl><ax> (@, )( ) (@,

_II a(’#]” ) (4)
ox; "

‘pJ

=(q, ) + (@)

———I

In this case, ( ) does not disappear, as can be seen from Eq. 2, namely

09" P, _ 99, 0§) _ (@, 1 i
=G~ e =G0~ e = ae CUTY

When applying the double averaging procedure to analyzing LES outputs, we make further

)

simplification by assuming horizontal homogeneity at scales beyond the spatial averaging

op) _ (o)
v oox oy

2@

e = 0), and no large-scale subsidence,

scale (i.e. = 0), stationarity (i.e.

(i.e., (W) = 0). Furthermore, because of the assumption of horizontal homogeneity at

scales larger than the spatial averaging scale, a,, becomes also only a function of z and

a day . : .
thus only % = % is non-zero. In Appendix 1, we follow the above-mentioned procedure

to derive the budget equations for double-averaged second-order moments.

2.2.1 Reynolds Stress

The budget equation for double-averaged Reynolds stress tensor reads
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da, (uju, w'" _ L
oo - L >—<(W>M+(u'w')—du">>

a, dz k dz L dz
T P
e i T (@5 4 5
k 0x; k Xj L7 0x;

1| d{uyw'uy) aap(p uk) da,(p'u;)
+=
p 0x; 0x;

(6)

]
Tik

1 ou! ou! 1 d a,(u/t;35 1 d a,(uy, 7365
F ooy ¢ oy ) - et 1 - SO
0x, 0x;, ap dz ap dz
SPik Dik
+ (1 ,scs )+( 1SGS 6u’>
0x

J

Eik

where P}, is the shear production term, P} is the wake (dispersive) production term, P} is
the rate of work of the temporally averaged velocity fluctuations against the shear

production (given that a,, varies with height, Pj;’ # 0), which is called the form induced

production term hereafter, T, is the turbulent transport term, T/} is dispersive transport
term, Tp is the pressure transport term, SP;; is the pressure-strain correlation or pressure
redistribution term, D;j, is the SGS transport term and &, is the SGS dissipation term. The
SGS third-order velocity correlations and SGS pressure-strain correlation are negligible
above the mean building height; they will be incorporated into the budget residual term. In
general, Eq. 6 shows that each component of the Reynold stress is produced by shear
production (P;},), wake production (P}}) and form induced production (P}}}), transported by
turbulent transport (T} ), dispersive transport (TS%), pressure transport (Ti) and SGS
transport (D;;), and dissipated by &;;,. It is assumed that ¢;;, takes place at small scales
where the local isotropy of the Kolmogorov hypothesis prevails. As a result, the Reynold
stress dissipation is modeled as an isotropic tensor and its deviatoric part is incorporated

into the pressure-strain correlation term (making this term a sink for this case). The
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isotropic part of ¢, is computed using the SGS model. This procedure is standard in

second-order turbulence closure modelling (Heinze et al. 2015).
2.2.2TKE

The budget equation for TKE is simply the trace of Eq. 6 multiplied by %%. It reads

0= —— (daP( i WH)) - ((W) @) - ((u{u]” ailu))

B Zap dz ox

j
w
g PrgE PrkE

___ou" 1| 1d{ayujujw’) 1 [(d{a,p'w’) 1 da,(ujt;3%°
- (G ) - | s e o (SR |- e L
0x; ay, | 2 dz p dz a, dz
pr Tike - DrkE
du,
+ (1,565 o, ), (7)
ETKE

where the definition for Py, P¥kg, Prxe, Tixe> TikesTeep and Dyygp are similar to the
definitions given in Eq. 6 and gy is the TKE dissipation. The pressure-strain correlation
is not in the TKE budget because it only acts to redistribute energy between the
components. In general, Eq. 7 shows that TKE is produced by shear production P75, wake
production P}, and P}k, redistributed by turbulent transport T, dispersive transport
T, pressure transport TF, . and SGS transport Dyx and finally dissipated by the work
of SGS stresses onto the resolved field ergg (Christen et al. 2009; Giometto et al. 2016).

2.2.3 Vertical Scalar Flux

The budget equation for the vertical scalar flux reads

1 dap(w’s’”vT/”> 1 day(s) —_,ow” __, 08"
0=—— —|—Www)——|—-| s m)+Wwuy ——)
a 0x;

a, dz v dz ] dx; ",
T&, P§p PSF
— ,ow" — 058" 1 day(w'w's’) 1 L 0p’
- ((S "fH_axj )+ (w u]>(a—xj> >_a_p—dz —;(5 E>
PSk TéF ps
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a, dz a, dz 0x, (8)
1 Dsp
—V<fs 5 ny dA+(w’uj’)f§nj dA),
Ysk

where the definitions for P&y, P, PI, T& and T&. are similar to the definitions in Eq. 6.
PS is the pressure gradient-scalar interaction (a de-correlation term) and Dgy include SGS
terms; s represents the surface integral terms arising from the volume averaging
theorem. We point out that in deriving Eq. 6, the pressure term in the time-averaged
Reynold stress tensorTu;C budget equation is split into two terms (see Appendix 1 for
details). On the contrary, for scalar flux budget equation, this pressure term cannot be split.
The SGS components of PS have been shown to be non-negligible in the scalar flux budget
(Khanna 1998; Heinze et al. 2015). Due to difficulties in evaluating the SGS components
of PS and the surface integral terms over complex urban geometry via the LES model used
in our study (to be introduced later), this work incorporates them into the budget residual

along with the SGS component of the turbulent transport term.
2.2.4 Scalar Variance

The budget equation for the scalar variance reads

0— 1 dap <S’2 V_V”> , <T> 1 dap(s) < : ,” a§n>
N ap dz ws ap dz axj
TSV PSV P.‘SA!,/
95" 1 da,(w's"? 1 day, (s T’SGS ds’
—2 U () —— L ( S5
X; a, dz ap dz ax,
Py TS, Dsy esv
1 ISGS ala, ! =
_V< s'tg nidA+2(s'u) | Sn; dA), )

Ysy

where the definitions for P§,, P, P, TE, and T&, for the scalar variance are similar to

those in Eq. 6. Dy is the SGS transport for scalar, &g, is the dissipation and 1y, is the
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surface integral terms that capture the effect of the solid-fluid interface. 1, is incorporated
into the budget residual due to the difficulties associated with evaluating it in the LES

model used in our study.
3 Model and case description

3.1 Large-Eddy Simulation Model

In this study, the PALM LES Model in revision 4901 (Maronga et al. 2015, 2020) is used.
The PALM solver numerically integrates the filtered, non-hydrostatic Navier-Stokes
equations in the Boussinesq-approximations form and the filtered transport equation for
passive scalar concentration. Filtered transport equations for two thermodynamic variables,
such as potential temperature and total water specific humidity, can be solved but are not
used in this study. The filtering of these equations is carried out implicitly using the
volume-based approach (Schumann 1975) and employs the 1.5-order SGS closure model
of Deardorff (1980). Using a predictor-corrector method and iterative multigrid scheme
(Hackbusch 1985), the mass conservation of the flow is enforced by solving a Poisson
equation for pressure perturbation. The 5th order Wicker-Skamarock and the 2nd order
central difference schemes are employed to discretize the advection and diffusion schemes.
Temporal discretization is done with the 3rd order Runge-Kutta scheme. The
computational domain is spatially discretized using the finite difference approach on
Arakawa staggered C-grid (Arakawa and Lamb 1977). The PALM model explicitly
resolves the solid obstacles using the masking method (Briscolini and Santangelo 1989)
and hence does not need a parameterization to account for the effect of the solid obstacle
on the flow dynamics.

The PALM model has been widely used to study flows over both idealized (Letzel et
al. 2008; Park et al. 2012; Gronemeier and Siihring 2019; Nazarian et al. 2020; Blunn et
al. 2022) and real urban canopies (Kanda et al. 2013; Park et al. 2015; Gronemeier et al.
2017) and it has been extensively validated (Frohlich and Matzarakis 2020; Gronemeier et
al. 2021; Resler et al. 2021). Heinze et al. (2015) used the PALM model to study second-
order moment budgets in cloud topped boundary layers and found that the PALM model
results agree with the results of other LES models except for the TKE dissipation rate. The

disagreement in the TKE dissipation rate was attributed to truncation errors, which can be

10
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relatively large and lead to artificial dispersion (especially at high wavenumbers) when
using low order schemes (Ghosal 1996; Giacomini and Giometto 2021). Uncertainties
arising from these errors are captured in the residual of our budget analysis and discussed

in the result section.

3.2 Case description and model set-up

In this study, we focus on an area of about 2.6 x 2.1 km? around Fenway-Kenmore square
in the City of Boston, Massachusetts, USA (see Fig. 1a). This geographical region is the
same as the one considered in Akinlabi et al. (2022). This region is located in the northern
part of Boston. The chosen domain contains a dense arrangement of building blocks, an
irregular distribution of narrow street canyons, a park in the northwest region, and the
Charles River in the north. The northeastern part is a business district with many high-rise
buildings of height above 100 m (e.g., the Prudential centre which is 227 m high), while
the southwestern part is the home to several hospitals (Boston children hospital, Beth Israel
Medical centre, Brigham and Women’s hospital) and universities (Harvard school of public
health, Emmanuel college, Simmons university and Massachusetts College of Pharmacy
and Health Sciences) with moderately tall buildings of about 60 — 80 m. Figure 1 shows
the map, the vertical profile of the plan area fraction, and the building height distribution,
and its probability density function within the study area. The mean building height H is
18 m, and the standard deviation o is 16 m. The plan area fraction varies strongly with
height and is 0.29 at the ground level. The distribution of building heights in our study area
differs from previous studies like Auvinen et al. (2020), whose building height distribution
is relatively symmetric with o, /H = 0.4 — 0.6. It is also different from the study by
Giometto et al. (2016, 2017) with a trimodal building height distribution and o, /H = 0.4.
In our study, the distribution is very skewed with o, /H = 0.89. Vegetation is not included

in our simulation, which is justified by its small plan area fraction (Giometto et al. 2016).

11
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Fig. 1 a 3-D map of the area around Fenway-Kenmore square in the City of Boston, USA, with the Charles
River in the north, the Brigham and Women’s hospital (about 75 m) in the southwest, and the Prudential
centre (maximum building height of 227 m) in the northeast. Imagery ©Google, b the vertical profile of the
plan area fraction, ¢ building heights in the study area and d the probability distribution function (PDF) of
building heights

The domain is discretized in space using 864 X 720 X 360 grid points in streamwise,
spanwise and vertical directions, respectively. A horizontal grid spacing of 3 m is used,
which has been shown in our previous work (Akinlabi et al. 2022) to be adequate in
resolving the buildings and street canyons in the domain. In the vertical direction, 3 m grid

spacing is used up to 300 m. Above this height, we apply a grid stretching with a factor of

12
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1.005 until a maximum value of 11 m is reached. This gives a domain height of 1.9 km.
The boundary-layer height is §/H = 70, which satisfies the §/H = 50 requirement
(Jimenez 2004). The flow is driven by a constant geostrophic wind U; = 3.5ms™" (an
intermediate value to represent a weakly sheared flow) in the west-to-east direction and
neutral stratification is assumed throughout the study. The no-slip wall boundary condition
was imposed on all surfaces (including the roofs, ground, and building walls) whereas a
free-slip condition is applied at the top of the domain. We applied an algebraic wall-layer
model between the surface (including the roofs, ground, and building walls) and the first
computational grid level. To account for the effects of low vegetation, structural details,
and temporary structures, a SGS aerodynamic roughness length zy sgs = 0.01 m was used,
which follows the recommendation of Basu and Lacser (2017) that zyggs <
0.02 x min(Az) . The value min(Az) for this study was 1.5 m because the first
computational grid node is positioned at 0.5 Az. Cyclic boundary conditions are imposed
in the lateral directions to simulate an infinite repetition of the study area. This setup is
convenient as it does not require specification of an inflow boundary condition. The
boundary condition for the passive scalar equation is a surface flux 0.05 kg m~% s~1, which
is imposed on all surfaces (including the roofs, ground and building walls). The simulation
ran for a spin-up period of 560 T where T = H/u, to reach a steady state. Here T is
interpreted as the eddy-turnover time for the largest eddies in the urban canopy (Coceal et
al. 2006). The friction velocity u, = 0.3 ms™ is computed from the total kinematic
surface drag per unit floor area t,, i.e., u, = \/m, where p is the air density (1 kg m™3)
and 7, is the sum of the form and skin-friction drag (Kanda et al. 2013). The simulation is
then pursued for another 240 T to evaluate temporally averaged statistics, which has been

verified to be long enough for the statistics to reach convergence (Akinlabi et al. 2022).
4 Results and Discussion

4.1 Double-averaged Flow Statistics

We start our analysis by examining the double-averaged flow statistics. The streamwise
velocity, vertical velocity, momentum flux, velocity variances, and the total pressure drag

are normalized by the friction velocity u,. The scalar concentration is normalized with s, =

13
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2 51 is the surface scalar flux. The turbulent scalar

w's’y/u, where w's’y = 0.05 kg m~
flux is normalized with u,s,. The vertical height is normalized with the mean building
height (H = 18 m). Figure 2 shows the normalized profiles of double-averaged
streamwise and vertical velocities and their variances, turbulent kinetic energy, and the
logarithm of the scalar concentration and its variance. The streamwise velocity profile
exhibits no inflection point, consistent with profiles presented by previous real urban
canopy studies with large g values (Park et al. 2015; Inagaki et al. 2017; Akinlabi et al.
2022). The reason for this, as discussed by Makedonas et al. (2021) and Akinlabi et al.
(2022), is the large spread of velocities below the height H,,,, indicating significant flow
penetration caused by the large oy. As a result, cities designed with large o could have
higher mixing rates, which can positively impact urban air quality and natural ventilation
(Makedonas et al. 2021). The profile of the streamwise velocity follows the conventional
logarithmic form well above the urban canopy. However, closer to the buildings, the
streamwise velocity profile deviates from the logarithmic form as it responds directly to
the urban canopy (see Fig. 2a). A logarithmic function is fitted to the streamwise velocity
profile in the [30H- 40H] interval with a von Karman constant value of 0.4, yielding an
aerodynamic roughness length z,/H = 0.23 and a displacement height z; /H = 3.9. The
aerodynamic roughness length is comparable to z,/H = 0.21 if our urban canopy
parameters are substituted into the new aerodynamic surface parameterization equation of
Kanda et al. (2013), while the displacement height is overestimated (i.e., z;/H = 2.22
using the equation in Kanda et al. 2013). The reason for the difference in displacement
height estimates is beyond the scope of this work. Following our earlier work (Akinlabi et
al. 2022), we identify z/H = 30 height as the RSL thickness (similar to the fitting range
used above). This height corresponds to the 90™ percentile of the dispersive flux profile.

Dispersive fluxes for the urban canopy under consideration were examined in detail in

Akinlabi et al. (2022) and will not be discussed here.

The double-averaged vertical velocity vanishes as expected from the use of periodic
lateral boundary condition. The normalized turbulent kinetic energy has its maximum value
of 3 around z/H = 5 and decreases with increasing height with major contribution from
the streamwise velocity variance (see Fig. 2b). The streamwise velocity variance peaks at

z/H = 10 while the vertical velocity variance peaks at z/H = 3. The profile of the
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logarithm of scalar concentration is almost uniform with height, even though almost all the
source of the scalar concentration is below z/H = 2 based on the boundary condition for
the passive scalar. This uniformity indicates an intense mixing of passive scalar from urban
surfaces where it is released to the atmosphere. This vigorous mixing may be caused by
the significant flow penetration discussed above. Here, we show the profile of the logarithm
of the scalar and its variance to highlight their variations better. The logarithm of

normalized scalar variance has a maximum value of 6 at z/H = 1.
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Fig. 2 Normalized profiles of a streamwise velocity juxtaposed with a reference logarithmic profile
(roughness length z,/H = 0.23 and displacement height z;/H = 3.9) and vertical velocity, b variances of
streamwise and vertical velocities and turbulent kinetic energy TKE = 0.5((u'’2 + v'2 + w'2)) ¢ logarithm
of the scalar concentration and its variance. The velocities are normalized with the friction velocity u, while
the scalar concentration is normalized with s,. Dashed horizontal line indicates the mean building height H
while the solid horizontal line is the maximum building height H,,

The turbulent momentum and scalar fluxes as well as the pressure drag are presented
in Fig. 3. Only the resolved parts of the turbulent fluxes are presented since the subgrid-
scale fluxes are less than 6% of the sum of resolved and subgrid-scale fluxes above z/H =

1. The turbulent momentum flux peaks at about z/H = 10 with magnitude twice as large
as its value at z/H = 40. A similar behavior is observed for the turbulent scalar flux, which

peaks at z/H = 4 (see Fig. 3b). The pressure drag, which is the major sink of momentum
in the urban canopy, decreases with height from its surface value | 06%(%) dz =~ u?to

zero at H,, (see Fig. 3a).
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Fig. 3 Normalized profiles of a turbulent momentum flux and the pressure drag, b turbulent scalar flux. The
momentum flux and pressure drag in a are normalized by the squared friction velocity u, while the scalar
flux is normalized with u,s,. The dashed horizontal line indicates the mean building height H while the solid

horizontal line is the maximum building height H,,,
4.2 Budgets for Second-Order Turbulence Moments

The budgets for second-order moments in the urban RSL are now discussed. Each term in
the TKE, velocity variances and Reynold stress budgets are normalized by H /u3. Those
for scalar flux and scalar variance are normalized by H/(s,u?) and H/(u.s?),
respectively. According to Akinlabi et al. (2022), the urban RSL for real urban canopies
can extend much higher than the traditional definition (i.e., z/H = 2 —5) which is
primarily based on studies over idealized urban canopies. Using the height that corresponds
to 90 percentile of the dispersive flux profile as the beginning of the inertial sublayer, they
argued that the RSL extends to z/H = 30. Following Akinlabi et al. (2022), we will focus
on the interval z < 30H. Three layers are considered. The first layer is the traditionally
defined urban RSL (2H < z < 5H) represented by the grey area in Figs. 4 — 9. We note
that this layer roughly covers the region where the lowest atmospheric grid (about
30 - 100 m) in NWP and climate models with single-layer urban parameterizations often
occurs. Above this interval, two additional layers are considered: 5SH < z < 12H (the
second layer) and 12H < z < 30H (the third layer). The second layer spans from the top
of the traditionally defined urban RSL to H,,,, while the third layer are from H,,,, to the
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top of the urban RSL. Averages of each budget term within each layer are presented in
Tables 1 — 6.

The relatively small residual in the computed budgets of second-order moments when
z is above H provides confidence in our numerical results. The residual terms contain all
other SGS components of the budget terms such as the SGS third-order velocity
correlations and the SGS pressure redistribution (see Heinze et al. 2015 for example). The
residual below H (see Figs. 4 — 9) is primarily due to the spatial interpolation of variables
in the near wall regions required to compute some of the budget terms; this leads to
numerical truncation errors and degrades the quality of the computed budget. Hence, only

the budgets at z/H > 1 will be analyzed.

4.2.1 TKE

Vertical profiles of terms in the TKE budget are shown in Fig. 4 while Table 1 shows the
percentage contribution of each term to the total source (+) or sink (-) in the considered
layer. The shear production P7gp peaksat z/H = 1 where the strongest wind shear occurs
and decreases with height. This agrees with previous studies of boundary layer flows over
uniform strip or tree-like canopies (see Yue et al. 2008 and Bohm et al. 2013). Although
Pj g decreases with height for z/H > 1, its contribution to the total source increases with
height because other production terms become even smaller with height (see Table 1). The
wake production Pryy is the production rate of TKE in the wakes of buildings (i.e.,
converting wake kinetic energy to TKE) through the interaction between the local turbulent
stress and time-averaged strains. Py also peaks at H and decreases to approximately zero
above z/H = 15. Below H, .y, PYxr = 0.5P7xg, in agreement with previous studies of
flow over real urban canopies (Giometto et al. 2016). This implies that Py is non-
negligible over the urban canopy. Similar results have been presented in studies of flow
over other regular canopies (Raupach et al. 1991). The form-induced production term Pr g
is negligible in our study (see Table 1). This result disagrees with Giometto et al. (2016),
where Pr is found to be non-zero in the vicinity of the inflection layer, accounting for
16% of P7yg. This disagreement is likely caused by the difference in 6. The difference
between the two studies seems to suggest that the importance of Pk decreases or even

becomes negligible with large 0. Note that other factors such as the plan area fraction 4,,,
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the frontal area fraction Ar = Ag /Ao (Af is the product of the building width and height)
might also be responsible for this disagreement. More detailed investigations of how Pk
(as well as similar terms in the budgets of other second-order moments) respond to changes
in the aforementioned parameters is beyond the scope of this analysis and is left for future
work.

The transport terms are responsible for redistributing TKE vertically from regions of
high production to others. They serve as local sources/sinks of TKE (Roth and Oke 1993).
Within 2H < z < 12H, the turbulent transport term Tf,; is negative and contributes to
10% of the total sink of TKE (see Table 1). It changes sign at z/H = 2 and z/H = 13,
contributing 5% of the total source above z/H = 15. Our result agrees with studies of flow
over urban canopies (Christen et al. 2009; Giometto et al. 2016) and field studies of flow
over vegetation canopies (Leclerc et al. 1990; Shen and Leclerc 1997). Tg, Thy and
Drxg are almost zero in the studied height ranges (see Table 1). The result of Drxy agrees
with Yue et al. (2008).

The TKE dissipation rate ergp is a significant sink of TKE. We compute erxg as

! I —
T8, = TyS, —

ﬁS_U where §;; is the filtered shear rate tensor while 7;; is the SGS
stress tensor. Experimental studies compute erxr based on the energy spectra (e.g.,
Christen et al. 2009), but this approach is known to overestimate erxr (Heinze et al. 2015;
Akinlabi et al. 2019). Here we found that &g has a maximum value of 1.4 H/u? at
z/H = 1 (though it might increase even more within z/H < 1) and decreases with height
until it balances TKE production at z/H > 20, after which Pjgp = ergg . Local
contributions of 7y to the total sink rate of TKE range between 86% at 5H < z < 12H
to 93% atz/H > 12.

Based on these results, we conclude that for the real urban canopy studied here, the
shear production Pjgp, wake production Pry and dissipation of TKE ergp are the major
players in the TKE budget. They need to be parameterized in large-scale meteorological
models due to their significant contributions to the total source or sink of TKE in real urban

canopy flows. The contributions of turbulent transport T to local TKE sources/sink are

less than 15% with significant height variability.
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Fig. 4 The TKE budget terms normalized by H/u3. The grey region corresponds to 2H < z < 5H while the

dashed horizontal line is the maximum building height H, .,

Table 1 Percentage contribution of Pyxg, Ptke, Prkes Tk, TﬁKE,TTpKE, Dyyp and ergp to the total source

and sink for the considered layers. (+) and (-) denote a source and sink of TKE, respectively

2H<z<5H 5H<z<12H 12H<z<30H

Sk 69% (+) 75% (+) 91% (+)

W e 31% (+) 23% (+) 9% (+)

m 0% 0% 0%
Togr = 9% () 13% () 3% (-)
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T, ¢ 0% 2% (+) 4% (-)
T & 0% 1% (-) 0%
Dy 0% 0% 0%
E1KE 91% (-) 86% (-) 93% (-)

4.2.2 Velocity Variances

In this section, we further examine the budgets of streamwise and vertical velocity
variances. Tables 2 and 3 show the percentage contribution of each term to the total source
(+) or sink (-) in the considered layers and the profiles are shown in Figs. 5 and 6
respectively. P, and P}y are the key source terms in the budget of streamwise velocity
variance, with peak values of 2.5 H/u3 and 0.8 H/u3, respectively, at z/H = 1. The
profiles of P}, and Py} are similar in shape to P{g and Py, respectively. Since P35 = 0,
the production of TKE due to shear occurs through the horizontal velocity components
(i.e., Pfxg = 0.5(P{; + P5,) ). This explains why the profile of P, is similar to that of
Pjyg . Here it should be pointed out that these results might be altered by thermal
stratification which is absent in our study. P35 is non-zero but contributes less than 10% to
the total source rate of vertical velocity variance (see Table 3), explaining why the profile
of P} is similar to that of Pfxg. The form-induced production terms P{} and PJ% are
negligible.

The anisotropy introduced by shear and wake productions is counteracted by the
pressure-strain correlation terms SP;; and SPs;5. SP;; and SP;; only act to redistribute
TKE between the components returning turbulence to the isotropic state — a process known
as “isotropization of turbulence” (Pope 2000; Hanjali¢ and Launder 2009). SP,; is negative
while SP;5 is positive throughout the considered height intervals. This implies that the
vertical-velocity variance grows at the expense of the streamwise velocity variance. The

dissipation rates (€;1 and &33) in the velocity variance budgets are determined based on the
. . . 2
assumption of local isotropy at small scales i.e., &; = €33 = 3 ETKE - The percentage

contribution of &;; to the total sink in the streamwise velocity variance budget is about
50% of the percentage contribution of SP;;, with the sum of SP;; and &;; nearly balancing

the production terms. In the vertical velocity variance budget, SP;; nearly balances &53.
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All the transport terms (i.e., T, Tds, TS, TS, TY., TE,, Dy, and D33) are much less
critical in the velocity variance budgets. T{; and T<; make about 5 - 10% contribution to
the total sink while the other transport terms are even smaller compared to other terms in
the velocity variance budgets (see Tables 2 and 3). In summary, the production, pressure-
strain correlation and dissipation terms play significant roles in the velocity variance

budgets.
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Fig. 5 The streamwise velocity variance budget terms normalized by H/u3. The grey region corresponds to

2H < z < 5H while the dashed horizontal line is the maximum building height H,,,



463  Table 2 Percentage contributions of Py, P4, P1, Tt;, T, T}, SP,1, Dy, and &y, to the total source and sink

464  for the considered layers. (+) and (-) denote a source and sink of streamwise velocity variances, respectively

2H<z<5H 5H<z<12H |12H<z <30H

S 74% (+) 79% (+) 91% (+)

w 26% (+) 20% (+) 9% (+)

11 1% (-) 1% (-) 0% (+)
Ti1 5% (-) 9% (-) 6% (-)
T4, 0% 1% (+) 1% (-)
T, 0% 0% 0%
Dyq 0% 0% 0%
£11 34% (-) 29% (-) 28% (-)
SPy4 60% (-) 61% (-) 65% (-)
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Fig. 6 The vertical velocity variance budget terms normalized by H /u2. The grey region corresponds to

2H < z < 5H while the dashed horizontal line is the maximum building height H,,,

Table 3 Percentage contributions of P§5, P34, P, T+s, TgfiS,TfS, SP;3, D35 and &35 to the total source and sink

for the considered layers. (+) and (-) denote a source and sink of vertical velocity variances, respectively

2H<z<5H 5H<z<12H | 12H<z <30H

s 0% 0% 0%

" 8% (+) 9% (+) 3% ()

m 1% (+) 0% 0%
T4 8% () 8% () 3% (+)
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T, 0% 2% (+) 4% (-)

T, 1% (+) 4% (-) 1% (-)

D33 0% 0% 0%

£33 92% (-) 88% (-) 95% (-)

SP3; 90% (+) 89% (+) 94% (+)
4.2.3 Momentum flux

Before we present the momentum flux budget, it is important to make a remark related to
its interpretation. Unlike the velocity and scalar variances that are non-negative, the
momentum flux can have either sign. As a result, any term in the momentum flux budget
is treated a source term if it has the same sign as the momentum flux itself and a sink term
if it has the opposite sign. To avoid any confusion, we multiply both side of the budget
equation for double averaged Reynolds stress tensor with a negative sign so that a negative
and positive term is a sink and source term, respectively.

Vertical profiles of terms in the budget of momentum flux are shown in Fig. 7 while
the layer-wise percentage contribution of each term to the total layer source or sink are
presented in Table 4. Approximate equilibrium exists between Pj; and the pressure
redistribution term SP;; above z/H = 15, which agrees with Raupach et al. (1986). For
all the considered layers, T{; has a sink contribution of around 4 - 11%, i.e., it is larger than
other transport terms. However, the same term becomes a source below 2H . The
significance of T{; over rough surfaces is not a new finding and has been reported by
Maitani (1979) and Raupach (1981). Here we simply note that the momentum flux budget
over real urban canopies has not been analyzed thus far. The closest comparison is the
momentum flux budget for plant canopies based on measurements from Meyers and
Baldocchi (1991). Our findings agree with Meyers and Baldocchi (1991) and Raupach et
al. (1986) regarding the dominant role of the shear production term P;’; and the pressure-

strain correlation term SP; 5 above the canopy.
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490  Fig. 7 The momentum flux budget terms normalized by H/u2. The grey region corresponds to 2H < z <
491  5H while the dashed horizontal line is the maximum building height H,,,,

492 Table 4 Percentage contributions of P, P4, Pi%, Tfs, T{3,Th, SP;5 and D, 5 to the total source and sink for

493 the considered layers. (+) and (-) denote a source and sink of momentum fluxes, respectively

2H<z<5H 5H<z<12H | 12H<z <30H

S 97% (+) 85% (+) 94% (+)

v 2% (+) 7% (+) 6% (+)

m 1% (+) 0% 0%
Tis 4% (-) 11% (-) 5% (-)
T4, 0% 0% 1% (-)
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T?, 5% (-) 8% (+) 4% (-)

Dys 0% 0% 0%
SPy5 91% (-) 89% (-) 90% (-)
4.2.4 Scalar Flux

The results for the scalar flux budget are shown in Fig. 8 and Table 5. Compared to the
TKE, velocity variance, and momentum flux budgets, the scalar flux budget and the scalar
variance budget to be discussed in the following section still have relatively large residuals
at the lower heights since the SGS components of PS and the surface integral terms are
incorporated into the budget residual. The residuals gradually decrease with height and
become zero around 2H and 4H in the scalar flux budget and the scalar variance budget,
respectively. Hence, the results below 2H and 4H for the scalar flux budget and the scalar
variance budget, respectively, should be interpreted with caution.

For the scalar flux budget, the terms P§r, Psr and PS have their extrema near the
surface, where large gradients of § occur. P§r and PS terms dominate the budget at z/H >
2 while Pgj, is also important at z/H < 2, with the caveat that the residual remains large
for z/H < 2. P& is positive (since (5) is a decreasing function of height) above z/H = 1
and is nearly balanced by the pressure gradient-scalar interaction PS, which acts to destroy
scalar flux. Tz is negative within the range 2H < z < 15, similar to the turbulent transport
term for momentum flux. Above 12H, T¢ may be neglected since its contribution to the
budget is only 5%. All other terms are rather small (less than 5% contribution) (see Table
5).

Similar to the momentum flux budget, the scalar flux budget over real urban canopies
has not been analyzed so far. Hence, a direct comparison of our findings with previous
results is not possible. Profiles of P$, and Tér agree with those in Coppin et al. (1986), in
which scalars were emitted within a plant canopy in a wind-tunnel. Unfortunately, all other
terms were not computed in their study. Our finding regarding the dominance of P§r and
PS also agrees with the simplified analysis of the scalar flux budget in the inertial sublayer

proposed by Garratt (1992).
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Fig. 8 The scalar flux budget terms normalized by H /u?s,. The grey region corresponds to 2H < z < 5H

while the dashed horizontal line is the maximum building height H,,,

Table 5 Percentage contribution of P&y, P¥%, PI:, Tz, T and PS to the total source and sink for the

considered layers. (+) and (-) denote a source and sink of scalar fluxes, respectively

2H<z<5H 5H<z<12H 12H<z<30H
S 100% (+) 96% (+) 98% (+)
SF 1% (-) 4% (+) 2% (+)
m 0% 0% 0%

TLe 15% (-) 21% (-) 5% (-)

TS, 1% (-) 0% 1% (-)
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PS 83% (-) 79% (-) 94% (-)

4.2.5 Scalar Variance

In the budget of scalar variance, P§, decreases with height from its peak near the surface.
Pgy, also gradually decreases from its peak value near the surface and becomes negligible
at z/H = 6 (see Fig. 9). The form-induced production term Pg}; is generally small. Hence,
the production term Pg, is the major source term above z/H = 6, which is balanced by the

scalar dissipation &g, (see Table 6). g5 is estimated similarly as the TKE dissipation ergg

as’ as —0s .
as Tg ox, = TSJa—x] - T, ox, where 7y ; is the SGS scalar flux, computed by the SGS

model. P, and &g, are dominant terms in the scalar variance budget, in agreement with
findings from Coppin et al. (1986). Other terms are minor except the transport terms T¢;,
(below 4H) and T, and Dg, (below 2H). However, we stress again that the residuals

below 4H are significant and thus the results below 4H should be interpreted with caution.
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Fig. 9 The scalar variance budget terms normalized by H /s?u,. The grey region corresponds to 2H < z <

5H while the dashed horizontal line is the maximum building height H,,,

Table 6 Percentage contribution of P$,, PY,, P, T&,, TS, Dsy and &gy to the total source and sink for the

considered layers. (+) and (-) denote a source and sink of scalar variances, respectively

2H<z<5H 5H<z<12H 12H<z<30H

Sy 63% (+) 91% (+) 95% (+)

v, 25% (+) 7% (+) 1% (+)

m 5% (-) 1% (-) 0%
TL, 4% (+) 7% (-) 4% (+)
TS, 8% (+) 2% (+) 1% (-)
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Dgy 0% 0% 0%
gy 95% (-) 92% (-) 99% (-)

4.3 Relative Importance of the Dispersive Terms to the Reynolds Terms

As discussed in the introduction, due to difficulties in their measurement and simulation,
dispersive terms such as wake production and dispersive transport have received less
attention than their Reynolds counterparts. Results in Sect. 4.2 indicate that these dispersive
budget terms may be important, especially within the first layer (2 < z/H < 5).

In this section, we contrast the dispersive and Reynolds budget terms by examining
the ratio of their absolute values for the entire urban canopy considered in our model
domain. These are labelled as “Ref” in Figs. 11 and 12. The ratios have been averaged over
the considered layers. We do not present this ratio for the streamwise and vertical velocity
variances since P35 is zero and this ratio for the streamwise velocity variance is similar to
that of TKE. The symbol (9) ,, in Figs. 11 and 12 indicates that the profile ¥ is averaged
within the given height range.

Figure 11 shows the relative importance of wake production terms. For TKE, the ratio
of wake production term to shear production term decreases from 0.5 at 2 < z/H < 5to
approximately zero at z/H = 15. For scalar variance, the ratio of wake production term to
shear production term also decreases with height, from a value of 0.4 at 2 < z/H < 5 and
approximately zero at z/H > 5. The ratios of wake production term to shear production
term for momentum and scalar fluxes exhibit similar profiles: they increase from 2 <
z/H < 5 to their peak values at 5 < z/H < 12 and then decrease with height. Peak values
for momentum and scalar fluxes are however relatively small (about 0.15).

The ratio of dispersive to turbulent transport terms is presented in Fig. 12 for the
considered budget equations. Even though the magnitude of transport terms is small
relative to the production terms in general (see Sect. 4.2), the dispersive transport terms
can be significant relative to their turbulent counterparts. The relative importance of
dispersive transport of TKE increases from about 0.1 at2 < z/H < 5to over 1 at 12 <
z/H < 15 and then decreases with height. The ratios (|T%|/|T5|) » and ([T |/|T& )

are less than 0.2 throughout the studied height ranges. For the scalar variance, the ratio of

30



565
566
567
568
569
570
571
572
573
574
575
576
577
578
579

dispersive transport term to the turbulent transport decreases monotonically with height
from the peak value of 1.7 at 2 < z/H < 5.

In summary, the dispersive terms are more critical in the TKE and scalar variance
budgets than in the flux budgets. Their ratios to the corresponding Reynolds terms can be
about 0.5 to 1 in the TKE and scalar variance budgets.

The next step is to determine the sensitivity of the relative importance of dispersive
terms to different urban geometric parameters. To do this, we partition our model domain
(see Fig. 1a) into four subdomains in the y-direction. The area for each subdomain is about
2.6 X 0.5 km?. For this part of the analysis, the intrinsic spatial averaging is carried out
over each subdomain and hence the condition {(¢'’) = 0 is satisfied. The building height
distribution, the PDF of building heights and the plan area fraction in each subdomain is
presented in Fig. 10. The ratios of the standard deviations of building height to the mean
building heights (o /H) are greater than 1 for the first and second subdomain (subdomain
3 = 1.31, subdomain 4 = 1.04) but less than 1 for the third and fourth subdomains
(subdomain 1 = 0.72, subdomain 2 = 0.65).
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Figure 11 shows the ratios of wake productions to shear productions for TKE,

momentum flux, scalar flux, and scalar variance in the subdomains. The importance of
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Pryp decreases with height in all subdomains. The ratio is larger than 1 for subdomain 4

for the layer 2 < z/H <5 (see Fig. 11a). For the momentum/scalar fluxes, the ratios

remain less than 0.15 for all subdomains. Still, subdomain 4 has the most significant values

(see Fig. 11b and 1lc). For the scalar variance, the importance of wake production

decreases with height for all subdomains. Only in subdomain 4 is the ratio greater than 0.5

for the layer 2 < z/H < 5 (see Fig. 11d). All in all, these results suggest that the wake

production, especially for TKE and scalar variance, can become significant in the vicinity

of tall buildings, as in subdomain 4. The enhanced importance of wake production in

subdomain 4 suggests that the wake production may depend on H,,,, (or the ratio of H,,

and H).
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Fig. 11 Ratios of wake productions to shear productions, averaged over the considered z/H intervals for (a)
TKE, (b) momentum flux, (c) scalar flux and (d) scalar variance in 4 subdomains in Fig. 11 and the domain

in Fig. 2 denoted as “Ref”

The ratios of dispersive transport to turbulent transport terms show a much wide range
of variabilities and do not exhibit any generalizable behaviors across the 4 subdomains.
For TKE, the ratio has the most significant value of 0.5 in subdomain 4 at the layer 2 <
z/H <5 (see Fig 12a). For momentum flux, the ratio has the largest value of 6 in
subdomain 4 in 12 < z/H < 15. For scalar flux, the maximum value of the ratio is about
8 and again occurs in subdomain 4 at the layer 2 < z/H < 5. However, for scalar variance,
the most considerable value of the ratio occurs in subdomain 2 at the layer 2 < z/H < 5
(see Fig. 12d). There seems to be no single parameter that controls the relative importance

of the dispersive transport, at least over the real urban canopies studied here.
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Fig. 12 Ratios of dispersive transport to turbulent transport terms averaged over the considered z/H intervals

for (a) TKE, (b) momentum flux, (c) scalar flux and (d) scalar variance in 4 subdomains in Fig. 11 and the

domain in Fig. 2 denoted as “Ref”

5 Conclusion

This study analyses budgets of double-averaged second-order turbulence moments over a
real urban canopy using large-eddy simulation. We focus on the budgets above the mean
building height, where residual terms are generally negligible. The TKE budget shows that
shear production is the primary source of TKE, whereas dissipation is the primary sink.

Interestingly, wake production is also an important contribution to the TKE budget.
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The pressure-strain correlation terms play an essential role in the velocity variance
budgets. These terms redistribute energy between velocity components, thereby driving
turbulence to the isotropic state. Over the considered urban canopy, pressure-strain
correlation terms are responsible for the growth of the vertical-velocity variance at the

expense of the streamwise velocity variance, as commonly observed in shear flows.

Along with the shear production term, the pressure-strain correlation term plays a vital
role in the budget of momentum flux, where turbulent and pressure transport terms appear
to be of secondary importance. The budget of scalar flux is dominated by the shear
production and pressure-gradient-scalar interaction terms, while the turbulent transport
appears to be of secondary importance. However, along with the shear production and the
scalar dissipation terms, the wake production, and turbulent and dispersive transport terms

are essential for the budget of scalar variances inthe 2 < z/H < 5 interval.

In addition to the above analysis, we also examined the relative importance of the
dispersive terms to the corresponding Reynolds terms in our model domain and in a range
of subdomains. To achieve this, our model domain is partitioned into four subdomains in
the y-direction. For each case, the ratio of wake production to shear production and the
ratio of dispersive transport to turbulent transport averaged over different z/H intervals,
are examined for TKE, momentum flux, scalar flux and scalar variance budgets. The
importance of wake production of TKE and scalar variances decrease with height, and this
importance appears to depend on the maximum building height (or the ratio of maximum
building height to the mean building height), although more investigations are needed to
confirm this. Wake production is less significant for momentum and scalar flux budget
equations. The dispersive transport terms can be significant relative to their turbulent
counterpart, but we could not identify any trend of how these terms vary as a function of

the morphological parameters over the considered urban canopies.

Results from this work have implications for both single-layer and multi-layer urban
canopy parameterizations, which have been developed to represent the flow and transport
within and above neighborhoods in NWP and global climate models. Both single-layer
(Masson 2000; Kusaka et al. 2001) and multi-layer (Martilli et al. 2002; Schoetter et al
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2020) urban canopy parameterizations often assume horizontal homogeneity for canopies
and neglect dispersive fluxes and dispersive transport. Our work indicates that dispersive
fluxes (and dispersive transport) over real urban canopies can be important even above the
mean building height. For single-layer urban canopy parameterizations coupled to an
atmospheric model, this finding raises the question of whether dispersive fluxes should be
parameterized, in addition to turbulent fluxes, despite that the lowest atmospheric grid is
often above the mean building height. For multi-layer urban canopy parameterizations, our
study supports and complements recent work that emphasizes the importance of dispersive
stress relative to turbulent stress and the role of wake production in the TKE budget over
idealized urban canopies (Nazarian et al. 2020). Our results further highlight that multi-
layer urban canopy parameterization should properly consider the dissimilarity between
momentum and scalar transport over real urban canopies. Findings from this work are
limited to neutrally stratified ambient conditions; further investigations are needed to
examine the impact of thermal stratification (stable or unstable) on the considered flow

statistics.
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Appendix 1: Derivation of the Double-Averaged Second-Order Moment
Budget Equations

In this appendix, we show how the budgets of double-averaged second-order moments are
obtained. For simplicity, we only derive the budget equation for the double-averaged
Reynold stress tensor (Eq. 5) and scalar flux (Eq. 8). Budget equations for other second-
order moments can be obtained in a similar fashion. Note that all budget equations are

derived for neutral conditions with the Boussinesq approximation.

The LES resolved Reynold stress tensor u,u;, budget equation is given as:

owu, _ oujuy ___0ir, o,  Ouujuy
u, = —UW U~ — WY -

ot 0x; 0x; 0x; 0x;

1{u,0p' uldp’ uj, 07,;9°  uy E)T]’EGS (10)
—= + - + ,

p\ Ox, 0x; 0x; 0x;

ou; . . .

where T{]SGS = -V a—Z‘ is the SGS stress tensor and v, represents the SGS eddy viscosity.
J

The first term on the left-hand side of Eq. 10 represents the local change of u/uj, while the
second is the advection of ujuj. On the right-hand side, the first two terms are the
production terms resulting from the interaction of the mean flow and turbulence while the
third term can be interpreted as the transport of u/u), by turbulent fluctuations (i.e., the
turbulent transport term). The fourth term represents the interaction of the fluctuating
pressure and velocity fields while the last term is the SGS term. After some algebraic

manipulation on the last term, we have

ouju,, e ouju,, 01, 0w, OJwwuy, 1 (6p’u;€ N ap’u{>
u = —U U — U U, - - =
ot 7 0x; Tox, T ox; 0x; p\ 0x; 0xy,
1( 0w 0w 0 (——scs 0 (— s sas Uk (1)
+ ;(P dx, +p axk> _a_xj(uﬂ']k )_a_xj(ukTu )+TLJ a_x]

du;

isgs Tt

+ 7 3%

]

Now the pressure term is split into the pressure transport term (the fourth term on the right-
hand side) and the pressure-strain correlation term (the fifth term on the right-hand side).

The SGS term also includes four terms: the SGS diffusion terms (the sixth and seventh
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term on the right-hand side) and the SGS dissipation terms (the eighth and nineth term on
the right-hand side). To facilitate derivations, we write the advection term on the left-hand

side of the above equation in its flux form by invoking the Boussinesq approximation:

ou uy, N 0w wuy, o, _w au{u]’u;{ _1/op'u N op'u;
ot 0x; ) 0x; ) 0x; 0x; p\ 0x; 0x,,
1( Ow 0w 4 /SGS 0 (—scs sas Itk (12)
* p (p ax, T axk> B W(u tik ) 0x; (ukT” ) Ty ax,
du;
isgs T
+7 ax

]

Applying the intrinsic spatial averaging to the above equation and following the rules in

Egs. 2 and 4, we have

Iujug) | 1 dap(if )
dat ap 0x;
( l> w u_k ! am” ! au_k”
= (( uj, ]) +( uu;) 5%, — | (wey axj>+ (wu axj)
—— aﬁl” ST 1 dap(ujujuy
B ((uku]) 0x; YN 0x; >>_a_p 0x;
da,(p'u da,(p'u, 1 ou, du!
p(P k> p(P'UW) 4= <p,_k>+ ('p’—l)
pa 0x; 0x; p 0x, 0x;
B iaa (u! T'SGS B 1 0« (ukT’SGS)+ T,SGS%> (13)
a, 0x; ap 0x; Jox,
ou,
+ (s T,

]

Note that the surface integral does not show up in the above equation due to the no-slip
boundary conditions. We can further expand the advection term as
1 0a (u u uk>

axj P

= (@)~

da, (i, Wujuy,) N 1 Oa, (wy ")

il
axj

1
a, T« axj a

p b

1 da,(ujuj, uk) 1 0a, (u{u}c”ﬁ" (14)

]
ax,.

@y j “p
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699  Substituting into Eq. 13 gives

a(u;u,;>+ (EJ) 1 aap(u uk>+iaa7’ (Wuy @)
dat a 0x; ay, 0x;
( l) oYy _k> 7" aITL” ! au_k”
= ((uk ]) +( U, ]) ] - (uku] axj u’lu] axj )
—— 0w, — 0w 1 dap(ujujuy)
- (“‘k“f” o D ) = as)
da,(p'uj, ) da,(p'ul) 1 ou, du!
14 k p 3 + _ (p, k) + (p, l)
pa 0x; 0x; p dx, 0x,
~1-1SGS / 7 7
10 (Wt _10a (ukTUSGS sas Uk sGs O
+ (1, ) + (7 ).
a, 0x; ap 0x; 0x, 0x,

700  When we apply Eq. 15 to diagnosing our LES outputs, further simplifications can be made.

701  First, we assume horizontal homogeneity at scales beyond the spatial averaging scale,

702 consistent with the doubly periodic boundary conditions used in our LES. Therefore, (?3( ) =

703 %) = (. Second, we analyze the budgets at stationary conditions and hence % = 0. Third,

704 due to the use of doubly periodic boundary condition and continuity, the mean vertical
705  velocity is zero (i.e., no large-scale subsidence, (w) = 0). Furthermore, because of the

706  assumption of horizontal homogeneity at scales beyond the spatial averaging scale, a,

) d day . .
707  becomes also only a function of z and thus only % = % is non-zero. With these

708  assumptions, we have

1!
1 day <u{u;( w”>

0=——
a, dz

(I—/> d(m>+( 7 /)d u_k> (I—/” am”>+ ( 7! au_k”)
u,w dz u,w dz uku] £ ulu] £

] ]

—— 0" — 0w 1 (day(uw'uy)
- (<uku,>< )+ G >) —a—p(T

da,(p'uj, ) da,(p'ul) 1 ou, ou!
p k p 3 + _ (p, k>+ (p, l)
pa 0x; 0x; p dx, 0xy

(16)
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1 1SGS 1 _1SGS 7 7
_ Ltdap(ury”) 1 dap{uts +hmm@ﬁ>+ wmiﬂ%

9] Jk
a, dz a, dz ax] ax]

709  To facilitate our analysis, we group and name the terms as follows

e (W) ey )
0=—— —( (uw?’) +ww) —-

a, dz dz d
T Pjy
" 5+ @ ) - (e G+ ) (G
Uy 7% uu 7%, upw uu 7%,

1 | day, (ujw'uy) N 1<6ap(p’u;€) N aap(p’_u{)>

" p 0x, 0x;,

(17)

D
Tig

1/, 0w, 0u] 1 day(u T’SGS) 1d ap(ukrl’g“
* _<<p oz, T P 6xk>> T, dz @, dz
SPik Dir
n (T'SGS ) 71568 ou; )
ax]
Eik

710  where Pjj, is the shear production term, P}y is the wake (dispersive) production term, P}}} is
711  the work of the temporally averaged velocity fluctuations against the shear production
712 (given that a,, varies with height, P} # 0, see Eq. 5), T} is the turbulent transport term,
713 T4 is dispersive transport term, T} is the pressure transport term, SP; is the pressure-
714 strain correlation, D, is the SGS transport term and ¢, is the dissipation term. From the
715  budget equation for the Reynold stress tensor above, we can obtain the momentum flux
716  (w'u') and velocity variances budget equations.

717 Similar steps can be followed to obtain the scalar flux budget equation as follows. The

718  LES resolved u/s’ budget equation is given as:

ows'  _ows' 05 Oujys’

o Yoy, T SYax

(18)
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1 ,0p" 0t 9t
S

L )
p 6x 0x, ax]
719  where T'S]GS = —kg g% is the SGS scalar flux and kg represents the scalar diffusivity. All
J

720  terms in Eq. 18 have similar definitions to those in Eq. 10. On the left-hand side of Eq. 18,
721  we have the local change and advection terms. On the right-hand side, there are two
722 production terms, a transport term, a pressure gradient-scalar interaction term and two SGS
723 terms. After some algebraic manipulation of the last two terms and writing the advection

724  term in its flux form, we have

du's’ oJuw, u's' as  odulu's'
L + ] L _ T [ Rad

=t gy — —
at | ox Woy T ax T ax
1,9 0 o=y 9 (——saw) , isas 05 (19)
p ox, %(sru ) d (uTSJ )+T” 0x
) J f)
oy,
1SGS "t
+7 3%

]

725  Applying the intrinsic spatial averaging to the above equation and following the rules in
726  Egs. 2 and 4, we have
o(uls’ 1 da, (i, uls 1
(ws) 1 0ay(us’) | f

ot a ax]-

_ —((s 28 | al a“”<§>+<m>%f§nj dA)

TR !
W u;s' n; dA

0x; » 0x;
7[5 dA_:p%_Hw—ggan y 20)
+ (TP o )+ (1568 gl;’ ).

J ]

727  We can further expand the advection term as
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iaap(ﬁ] uls') :iaap(ﬁ])(w)_l_iaap(wllﬁj”)
ap axj ay 6x]- ay, axj
. 1 da,(us’ 1 aap<w”ﬁ,">_ 1)
] a, 0x; ap 0x;
728  Substituting into Eq. 20 gives
o(u’s’ 1 da,(u's 1 da, (/s "y 1
W) 1 ) Depis’) | 1 9ey(ud J>+_fﬁ}u{s’njdA
Jat ay ax] ap 6xj %
o4 10ay(5) . 1(_
((s apa—xj+ <u‘uf>stnj dA
— | (s'u uul s'u’ u
J ax] v ax] x] (22)
1 da,(ulu's’ 1 1 ap’ 160: STSGS
a, 0x; %4 p  0x, ap 0x;
1 f 1 a a (u T’SGS 1 368
—st TUSGS n; dA — apa—xj —vfu{rs's]GS n; dA

!

du,
+ (TISGS >+ ( ISGS )
dx,

729  When we make further simplification to Eq. 22 by assuming horizontal homogeneity at

730

731  subsidence, we have

scales beyond the spatial averaging scale, stationary conditions and no large-scale

_ =
W, ws n; dA

1 da,(ujs” w") 1f

- _a_p dz vV
A . day,(5) — 1 (.
_((sw)7+(ulw >(Z_p dz +(uluj)vfsnj dA

(ﬁ,, aml’) + ( : ,,, agl’) ( ) —II a§ll>

s'y o) u Y 5% s'y 5%
1 (day(uw’s’)\ 1 1 adp 1 d ay(s’ s'7/56S
_a_p(—dz —Vfu ws'n; dA— E(s Bxl> ap—dz

lda (ulT’SGS 1 ——es (23)
—_fSTngGSn dA—a—pT_VfulfsiGsnj dA
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ox, |

as’
+ (T,sas )+ (Trscs

732 Focusing on the vertical scalar flux (namely, i =3) and noticing that [ (ﬁjw +

733w u s"+w T’SGS)n dA = 0 because u] =1u; =0 at the fluid-solid interface, the

734  above equation becomes

1 dap(w’s’”_”>
0=——
a, dz
Té:
1 (_>dap(s) @ 1 av_v”>+( 1 6§”>
a, dz J 0x; W 0x;
P§p P
ow'"’ as” 1 dap(w’w’s’) 1 dp’
(Su)(—)+(wu)(—) - ——(s'—=)
ap dz p 0z (24)
PSF TS’:F PS
_1d a,(s’ T’SGS)_ 1 day (Wt s ,SGS s0s W' ow’
—_— —+ (135 )+ (T )
ap dz ap dz x]
1 Dsfr
—V<fs 5% dA+(W’u]’)f§nj dA),
Ysk

735  where the definitions for P, P¥%., PI, Té: and T are similar to those in Eq. 17. PS is the
736  pressure gradient-scalar interaction and Dgp include the SGS terms; Ygp is the surface
737  integral term that arises from the averaging theorem.

738 The scalar variance budget equation can be obtained using similar steps. The LES

739 resolved s'2 budget equation is given as:

s i ds? T ds'?u; oTSCs
ot T ox; 7 0x; 0x;

ox, (25)
740  All terms in Eq. 25 have similar definitions to those in Eq. 10. The left-hand side of Eq. 25
741  has the local change and advection terms while the right-hand side has the production term,
742 transport term and SGS term. After some algebraic manipulation of the last term and
743 writing the advection term in its flux form, we have

ds’?  ow, s? 5  0s?ul I

pr + ™ = 25y — — ] ——(S _L_ISGS) + T/SGS_

; 1 0x; 0x; S 0x, ' (26)
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744 Applying the intrinsic spatial averaging to the above equation and following the rules in

745  Egs. 2 and 4, we have

(s?) 1 da (u s’2> R —
+ —+Vfu s'2n;dA

]
ot a, ax]-

_ oy 1 aa,,(§)+< i ,>1 < dA ) (ﬁ”ag">
= s"uy) 3% sSu)y | Sy s'u 5%

as" 1 da,(s"?u)) 1f 1da (s’ T’SGS
S —_—
“p j
' (27)

Q— T s
—st 55 0 dA + (S Scsax, )

746  We can further expand the advection term as
1 oa (u s’2> :iaap(ﬁ)(sﬁ)_l_iaap (s"? ")
ap 0x; a, 0x; a, 0x;

; w2 = 28
1 aap(s 2) 1 aap (s"? w ). (28)

<EJ> ap, 6x ap axj

747  Substituting into Eq. 27 gives

(s"?) 102y (s) | 1 0y 7wy 1(_—
T s g J 7 _ T l2 i
Jt + <u]>ap 0x; ap dx; + Vfuj s’ n; dA

o

:—2((”) I;(S> +(s'uj) = fsn dA) 2 (s'uj Zx

J j

)

as" 1 da,(s'?u)) 1f 1lda (s’ T’SGS
S —_—

=2 <Su1><6x> Ca, Ox 7 0x;

j p j o, ] (29)

1[— “1ees 05
—st Wy dA + (@)

748  When we make further simplification to Eq. 29 by assuming horizontal homogeneity at

749  scales beyond the spatial averaging scale, stationary conditions and no large-scale

750  subsidence, we have
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5 (T>1dap(§)+(,,>1 o dA
w's o dz sSudy | Sy

-2 (s’u’ )—2 (s'u! u )( ”) 1 (M>—$fs’2u] n; dA

a, dz

1day(stSS) 1 [—— s’
__(—__fsr ISGSn dA + (ISGS )
0x; (30)
Noticing that [ (i, s'2 + s"?u)nj dA =0 because u; =u; =0 at the fluid-solid

interface, the above equation becomes

(”)

S
T&, Py Pgy

95"  1da,(w's? 1 da,, (s'7'S6S os’
—2 (U5 ) —— pWoT) 1 dey ) S =—)
6xj p - dz o 0x

Py T, Dsy Esv

—l< S'TS nydA+ 2 (s"u)) | Sy dA)
2] 5T j) | Sy dA), 31)
Ysy

dz a

where the definitions for P$,, P%,, PR, T&,, T4, and Dy, are similar to those in Eq. 17; &5y
is the scalar dissipation term; Yy, is the surface integral term that arises from the averaging

theorem.
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