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Abstract  6 

This study analyses budgets of second-order turbulence moments over a real urban canopy 7 

using large-eddy simulation (LES). The urban canopy is representative of the City of 8 

Boston, MA, United States and is characterized by a significant height variability relative 9 

to the mean building height. The budgets of double-averaged Reynolds-stress components, 10 

scalar fluxes, and scalar variances are examined with a focus on the importance of the 11 

dispersive terms above the mean building height. Results reveal the importance of the wake 12 

(dispersive) production term, in addition to the shear production term, in the turbulent 13 

kinetic energy, streamwise velocity variance and scalar variance budgets well above the 14 

mean building height. In this region, the turbulent and dispersive transport terms are 15 

smaller than the production and dissipation terms. Nonetheless, the dispersive transport 16 

terms in the TKE and scalar variance budgets can be as important as their turbulent 17 

counterparts. The subgrid-scale dissipation term is the main sink in the TKE, vertical 18 

velocity variance and scalar variance budgets. In the momentum and scalar flux budgets, 19 

the pressure-strain correlation term and the pressure gradient-scalar interaction term are the 20 

significant sink terms, respectively. Our analysis highlights the complexity associated with 21 

the budgets of second-order turbulence moments over real urban canopies and has 22 

important implications for developing urban parameterizations for weather and climate 23 

models. 24 
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1 Introduction 27 

Accurate modeling of turbulent flows and associated transport processes within and above 28 

urban environments is crucial for many applications, including the prediction of pollutant 29 

dispersion (Walton et al. 2002; Britter and Hanna 2003; Gromke et al. 2008; Glazunov et 30 

al. 2016; Auvinen et al. 2017), the quantification of pedestrian thermal comfort 31 

(Krayenhoff et al. 2020; Nazarian and Lee 2021), and the estimation of building energy 32 

consumption (Zhao and Magoulès 2012; Javanroodi et al. 2022). During the past decades, 33 

substantial efforts have been devoted to characterizing turbulence and turbulent transport 34 

inside the so-called urban roughness sublayer (RSL) (Rotach 1999; Masson 2006; 35 

Fernando et al. 2010). The established paradigm is that the urban RSL spans from the street 36 

level to roughly two to five times the mean building height (Oke et al. 2017); in this layer, 37 

turbulence and its associated transport are strongly influenced by the individual urban 38 

roughness elements (e.g., buildings, trees) and is thus both vertically and horizontally 39 

inhomogeneous (Rotach 1993; Oikawa and Meng 1995; Kastner-Klein et al. 2001; Britter 40 

and Hanna 2003).  41 

The grid resolution in numerical weather prediction (NWP) models is too coarse to 42 

explicitly resolve individual roughness elements (Skamarock et al. 2008). To account for 43 

the impact of the roughness elements on the resolved-scale exchange processes between 44 

the urban canopies and the atmosphere, it is hence common to homogenize the governing 45 

equations at the horizontal grid resolution of NWP models (Chen et al. 2011).  The 46 

horizontal grid resolution of NWP models is typically a few kilometers (the neighborhood 47 

scale), over which some degree of statistical homogeneity in the canopy morphology and 48 

resulting flow statistics might be expected (Britter and Hanna 2003). Given that the urban 49 

canopy domain is not simply connected (or it is multiply connected), the coarse-graining 50 

operation has to be based on the volume-averaging theorem (Whitaker, 1967), whose 51 

theoretical and implementation details for flow over rough surfaces are discussed in  Nikora 52 

et al. (2007), Mignot et al. (2009), Xie and Fuka (2018) and Schmid et al. (2019). When 53 

time- and spatial-averaging (hereafter double-averaging) operations are performed in a 54 
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multiply-connected domain, additional terms arise in the averaged equations besides the 55 

turbulent fluxes, namely the dispersive fluxes (Mahrt 1987). The turbulent fluxes are 56 

caused by temporal deviations from the temporally-averaged flow, while the dispersive 57 

fluxes arise from the spatial correlations of temporally-averaged flow quantities over the 58 

spatial averaging scale. The dispersive fluxes and related dispersive terms in the budget 59 

equations for turbulence moments remain poorly understood and their contributions to the 60 

flow dynamics are often overlooked.  61 

Previous studies of turbulence moment budgets in flow over urban canopies have 62 

primarily focused on the turbulence kinetic energy (TKE) budget (Louka et al. 2000; Bou-63 

Zeid et al. 2009; Christen et al. 2009; Giometto et al. 2016; Blackman et al. 2017; Tian et 64 

al. 2021; Blunn et al. 2022). Much less is known about the budgets of momentum and 65 

scalar fluxes, as well as scalar variances over urban canopies. This is in sharp contrast to 66 

the attention these budgets received in studies over vegetative canopies (Meyers and 67 

Baldocchi 1991; Dwyer et al. 1997; Katul et al. 2009, 2013; Viana Parente Lopes et al. 68 

2021; Watanabe et al. 2021). Moreover, motivated by the need to understand the physical 69 

system in its simplest form, the majority of previous studies have considered idealized 70 

urban canopy configurations such as arrays of aligned or staggered cuboids (Castro et al. 71 

2006; Yakhot et al. 2006; Blackman et al. 2017; Tian et al. 2021); these canopies are 72 

characterized by a few length scales and hence lend themselves to analytical treatment. As 73 

shown in recent work, the dynamics of turbulent transport in idealized conditions might 74 

profoundly differ from their real-world counterparts (Giometto et al. 2016; Inagaki et al. 75 

2017; Auvinen et al. 2020; Akinlabi et al. 2022). To bridge this knowledge gap, we conduct 76 

a budget study over a real urban canopy. Specifically, we focus on quantifying the double-77 

averaged budgets for second-order turbulence moments. We propose to use large-eddy 78 

simulations (LESs) because field studies of turbulence budgets have been restricted to one 79 

or few locations (Rotach 1993; Christen et al. 2009; Santiago and Martilli 2010). The LES 80 

technique has been applied to study the budgets of second-order turbulence moments over 81 

vegetation (Dwyer et al. 1997; Yue et al. 2008; Viana Parente Lopes et al. 2021) and urban 82 

canopies (Bou-Zeid et al. 2009; Giometto et al. 2016; Tian et al. 2021). However, compared 83 

to previous work, our contribution is novel because we examine for the first time the 84 
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momentum and scalar fluxes, as well as scalar variance budgets over a real urban 85 

environment. 86 

In what follows, a standard notation is used where 𝑥𝒊 = (𝑥, 𝑦, 𝑧) are the Cartesian 87 

coordinates (i.e., 𝑥, 𝑦, 𝑧  represent the streamwise, spanwise and vertical directions, 88 

respectively), and 𝑢, 𝑣, 𝑤 are the streamwise, spanwise and vertical velocity components 89 

(resolved by LES), respectively; and 𝑠 represent a passive scalar (e.g., the concentration of 90 

pollutants etc). The Einstein summation convention for repeated indices is used. The 91 

overbar (∙)---  and angular brackets 〈∙〉  denote time and spatial (volume) averaging, 92 

respectively. Double-averaging (DA) refers to taking the average in time first and then in 93 

space. The prime and double prime denote temporal and spatial deviations, respectively. 94 

Namely, 𝑋" = 𝑋 −	𝑋- is the temporal fluctuation of 𝑋 (i.e., deviations from the temporally-95 

averaged 𝑋-) and 𝑋-"" =	𝑋- −	〈𝑋-〉 is the spatial deviation of 𝑋- from its spatial average 〈𝑋-〉. 96 

This paper is organized as follows: Sect. 2 provides the theoretical framework and 97 

presents the double-averaged budgets of second-order moments in a multiply-connected 98 

domain; the large-eddy simulation model and the simulated case are presented in Sect. 3; 99 

Sect. 4 presents the analysis of second-order moment budgets and conclusions are drawn 100 

in Sect. 5. 101 

2 Theoretical Framework 102 

2.1 Volume Averaging 103 

The volume averaging operation is carried out in time and over horizontal slab of thickness 104 

∆𝑧. Two types of volume averaging need to be distinguished. The first is intrinsic averaging 105 

(Nikora et al. 2007), where the averaging volume includes the ambient air only. The second 106 

is extrinsic (or superficial) averaging (Schmid et al. 2019), where averaging is performed 107 

over the entire horizontal slab (i.e., including the volume occupied by solid elements such 108 

as buildings and trees). Intrinsic averaging is widely used in the literature to characterize 109 

flow fields over vegetation canopies (Wilson and Shaw 1977; Raupach and Shaw 1982), 110 

gravel beds (Nikora et al. 2007), rigid canopies (Raupach et al. 1991; Coceal et al. 2006; 111 

Xie et al. 2008) and real urban canopies  (Giometto et al. 2016; Akinlabi et al. 2022). The 112 

intrinsic averaging operation is the natural approach for this study for two reasons. The 113 
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first is that the resulting statistics are more representative of typical values inside the fluid. 114 

The second is that intrinsically-averaged dispersive fluxes are zero for a constant velocity 115 

field (due to the zero spatial deviation of the constant velocity field from its mean) but the 116 

superficially-averaging dispersive fluxes are not necessarily zero.  117 

For a volume (𝑉) centered at location 𝑥# that composes of fluids (with volume 𝑉!) and solid 118 

elements (with volume 𝑉"), we define the intrinsic average of a temporally averaged variable 119 

𝐹- as: 120 

 〈𝐹-〉(𝑥#) =
1

𝑉$(𝑥#)
7 𝐹-(𝛽)	d𝑥	d𝑦	d𝑧

	&∈	(#(*$)

. (1) 

2.2 Double-averaged Budgets of Second-Order Turbulence Moments 121 

Double-averaged budgets are obtained by first averaging the flow field in time and then in 122 

space using the intrinsic volume-averaging operations on temporally averaged fields. The 123 

time-averaged budget equations have been extensively studied and can be found in 124 

classical textbooks (Stull 1988; Garratt 1992). Therefore, in the following, we only briefly 125 

discuss the volume-averaging rules for flow in urban canopies (Schmid et al. 2019). We 126 

define a time- and intrinsically-averaged quantity 〈𝜑-〉 , where the intrinsic and time-127 

averaging operations commute. In the following, the quantity 〈𝜑-〉 is termed the double-128 

averaged 𝜑 . However, based on the volume averaging theorem (Whitaker 1967), the 129 

intrinsically-averaged spatial gradient of 𝜑- is not equal to the spatial gradient of 〈𝜑-〉, but 130 

rather 131 

 
〈
𝜕𝜑-
𝜕𝑥#

〉 =
1
𝛼,
	
𝜕𝛼,〈𝜑-〉
𝜕𝑥#

+
1
𝑉7 𝜑-(𝛽)	𝑛# 	

&	∈	-#%(𝒙)
𝑑𝐴 

																					=
𝜕〈𝜑-〉
𝜕𝑥#

+	
〈𝜑-〉
𝛼,

	
𝜕𝛼,
𝜕𝑥#

	+
1
𝑉7 𝜑-(𝛽)	𝑛#

&	∈	-#%(𝒙)
𝑑𝐴 

(2) 

where 𝛼, 	= 	1	 −	𝜆,  and 𝜆,  is the plan area fraction defined as the fraction of space 132 

occupied by the solid elements in a given averaging volume. The function 𝛼, is needed to 133 

account for the change of the fluid volume 𝑉$ with height, which is important for real urban 134 

canopies (Giometto et al. 2016). For generality, 𝛼, is written as a function of 𝑥# in Eq. 2 135 

(and Eq. 5 below) following Schmid et al. (2019). The surface integral represents the effect 136 



	 6	

of the solid-fluid interface and is zero when 𝜑 is any of the velocity components due to the 137 

no-slip boundary conditions. 𝐴$/(𝒙) is the solid-fluid interface contained in the averaging 138 

volume 𝑉(𝒙) while 𝑛# is the unit normal vector of 𝐴$/ pointing from the fluid phase into 139 

the solid phrase. For more details about the surface integral in Eq. 2, readers are referred 140 

to Mignot et al. (2009) and  Schmid et al. (2019). 141 

With these rules, the budget equations for double-averaged second-order moments can 142 

be obtained using the following procedure. First, we average each term in time and space. 143 

Second, we switch the order of spatial averaging and differentiation following Eq. 2. Third, 144 

we expand the spatial averaging of the product of 𝜑-# and 𝜑-0 following 145 

 〈𝜑1D 		𝜑2---〉 = 	 〈𝜑1D 〉〈𝜑2---〉 +	 〈𝜑1D ""〉〈𝜑2---〉 +	 〈𝜑1D 〉〈𝜑2---""〉 +	〈𝜑1D ""𝜑2---""〉	 

= 〈𝜑1D 〉〈𝜑2---〉 +		 〈𝜑1D ""𝜑2---""〉.																																		 

(3) 

Note that 〈𝜑- ""〉 = 0 due to the averaging rules. The spatial averaging of the product of 𝜑1D 	 146 

and the gradient of 𝜑2---	reads 147 

 
〈𝜑1D

𝜕𝜑2---
𝜕𝑥#

〉 = 	 〈𝜑1D 〉 〈
𝜕𝜑2---
𝜕𝑥#

〉 +	〈𝜑1D ""〉 〈
𝜕𝜑2---
𝜕𝑥#

〉 +	 〈𝜑1D 〉 〈
𝜕𝜑2---""

𝜕𝑥#
〉 +	 〈𝜑1D "" 	

𝜕𝜑2---""

𝜕𝑥#
〉 

																		= 〈𝜑1D 〉 〈
𝜕𝜑2---
𝜕𝑥#

〉 +	〈𝜑1D 〉 〈
𝜕𝜑2---""

𝜕𝑥#
〉 +	 〈𝜑1D "" 	

𝜕𝜑2---""

𝜕𝑥#
〉.	 

 

 

(4) 

In this case, 〈34&
5555''

3*𝒊
〉 does not disappear, as can be seen from Eq. 2, namely  148 

 
〈
𝜕𝜑- ""

𝜕𝑥#
〉 = 〈

𝜕𝜑-
𝜕𝑥#

〉 − 〈
𝜕〈𝜑-〉
𝜕𝑥#

〉 = 〈
𝜕𝜑-
𝜕𝑥#

〉 −	
𝜕〈𝜑-〉
𝜕𝑥#

=
〈𝜑-〉
𝛼,

𝜕𝛼,
𝜕𝑥#

+
1
𝑉7 𝜑-(𝛽)	𝑛#

&	∈	-#%(𝒙)
𝑑𝐴. 

(5) 

When applying the double averaging procedure to analyzing LES outputs, we make further 149 

simplification by assuming horizontal homogeneity at scales beyond the spatial averaging 150 

scale (i.e., 3〈47 〉
3*

	= 	 3〈47 〉
39

	= 	0), stationarity (i.e., 3〈47〉
3:

= 0), and no large-scale subsidence, 151 

(i.e., 〈𝑤D〉 = 0). Furthermore, because of the assumption of horizontal homogeneity at 152 

scales larger than the spatial averaging scale, 𝛼, becomes also only a function of 𝑧 and 153 

thus only 3;)
3<

= =;)
=<
 is non-zero. In Appendix 1, we follow the above-mentioned procedure 154 

to derive the budget equations for double-averaged second-order moments. 155 

2.2.1 Reynolds Stress 156 

The budget equation for double-averaged Reynolds stress tensor reads 157 
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0 = −

1
𝛼,

𝑑𝛼, F𝑢1"𝑢>"------""𝑤D ""G

𝑑𝑧HIIIIIJIIIIIK
?$*
+

	− L〈𝑢>"𝑤"-------〉
𝑑〈𝑢1D〉
𝑑𝑧 + 〈𝑢1"𝑤"------〉

𝑑〈𝑢>---〉
𝑑𝑧 M

HIIIIIIIIIJIIIIIIIIIK
@$*
%

 

−L〈𝑢>" 𝑢2"------"" 𝜕𝑢1D
""

𝜕𝑥0
〉 +	〈𝑢1"𝑢2"------"" 𝜕𝑢>---

""

𝜕𝑥0
〉M

HIIIIIIIIIIJIIIIIIIIIIK
@$*
,

−	L〈𝑢>" 𝑢2"------〉 〈
𝜕𝑢1D ""

𝜕𝑥0
〉 +	〈𝑢1"𝑢2"------〉 〈

𝜕𝑢>---""

𝜕𝑥0
〉M

HIIIIIIIIIIJIIIIIIIIIIK
@$*
-

	

−
1
𝛼,
⎝

⎜
⎛𝑑	〈𝑢1"𝑤"𝑢>"---------〉

𝑑𝑧HIIJIIK
?$*
.

+
1
𝜌L

𝜕𝛼,〈𝑝"𝑢>"------〉
𝜕𝑥#

+	
𝜕𝛼,〈𝑝"𝑢1"------〉
𝜕𝑥>

M
HIIIIIIIIJIIIIIIIIK

?$*
)

⎠

⎟
⎞
 

	+	
1
𝜌 L
〈𝑝"

𝜕𝑢>"

𝜕𝑥1

--------
〉 +	〈𝑝"

𝜕𝑢1"

𝜕𝑥>
〉

----------
M

HIIIIIIIIJIIIIIIIIK
A@$*

−	
1
𝛼,
𝑑	𝛼,〈𝑢1"𝜏>B"ACA---------〉

𝑑𝑧 −	
1
𝛼,
𝑑	𝛼,〈𝑢>" 𝜏1B"ACA----------〉

𝑑𝑧HIIIIIIIIIIIIJIIIIIIIIIIIIK
D$*

 

+ 〈𝜏12"ACA
𝜕𝑢>"

𝜕𝑥2
	

-------------
〉 + 〈𝜏2>"ACA

𝜕𝑢1"

𝜕𝑥2
	

------------
〉

HIIIIIIIIJIIIIIIIIK
E$*

, 

 

 

 

 

 

 

 

 

(6) 

where 𝑃#>/  is the shear production term, 𝑃#>F is the wake (dispersive) production term,	𝑃#>G is 158 

the rate of work of the temporally averaged velocity fluctuations against the shear 159 

production (given that 𝛼, varies with height, 𝑃#>G 	≠ 0), which is called the form induced 160 

production term hereafter, 𝑇#>:  is the turbulent transport term, 𝑇#>=  is dispersive transport 161 

term, 𝑇#>
,  is the pressure transport term, 𝑆𝑃#> is the pressure-strain correlation or pressure 162 

redistribution term, 𝐷#> is the SGS transport term and 𝜀#> is the SGS dissipation term. The 163 

SGS third-order velocity correlations and SGS pressure-strain correlation are negligible 164 

above the mean building height; they will be incorporated into the budget residual term. In 165 

general, Eq. 6 shows that each component of the Reynold stress is produced by shear 166 

production (𝑃#>/ ), wake production (𝑃#>F) and form induced production (𝑃#>G), transported by 167 

turbulent transport (𝑇#>: ), dispersive transport (𝑇#>= ), pressure transport (𝑇#>
, ) and SGS 168 

transport (𝐷#>), and dissipated by 𝜀#> . It is assumed that 𝜀#>  takes place at small scales 169 

where the local isotropy of the Kolmogorov hypothesis prevails.  As a result, the Reynold 170 

stress dissipation is modeled as an isotropic tensor and its deviatoric part is incorporated 171 

into the pressure-strain correlation term (making this term a sink for this case). The 172 
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isotropic part of 𝜀#>  is computed using the SGS model. This procedure is standard in 173 

second-order turbulence closure modelling (Heinze et al. 2015).  174 

2.2.2 TKE 175 

The budget equation for TKE is simply the trace of Eq. 6 multiplied by ½. It reads 176 

 
0 = 	−

1
2𝛼,

L
𝑑𝛼,_	𝑢1"𝑢1"------""𝑤D ""`

𝑑𝑧 M
HIIIIIIIJIIIIIIIK

?/01
+

	 − L〈𝑢1"𝑤"------〉
𝑑〈𝑢1D 〉
𝑑𝑧 M

HIIIIJIIIIK
@/01
%

−L〈𝑢1"𝑢2"------"" 𝜕𝑢1D
""

𝜕𝑥0
〉M

HIIIIJIIIIK
@/01
,

 

−	 L〈𝑢1"𝑢2"------〉 〈
𝜕𝑢1D ""

𝜕𝑥0
〉M

HIIIIIJIIIIIK
@/01
-

−
1
𝛼,
⎝

⎜
⎛1
2
𝑑〈𝛼,𝑢1"𝑢1"𝑤"---------〉

𝑑𝑧HIIIJIIIK
?/01
.

+
1
𝜌 L

𝑑〈𝛼,𝑝"𝑤"------〉
𝑑𝑧 M

HIIIIJIIIIK
?/01
)

⎠

⎟
⎞
−	

1
𝛼,
𝑑𝛼,〈𝑢1"𝜏1B"ACA---------〉

𝑑𝑧HIIIIIJIIIIIK
D/01

 

+ 〈𝜏12"ACA
𝜕𝑢1"

𝜕𝑥2
	

-------------
〉

HIIIJIIIK
E/01

, 

 

 

 

 

 

 

 

 

(7) 

where the definition for 𝑃?HI/ , 𝑃?HIF , 𝑃?HIG , 𝑇?HI: , 𝑇?HI= ,𝑇?HI
,  and 𝐷?HI  are similar to the 177 

definitions given in Eq. 6 and 𝜀?HI is the TKE dissipation. The pressure-strain correlation 178 

is not in the TKE budget because it only acts to redistribute energy between the 179 

components. In general, Eq. 7 shows that TKE is produced by shear production 𝑃?HI/ , wake 180 

production 𝑃?HIF   and 𝑃?HIG , redistributed by turbulent transport 𝑇?HI: , dispersive transport 181 

𝑇?HI= , pressure transport 𝑇?HI
,  and SGS transport 𝐷?HI and finally dissipated by the work 182 

of SGS stresses onto the resolved field 𝜀?HI (Christen et al. 2009; Giometto et al. 2016). 183 

2.2.3 Vertical Scalar Flux 184 

The budget equation for the vertical scalar flux reads 185 

 
0 = −

1
𝛼,
𝑑𝛼,_𝑤"𝑠"------""𝑤D ""`

𝑑𝑧HIIIIIJIIIIIK
?23
+ 	

−L
1
𝛼,
〈𝑤"𝑤"-------〉

𝑑𝛼,〈𝑠̅〉
𝑑𝑧 M

HIIIIIIJIIIIIIK
@23
%

−L	 〈𝑢2"𝑠"-----"" 𝜕𝑤D
""

𝜕𝑥0
〉 + 〈𝑤"𝑢2"------"" 𝜕𝑠̅

""

𝜕𝑥0
〉M

HIIIIIIIIIJIIIIIIIIIK
@23
,

 

−	 L〈𝑠"𝑢2"-----〉 〈
𝜕𝑤D ""

𝜕𝑥0
〉 + 〈𝑤"𝑢2"------〉 〈

𝜕𝑠̅""

𝜕𝑥0
〉 	M

HIIIIIIIIIIJIIIIIIIIIIK
@23
-

−
1
𝛼,
𝑑𝛼,〈𝑤"𝑤"𝑠"---------〉

𝑑𝑧HIIIIIJIIIIIK
?23
.

−
1
𝜌
〈𝑠"

𝜕𝑝"

𝜕𝑧
〉

----------

HIIJIIK
@A
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−	
1
𝛼,
𝑑	𝛼,〈𝑠"𝜏BB"ACA---------〉

𝑑𝑧 − 	
1
𝛼,

𝑑𝛼,	〈𝑤"𝜏/,B"ACA----------〉
𝑑𝑧 +	〈𝜏B2"ACA

𝜕𝑠"

𝜕𝑥2
	

------------
〉 +	〈𝜏/,2"ACA

𝜕𝑤"

𝜕𝑥2
	

-------------
〉

HIIIIIIIIIIIIIIIIIIIIIIJIIIIIIIIIIIIIIIIIIIIIIK
D23

		

−
1
𝑉 b7 𝑠

"𝜏B2"ACA---------	𝑛0 	 𝑑𝐴 + 〈𝑤"𝑢2"------〉7 𝑠̅	𝑛0 	 𝑑𝐴c ,HIIIIIIIIIIIIIJIIIIIIIIIIIIIK
K23

 

 

 

(8) 

where the definitions for 𝑃AL/ , 𝑃ALF , 𝑃ALG , 𝑇AL:  and 𝑇AL=  are similar to the definitions in Eq. 6. 186 

𝑃𝑆 is the pressure gradient-scalar interaction (a de-correlation term) and 𝐷AL include SGS 187 

terms; 𝜓AL  represents the surface integral terms arising from the volume averaging 188 

theorem. We point out that in deriving Eq. 6, the pressure term in the time-averaged 189 

Reynold stress tensor 𝑢1"𝑢>"------ budget equation is split into two terms (see Appendix 1 for 190 

details). On the contrary, for scalar flux budget equation, this pressure term cannot be split. 191 

The SGS components of 𝑃𝑆 have been shown to be non-negligible in the scalar flux budget 192 

(Khanna 1998; Heinze et al. 2015). Due to difficulties in evaluating the SGS components 193 

of 𝑃𝑆 and the surface integral terms over complex urban geometry via the LES model used 194 

in our study (to be introduced later), this work incorporates them into the budget residual 195 

along with the SGS component of the turbulent transport term.  196 

2.2.4 Scalar Variance 197 

The budget equation for the scalar variance reads 198 
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where the definitions for 𝑃A(/ , 𝑃A(F , 𝑃A(G , 𝑇A(:  and 𝑇A(=  for the scalar variance are similar to 199 

those in Eq. 6. 𝐷A( is the SGS transport for scalar, 𝜀A( is the dissipation and 𝜓A( is the 200 
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surface integral terms that capture the effect of the solid-fluid interface. 𝜓A( is incorporated 201 

into the budget residual due to the difficulties associated with evaluating it in the LES 202 

model used in our study. 203 

3 Model and case description 204 

3.1 Large-Eddy Simulation Model 205 

In this study, the PALM LES Model in revision 4901 (Maronga et al. 2015, 2020) is used. 206 

The PALM solver numerically integrates the filtered, non-hydrostatic Navier-Stokes 207 

equations in the Boussinesq-approximations form and the filtered transport equation for 208 

passive scalar concentration. Filtered transport equations for two thermodynamic variables, 209 

such as potential temperature and total water specific humidity, can be solved but are not 210 

used in this study. The filtering of these equations is carried out implicitly using the 211 

volume-based approach (Schumann 1975) and employs the 1.5-order SGS closure model 212 

of Deardorff (1980). Using a predictor-corrector method and iterative multigrid scheme 213 

(Hackbusch 1985), the mass conservation of the flow is enforced by solving a Poisson 214 

equation for pressure perturbation. The 5th order Wicker-Skamarock and the 2nd order 215 

central difference schemes are employed to discretize the advection and diffusion schemes. 216 

Temporal discretization is done with the 3rd order Runge-Kutta scheme. The 217 

computational domain is spatially discretized using the finite difference approach on 218 

Arakawa staggered C-grid (Arakawa and Lamb 1977). The PALM model explicitly 219 

resolves the solid obstacles using the masking method (Briscolini and Santangelo 1989) 220 

and hence does not need a parameterization to account for the effect of the solid obstacle 221 

on the flow dynamics. 222 

The PALM model has been widely used to study flows over both idealized (Letzel et 223 

al. 2008; Park et al. 2012; Gronemeier and Sühring 2019; Nazarian et al. 2020; Blunn et 224 

al. 2022) and real urban canopies (Kanda et al. 2013; Park et al. 2015; Gronemeier et al. 225 

2017) and it has been extensively validated (Fröhlich and Matzarakis 2020; Gronemeier et 226 

al. 2021; Resler et al. 2021). Heinze et al. (2015) used the PALM model to study second-227 

order moment budgets in cloud topped boundary layers and found that the PALM model 228 

results agree with the results of other LES models except for the TKE dissipation rate. The 229 

disagreement in the TKE dissipation rate was attributed to truncation errors, which can be 230 
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relatively large and lead to artificial dispersion (especially at high wavenumbers) when 231 

using low order schemes (Ghosal 1996; Giacomini and Giometto 2021). Uncertainties 232 

arising from these errors are captured in the residual of our budget analysis and discussed 233 

in the result section. 234 

3.2 Case description and model set-up 235 

In this study, we focus on an area of about 2.6 × 2.1	km2 around Fenway-Kenmore square 236 

in the City of Boston, Massachusetts, USA (see Fig. 1a). This geographical region is the 237 

same as the one considered in Akinlabi et al. (2022). This region is located in the northern 238 

part of Boston. The chosen domain contains a dense arrangement of building blocks, an 239 

irregular distribution of narrow street canyons, a park in the northwest region, and the 240 

Charles River in the north. The northeastern part is a business district with many high-rise 241 

buildings of height above 100 m (e.g., the Prudential centre which is 227 m high), while 242 

the southwestern part is the home to several hospitals (Boston children hospital, Beth Israel 243 

Medical centre, Brigham and Women’s hospital) and universities (Harvard school of public 244 

health, Emmanuel college, Simmons university and Massachusetts College of Pharmacy 245 

and Health Sciences) with moderately tall buildings of about 60 – 80 m. Figure 1 shows 246 

the map, the vertical profile of the plan area fraction, and the building height distribution, 247 

and its probability density function within the study area. The mean building height 𝐻 is 248 

18 m, and the standard deviation σN is 16 m. The plan area fraction varies strongly with 249 

height and is 0.29 at the ground level. The distribution of building heights in our study area 250 

differs from previous studies like Auvinen et al. (2020), whose building height distribution 251 

is relatively symmetric with σN/𝐻 = 0.4 − 0.6. It is also different from the study by 252 

Giometto et al. (2016, 2017) with a trimodal building height distribution and σN/𝐻 = 0.4. 253 

In our study, the distribution is very skewed with σN/𝐻 = 0.89. Vegetation is not included 254 

in our simulation, which is justified by its small plan area fraction (Giometto et al. 2016).  255 
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Fig. 1 a 3-D map of the area around Fenway-Kenmore square in the City of Boston, USA, with the Charles 256 
River in the north, the Brigham and Women’s hospital (about 75 m) in the southwest, and the Prudential 257 
centre (maximum building height of 227 m) in the northeast. Imagery ©Google, b the vertical profile of the 258 
plan area fraction, c building heights in the study area and d the probability distribution function (PDF) of 259 
building heights 260 

 

The domain is discretized in space using 864 × 720 × 360 grid points in streamwise, 261 

spanwise and vertical directions, respectively. A horizontal grid spacing of 3 m is used, 262 

which has been shown in our previous work (Akinlabi et al. 2022) to be adequate in 263 

resolving the buildings and street canyons in the domain. In the vertical direction, 3 m grid 264 

spacing is used up to 300 m. Above this height, we apply a grid stretching with a factor of 265 
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1.005 until a maximum value of 11 m is reached. This gives a domain height of 1.9 km. 266 

The boundary-layer height is 𝛿/𝐻 = 70 , which satisfies the 𝛿/𝐻 ≳ 50  requirement 267 

(Jimenez 2004). The flow is driven by a constant geostrophic wind 𝑈O = 3.5	m sPQ (an 268 

intermediate value to represent a weakly sheared flow) in the west-to-east direction and 269 

neutral stratification is assumed throughout the study. The no-slip wall boundary condition 270 

was imposed on all surfaces (including the roofs, ground, and building walls) whereas a 271 

free-slip condition is applied at the top of the domain. We applied an algebraic wall-layer 272 

model between the surface (including the roofs, ground, and building walls) and the first 273 

computational grid level. To account for the effects of low vegetation, structural details, 274 

and temporary structures, a SGS aerodynamic roughness length 𝑧R,STS 	= 	0.01 m was used, 275 

which follows the recommendation of Basu and Lacser (2017) that 𝑧R,STS ≤276 

	0.02× min(∆𝑧) . The value min(∆z)	 for this study was 1.5  m because the first 277 

computational grid node is positioned at 0.5 ∆z. Cyclic boundary conditions are imposed 278 

in the lateral directions to simulate an infinite repetition of the study area. This setup is 279 

convenient as it does not require specification of an inflow boundary condition. The 280 

boundary condition for the passive scalar equation is a surface flux 0.05	kg mPM	sPQ, which 281 

is imposed on all surfaces (including the roofs, ground and building walls). The simulation 282 

ran for a spin-up period of 560	𝑇  where 𝑇 = 𝐻/𝑢∗  to reach a steady state. Here 𝑇  is 283 

interpreted as the eddy-turnover time for the largest eddies in the urban canopy (Coceal et 284 

al. 2006).  The friction velocity 𝑢∗ = 0.3	m s-1  is computed from the total kinematic 285 

surface drag per unit floor area 𝜏∗, i.e., 𝑢∗ = y𝜏∗/𝜌, where 𝜌 is the air density (1	kg	mPB) 286 

and 𝜏∗ is the sum of the form and skin-friction drag (Kanda et al. 2013). The simulation is 287 

then pursued for another 240	𝑇 to evaluate temporally averaged statistics, which has been 288 

verified to be long enough for the statistics to reach convergence (Akinlabi et al. 2022).  289 

4 Results and Discussion 290 

4.1 Double-averaged Flow Statistics 291 

We start our analysis by examining the double-averaged flow statistics. The streamwise 292 

velocity, vertical velocity, momentum flux, velocity variances, and the total pressure drag 293 

are normalized by the friction velocity 𝑢∗. The scalar concentration is normalized with 𝑠∗ =294 
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	𝑤′𝑠′-----
R/𝑢∗ where 𝑤′𝑠′-----

R = 0.05	kg mPM	s-1 is the surface scalar flux. The turbulent scalar 295 

flux is normalized with 𝑢∗𝑠∗. The vertical height is normalized with the mean building 296 

height ( 𝐻	 = 	18  m). Figure 2 shows the normalized profiles of double-averaged 297 

streamwise and vertical velocities and their variances, turbulent kinetic energy, and the 298 

logarithm of the scalar concentration and its variance. The streamwise velocity profile 299 

exhibits no inflection point, consistent with profiles presented by previous real urban 300 

canopy studies with large 𝜎N values (Park et al. 2015; Inagaki et al. 2017; Akinlabi et al. 301 

2022). The reason for this, as discussed by Makedonas et al. (2021) and Akinlabi et al. 302 

(2022), is the large spread of velocities below the height 𝐻max, indicating significant flow 303 

penetration caused by the large 𝜎N. As a result, cities designed with large 𝜎N could have 304 

higher mixing rates, which can positively impact urban air quality and natural ventilation 305 

(Makedonas et al. 2021). The profile of the streamwise velocity follows the conventional 306 

logarithmic form well above the urban canopy. However, closer to the buildings, the 307 

streamwise velocity profile deviates from the logarithmic form as it responds directly to 308 

the urban canopy (see Fig. 2a). A logarithmic function is fitted to the streamwise velocity 309 

profile in the [30𝐻- 40𝐻] interval with a von Karman constant value of 0.4, yielding an 310 

aerodynamic roughness length 𝑧R/𝐻 = 0.23 and a displacement height 𝑧=/𝐻 = 3.9. The 311 

aerodynamic roughness length is comparable to 𝑧R/𝐻 = 0.21  if our urban canopy 312 

parameters are substituted into the new aerodynamic surface parameterization equation of 313 

Kanda et al. (2013), while the displacement height is overestimated (i.e.,  𝑧=/𝐻 = 2.22 314 

using the equation in Kanda et al. 2013). The reason for the difference in displacement 315 

height estimates is beyond the scope of this work. Following our earlier work (Akinlabi et 316 

al. 2022), we identify 𝑧/𝐻 = 30	 height as the RSL thickness (similar to the fitting range 317 

used above). This height corresponds to the 90th percentile of the dispersive flux profile. 318 

Dispersive fluxes for the urban canopy under consideration were examined in detail in 319 

Akinlabi et al. (2022) and will not be discussed here.  320 

The double-averaged vertical velocity vanishes as expected from the use of periodic 321 

lateral boundary condition. The normalized turbulent kinetic energy has its maximum value 322 

of 3 around 𝑧/𝐻 = 5 and decreases with increasing height with major contribution from 323 

the streamwise velocity variance (see Fig. 2b). The streamwise velocity variance peaks at 324 

𝑧/𝐻 = 10  while the vertical velocity variance peaks at 𝑧/𝐻 = 3 . The profile of the 325 
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logarithm of scalar concentration is almost uniform with height, even though almost all the 326 

source of the scalar concentration is below 𝑧/𝐻 = 2 based on the boundary condition for 327 

the passive scalar. This uniformity indicates an intense mixing of passive scalar from urban 328 

surfaces where it is released to the atmosphere. This vigorous mixing may be caused by 329 

the significant flow penetration discussed above. Here, we show the profile of the logarithm 330 

of the scalar and its variance to highlight their variations better. The logarithm of 331 

normalized scalar variance has a maximum value of 6 at 𝑧/𝐻	 = 	1. 332 

 
Fig. 2 Normalized profiles of a streamwise velocity juxtaposed with a reference logarithmic profile 333 
(roughness length 𝑧5/𝐻 = 0.23 and displacement height 𝑧6/𝐻 = 3.9) and vertical velocity, b variances of 334 
streamwise and vertical velocities and turbulent kinetic energy 𝑇𝐾𝐸 = 0.5(〈𝑢782222 +	𝑣782222 + 𝑤7822222〉)  c logarithm 335 
of the scalar concentration and its variance. The velocities are normalized with the friction velocity 𝑢∗ while 336 
the scalar concentration is normalized with 𝑠∗. Dashed horizontal line indicates the mean building height 𝐻 337 
while the solid horizontal line is the maximum building height 𝐻max 338 

The turbulent momentum and scalar fluxes as well as the pressure drag are presented 339 

in Fig. 3. Only the resolved parts of the turbulent fluxes are presented since the subgrid-340 

scale fluxes are less than 6% of the sum of resolved and subgrid-scale fluxes above 𝑧/𝐻	 =341 

	1. The turbulent momentum flux peaks at about 𝑧/𝐻	 = 	10 with magnitude twice as large 342 

as its value at 𝑧/𝐻 = 40. A similar behavior is observed for the turbulent scalar flux, which 343 

peaks at 𝑧/𝐻 = 4 (see Fig. 3b). The pressure drag, which is the major sink of momentum 344 

in the urban canopy, decreases with height from its surface value ∫ Q
Y
〈3,̅

''

3*
〉[

R d𝑧	 ≈ 	𝑢∗M to 345 

zero at 𝐻max (see Fig. 3a).  346 
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Fig. 3 Normalized profiles of a turbulent momentum flux and the pressure drag, b turbulent scalar flux. The 347 
momentum flux and pressure drag in a are normalized by the squared friction velocity 𝑢∗ while the scalar 348 
flux is normalized with 𝑢∗𝑠∗. The dashed horizontal line indicates the mean building height 𝐻 while the solid 349 
horizontal line is the maximum building height 𝐻max 350 

4.2 Budgets for Second-Order Turbulence Moments 351 

The budgets for second-order moments in the urban RSL are now discussed. Each term in 352 

the TKE, velocity variances and Reynold stress budgets are normalized by 𝐻/𝑢∗B. Those 353 

for scalar flux and scalar variance are normalized by 𝐻/(𝑠∗𝑢∗M)  and 𝐻/(𝑢∗𝑠∗M) , 354 

respectively.  According to Akinlabi et al. (2022), the urban RSL for real urban canopies 355 

can extend much higher than the traditional definition (i.e., 𝑧/𝐻 = 2 − 5 ) which is 356 

primarily based on studies over idealized urban canopies. Using the height that corresponds 357 

to 90th percentile of the dispersive flux profile as the beginning of the inertial sublayer, they 358 

argued that the RSL extends to 𝑧/𝐻 = 30. Following Akinlabi et al. (2022), we will focus 359 

on the interval 𝑧 < 30𝐻. Three layers are considered. The first layer is the traditionally 360 

defined urban RSL (2𝐻 ≤ 𝑧 ≤ 5𝐻) represented by the grey area in Figs. 4 – 9. We note 361 

that this layer roughly covers the region where the lowest atmospheric grid (about 362 

30	– 	100 m) in NWP and climate models with single-layer urban parameterizations often 363 

occurs. Above this interval, two additional layers are considered: 5𝐻 < 𝑧 ≤ 12𝐻  (the 364 

second layer) and 12𝐻 < 𝑧 ≤ 30𝐻 (the third layer). The second layer spans from the top 365 

of the traditionally defined urban RSL to 𝐻max, while the third layer are from 𝐻max to the 366 
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top of the urban RSL. Averages of each budget term within each layer are presented in 367 

Tables 1 – 6.  368 

The relatively small residual in the computed budgets of second-order moments when 369 

𝑧 is above 𝐻 provides confidence in our numerical results. The residual terms contain all 370 

other SGS components of the budget terms such as the SGS third-order velocity 371 

correlations and the SGS pressure redistribution (see Heinze et al. 2015 for example). The 372 

residual below 𝐻 (see Figs. 4 – 9) is primarily due to the spatial interpolation of variables 373 

in the near wall regions required to compute some of the budget terms; this leads to 374 

numerical truncation errors and degrades the quality of the computed budget. Hence, only 375 

the budgets at 𝑧/𝐻 > 1 will be analyzed.  376 

4.2.1 TKE 377 

Vertical profiles of terms in the TKE budget are shown in Fig. 4 while Table 1 shows the 378 

percentage contribution of each term to the total source (+) or sink (-) in the considered 379 

layer. The shear production 𝑃?HI/  peaks at 𝑧/𝐻	 = 	1 where the strongest wind shear occurs 380 

and decreases with height. This agrees with previous studies of boundary layer flows over 381 

uniform strip or tree-like canopies (see Yue et al. 2008 and Böhm et al. 2013). Although 382 

𝑃?HI/  decreases with height for 𝑧/𝐻 > 	1, its contribution to the total source increases with 383 

height because other production terms become even smaller with height (see Table 1). The 384 

wake production 𝑃?HIF  is the production rate of TKE in the wakes of buildings (i.e., 385 

converting wake kinetic energy to TKE) through the interaction between the local turbulent 386 

stress and time-averaged strains. 𝑃?HIF  also peaks at 𝐻 and decreases to approximately zero 387 

above 𝑧/𝐻 = 15. Below 𝐻max , 𝑃?HIF ≈ 0.5𝑃?HI/ , in agreement with previous studies of 388 

flow over real urban canopies (Giometto et al. 2016). This implies that 𝑃?HIF  is non-389 

negligible over the urban canopy. Similar results have been presented in studies of flow 390 

over other regular canopies (Raupach et al. 1991). The form-induced production term 𝑃?HIG  391 

is negligible in our study (see Table 1). This result disagrees with Giometto et al. (2016), 392 

where 𝑃?HIG  is found to be non-zero in the vicinity of the inflection layer, accounting for 393 

16% of 𝑃?HI/ . This disagreement is likely caused by the difference in σN.  The difference 394 

between the two studies seems to suggest that the importance of 𝑃?HIG  decreases or even 395 

becomes negligible with large σN. Note that other factors such as the plan area fraction 𝜆,, 396 
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the frontal area fraction 𝜆$ =	𝐴$/𝐴total (𝐴$ is the product of the building width and height) 397 

might also be responsible for this disagreement. More detailed investigations of how 𝑃?HIG  398 

(as well as similar terms in the budgets of other second-order moments) respond to changes 399 

in the aforementioned parameters is beyond the scope of this analysis and is left for future 400 

work. 401 

The transport terms are responsible for redistributing TKE vertically from regions of 402 

high production to others. They serve as local sources/sinks of TKE (Roth and Oke 1993). 403 

Within 2𝐻 ≤ 	𝑧	 < 	12𝐻, the turbulent transport term 𝑇?HI:   is negative and contributes to 404 

10% of the total sink of TKE (see Table 1). It changes sign at 𝑧/𝐻	 = 	2 and 𝑧/𝐻 = 	13, 405 

contributing 5% of the total source above 𝑧/𝐻 = 15. Our result agrees with studies of flow 406 

over urban canopies (Christen et al. 2009; Giometto et al. 2016) and field studies of flow 407 

over vegetation canopies (Leclerc et al. 1990; Shen and Leclerc 1997). 𝑇?HI= , 𝑇?HI
,  and 408 

𝐷?HI are almost zero in the studied height ranges (see Table 1). The result of 𝐷?HI agrees 409 

with Yue et al. (2008).  410 

The TKE dissipation rate 𝜀?HI  is a significant sink of TKE. We compute 𝜀?HI  as 411 

𝜏12" 𝑆12"------- = 𝜏12𝑆12------- −		𝜏12---	𝑆12---- where 𝑆#0  is the filtered shear rate tensor while 𝜏#0  is the SGS 412 

stress tensor. Experimental studies compute 𝜀?HI  based on the energy spectra (e.g., 413 

Christen et al. 2009), but this approach is known to overestimate 𝜀?HI (Heinze et al. 2015; 414 

Akinlabi et al. 2019). Here we found that 𝜀?HI  has a maximum value of 1.4	𝐻/𝑢∗B  at 415 

𝑧/𝐻	 = 1 (though it might increase even more within 𝑧/𝐻 < 1) and decreases with height 416 

until it balances TKE production at 𝑧/𝐻 > 20 , after which 𝑃?HI/ ≈ 𝜀?HI . Local 417 

contributions of 𝜀?HI to the total sink rate of TKE range between 86% at 5𝐻 ≤ 	𝑧	 < 	12𝐻 418 

to 93% at 𝑧/𝐻	 > 	12.  419 

Based on these results, we conclude that for the real urban canopy studied here, the 420 

shear production 𝑃?HI/ , wake production 𝑃?HIF  and dissipation of TKE  𝜀?HI are the major 421 

players in the TKE budget. They need to be parameterized in large-scale meteorological 422 

models due to their significant contributions to the total source or sink of TKE in real urban 423 

canopy flows. The contributions of turbulent transport 𝑇?HI:  to local TKE sources/sink are 424 

less than 15% with significant height variability. 425 
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Fig. 4 The TKE budget terms normalized by 𝐻/𝑢∗:. The grey region corresponds to 2𝐻 ≤ 𝑧 ≤ 5𝐻 while the 426 
dashed horizontal line is the maximum building height 𝐻max 427 

 
Table 1 Percentage contribution of 𝑃;<=" , 𝑃;<=> , 𝑃;<=? , 𝑇;<=@ , 𝑇;<=6 ,𝑇;<=

A , 𝐷;<= and 𝜀;<= to the total source 428 
and sink for the considered layers. (+) and (-) denote a source and sink of TKE, respectively 429 

 𝟐𝑯 ≤ 𝒛 ≤ 𝟓𝑯 𝟓𝑯 < 𝒛 ≤ 𝟏𝟐𝑯 𝟏𝟐𝑯 < 𝒛 ≤ 𝟑𝟎𝑯 

𝑷𝑻𝑲𝑬𝒔  69% (+) 75% (+) 91% (+) 

𝑷𝑻𝑲𝑬𝒘  31% (+) 23% (+) 9% (+) 

𝑷𝑻𝑲𝑬𝒎  0% 0% 0% 

𝑻𝑻𝑲𝑬𝒕  9% (-) 13% (-) 3% (-) 
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𝑻𝑻𝑲𝑬𝒅  0% 2% (+) 4% (-)  

𝑻𝑻𝑲𝑬
𝒑  0% 1% (-) 0% 

𝑫𝑻𝑲𝑬 0% 0% 0% 

𝜺𝑻𝑲𝑬 91% (-) 86% (-) 93% (-) 

 

4.2.2 Velocity Variances 430 

In this section, we further examine the budgets of streamwise and vertical velocity 431 

variances. Tables 2 and 3 show the percentage contribution of each term to the total source 432 

(+) or sink (-) in the considered layers and the profiles are shown in Figs. 5 and 6 433 

respectively. 𝑃QQ/  and 𝑃QQF  are the key source terms in the budget of streamwise velocity 434 

variance, with peak values of 2.5	𝐻/𝑢∗B  and 0.8	𝐻/𝑢∗B , respectively, at 𝑧/𝐻	 = 	1. The 435 

profiles of 𝑃QQ/  and 𝑃QQF  are similar in shape to 𝑃?HI/  and 𝑃?HIF , respectively. Since 𝑃BB/ = 0, 436 

the production of TKE due to shear occurs through the horizontal velocity components 437 

(i.e., 𝑃?HI/ ≈ 0.5(𝑃QQ/ +	𝑃MM/ ) ). This explains why the profile of 𝑃QQ/  is similar to that of 438 

𝑃?HI/ . Here it should be pointed out that these results might be altered by thermal 439 

stratification which is absent in our study. 𝑃BBF  is non-zero but contributes less than 10% to 440 

the total source rate of vertical velocity variance (see Table 3), explaining why the profile 441 

of 𝑃QQF  is similar to that of 𝑃?HIF . The form-induced production terms 𝑃QQG  and 𝑃BBG  are 442 

negligible. 443 

The anisotropy introduced by shear and wake productions is counteracted by the 444 

pressure-strain correlation terms 𝑆𝑃QQ  and 𝑆𝑃BB . 𝑆𝑃QQ  and 𝑆𝑃BB  only act to redistribute 445 

TKE between the components returning turbulence to the isotropic state – a process known 446 

as “isotropization of turbulence” (Pope 2000; Hanjalić and Launder 2009). 𝑆𝑃QQ is negative 447 

while 𝑆𝑃BB is positive throughout the considered height intervals. This implies that the 448 

vertical-velocity variance grows at the expense of the streamwise velocity variance. The 449 

dissipation rates (𝜀QQ and 𝜀BB) in the velocity variance budgets are determined based on the 450 

assumption of local isotropy at small scales i.e., 𝜀QQ 	≈ 𝜀BB 	≈ 	
M
B
𝜀?HI . The percentage 451 

contribution of 𝜀QQ to the total sink in the streamwise velocity variance budget is about 452 

50% of the percentage contribution of 𝑆𝑃QQ, with the sum of 𝑆𝑃QQ and 𝜀QQ nearly balancing 453 

the production terms. In the vertical velocity variance budget, 𝑆𝑃BB nearly balances 𝜀BB. 454 
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All the transport terms (i.e., 𝑇QQ: , 𝑇BB: , 𝑇QQ= , 𝑇BB= , 𝑇QQ
, , 𝑇BB

, , 𝐷QQ and 𝐷BB) are much less 455 

critical in the velocity variance budgets. 𝑇QQ:  and 𝑇BB:  make about 5 - 10% contribution to 456 

the total sink while the other transport terms are even smaller compared to other terms in 457 

the velocity variance budgets (see Tables 2 and 3). In summary, the production, pressure-458 

strain correlation and dissipation terms play significant roles in the velocity variance 459 

budgets. 460 

 

Fig. 5 The streamwise velocity variance budget terms normalized by 𝐻/𝑢∗:. The grey region corresponds to 461 
2𝐻 ≤ 𝑧 ≤ 5𝐻 while the dashed horizontal line is the maximum building height 𝐻max 462 
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Table 2 Percentage contributions of 𝑃BB" , 𝑃BB> , 𝑃BB?, 𝑇BB@ , 𝑇BB6 ,𝑇BB
A ,	𝑆𝑃BB, 𝐷BB and 𝜀BB to the total source and sink 463 

for the considered layers. (+) and (-) denote a source and sink of streamwise velocity variances, respectively 464 
 𝟐𝑯 ≤ 𝒛 ≤ 𝟓𝑯 𝟓𝑯 < 𝒛 ≤ 𝟏𝟐𝑯 𝟏𝟐𝑯 < 𝒛 ≤ 𝟑𝟎𝑯 

𝑷𝟏𝟏𝒔  74% (+) 79% (+) 91% (+) 

𝑷𝟏𝟏𝒘  26% (+) 20% (+) 9% (+) 

𝑷𝟏𝟏𝒎  1% (-) 1% (-) 0% (+) 

𝑻𝟏𝟏𝒕  5% (-) 9% (-) 6% (-) 

𝑻𝟏𝟏𝒅  0% 1% (+) 1% (-)  

𝑻𝟏𝟏
𝒑  0% 0%  0% 

𝑫𝟏𝟏 0% 0% 0% 

𝜺𝟏𝟏 34% (-) 29% (-) 28% (-) 

𝑺𝑷𝟏𝟏 60% (-) 61% (-) 65% (-) 
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Fig. 6 The vertical velocity variance budget terms normalized by 𝐻/𝑢∗:. The grey region corresponds to 465 
2𝐻 ≤ 𝑧 ≤ 5𝐻 while the dashed horizontal line is the maximum building height 𝐻max 466 

 

Table 3 Percentage contributions of 𝑃::" , 𝑃::> , 𝑃::?, 𝑇::@ , 𝑇::6 ,𝑇::
A ,	𝑆𝑃::, 𝐷:: and 𝜀:: to the total source and sink 467 

for the considered layers. (+) and (-) denote a source and sink of vertical velocity variances, respectively 468 
 𝟐𝑯 ≤ 𝒛 ≤ 𝟓𝑯 𝟓𝑯 < 𝒛 ≤ 𝟏𝟐𝑯 𝟏𝟐𝑯 < 𝒛 ≤ 𝟑𝟎𝑯 

𝑷𝟑𝟑𝒔  0% 0% 0% 

𝑷𝟑𝟑𝒘  8% (+) 9% (+) 3% (+) 

𝑷𝟑𝟑𝒎  1% (+) 0% 0% 

𝑻𝟑𝟑𝒕  8% (-) 8% (-) 3% (+) 
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𝑻𝟑𝟑𝒅  0% 2% (+) 4% (-)  

𝑻𝟑𝟑
𝒑  1% (+) 4% (-) 1% (-) 

𝑫𝟑𝟑 0% 0% 0% 

𝜺𝟑𝟑 92% (-) 88% (-) 95% (-) 

𝑺𝑷𝟑𝟑 90% (+) 89% (+) 94% (+) 

 

4.2.3 Momentum flux 469 

Before we present the momentum flux budget, it is important to make a remark related to 470 

its interpretation. Unlike the velocity and scalar variances that are non-negative, the 471 

momentum flux can have either sign. As a result, any term in the momentum flux budget 472 

is treated a source term if it has the same sign as the momentum flux itself and a sink term 473 

if it has the opposite sign. To avoid any confusion, we multiply both side of the budget 474 

equation for double averaged Reynolds stress tensor with a negative sign so that a negative 475 

and positive term is a sink and source term, respectively. 476 

Vertical profiles of terms in the budget of momentum flux are shown in Fig. 7 while 477 

the layer-wise percentage contribution of each term to the total layer source or sink are 478 

presented in Table 4. Approximate equilibrium exists between 𝑃QB/  and the pressure 479 

redistribution term 𝑆𝑃QB above 𝑧/𝐻	 = 	15, which agrees with Raupach et al. (1986). For 480 

all the considered layers, 𝑇QB:  has a sink contribution of around 4 - 11%, i.e., it is larger than 481 

other transport terms. However, the same term becomes a source below 2𝐻 . The 482 

significance of 𝑇QB:  over rough surfaces is not a new finding and has been reported by 483 

Maitani (1979) and Raupach (1981). Here we simply note that the momentum flux budget 484 

over real urban canopies has not been analyzed thus far. The closest comparison is the 485 

momentum flux budget for plant canopies based on measurements from Meyers and 486 

Baldocchi (1991). Our findings agree with Meyers and Baldocchi (1991) and Raupach et 487 

al. (1986) regarding the dominant role of the shear production term 𝑃QB/  and the pressure-488 

strain correlation term 𝑆𝑃QB above the canopy.  489 
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Fig. 7 The momentum flux budget terms normalized by 𝐻/𝑢∗:. The grey region corresponds to 2𝐻 ≤ 𝑧 ≤490 
5𝐻 while the dashed horizontal line is the maximum building height 𝐻max 491 

Table 4 Percentage contributions of 𝑃B:" , 𝑃B:> , 𝑃B:?, 𝑇B:@ , 𝑇B:6 ,𝑇B:
A ,	𝑆𝑃B:	and 𝐷B: to the total source and sink for 492 

the considered layers. (+) and (-) denote a source and sink of momentum fluxes, respectively 493 
 𝟐𝑯 ≤ 𝒛 ≤ 𝟓𝑯 𝟓𝑯 < 𝒛 ≤ 𝟏𝟐𝑯 𝟏𝟐𝑯 < 𝒛 ≤ 𝟑𝟎𝑯 

𝑷𝟏𝟑𝒔  97% (+) 85% (+) 94% (+) 

𝑷𝟏𝟑𝒘  2% (+) 7% (+) 6% (+) 

𝑷𝟏𝟑𝒎  1% (+) 0% 0% 

𝑻𝟏𝟑𝒕  4% (-) 11% (-) 5% (-) 

𝑻𝟏𝟑𝒅  0% 0% 1% (-)  
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𝑻𝟏𝟑
𝒑  5% (-) 8% (+) 4% (-) 

𝑫𝟏𝟑 0% 0% 0% 

𝑺𝑷𝟏𝟑 91% (-) 89% (-) 90% (-) 

 

4.2.4 Scalar Flux 494 

The results for the scalar flux budget are shown in Fig. 8 and Table 5. Compared to the 495 

TKE, velocity variance, and momentum flux budgets, the scalar flux budget and the scalar 496 

variance budget to be discussed in the following section still have relatively large residuals 497 

at the lower heights since the SGS components of 𝑃𝑆 and the surface integral terms are 498 

incorporated into the budget residual. The residuals gradually decrease with height and 499 

become zero around 2𝐻 and 4𝐻 in the scalar flux budget and the scalar variance budget, 500 

respectively.  Hence, the results below 2𝐻 and 4𝐻 for the scalar flux budget and the scalar 501 

variance budget, respectively, should be interpreted with caution.  502 

For the scalar flux budget, the terms 𝑃AL/ , 𝑃ALF  and 𝑃𝑆 have their extrema near the 503 

surface, where large gradients of 𝑠̅ occur. 𝑃AL/  and 𝑃𝑆 terms dominate the budget at 𝑧/𝐻 >504 

2 while 𝑃ALF  is also important at 𝑧/𝐻 < 2, with the caveat that the residual remains large 505 

for 𝑧/𝐻 < 2. 𝑃AL/  is positive (since 〈𝑠̅〉 is a decreasing function of height) above 𝑧/𝐻	 = 	1 506 

and is nearly balanced by the pressure gradient-scalar interaction 𝑃𝑆, which acts to destroy 507 

scalar flux. 𝑇AL:  is negative within the range 2𝐻 ≤ 𝑧 ≤ 15, similar to the turbulent transport 508 

term for momentum flux. Above 12𝐻, 𝑇AL:  may be neglected since its contribution to the 509 

budget is only 5%. All other terms are rather small (less than 5% contribution) (see Table 510 

5).  511 

Similar to the momentum flux budget, the scalar flux budget over real urban canopies 512 

has not been analyzed so far. Hence, a direct comparison of our findings with previous 513 

results is not possible. Profiles of 𝑃AL/  and 𝑇AL:  agree with those in Coppin et al. (1986), in 514 

which scalars were emitted within a plant canopy in a wind-tunnel. Unfortunately, all other 515 

terms were not computed in their study. Our finding regarding the dominance of  𝑃AL/  and 516 

𝑃𝑆 also agrees with the simplified analysis of the scalar flux budget in the inertial sublayer 517 

proposed by Garratt (1992). 518 
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Fig. 8 The scalar flux budget terms normalized by 𝐻/𝑢∗8𝑠∗. The grey region corresponds to 2𝐻 ≤ 𝑧 ≤ 5𝐻 519 
while the dashed horizontal line is the maximum building height 𝐻max 520 

 
Table 5 Percentage contribution of 𝑃CD" , 𝑃CD> , 𝑃CD? , 𝑇CD@ , 𝑇CD6  and	𝑃𝑆  to the total source and sink for the 521 
considered layers. (+) and (-) denote a source and sink of scalar fluxes, respectively 522 

 𝟐𝑯 ≤ 𝒛 ≤ 𝟓𝑯 𝟓𝑯 < 𝒛 ≤ 𝟏𝟐𝑯 𝟏𝟐𝑯 < 𝒛 ≤ 𝟑𝟎𝑯 

𝑷𝑺𝑭𝒔  100% (+) 96% (+) 98% (+) 

𝑷𝑺𝑭𝒘  1% (-) 4% (+) 2% (+) 

𝑷𝑺𝑭𝒎  0% 0% 0% 

𝑻𝑺𝑭𝒕  15% (-) 21% (-) 5% (-) 

𝑻𝑺𝑭𝒅  1% (-) 0% 1% (-)  
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𝑷𝑺 83% (-) 79% (-) 94% (-) 

 

4.2.5 Scalar Variance 523 

In the budget of scalar variance, 𝑃A(/  decreases with height from its peak near the surface. 524 

𝑃A(F  also gradually decreases from its peak value near the surface and becomes negligible 525 

at 𝑧/𝐻	 = 	6 (see Fig. 9). The form-induced production term 𝑃A(G  is generally small. Hence, 526 

the production term 𝑃A(/  is the major source term above 𝑧/𝐻 = 6, which is balanced by the 527 

scalar dissipation 𝜀A( (see Table 6). 𝜀A( is estimated similarly as the TKE dissipation 𝜀?HI 528 

as 𝜏/,2"
3/'

3*&

--------
= 𝜏/,2

3/
3*&

-------- −		𝜏/,2---- 3/
3*&

---- where 𝜏/,0  is the SGS scalar flux, computed by the SGS 529 

model. 𝑃A(/  and 𝜀A( are dominant terms in the scalar variance budget, in agreement with 530 

findings from Coppin et al. (1986). Other terms are minor except the transport terms 𝑇A(:  531 

(below 4𝐻) and 𝑇A(=  and 𝐷A(  (below 2𝐻). However, we stress again that the residuals 532 

below 4𝐻 are significant and thus the results below 4𝐻 should be interpreted with caution. 533 
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Fig. 9 The scalar variance budget terms normalized by 𝐻/𝑠∗8𝑢∗. The grey region corresponds to 2𝐻 ≤ 𝑧 ≤534 
5𝐻 while the dashed horizontal line is the maximum building height 𝐻max 535 

 
Table 6 Percentage contribution of 𝑃CE" , 𝑃CE> , 𝑃CE? , 𝑇CE@ , 𝑇CE6 , 𝐷CE and	𝜀CE to the total source and sink for the 536 
considered layers. (+) and (-) denote a source and sink of scalar variances, respectively 537 

 𝟐𝑯 ≤ 𝒛 ≤ 𝟓𝑯 𝟓𝑯 < 𝒛 ≤ 𝟏𝟐𝑯 𝟏𝟐𝑯 < 𝒛 ≤ 𝟑𝟎𝑯 

𝑷𝑺𝑽𝒔  63% (+) 91% (+) 95% (+) 

𝑷𝑺𝑽𝒘  25% (+) 7% (+) 1% (+) 

𝑷𝑺𝑽𝒎  5% (-) 1% (-) 0% 

𝑻𝑺𝑽𝒕  4% (+) 7% (-) 4% (+) 

𝑻𝑺𝑽𝒅  8% (+) 2% (+) 1% (-)  
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𝑫𝑺𝑽 0% 0% 0% 

𝜺𝑺𝑽 95% (-) 92% (-) 99% (-) 

 

4.3 Relative Importance of the Dispersive Terms to the Reynolds Terms 538 

As discussed in the introduction, due to difficulties in their measurement and simulation, 539 

dispersive terms such as wake production and dispersive transport have received less 540 

attention than their Reynolds counterparts. Results in Sect. 4.2 indicate that these dispersive 541 

budget terms may be important, especially within the first layer (2 ≤ 𝑧/𝐻 ≤ 5). 542 

In this section, we contrast the dispersive and Reynolds budget terms by examining 543 

the ratio of their absolute values for the entire urban canopy considered in our model 544 

domain. These are labelled as “Ref” in Figs. 11 and 12. The ratios have been averaged over 545 

the considered layers. We do not present this ratio for the streamwise and vertical velocity 546 

variances since 𝑃BB/  is zero and this ratio for the streamwise velocity variance is similar to 547 

that of TKE. The symbol 〈𝜗〉	j in Figs. 11 and 12 indicates that the profile 𝜗 is averaged 548 

within the given height range.  549 

Figure 11 shows the relative importance of wake production terms. For TKE, the ratio 550 

of wake production term to shear production term decreases from 0.5 at 2 ≤ 𝑧/𝐻 ≤ 5 to 551 

approximately zero at 𝑧/𝐻 = 15. For scalar variance, the ratio of wake production term to 552 

shear production term also decreases with height, from a value of 0.4 at 2 ≤ 𝑧/𝐻 ≤ 5 and 553 

approximately zero at 𝑧/𝐻 > 5. The ratios of wake production term to shear production 554 

term for momentum and scalar fluxes exhibit similar profiles: they increase from 2 <555 

𝑧/𝐻 ≤ 5 to their peak values at 5 < 𝑧/𝐻 ≤ 12 and then decrease with height.  Peak values 556 

for momentum and scalar fluxes are however relatively small (about 0.15). 557 

The ratio of dispersive to turbulent transport terms is presented in Fig. 12 for the 558 

considered budget equations. Even though the magnitude of transport terms is small 559 

relative to the production terms in general (see Sect. 4.2), the dispersive transport terms 560 

can be significant relative to their turbulent counterparts. The relative importance of 561 

dispersive transport of TKE increases from about 0.1 at 2 < 𝑧/𝐻 ≤ 5 to over 1 at 12 <562 

𝑧/𝐻 ≤ 15 and then decreases with height. The ratios 〈|𝑇QB= |/|𝑇QB: |〉	j  and 〈|𝑇AL= |/|𝑇AL: |〉	j 563 

are less than 0.2 throughout the studied height ranges. For the scalar variance, the ratio of 564 
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dispersive transport term to the turbulent transport decreases monotonically with height 565 

from the peak value of 1.7 at 2 < 𝑧/𝐻 ≤ 5.  566 

In summary, the dispersive terms are more critical in the TKE and scalar variance 567 

budgets than in the flux budgets. Their ratios to the corresponding Reynolds terms can be 568 

about 0.5 to 1 in the TKE and scalar variance budgets. 569 

The next step is to determine the sensitivity of the relative importance of dispersive 570 

terms to different urban geometric parameters. To do this, we partition our model domain 571 

(see Fig. 1a) into four subdomains in the y-direction. The area for each subdomain is about 572 

2.6 × 0.5	km2. For this part of the analysis, the intrinsic spatial averaging is carried out 573 

over each subdomain and hence the condition 〈𝜑""----〉 = 0 is satisfied. The building height 574 

distribution, the PDF of building heights and the plan area fraction in each subdomain is 575 

presented in Fig. 10. The ratios of the standard deviations of building height to the mean 576 

building heights (𝜎N/𝐻) are greater than 1 for the first and second subdomain (subdomain 577 

3 = 1.31, subdomain 4 = 1.04) but less than 1 for the third and fourth subdomains 578 

(subdomain 1 = 0.72, subdomain 2 = 0.65).  579 
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Fig. 10 The building heights in the subdomains (left) and the distributions of building heights (right) showing 580 
the mean building height 𝐻, maximum building height 𝐻max, standard deviation of building height 𝜎I and 581 
plan area fraction 𝜆A in a subdomain 4 b subdomain 3 c subdomain 2 d subdomain 1 582 

 

Figure 11 shows the ratios of wake productions to shear productions for TKE, 583 

momentum flux, scalar flux, and scalar variance in the subdomains. The importance of 584 
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𝑃?HIF  decreases with height in all subdomains. The ratio is larger than 1 for subdomain 4 585 

for the layer 2 ≤ 𝑧/𝐻 ≤ 5 (see Fig. 11a). For the momentum/scalar fluxes, the ratios 586 

remain less than 0.15 for all subdomains. Still, subdomain 4 has the most significant values 587 

(see Fig. 11b and 11c). For the scalar variance, the importance of wake production 588 

decreases with height for all subdomains. Only in subdomain 4 is the ratio greater than 0.5 589 

for the layer 2 ≤ 𝑧/𝐻 ≤ 5 (see Fig. 11d). All in all, these results suggest that the wake 590 

production, especially for TKE and scalar variance, can become significant in the vicinity 591 

of tall buildings, as in subdomain 4. The enhanced importance of wake production in 592 

subdomain 4 suggests that the wake production may depend on 𝐻max (or the ratio of 𝐻max 593 

and 𝐻). 594 
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Fig. 11 Ratios of wake productions to shear productions,	averaged over the considered 𝑧/𝐻 intervals for (a) 595 
𝑇𝐾𝐸, (b) momentum flux, (c) scalar flux and (d) scalar variance in 4 subdomains in Fig. 11 and the domain 596 
in Fig. 2 denoted as “Ref” 597 

 

The ratios of dispersive transport to turbulent transport terms show a much wide range 598 

of variabilities and do not exhibit any generalizable behaviors across the 4 subdomains. 599 

For TKE, the ratio has the most significant value of 0.5 in subdomain 4 at the layer 2 ≤600 

𝑧/𝐻 ≤ 5  (see Fig 12a). For momentum flux, the ratio has the largest value of 6  in 601 

subdomain 4 in 12 < 𝑧/𝐻 ≤ 15. For scalar flux, the maximum value of the ratio is about 602 

8 and again occurs in subdomain 4 at the layer 2 ≤ 𝑧/𝐻 ≤ 5. However, for scalar variance, 603 

the most considerable value of the ratio occurs in subdomain 2 at the layer 2 ≤ 𝑧/𝐻 ≤ 5 604 

(see Fig. 12d). There seems to be no single parameter that controls the relative importance 605 

of the dispersive transport, at least over the real urban canopies studied here. 606 
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Fig. 12 Ratios of dispersive transport to turbulent transport terms averaged over the considered 𝑧/𝐻 intervals 607 
for (a) 𝑇𝐾𝐸, (b) momentum flux, (c) scalar flux and (d) scalar variance in 4 subdomains in Fig. 11 and the 608 
domain in Fig. 2 denoted as “Ref” 609 

5 Conclusion 610 

This study analyses budgets of double-averaged second-order turbulence moments over a 611 

real urban canopy using large-eddy simulation. We focus on the budgets above the mean 612 

building height, where residual terms are generally negligible. The TKE budget shows that 613 

shear production is the primary source of TKE, whereas dissipation is the primary sink. 614 

Interestingly, wake production is also an important contribution to the TKE budget.  615 
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The pressure-strain correlation terms play an essential role in the velocity variance 616 

budgets. These terms redistribute energy between velocity components, thereby driving 617 

turbulence to the isotropic state. Over the considered urban canopy, pressure-strain 618 

correlation terms are responsible for the growth of the vertical-velocity variance at the 619 

expense of the streamwise velocity variance, as commonly observed in shear flows.  620 

Along with the shear production term, the pressure-strain correlation term plays a vital 621 

role in the budget of momentum flux, where turbulent and pressure transport terms appear 622 

to be of secondary importance. The budget of scalar flux is dominated by the shear 623 

production and pressure-gradient-scalar interaction terms, while the turbulent transport 624 

appears to be of secondary importance. However, along with the shear production and the 625 

scalar dissipation terms, the wake production, and turbulent and dispersive transport terms 626 

are essential for the budget of scalar variances in the 2 ≤ 	𝑧/𝐻 ≤ 5 interval.  627 

In addition to the above analysis, we also examined the relative importance of the 628 

dispersive terms to the corresponding Reynolds terms in our model domain and in a range 629 

of subdomains. To achieve this, our model domain is partitioned into four subdomains in 630 

the y-direction. For each case, the ratio of wake production to shear production and the 631 

ratio of dispersive transport to turbulent transport averaged over different 𝑧/𝐻 intervals, 632 

are examined for TKE, momentum flux, scalar flux and scalar variance budgets. The 633 

importance of wake production of TKE and scalar variances decrease with height, and this 634 

importance appears to depend on the maximum building height (or the ratio of maximum 635 

building height to the mean building height), although more investigations are needed to 636 

confirm this. Wake production is less significant for momentum and scalar flux budget 637 

equations. The dispersive transport terms can be significant relative to their turbulent 638 

counterpart, but we could not identify any trend of how these terms vary as a function of 639 

the morphological parameters over the considered urban canopies. 640 

Results from this work have implications for both single-layer and multi-layer urban 641 

canopy parameterizations, which have been developed to represent the flow and transport 642 

within and above neighborhoods in NWP and global climate models. Both single-layer 643 

(Masson 2000; Kusaka et al. 2001) and multi-layer (Martilli et al. 2002; Schoetter et al 644 
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2020) urban canopy parameterizations often assume horizontal homogeneity for canopies 645 

and neglect dispersive fluxes and dispersive transport. Our work indicates that dispersive 646 

fluxes (and dispersive transport) over real urban canopies can be important even above the 647 

mean building height. For single-layer urban canopy parameterizations coupled to an 648 

atmospheric model, this finding raises the question of whether dispersive fluxes should be 649 

parameterized, in addition to turbulent fluxes, despite that the lowest atmospheric grid is 650 

often above the mean building height. For multi-layer urban canopy parameterizations, our 651 

study supports and complements recent work that emphasizes the importance of dispersive 652 

stress relative to turbulent stress and the role of wake production in the TKE budget over 653 

idealized urban canopies (Nazarian et al. 2020).  Our results further highlight that multi-654 

layer urban canopy parameterization should properly consider the dissimilarity between 655 

momentum and scalar transport over real urban canopies. Findings from this work are 656 

limited to neutrally stratified ambient conditions; further investigations are needed to 657 

examine the impact of thermal stratification (stable or unstable) on the considered flow 658 

statistics.  659 
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Appendix 1: Derivation of the Double-Averaged Second-Order Moment 672 

Budget Equations 673 

 674 
In this appendix, we show how the budgets of double-averaged second-order moments are 675 

obtained. For simplicity, we only derive the budget equation for the double-averaged 676 

Reynold stress tensor (Eq. 5) and scalar flux (Eq. 8). Budget equations for other second-677 

order moments can be obtained in a similar fashion. Note that all budget equations are 678 

derived for neutral conditions with the Boussinesq approximation. 679 

The LES resolved Reynold stress tensor 𝑢1"𝑢>"------ budget equation is given as: 680 

 𝜕𝑢1"𝑢>"------

𝜕𝑡 + 𝑢2D
𝜕𝑢1"𝑢>"------

𝜕𝑥0
=	−𝑢>" 𝑢2"------ 𝜕𝑢1D

𝜕𝑥0
	− 𝑢1"𝑢2"------ 𝜕𝑢>---

𝜕𝑥0
−
𝜕𝑢1"𝑢2"𝑢>"---------

𝜕𝑥0
 

−
1
𝜌L

𝑢>" 𝜕𝑝"

𝜕𝑥1

--------
+	
𝑢1"𝜕𝑝"

𝜕𝑥>

-------
M −	ê

𝑢>" ∂𝜏12"SGS------------

𝜕𝑥0
+	
𝑢1" ∂𝜏2>"SGS-----------

𝜕𝑥0
í, 

 

 

(10) 

where 𝜏#0"SGS =	−𝜈:
3k$

'

3*J
 is the SGS stress tensor and 𝜈: represents the SGS eddy viscosity. 681 

The first term on the left-hand side of Eq. 10 represents the local change of 𝑢1"𝑢>"------ while the 682 

second is the advection of 𝑢1"𝑢>"------ . On the right-hand side, the first two terms are the 683 

production terms resulting from the interaction of the mean flow and turbulence while the 684 

third term can be interpreted as the transport of 𝑢1"𝑢>"------ by turbulent fluctuations (i.e., the 685 

turbulent transport term). The fourth term represents the interaction of the fluctuating 686 

pressure and velocity fields while the last term is the SGS term. After some algebraic 687 

manipulation on the last term, we have 688 

 𝜕𝑢1"𝑢>"------

𝜕𝑡 + 𝑢2D
𝜕𝑢1"𝑢>"------

𝜕𝑥0
=	−𝑢>" 𝑢2"------ 𝜕𝑢1D

𝜕𝑥0
	− 𝑢1"𝑢2"------ 𝜕𝑢>---

𝜕𝑥0
−
𝜕𝑢1"𝑢2"𝑢>"---------

𝜕𝑥0
−
1
𝜌 L

𝜕𝑝"𝑢>"------

𝜕𝑥#
+	
𝜕𝑝"𝑢1"------
𝜕𝑥>

M 

+	
1
𝜌 L𝑝

" 𝜕𝑢>
"

𝜕𝑥1

--------
+	𝑝"

𝜕𝑢1"

𝜕𝑥>

--------
M −

𝜕
𝜕𝑥0

î𝑢1"𝜏2>"SGS---------ï −
𝜕
𝜕𝑥0

î𝑢>" 𝜏12"SGS----------ï + 𝜏12"SGS
𝜕𝑢>"

𝜕𝑥2
	

-------------
 

+	𝜏2>"SGS
𝜕𝑢1"

𝜕𝑥2
	

------------
. 

 

 

(11) 

Now the pressure term is split into the pressure transport term (the fourth term on the right-689 

hand side) and the pressure-strain correlation term (the fifth term on the right-hand side). 690 

The SGS term also includes four terms: the SGS diffusion terms (the sixth and seventh 691 
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term on the right-hand side) and the SGS dissipation terms (the eighth and nineth term on 692 

the right-hand side). To facilitate derivations, we write the advection term on the left-hand 693 

side of the above equation in its flux form by invoking the Boussinesq approximation: 694 

 𝜕𝑢1"𝑢>"------

𝜕𝑡 +
𝜕𝑢2D 	𝑢1"𝑢>"------

𝜕𝑥0
=	−𝑢>" 𝑢2"------ 𝜕𝑢1D

𝜕𝑥0
	− 𝑢1"𝑢2"------ 𝜕𝑢>---

𝜕𝑥0
−
𝜕𝑢1"𝑢2"𝑢>"---------

𝜕𝑥0
−
1
𝜌 L

𝜕𝑝"𝑢>"------

𝜕𝑥#
+	
𝜕𝑝"𝑢1"------
𝜕𝑥>

M 

+	
1
𝜌 L𝑝

" 𝜕𝑢>
"

𝜕𝑥1

--------
+	𝑝"

𝜕𝑢1"

𝜕𝑥>

--------
M −

𝜕
𝜕𝑥0

î𝑢1"𝜏2>"SGS---------ï −
𝜕
𝜕𝑥0

î𝑢>" 𝜏12"SGS----------ï + 𝜏12"SGS
𝜕𝑢>"

𝜕𝑥2
	

-------------
 

+	𝜏2>"SGS
𝜕𝑢1"

𝜕𝑥2
	

------------
. 

 

 

(12) 

Applying the intrinsic spatial averaging to the above equation and following the rules in 695 

Eqs. 2 and 4, we have 696 

 𝜕〈𝑢1"𝑢>"------〉
𝜕𝑡 +	

1
𝛼,
𝜕𝛼,_𝑢2D 	𝑢1"𝑢>"------`

𝜕𝑥0

=	−L〈𝑢>" 𝑢2"------〉
𝜕〈𝑢1D 〉
𝜕𝑥0

+ 〈𝑢1"𝑢2"------〉
𝜕〈𝑢>---〉
𝜕𝑥0

M − L〈𝑢>" 𝑢2"------"" 𝜕𝑢1D
""

𝜕𝑥0
〉 +	 〈𝑢1"𝑢2"------"" 𝜕𝑢>---

""

𝜕𝑥0
〉M

−	L〈𝑢>" 𝑢2"------〉 〈
𝜕𝑢1D ""

𝜕𝑥0
〉 +	〈𝑢1"𝑢2"------〉 〈

𝜕𝑢>---""

𝜕𝑥0
〉M −

1
𝛼,
𝜕𝛼,〈𝑢1"𝑢2"𝑢>"---------〉

𝜕𝑥0

−
1
𝜌𝛼,

L
𝜕𝛼,〈𝑝"𝑢>"------〉

𝜕𝑥#
+	
𝜕𝛼,〈𝑝"𝑢1"------〉
𝜕𝑥>

M +	
1
𝜌 L

〈𝑝"
𝜕𝑢>"

𝜕𝑥1

--------
〉 +	〈𝑝"

𝜕𝑢1"

𝜕𝑥>
〉

----------
	M

−	
1
𝛼,

𝜕	𝛼,〈𝑢1"𝜏2>"SGS---------〉
𝜕𝑥0

−	
1
𝛼,
𝜕	𝛼,〈𝑢>" 𝜏12"SGS----------〉

𝜕𝑥0
+ 〈𝜏12"SGS

𝜕𝑢>"

𝜕𝑥2
	

-------------
〉 

+〈𝜏2>"SGS
𝜕𝑢1"

𝜕𝑥2
	

------------
〉. 

 

 

 

 

 

 

 

 

 

(13) 

Note that the surface integral does not show up in the above equation due to the no-slip 697 

boundary conditions. We can further expand the advection term as  698 

 1
𝛼,
𝜕𝛼,_𝑢2D 	𝑢1"𝑢>"------`

𝜕𝑥0
=
1
𝛼,
𝜕𝛼,_𝑢2D `〈𝑢1"𝑢>"------〉

𝜕𝑥0
+
1
𝛼,
𝜕𝛼, 〈𝑢1"𝑢>"------""𝑢2D ""〉

𝜕𝑥0
	 

= _𝑢2D `
1
𝛼,
𝜕𝛼,〈𝑢1"𝑢>"------〉

𝜕𝑥0
+
1
𝛼,
𝜕𝛼, 〈𝑢1"𝑢>"------""𝑢2D ""〉

𝜕𝑥0
. 

 

 

 

(14) 



	 40	

Substituting into Eq. 13 gives 699 

 𝜕〈𝑢1"𝑢>"------〉
𝜕𝑡 +	_𝑢2D `

1
𝛼,
𝜕𝛼,〈𝑢1"𝑢>"------〉

𝜕𝑥0
+
1
𝛼,
𝜕𝛼, 〈𝑢1"𝑢>"------""𝑢2D ""〉

𝜕𝑥0

=	−L〈𝑢>" 𝑢2"------〉
𝜕〈𝑢1D 〉
𝜕𝑥0

+ 〈𝑢1"𝑢2"------〉
𝜕〈𝑢>---〉
𝜕𝑥0

M − L〈𝑢>" 𝑢2"------"" 𝜕𝑢1D
""

𝜕𝑥0
〉 +	 〈𝑢1"𝑢2"------"" 𝜕𝑢>---

""

𝜕𝑥0
〉M 

−	L〈𝑢>" 𝑢2"------〉 〈
𝜕𝑢1D ""

𝜕𝑥0
〉 +	〈𝑢1"𝑢2"------〉 〈

𝜕𝑢>---""

𝜕𝑥0
〉M −

1
𝛼,
𝜕𝛼,〈𝑢1"𝑢2"𝑢>"---------〉

𝜕𝑥0
 

−
1
𝜌𝛼,

L
𝜕𝛼,〈𝑝"𝑢>"------〉

𝜕𝑥#
+	
𝜕𝛼,〈𝑝"𝑢1"------〉
𝜕𝑥>

M +	
1
𝜌 L

〈𝑝"
𝜕𝑢>"

𝜕𝑥1

--------
〉 +	〈𝑝"

𝜕𝑢1"

𝜕𝑥>
〉

----------
M 

−	
1
𝛼,

𝜕	𝛼,〈𝑢1"𝜏2>"SGS---------〉
𝜕𝑥0

−	
1
𝛼,
𝜕	𝛼,〈𝑢>" 𝜏12"SGS----------〉

𝜕𝑥0
+ 〈𝜏12"SGS

𝜕𝑢>"

𝜕𝑥2
	

-------------
〉 + 〈𝜏2>"SGS

𝜕𝑢1"

𝜕𝑥2
	

------------
〉. 

 

 

 

 

 

(15) 

When we apply Eq. 15 to diagnosing our LES outputs, further simplifications can be made. 700 

First, we assume horizontal homogeneity at scales beyond the spatial averaging scale, 701 

consistent with the doubly periodic boundary conditions used in our LES. Therefore, 3〈.〉
3*
=702 

3〈.〉
39
= 0. Second, we analyze the budgets at stationary conditions and hence  3〈.〉

3:
= 0. Third, 703 

due to the use of doubly periodic boundary condition and continuity, the mean vertical 704 

velocity is zero (i.e., no large-scale subsidence, 〈𝑤D〉 = 0). Furthermore, because of the 705 

assumption of horizontal homogeneity at scales beyond the spatial averaging scale, 𝛼, 706 

becomes also only a function of 𝑧  and thus only 3;)
3<

= =;)
=<
 is non-zero. With these 707 

assumptions, we have 708 

 
0 = −

1
𝛼,

𝑑𝛼, F𝑢1"𝑢>"------""𝑤D ""G

𝑑𝑧 		

− L〈𝑢>"𝑤"-------〉
𝑑〈𝑢1D〉
𝑑𝑧 + 〈𝑢1"𝑤"------〉

𝑑〈𝑢>---〉
𝑑𝑧 M − L〈𝑢>" 𝑢2"------"" 𝜕𝑢1D

""

𝜕𝑥0
〉 +	 〈𝑢1"𝑢2"------"" 𝜕𝑢>---

""

𝜕𝑥0
〉M	

−	L〈𝑢>" 𝑢2"------〉 〈
𝜕𝑢1D ""

𝜕𝑥0
〉 +	 〈𝑢1"𝑢2"------〉 〈

𝜕𝑢>---""

𝜕𝑥0
〉M −

1
𝛼,
L
𝑑𝛼,〈𝑢1"𝑤"𝑢>"---------〉

𝑑𝑧 M	

−
1
𝜌𝛼,

L
𝜕𝛼,〈𝑝"𝑢>"------〉

𝜕𝑥#
+	
𝜕𝛼,〈𝑝"𝑢1"------〉
𝜕𝑥>

M +	
1
𝜌 L

〈𝑝"
𝜕𝑢>"

𝜕𝑥1

--------
〉 +	〈𝑝"

𝜕𝑢1"

𝜕𝑥>
〉

----------
M	

 

 

 

 

 

 

 

 

(16) 
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−	
1
𝛼,
𝑑	𝛼,〈𝑢1"𝜏B>"ACA---------〉

𝑑𝑧 −	
1
𝛼,
𝑑	𝛼,〈𝑢>" 𝜏1B"ACA----------〉

𝑑𝑧 + 〈𝜏12"ACA
𝜕𝑢>"

𝜕𝑥2
	

-------------
〉 + 〈𝜏2>"ACA

𝜕𝑢1"

𝜕𝑥2
	

------------
〉. 

To facilitate our analysis, we group and name the terms as follows 709 

 
0 = −

1
𝛼,

𝑑𝛼, F𝑢1"𝑢>"------""𝑤D ""G

𝑑𝑧HIIIIIJIIIIIK
?$*
+

	− L〈𝑢>"𝑤"-------〉
𝑑〈𝑢1D〉
𝑑𝑧 + 〈𝑢1"𝑤"------〉

𝑑〈𝑢>---〉
𝑑𝑧 M

HIIIIIIIIIJIIIIIIIIIK
@$*
%

 

−L〈𝑢>" 𝑢2"------"" 𝜕𝑢1D
""

𝜕𝑥m
〉 +	〈𝑢1"𝑢2"------"" 𝜕𝑢>---

""

𝜕𝑥m
〉M

HIIIIIIIIIIJIIIIIIIIIIK
@$*
,

−	L〈𝑢>" 𝑢2"------〉 〈
𝜕𝑢1D ""

𝜕𝑥m
〉 +	〈𝑢1"𝑢2"------〉 〈

𝜕𝑢>---""

𝜕𝑥m
〉M

HIIIIIIIIIIJIIIIIIIIIIK
@$*
-

	

−
1
𝛼,
⎝

⎜
⎛𝑑𝛼,	〈𝑢1"𝑤"𝑢>"---------〉

𝑑𝑧HIIIJIIIK
?$*
.

+
1
𝜌 L

𝜕𝛼,〈𝑝"𝑢>"------〉
𝜕𝑥n

+	
𝜕𝛼,〈𝑝"𝑢1"------〉
𝜕𝑥>

M
HIIIIIIIIJIIIIIIIIK

?$*
)

⎠

⎟
⎞
 

	+	
1
𝜌 L
〈𝑝"

𝜕𝑢>"

𝜕𝑥1

--------
〉 +	〈𝑝"

𝜕𝑢1"

𝜕𝑥>
〉

----------
M

HIIIIIIIIJIIIIIIIIK
A@$*

−	
1
𝛼,
𝑑	𝛼,〈𝑢1"𝜏B>"ACA---------〉

𝑑𝑧 −	
1
𝛼,
𝑑	𝛼,〈𝑢>" 𝜏1B"ACA----------〉

𝑑𝑧HIIIIIIIIIIIIJIIIIIIIIIIIIK
D$*

 

+ 〈𝜏12"ACA
𝜕𝑢>"

𝜕𝑥2
	

-------------
〉 + 〈𝜏2>"ACA

𝜕𝑢1"

𝜕𝑥2
	

------------
〉

HIIIIIIIIJIIIIIIIIK
E$*

, 

 

 

 

 

 

 

 

 

(17) 

where 𝑃#>/  is the shear production term, 𝑃#>F is the wake (dispersive) production term,	𝑃#>G is 710 

the work of the temporally averaged velocity fluctuations against the shear production 711 

(given that 𝛼, varies with height, 𝑃#>G 	≠ 0, see Eq. 5), 𝑇#>:  is the turbulent transport term, 712 

𝑇#>=  is dispersive transport term, 𝑇#>
,  is the pressure transport term, 𝑆𝑃#>  is the pressure-713 

strain correlation, 𝐷#> is the SGS transport term and 𝜀#> is the dissipation term. From the 714 

budget equation for the Reynold stress tensor above, we can obtain the momentum flux 715 

〈𝑤′𝑢′------〉 and velocity variances budget equations.  716 

Similar steps can be followed to obtain the scalar flux budget equation as follows. The 717 

LES resolved 𝑢1"𝑠′----- budget equation is given as: 718 

 𝜕𝑢1"𝑠′-----

𝜕𝑡 + 𝑢2D
𝜕𝑢1"𝑠′-----

𝜕𝑥0
=	−𝑠′𝑢2"----- 𝜕𝑢1D

𝜕𝑥0
	− 𝑢1"𝑢2"------ 𝜕𝑠̅

𝜕𝑥0
−
𝜕𝑢1"𝑢2"𝑠′--------

𝜕𝑥0
 

 

 

(18) 
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−
1
𝜌 𝑠′

𝜕𝑝"

𝜕𝑥1

-------
−	𝑠′

∂𝜏12"SGS

𝜕𝑥2

-----------
	−	𝑢1"

∂𝜏/,2"SGS

𝜕𝑥2

-----------
, 

where 𝜏/,0"ACA =	−𝑘A
3/'

3*J
 is the SGS scalar flux and 𝑘A represents the scalar diffusivity. All 719 

terms in Eq. 18 have similar definitions to those in Eq. 10. On the left-hand side of Eq. 18, 720 

we have the local change and advection terms. On the right-hand side, there are two 721 

production terms, a transport term, a pressure gradient-scalar interaction term and two SGS 722 

terms. After some algebraic manipulation of the last two terms and writing the advection 723 

term in its flux form, we have 724 

 𝜕𝑢1"𝑠′-----

𝜕𝑡 +
𝜕𝑢2D 	𝑢1"𝑠′-----

𝜕𝑥0
=	−𝑠′𝑢2"----- 𝜕𝑢1D

𝜕𝑥0
	− 𝑢1"𝑢2"------ 𝜕𝑠̅

𝜕𝑥0
−
𝜕𝑢1"𝑢2"𝑠′--------

𝜕𝑥0
 

−
1
𝜌 𝑠′

𝜕𝑝"

𝜕𝑥1

-------
−

𝜕
𝜕𝑥0

î𝑠′𝜏12"SGS---------ï −
𝜕
𝜕𝑥0

î𝑢1"𝜏/,2"SGS---------ï + 𝜏12"SGS
𝜕𝑠′
𝜕𝑥2

	
------------

 

+	𝜏/,2"SGS
𝜕𝑢1"

𝜕𝑥2
	

------------
. 

 

 

(19) 

Applying the intrinsic spatial averaging to the above equation and following the rules in 725 

Eqs. 2 and 4, we have 726 

 𝜕〈𝑢1"𝑠"-----〉
𝜕𝑡 +	

1
𝛼,
𝜕𝛼,_𝑢2D 	𝑢1"𝑠"-----`

𝜕𝑥0
+
1
𝑉7𝑢2D 	𝑢1

"𝑠"-----	𝑛0 𝑑𝐴 

=	−L〈𝑠"𝑢2"-----〉
𝜕〈𝑢1D〉
𝜕𝑥0

+ 〈𝑢1"𝑢2"------〉
1
𝛼,
𝜕𝛼,〈𝑠̅〉
𝜕𝑥0

+ 〈𝑢1"𝑢2"------〉
1
𝑉7 𝑠̅	𝑛0 	 d𝐴M 

−L〈𝑠"𝑢2"-----"" 𝜕𝑢1D
""

𝜕𝑥0
〉 +	〈𝑢1"𝑢2"------"" 𝜕𝑠̅

""

𝜕𝑥0
〉M −	L〈𝑠"𝑢2"-----〉 〈

𝜕𝑢1D ""

𝜕𝑥0
〉 +	〈𝑢1"𝑢2"------〉 〈

𝜕𝑠̅""

𝜕𝑥0
〉M 

−
1
𝛼,
𝜕𝛼,〈𝑢1"𝑢2"𝑠"--------〉

𝜕𝑥0
−
1
𝑉7𝑢1

"𝑢2"𝑠"--------	𝑛0 	 d𝐴 −	
1
𝜌
〈𝑠"

𝜕𝑝"

𝜕𝑥1

-------
〉 −	

1
𝛼,
𝜕	𝛼,〈𝑠"𝜏12"SGS---------〉

𝜕𝑥0
 

−
1
𝑉7𝑠

"𝜏12"SGS---------	𝑛0 	 d𝐴 −	
1
𝛼,

𝜕	𝛼,〈𝑢1"𝜏/,2"SGS---------〉
𝜕𝑥0

	−
1
𝑉7𝑢1

"𝜏/,2"SGS---------	𝑛0 	 d𝐴 

+	〈𝜏12"SGS
𝜕𝑠′
𝜕𝑥2

	
------------

〉 +	〈𝜏/,2"SGS
𝜕𝑢1"

𝜕𝑥2
	

------------
〉. 

 

 

 

 

 

 

 

 

(20) 

We can further expand the advection term as  727 
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 1
𝛼,
𝜕𝛼,_𝑢2D 	𝑢1"𝑠′-----`

𝜕𝑥0
=
1
𝛼,
𝜕𝛼,_𝑢2D `〈𝑢1"𝑠′-----〉

𝜕𝑥0
+
1
𝛼,
𝜕𝛼,〈𝑢1"𝑠"-----""𝑢2D ""〉

𝜕𝑥0
	 

= _𝑢2D`
1
𝛼,
𝜕𝛼,〈𝑢1"𝑠′-----〉
𝜕𝑥0

+
1
𝛼,
𝜕𝛼,〈𝑢1"𝑠"-----""𝑢2D ""〉

𝜕𝑥0
. 

 

 

 

(21) 

Substituting into Eq. 20 gives 728 

 𝜕〈𝑢1"𝑠"-----〉
𝜕𝑡 +	_𝑢2D`

1
𝛼,
𝜕𝛼,〈𝑢1"𝑠"-----〉

𝜕𝑥0
+
1
𝛼,
𝜕𝛼,〈𝑢1"𝑠"-----""𝑢2D ""〉

𝜕𝑥0
+
1
𝑉7𝑢2D 	𝑢1

"𝑠"-----	𝑛0 	 d𝐴

= 	−L〈𝑠"𝑢2"-----〉
𝜕〈𝑢1D 〉
𝜕𝑥0

+ 〈𝑢1"𝑢2"------〉
1
𝛼,
𝜕𝛼,〈𝑠̅〉
𝜕𝑥0

+ 〈𝑢1"𝑢2"------〉
1
𝑉7 𝑠̅	𝑛0 	 d𝐴M 

−L〈𝑠"𝑢2"-----"" 𝜕𝑢1D
""

𝜕𝑥0
〉 +	〈𝑢1"𝑢2"------"" 𝜕𝑠̅

""

𝜕𝑥0
〉M −	L〈𝑠"𝑢2"-----〉 〈

𝜕𝑢1D ""

𝜕𝑥0
〉 +	〈𝑢1"𝑢2"------〉 〈

𝜕𝑠̅""

𝜕𝑥0
〉M 

−
1
𝛼,
𝜕𝛼,〈𝑢1"𝑢2"𝑠"--------〉

𝜕𝑥0
−
1
𝑉7𝑢1

"𝑢2"𝑠"--------	𝑛0 		 d𝐴 −	
1
𝜌
〈𝑠"

𝜕𝑝"

𝜕𝑥1

-------
〉 −	

1
𝛼,
𝜕	𝛼,〈𝑠"𝜏12"SGS---------〉

𝜕𝑥0
 

−
1
𝑉7𝑠

"𝜏12"SGS---------	𝑛0 		 d𝐴 −	
1
𝛼,

𝜕	𝛼,〈𝑢1"𝜏/,2"SGS---------〉
𝜕𝑥0

	−
1
𝑉7𝑢1

"𝜏/,2"SGS---------	𝑛0 		 d𝐴 

+	〈𝜏12"SGS
𝜕𝑠′
𝜕𝑥2

	
------------

〉 +	〈𝜏/,2"SGS
𝜕𝑢1"

𝜕𝑥2
	

------------
〉. 

 

 

 

 

 

(22) 

When we make further simplification to Eq. 22 by assuming horizontal homogeneity at 729 

scales beyond the spatial averaging scale, stationary conditions and no large-scale 730 

subsidence, we have 731 

 
0 = −

1
𝛼,
𝑑𝛼,_𝑢1"𝑠"-----""𝑤D ""`

𝑑𝑧 	−
1
𝑉7𝑢2D 	𝑢1

"𝑠′-----	𝑛0 	 𝑑𝐴	

−L〈𝑠"𝑤"------〉
𝑑〈𝑢1D 〉
𝑑𝑧 + 〈𝑢1"𝑤"------〉

1
𝛼,
𝑑𝛼,〈𝑠̅〉
𝑑𝑧 + 〈𝑢1"𝑢2"------〉

1
𝑉 7 𝑠̅	𝑛0 	 𝑑𝐴M	

−L〈𝑠"𝑢2"-----"" 𝜕𝑢1D
""

𝜕𝑥0
〉 +	〈𝑢1"𝑢2"------"" 𝜕𝑠̅

""

𝜕𝑥0
〉M −	L〈𝑠"𝑢2"-----〉 〈

𝜕𝑢1D ""

𝜕𝑥0
〉 +	〈𝑢1"𝑢2"------〉 〈

𝜕𝑠̅""

𝜕𝑥0
〉M	

−
1
𝛼,
L
𝑑𝛼,〈𝑢1"𝑤"𝑠"---------〉

𝑑𝑧 M −
1
𝑉7𝑢1

"𝑢2"𝑠"--------	𝑛0 		 𝑑𝐴 −	
1
𝜌
〈𝑠"

𝜕𝑝"

𝜕𝑥1

-------
〉 −	

1
𝛼,
𝑑	𝛼,〈𝑠"𝜏1B"ACA---------〉

𝑑𝑧 	

−
1
𝑉7𝑠

"𝜏12"ACA---------	𝑛0 	 𝑑𝐴 −	
1
𝛼,

𝑑	𝛼,〈𝑢1"𝜏/,B"ACA---------〉
𝑑𝑧 −

1
𝑉7𝑢1

"𝜏/,2"ACA---------	𝑛0 		 𝑑𝐴	

 

 

 

 

 

 

 

 

(23) 
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+	〈𝜏12"ACA
𝜕𝑠′
𝜕𝑥2

	
------------

〉 +	〈𝜏/,2"ACA
𝜕𝑢1"

𝜕𝑥2
	

------------
〉 .	

Focusing on the vertical scalar flux (namely, 𝑖 = 3 ) and noticing that ∫(𝑢2D 	𝑢1"𝑠′----- 	+732 

𝑤"𝑢2"𝑠"--------- 	+	𝑤"𝜏/,2"ACA----------	)	𝑛0 	 𝑑𝐴 = 0  because 𝑢0" = 𝑢-0 = 0  at the fluid-solid interface, the 733 

above equation becomes  734 

 
0 = −

1
𝛼,
𝑑𝛼,_𝑤"𝑠"------""𝑤D ""`

𝑑𝑧HIIIIIJIIIIIK
?23
+ 	

 

−L
1
𝛼,
〈𝑤"𝑤"-------〉

𝑑𝛼,〈𝑠̅〉
𝑑𝑧 M

HIIIIIIJIIIIIIK
@23
%

−L	 〈𝑢2"𝑠"-----"" 𝜕𝑤D
""

𝜕𝑥0
〉 + 〈𝑤"𝑢2"------"" 𝜕𝑠̅

""

𝜕𝑥0
〉M

HIIIIIIIIIJIIIIIIIIIK
@23
,

 

−	 L〈𝑠"𝑢2"-----〉 〈
𝜕𝑤D ""

𝜕𝑥0
〉 + 〈𝑤"𝑢2"------〉 〈

𝜕𝑠̅""

𝜕𝑥0
〉 	M

HIIIIIIIIIIJIIIIIIIIIIK
@23
-

−
1
𝛼,
𝑑𝛼,〈𝑤"𝑤"𝑠"---------〉

𝑑𝑧HIIIIIJIIIIIK
?23
.

−
1
𝜌
〈𝑠"

𝜕𝑝"

𝜕𝑧
〉

----------

HIIJIIK
@A

 

−	
1
𝛼,
𝑑	𝛼,〈𝑠"𝜏BB"ACA---------〉

𝑑𝑧 − 	
1
𝛼,

𝑑𝛼,	〈𝑤"𝜏/,B"ACA----------〉
𝑑𝑧 +	〈𝜏B2"ACA

𝜕𝑠"

𝜕𝑥2
	

------------
〉 +	〈𝜏/,2"ACA

𝜕𝑤"

𝜕𝑥2
	

-------------
〉

HIIIIIIIIIIIIIIIIIIIIIIJIIIIIIIIIIIIIIIIIIIIIIK
D23

		

−
1
𝑉 b7 𝑠

"𝜏B2"ACA---------		𝑛0 𝑑𝐴 + 〈𝑤"𝑢2"------〉 7 𝑠̅	𝑛0 	 𝑑𝐴c ,HIIIIIIIIIIIIIJIIIIIIIIIIIIIK
K23

 

 

 

 

 

 

 

 

(24) 

where the definitions for 𝑃AL/ , 𝑃ALF , 𝑃ALG , 𝑇AL:  and 𝑇AL=  are similar to those in Eq. 17. 𝑃𝑆 is the 735 

pressure gradient-scalar interaction and 𝐷AL  include the SGS terms; 𝜓AL  is the surface 736 

integral term that arises from the averaging theorem.  737 

The scalar variance budget equation can be obtained using similar steps. The LES 738 

resolved 𝑠"M---- budget equation is given as: 739 

 𝜕𝑠"M----

𝜕𝑡 + 𝑢2D
𝜕𝑠"M----

𝜕𝑥0
=	−2	𝑠′𝑢2"----- 𝜕𝑠̅

𝜕𝑥0
	−
𝜕𝑠"M𝑢2"-------

𝜕𝑥0
	− 	𝑠"

𝜕𝜏/,2"ACA

𝜕𝑥2

-----------
. 

 

(25) 

All terms in Eq. 25 have similar definitions to those in Eq. 10. The left-hand side of Eq. 25  740 

has the local change and advection terms while the right-hand side has the production term, 741 

transport term and SGS term. After some algebraic manipulation of the last term and 742 

writing the advection term in its flux form, we have 743 

 𝜕𝑠"M----

𝜕𝑡 +
𝜕𝑢2D 	𝑠"M----

𝜕𝑥0
=	−2	𝑠"𝑢2"----- 𝜕𝑠̅

𝜕𝑥0
	−
𝜕𝑠"M𝑢2"-------

𝜕𝑥0
−

𝜕
𝜕𝑥0

ò𝑠"𝜏/,2"ACA---------ô +	𝜏/,2"ACA
𝜕𝑠"

𝜕𝑥2
	

------------
. 

 

(26) 
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Applying the intrinsic spatial averaging to the above equation and following the rules in 744 

Eqs. 2 and 4, we have 745 

 𝜕〈𝑠"M----〉
𝜕𝑡 +	

1
𝛼,
𝜕𝛼,_𝑢2D 	𝑠"M----`

𝜕𝑥0
+
1
𝑉7𝑢2D 	𝑠

"M----	𝑛0 𝑑𝐴 

=	−2L〈𝑠"𝑢2"-----〉
1
𝛼,
𝜕𝛼,〈𝑠̅〉
𝜕𝑥0

+ 〈𝑠"𝑢2"-----〉
1
𝑉7 𝑠̅	𝑛0 	 d𝐴M − 2	

〈𝑠"𝑢2"-----"" 𝜕𝑠̅
""

𝜕𝑥0
〉 

−2		〈𝑠"𝑢2"-----〉 〈
𝜕𝑠̅""

𝜕𝑥0
〉 	−

1
𝛼,
𝜕𝛼,〈𝑠"M𝑢2"-------〉

𝜕𝑥0
−
1
𝑉7𝑠

"M𝑢2"-------	𝑛0 	 d𝐴 −	
1
𝛼,
𝜕	𝛼,〈𝑠"𝜏/,2"ACA---------〉

𝜕𝑥0
 

−
1
𝑉7𝑠

"𝜏/,2"ACA---------	𝑛0 	 d𝐴	 +	〈𝜏/,2"ACA
𝜕𝑠"

𝜕𝑥2
	

------------
〉. 

 

 

 

 

 

 

(27) 

We can further expand the advection term as  746 

 1
𝛼,
𝜕𝛼,_𝑢2D 	𝑠"M----`

𝜕𝑥0
=
1
𝛼,
𝜕𝛼,_𝑢2D `〈𝑠"M----〉

𝜕𝑥0
+
1
𝛼,
𝜕𝛼, 〈𝑠"M----

""
𝑢2D ""〉

𝜕𝑥0
	 

= _𝑢2D `
1
𝛼,
𝜕𝛼,〈𝑠"M----〉
𝜕𝑥0

+
1
𝛼,
𝜕𝛼, 〈𝑠"M----

""
𝑢2D ""〉

𝜕𝑥0
. 

 

 

 

(28) 

Substituting into Eq. 27 gives 747 

 𝜕〈𝑠"M----〉
𝜕𝑡 +	_𝑢2D`

1
𝛼,
𝜕𝛼,〈𝑠"M----〉
𝜕𝑥0

+
1
𝛼,
𝜕𝛼, 〈𝑠"M----

""
𝑢2D ""〉

𝜕𝑥0
+
1
𝑉7𝑢2D 	𝑠

"M----	𝑛0 	 d𝐴

= 	−2 L〈𝑠"𝑢2"-----〉
1
𝛼,
𝜕𝛼,〈𝑠̅〉
𝜕𝑥0

+ 〈𝑠"𝑢2"-----〉
1
𝑉7 𝑠̅	𝑛0 	 d𝐴M − 2	

〈𝑠"𝑢2"-----"" 𝜕𝑠̅
""

𝜕𝑥0
〉 

−2		〈𝑠"𝑢2"-----〉 〈
𝜕𝑠̅""

𝜕𝑥0
〉 	−

1
𝛼,
𝜕𝛼,〈𝑠"M𝑢2"-------〉

𝜕𝑥0
−
1
𝑉7𝑠

"M𝑢2"-------	𝑛0 	 d𝐴 −	
1
𝛼,
𝜕	𝛼,〈𝑠"𝜏/,2"ACA---------〉

𝜕𝑥0
 

−
1
𝑉7𝑠

"𝜏/,2"ACA---------	𝑛0 	 d𝐴	 +	〈𝜏/,2"ACA
𝜕𝑠"

𝜕𝑥2
	

------------
〉. 

 

 

 

 

 

(29) 

When we make further simplification to Eq. 29 by assuming horizontal homogeneity at 748 

scales beyond the spatial averaging scale, stationary conditions and no large-scale 749 

subsidence, we have 750 

 
0 = −

1
𝛼,

𝑑𝛼, F𝑠"M----
""
𝑤D ""G

𝑑𝑧 	−
1
𝑉7𝑢2D 	𝑠

"M----	𝑛0 	 𝑑𝐴	
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−2L〈𝑤′𝑠"------〉
1
𝛼,
𝑑𝛼,〈𝑠̅〉
𝑑𝑧 + 〈𝑠"𝑢2"-----〉

1
𝑉7 𝑠̅	𝑛0 	 𝑑𝐴M	

−2	 〈𝑠"𝑢2"-----"" 𝜕𝑠̅
""

𝜕𝑥0
〉 − 2		〈𝑠"𝑢2"-----〉 〈

𝜕𝑠̅""

𝜕𝑥0
〉 −

1
𝛼,
L
𝑑𝛼,〈𝑤"𝑠"M-------〉

𝑑𝑧 M −
1
𝑉7𝑠

"M𝑢2"-------	𝑛0 		 𝑑𝐴 

−	
1
𝛼,

𝑑	𝛼,〈𝑠"𝜏/,B"ACA---------〉
𝑑𝑧 −

1
𝑉7𝑠

"𝜏/,2"ACA---------	𝑛0 	 𝑑𝐴 +		 〈𝜏/,2"ACA
𝜕𝑠"

𝜕𝑥2
	

------------
〉. 

 

 

 

 

 

(30) 

Noticing that ∫(𝑢2D 	𝑠"M---- 	+ 𝑠"M𝑢2"-------	)	𝑛0 	 𝑑𝐴 = 0  because 𝑢0" = 𝑢-0 = 0  at the fluid-solid 751 

interface, the above equation becomes  752 

 
0 = −

1
𝛼,

𝑑𝛼, F𝑠"M----
""
𝑤D ""G

𝑑𝑧HIIIIIJIIIIIK
?24
+ 	

−2	〈𝑤′𝑠"------〉
1
𝛼,
𝑑𝛼,〈𝑠̅〉
𝑑𝑧HIIIIIJIIIIIK

@24
%

−2	 〈𝑠"𝑢2"-----"" 𝜕𝑠̅
""

𝜕𝑥0
〉

HIIIIJIIIIK
@24
,

 

−	2		〈𝑠"𝑢2"-----〉 〈
𝜕𝑠̅""

𝜕𝑥0
〉

HIIIIJIIIIK
@24
-

−
1
𝛼,
𝑑𝛼,〈𝑤"𝑠"M-------〉

𝑑𝑧HIIIIJIIIIK
?24
.

−	
1
𝛼,

𝑑𝛼,	〈𝑠"𝜏/,B"ACA---------〉
𝑑𝑧HIIIIIJIIIIIK

D24

+	〈𝜏/,2"ACA
𝜕𝑠"

𝜕𝑥2
	

------------
〉

HIIJIIK
E24

	 

−
1
𝑉 b7𝑠

"𝜏/,2"ACA---------	𝑛0 𝑑𝐴 + 2	〈𝑠"𝑢2"-----〉7 𝑠̅	𝑛0 	 𝑑𝐴c ,HIIIIIIIIIIIIIJIIIIIIIIIIIIIK
K24

 

 

 

 

 

 

 

 

(31) 

where the definitions for 𝑃A(/ , 𝑃A(F , 𝑃A(G , 𝑇A(: , 𝑇A(=  and 𝐷A( are similar to those in Eq. 17; 𝜀A( 753 

is the scalar dissipation term; 𝜓A( is the surface integral term that arises from the averaging 754 

theorem. 755 
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