

Diameter and displacement of sphere involutions

Renato G. Bettoli and Emilio A. Lauret

¹CUNY Lehman College and CUNY Graduate Center, New York, NY, USA

²Instituto de Matemática (INMABB), Departamento de Matemática,
Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina

Abstract. We show that spheres in all dimensions ≥ 3 can be deformed to have diameter larger than the distance between any pair of antipodal points. This answers a question of Yurii Nikonorov.

Keywords: Diameter, spherical join, cohomogeneity one spheres, Berger spheres.

2020 Mathematics Subject Classification: 51M16, 53C20,
53C30, 58C40.

1 Introduction

The diameter $\text{diam}(M, d)$ of a compact length space is the maximal distance between pairs of points in (M, d) ; if M is a manifold and $d = d_g$ is induced by a Riemannian metric g , we write $\text{diam}(M, g) = \text{diam}(M, d_g)$. For example, the round n -sphere of radius r has $\text{diam}(\mathbb{S}^n(r)) = \pi r$. Nikonorov [Ni01] proved the following:

Renato G. Bettoli is partially supported by the NSF CAREER grant DMS-2142575 and NSF grant DMS-1904342. E-mail: r.bettoli@lehman.cuny.edu

Emilio A. Lauret is partially supported by grants from FONCyT (PICT-2018-02073 and PICT-2019-01054) and SGCYT-UNS. E-mail: emilio.lauret@uns.edu.ar

Theorem 1.1 (Nikonorov). *If (M, d) is a length space homeomorphic to the sphere \mathbb{S}^2 and $I: M \rightarrow M$ is an isometric involution without fixed points, then there exists $x \in M$ such that $\text{diam}(M, d) = d(x, I(x))$.*

The above naturally leads to the following question [Ni01]:

Question 1 (Nikonorov). *Is there an analogue of Theorem 1.1 for length spaces homeomorphic to the sphere \mathbb{S}^n for some $n \geq 3$?*

Podobryaev [Po18b] observed that sufficiently collapsed Berger spheres provide a negative answer in dimension $n = 3$. In fact, this observation can be easily extended to all *odd* dimensions $n \geq 3$, considering the (homogeneous) spheres $(\mathbb{S}^{2q+1}, g(t))$ obtained scaling the unit round sphere by $t > 0$ in the vertical direction of the Hopf bundle $\mathbb{S}^1 \rightarrow \mathbb{S}^{2q+1} \rightarrow \mathbb{C}P^q$. For all $t > 0$, the projection onto $\mathbb{C}P^q$ remains a Riemannian submersion, hence $\text{diam}(\mathbb{S}^{2q+1}, g(t)) \geq \text{diam}(\mathbb{C}P^q) = \frac{\pi}{2}$. Meanwhile, pairs of antipodal points x and $I(x) = -x$ on $(\mathbb{S}^{2q+1}, g(t))$ are also antipodal points on the totally geodesic fiber $\mathbb{S}^1(t)$, and thus $d_{g(t)}(x, I(x)) \leq \pi t$. Therefore, $d_{g(t)}(x, I(x)) < \text{diam}(\mathbb{S}^{2q+1}, g(t))$ for all $t < \frac{1}{2}$. The latter actually holds for all $t < \frac{1}{\sqrt{2}}$ due to the explicit computation (3.1) of $\text{diam}(\mathbb{S}^{2q+1}, g(t))$ by Rakotoniaina [Ra85], recently rediscovered (in dimension 3) by Podobryaev [Po18a].

In this short note, we provide negative answers in *all* dimensions $n \geq 3$.

Our first construction involves the *spherical join* $\mathbb{S}^k(r) * \mathbb{S}^{n-k-1}(r)$, $1 \leq k \leq n-2$, of spheres of radius $0 < r < \frac{1}{2}$, which is a length space (in fact, an Alexandrov space) with diameter $\frac{\pi}{2}$ and which is homeomorphic to \mathbb{S}^n , see [GP93, p. 582] or [BH99, p. 63] for details and definitions. Every point in $\mathbb{S}^k(r) * \mathbb{S}^{n-k-1}(r) \setminus (\mathbb{S}^k(r) \cup \mathbb{S}^{n-k-1}(r))$ can be identified via coordinates (x, ρ, y) , where $x \in \mathbb{S}^k(r)$, $y \in \mathbb{S}^{n-k-1}(r)$, and $\rho \in (0, \frac{\pi}{2})$. There is a natural isometric action of $\text{SO}(k+1) \times \text{SO}(n-k)$ given by $(A, B) \cdot (x, \rho, y) = (Ax, \rho, By)$, whose orbits have diameter $\pi r < \frac{\pi}{2}$, since

(see, e.g., [BH99, p. 63]),

$$\begin{aligned} d_{\text{join}}^{\text{sph}}((x_1, \rho, y_1), (x_2, \rho, y_2)) &= \arccos(\cos^2 \rho \cos(d(x_1, x_2)) \\ &\quad + \sin^2 \rho \cos(d(y_1, y_2))), \end{aligned}$$

which is bounded from above by $\max\{d(x_1, x_2), d(y_1, y_2)\} \leq \pi r$, where d is used for distances in $\mathbb{S}^k(r)$ and $\mathbb{S}^{n-k-1}(r)$. The involution $I(x, \rho, y) = (-x, \rho, -y)$ induced by the antipodal maps of each sphere is an isometry without fixed points, and corresponds to the antipodal map of \mathbb{S}^n under the above homeomorphism. Since I commutes with the $\text{SO}(k+1) \times \text{SO}(n-k)$ -action, it leaves invariant each orbit, and thus its maximal displacement is $\pi r < \frac{\pi}{2}$. Therefore, $\mathbb{S}^k(r) * \mathbb{S}^{n-k-1}(r)$, with $1 \leq k \leq n-2$ and $0 < r < \frac{1}{2}$, yields a negative answer to Question 1 for all $n \geq 3$.

The spherical join $\mathbb{S}^k(r) * \mathbb{S}^{n-k-1}(r)$ is a smooth Riemannian manifold if and only if $r = 1$, in which case it is isometric to $\mathbb{S}^n(1)$. However, inspired by this construction, we can also produce *smooth* counter-examples to Question 1, as follows:

THEOREM. For all $n \geq 3$, there is a family of smooth Riemannian metrics $(g_s)_{s \geq 0}$ on \mathbb{S}^n , such that g_0 is the unit round metric, $\text{diam}(\mathbb{S}^n, g_s) \geq \frac{\pi}{2}$, and the antipodal map $I(x) = -x$ is an isometry of (\mathbb{S}^n, g_s) satisfying $d_{g_s}(x, I(x)) \leq \frac{\pi}{\sqrt{1+\frac{s}{2}}}$ for all $x \in \mathbb{S}^n$.

Clearly, for $s > 6$, the spheres (\mathbb{S}^n, g_s) provide a negative answer to Question 1 in all dimensions $n \geq 3$. These spheres are Cheeger deformations of $\mathbb{S}^n(1) \subset \mathbb{R}^{n+1}$ with respect to the block diagonal subgroup of isometries $\text{SO}(k+1) \times \text{SO}(n-k)$ in $\text{SO}(n+1)$, with $1 \leq k \leq n-2$. In particular, they are cohomogeneity one manifolds with geometric features similar to $\mathbb{S}^k(r) * \mathbb{S}^{n-k-1}(r)$; e.g., both are positively curved and converge in Gromov–Hausdorff sense to $[0, \frac{\pi}{2}]$ as $s \nearrow +\infty$, respectively $r \searrow 0$. In fact, the unifying feature of all constructions in this note is that they are spheres with a distance-nonincreasing map onto $[0, \frac{\pi}{2}]$ whose fibers are invariant under the antipodal map and can be deformed to have arbitrarily small intrinsic diameter.

2 Main construction

Let $\mathbf{G} = \mathrm{SO}(k+1) \times \mathrm{SO}(n-k) \subset \mathrm{SO}(n+1)$ be the subgroup of block diagonal matrices that act on $\mathbb{R}^{n+1} = \mathbb{R}^{k+1} \oplus \mathbb{R}^{n-k}$ preserving this orthogonal splitting. Clearly, \mathbf{G} acts on the unit sphere $\mathbb{S}^n(1) \subset \mathbb{R}^{n+1}$, and the unit speed geodesic $\gamma: [0, \frac{\pi}{2}] \rightarrow \mathbb{S}^n(1)$, given by $\gamma(\rho) = \cos \rho e_1 + \sin \rho e_{n+1}$, where $\{e_j\}$ is the canonical basis of \mathbb{R}^{n+1} , meets all \mathbf{G} -orbits in $\mathbb{S}^n(1)$ orthogonally. The orbits $\mathbf{G}(\gamma(0)) \cong \mathbb{S}^k(1) \times \{0\}$ and $\mathbf{G}(\gamma(\frac{\pi}{2})) \cong \{0\} \times \mathbb{S}^{n-k-1}(1)$ are singular orbits; all the other orbits $\mathbf{G}(\gamma(\rho)) \cong \mathbb{S}^k(\cos \rho) \times \mathbb{S}^{n-k-1}(\sin \rho)$, $0 < \rho < \frac{\pi}{2}$, are principal orbits. Using this framework, we may define \mathbf{G} -invariant metrics on \mathbb{S}^n by specifying their values on the (open and dense) subset of principal points as the doubly warped product

$$g = d\rho^2 + \varphi(\rho)^2 g_{\mathbb{S}^k} + \psi(\rho)^2 g_{\mathbb{S}^{n-k-1}}, \quad 0 < \rho < \frac{\pi}{2}, \quad (2.1)$$

where φ and ψ are positive functions satisfying appropriate smoothness conditions at $\rho = 0$ and $\rho = \frac{\pi}{2}$, and $g_{\mathbb{S}^d}$ is the unit round metric on \mathbb{S}^d . Cohomogeneity one metrics of the form (2.1) are called *diagonal*. For example, the unit round metric $g_0 = g_{\mathbb{S}^n}$ is of the above form, with functions $\varphi_0(\rho) = \cos \rho$ and $\psi_0(\rho) = \sin \rho$.

The *Cheeger deformation* of g_0 is the 1-parameter family g_s , $s \geq 0$, of diagonal cohomogeneity one metrics (2.1) determined by the functions

$$\varphi_s(\rho) = \frac{\cos \rho}{\sqrt{1 + s \cos^2 \rho}} \quad \text{and} \quad \psi_s(\rho) = \frac{\sin \rho}{\sqrt{1 + s \sin^2 \rho}}, \quad (2.2)$$

see [AB15, Ex 6.46]. For all $s \geq 0$, the metric g_s is C^∞ smooth and \mathbf{G} -invariant, the orbit space of the \mathbf{G} -action on (\mathbb{S}^n, g_s) is $\mathbb{S}^n/\mathbf{G} = [0, \frac{\pi}{2}]$, and γ remains a unit speed geodesic orthogonal to all \mathbf{G} -orbits. As the projection $\mathbb{S}^n \rightarrow \mathbb{S}^n/\mathbf{G}$ is distance-nonincreasing, we have

$$\mathrm{diam}(\mathbb{S}^n, g_s) \geq \frac{\pi}{2}, \quad \text{for all } s \geq 0. \quad (2.3)$$

Moreover, (\mathbb{S}^n, g_s) has $\mathrm{sec} \geq 0$ for all $s \geq 0$, and it converges in Gromov–Hausdorff sense to $\mathbb{S}^n/\mathbf{G} = [0, \frac{\pi}{2}]$ as $s \nearrow +\infty$.

The G -orbits in (\mathbb{S}^n, g) , where g is the cohomogeneity one diagonal metric (2.1), are isometric to the product $\mathsf{G}(\gamma(\rho)) = \mathbb{S}^k(\varphi(\rho)) \times \mathbb{S}^{n-k-1}(\psi(\rho))$ of round spheres of radii $\varphi(\rho)$ and $\psi(\rho)$. Thus, the distance between any $x, y \in \mathsf{G}(\gamma(\rho))$ is

$$\begin{aligned} d_g(x, y) &\leq \text{diam}(\mathsf{G}(\gamma(\rho)), g) \\ &= \sqrt{\text{diam}(\mathbb{S}^k(\varphi(\rho)))^2 + \text{diam}(\mathbb{S}^{n-k-1}(\psi(\rho)))^2} = \pi \sqrt{\varphi(\rho)^2 + \psi(\rho)^2}. \end{aligned}$$

Setting φ and ψ to be the functions in (2.2), one easily checks that the maximum value of the above is achieved at $\rho = \frac{\pi}{4}$ for all $s \geq 0$, and is equal to $\frac{\pi}{\sqrt{1+\frac{s}{2}}}$.

The antipodal map $I: \mathbb{S}^n \rightarrow \mathbb{S}^n$, which acts as $I = -\text{Id} \in \text{O}(n+1)$, commutes with the G -action on (\mathbb{S}^n, g_s) , thus I leaves invariant all G -orbits. In fact, I restricts to the antipodal map on each sphere factor in $\mathsf{G}(\gamma(\rho))$, $\rho \in [0, \frac{\pi}{2}]$. Thus, the displacement of I on (\mathbb{S}^n, g_s) satisfies

$$d_{g_s}(x, I(x)) \leq \max_{\rho \in [0, \frac{\pi}{2}]} \text{diam}(\mathsf{G}(\gamma(\rho)), g_s) = \frac{\pi}{\sqrt{1+\frac{s}{2}}}.$$

Together with (2.3), this proves the Theorem in the Introduction. \square

Remark 2.1. Not all G -invariant metrics on \mathbb{S}^n are diagonal, i.e., of the form (2.1), if n is odd. For instance, let $n = 3$ and $k = 1$. For all $t \neq 1$, the isometry group of the Berger sphere $(\mathbb{S}^3, g(t))$ is $\text{U}(2) \subset \text{SO}(4)$, which contains $\mathsf{G} = \text{SO}(2) \times \text{SO}(2)$, so $g(t)$ is G -invariant. However, $g(t)$ is not of the form (2.1) if $t \neq 1$. Indeed, principal G -orbits in $(\mathbb{S}^3, g(t))$ are isometric to flat 2-tori $(\mathsf{G}(\gamma(\rho)), g(t)) \cong \mathbb{R}^2/\Gamma_{(\rho, t)}$ and none of the lattices $\Gamma_{(\rho, t)}$ are rectangular if $t \neq 1$. Meanwhile, principal G -orbits in (\mathbb{S}^3, g) , with g as in (2.1), are rectangular flat tori $(\mathsf{G}(\gamma(\rho)), g) \cong \mathbb{R}^2/2\pi\varphi(\rho)\mathbb{Z} \oplus 2\pi\psi(\rho)\mathbb{Z}$.

3 Final remarks

3.1 Berger spheres

Let us expand on our discussion of the spheres $(\mathbb{S}^{2q+1}, g(t))$, whose Hopf circles are closed geodesics of length $2\pi t$. According to [Ra85, Po18a],

$$\text{diam}(\mathbb{S}^{2q+1}, g(t)) = \begin{cases} \frac{\pi}{2\sqrt{1-t^2}}, & \text{if } 0 < t \leq \frac{1}{\sqrt{2}}, \\ \pi t, & \text{if } \frac{1}{\sqrt{2}} < t \leq 1, \\ \pi, & \text{if } 1 < t. \end{cases} \quad (3.1)$$

As pairs of antipodal points x and $I(x)$ are joined by half of the Hopf circle to which they belong, $d_{g(t)}(x, I(x)) \leq \pi t < \text{diam}(\mathbb{S}^{2q+1}, g(t))$ for all $t < \frac{1}{\sqrt{2}}$, see Figure 3.1.

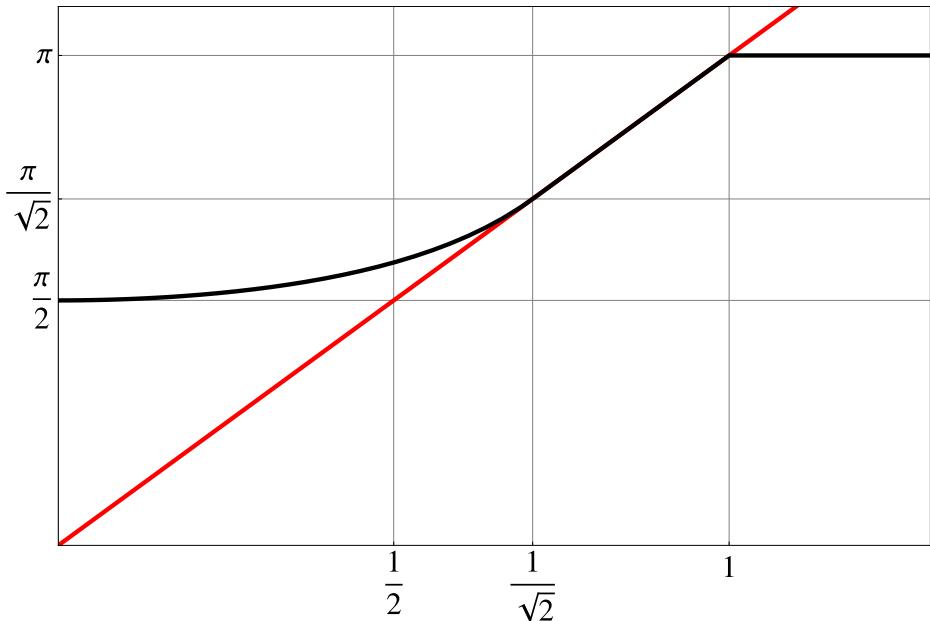


Figure 3.1: Diameter (black) and half length of Hopf circle (red) in $(\mathbb{S}^{2q+1}, g(t))$.

A similar situation occurs on the Berger spheres $(\mathbb{S}^{4q+3}, h(t))$ and $(\mathbb{S}^{15}, k(t))$ obtained by scaling the unit round sphere by $t > 0$ in the vertical direction of the Hopf bundles $\mathbb{S}^3 \rightarrow \mathbb{S}^{4q+3} \rightarrow \mathbb{H}P^q$ and $\mathbb{S}^7 \rightarrow \mathbb{S}^{15} \rightarrow \mathbb{S}^8(\frac{1}{2})$, respectively. Namely, for all $t > 0$, the projection map of these bundles remains a Riemannian submersion, and thus $\text{diam}(\mathbb{S}^{4q+3}, h(t)) \geq \text{diam}(\mathbb{H}P^q) = \frac{\pi}{2}$ and $\text{diam}(\mathbb{S}^{15}, k(t)) \geq \text{diam}(\mathbb{S}^8(\frac{1}{2})) = \frac{\pi}{2}$. Pairs of antipodal points belong to the same Hopf circle, hence to the same (totally geodesic) fiber, which is isometric to $\mathbb{S}^3(t)$ or $\mathbb{S}^7(t)$, so $d_{g(t)}(x, I(x)) \leq \pi t$. Thus, for sufficiently small $t > 0$, these spheres also provide a negative answer to Question 1.

3.2 First Laplace eigenvalue

Spectral geometry provides an alternative path to show that Berger spheres yield a negative answer to Question 1, by considering

$$g \longmapsto \lambda_1(M, g) \text{ diam}(M, g)^2,$$

where $\lambda_1(M, g)$ is the smallest positive eigenvalue of the Laplace–Beltrami operator. This scale-invariant functional is bounded from below by $\frac{\pi^2}{4}$ on compact connected homogeneous spaces [Li80]. Moreover, one has that $\lambda_1(\mathbb{S}^{2q+1}, g(t)) \leq 4(q+1)$ for all $t > 0$, since

$$\lambda_1(\mathbb{S}^{2q+1}, g(t)) = \min \left\{ 4(q+1), 2q + \frac{1}{t^2} \right\} = \begin{cases} 4(q+1), & \text{if } t \leq \frac{1}{\sqrt{2q+4}}, \\ 2q + \frac{1}{t^2}, & \text{if } t \geq \frac{1}{\sqrt{2q+4}}, \end{cases}$$

see [BP13, Prop. 5.3]. Similar upper bounds on λ_1 for $(\mathbb{S}^{4q+3}, h(t))$ and $(\mathbb{S}^{15}, k(t))$ can be obtained from [BLP22]. This yields a positive diameter lower bound, independent of $t > 0$, that could be used in lieu of the exact value (3.1) for $(\mathbb{S}^{2q+1}, g(t))$ or of the submersion lower bound $\frac{\pi}{2}$ in general. However, this spectral lower bound on the diameter is weaker than the latter, and becomes arbitrarily small as $q \nearrow +\infty$.

Acknowledgements

This paper is a contribution to the special issue “TYAN Virtual Thematic Workshop in Mathematics” of *Matemática Contemporânea*. We thank the organizers for the invitation and their excellent job. We would also like to thank Alberto Rodríguez-Vázquez for discussions about Berger spheres and for informing us of the paper [Ra85], Yurii Nikonorov for bringing Question 1 to our attention and for useful comments on a first draft of the paper, and the anonymous referee for thoughtful suggestions to improve the presentation.

References

- [AB15] M. M. ALEXANDRINO AND R. G. BETTIOL. *Lie groups and geometric aspects of isometric actions*. Springer, Cham, 2015. DOI: [10.1007/978-3-319-16613-1](https://doi.org/10.1007/978-3-319-16613-1).
- [BP13] R. G. BETTIOL, P. PICCIONE. *Bifurcation and local rigidity of homogeneous solutions to the Yamabe problem on spheres*. Calc. Var. Partial Differential Equations **47**:3–4 (2013), 789–807. DOI: [10.1007/s00526-012-0535-y](https://doi.org/10.1007/s00526-012-0535-y).
- [BLP22] R. G. BETTIOL, E. A. LAURET, P. PICCIONE. *The first eigenvalue of a homogeneous CROSS*. J. Geom. Anal. **32** (2022), 76. DOI: [10.1007/s12220-021-00826-7](https://doi.org/10.1007/s12220-021-00826-7).
- [BH99] M. BRIDSON, A. HAEFLIGER. *Metric spaces of non-positive curvature*. Grundlehren Math. Wiss., 319. Springer-Verlag (1999). DOI: [10.1007/978-3-662-12494-9](https://doi.org/10.1007/978-3-662-12494-9).
- [GP93] K. GROVE, P. PETERSEN. *A radius sphere theorem*. Invent. Math. **112**:3 (1993), 577–583. DOI: [10.1007/BF01232447](https://doi.org/10.1007/BF01232447).

[Li80] P. LI. *Eigenvalue estimates on homogeneous manifolds.* Comment. Math. Helvetici **55** (1980), 347–363. DOI: [10.1007/BF02566692](https://doi.org/10.1007/BF02566692).

[Ni01] YU. G. NIKONOROV. *On the geodesic diameter of surfaces possessing an involutory isometry* (Russian). Tr. Rubtsovsk. Ind. Inst. **9** (2001), 62–65. English translation: [arXiv:1811.01173](https://arxiv.org/abs/1811.01173).

[Po18a] A. V. PODOBRYAEV. *Diameter of the Berger Sphere.* Math. Notes **103**:5–6 (2018), 846–851. DOI: [10.1134/S0001434618050188](https://doi.org/10.1134/S0001434618050188).

[Po18b] A. V. PODOBRYAEV. *Antipodal points and diameter of a sphere.* Russ. J. Nonlinear Dyn. **14**:4 (2018), 579–581. DOI: [10.20537/nd180410](https://doi.org/10.20537/nd180410).

[Ra85] C. RAKOTONIAINA. *Cut locus of the B-spheres.* Ann. Global Anal. Geom. **3**:3 (1985), 313–327. DOI: [10.1007/BF00130483](https://doi.org/10.1007/BF00130483).