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Abstract. We show that spheres in all dimensions > 3 can be
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of antipodal points. This answers a question of Yurii Nikonorov.
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1 Introduction

The diameter diam(M,d) of a compact length space is the maximal
distance between pairs of points in (M, d); if M is a manifold and d = d,
is induced by a Riemannian metric g, we write diam(M, g) = diam(M, dg).
For example, the round n-sphere of radius r has diam($"(r)) = nr.

Nikonorov [Ni01] proved the following:
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Theorem 1.1 (Nikonorov). If (M,d) is a length space homeomorphic to
the sphere 8% and I: M — M is an isometric involution without fired
points, then there exists x € M such that diam(M,d) = d(z, I(z)).

The above naturally leads to the following question [Ni0O1]:

Question 1 (Nikonorov). Is there an analogue of Theorem 1.1 for length

spaces homeomorphic to the sphere 8™ for some n > 37

Podobryaev [Po18b| observed that sufficiently collapsed Berger spheres
provide a negative answer in dimension n = 3. In fact, this observation
can be easily extended to all odd dimensions n > 3, considering the (ho-
mogeneous) spheres ($2911 g(¢)) obtained scaling the unit round sphere
by t > 0 in the vertical direction of the Hopf bundle $' — $29t1 — CPY.
For all ¢ > 0, the projection onto CP? remains a Riemannian submer-
sion, hence diam($27™!, g(t)) > diam(CP?) = 5. Meanwhile, pairs of
antipodal points z and I(z) = —x on ($?¢*! g(¢)) are also antipodal
points on the totally geodesic fiber §'(¢), and thus dy(z,1(z)) < mt.
Therefore, dgy(z,1(z)) < diam($2¢+! g(t)) for all ¢ < 1. The latter
actually holds for all ¢ < % due to the explicit computation (3.1) of
diam (%2911 g(¢)) by Rakotoniaina [Ra85], recently rediscovered (in dimen-
sion 3) by Podobryaev [Pol8a).

In this short note, we provide negative answers in all dimensions n > 3.

Our first construction involves the spherical join $F(r) * $"*=1(r),
1 <k <n—2, of spheres of radius 0 < r < %, which is a length space (in
fact, an Alexandrov space) with diameter § and which is homeomorphic
to 8", see |GP93, p. 582] or [BH99, p. 63] for details and definitions.
Every point in $¥(r) * $77%=1(r) \ ($*(r) U $"*~1(r)) can be identified
via coordinates (z, p,y), where = € $¥(r), y € $"*~1(r), and p € (0, %).
There is a natural isometric action of SO(k 4+ 1) x SO(n — k) given by

(A,B) - (z,p,y) = (Az, p, By), whose orbits have diameter 71 < 7, since
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(see, e.g., [BHI9, p. 63]),

d;é)i};((ﬂ«"h ps 1), (2, p, y2)) = arccos(cos” p cos(d(x1, 72))

+ Sin2 P COS(d(yl') y2)))7

which is bounded from above by max{d(z1,z2),d(y1,y2)} < 7r, where d
is used for distances in $¥(r) and $"*~1(r). The involution I(z, p,y) =
(—x, p, —y) induced by the antipodal maps of each sphere is an isometry
without fixed points, and corresponds to the antipodal map of $” under the
above homeomorphism. Since I commutes with the SO(k+1) x SO(n—k)-
action, it leaves invariant each orbit, and thus its maximal displacement is
mr < Z. Therefore, $¥(r) * $"*"1(r), with 1 <k <n—2and 0 <r < %,
yields a negative answer to Question 1 for all n > 3.

The spherical join $¥(7)*$"*~1(r) is a smooth Riemannian manifold if
and only if » = 1, in which case it is isometric to $”(1). However, inspired
by this construction, we can also produce smooth counter-examples to

Question 1, as follows:

THEOREM. For all n > 3, there is a family of smooth Riemannian metrics
(gs)s>0 on 8", such that go is the unit round metric, diam($",gs) > 7,
and the antipodal map I(z) = —z is an isometry of (3", gs) satisfying
dg, (z,I(z)) < %= for all z € §".

Clearly, for s > 6, the spheres ($",gs) provide a negative answer to

Question 1 in all dimensions n > 3. These spheres are Cheeger defor-

mations of $7(1) C R™™! with respect to the block diagonal subgroup of

isometries SO(k 4+ 1) x SO(n — k) in SO(n + 1), with 1 <k <n—2. In

particular, they are cohomogeneity one manifolds with geometric features

similar to $%(r) * $""*~1(r); e.g., both are positively curved and converge
T

in Gromov—Hausdorff sense to [0, 5] as s /' 400, respectively r N\, 0. In

fact, the unifying feature of all constructions in this note is that they are
)
variant under the antipodal map and can be deformed to have arbitrarily

spheres with a distance-nonincreasing map onto [0 ] whose fibers are in-

small intrinsic diameter.
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2 Main construction

Let G = SO(k + 1) x SO(n — k) C SO(n + 1) be the subgroup of
block diagonal matrices that act on R**!1 = R¥*1 @ R"* preserving this
orthogonal splitting. Clearly, G acts on the unit sphere $7(1) ¢ R"*!,
and the unit speed geodesic : [0, g] — $"(1), given by v(p) = cospej +
sin p en11, where {e;} is the canonical basis of R"*!, meets all G-orbits in
$"(1) orthogonally. The orbits G(v(0)) = $*(1)x {0} and G(v(%)) = {0} x
§"~k=1(1) are singular orbits; all the other orbits G(v(p)) = $*(cos p) x
$n—F=1(sinp), 0 < p < 3, are principal orbits. Using this framework,
we may define G-invariant metrics on $" by specifying their values on the

(open and dense) subset of principal points as the doubly warped product

g=dp* +o(p)® ggr + ¥(p)? ggnr-1, 0<p<Z, (21)

where ¢ and 1 are positive functions satisfying appropriate smoothness
conditions at p = 0 and p = 7, and gga is the unit round metric on s,
Cohomogeneity one metrics of the form (2.1) are called diagonal. For ex-
ample, the unit round metric gy = ggn is of the above form, with functions
@o(p) = cos p and 9o (p) = sin p.

The Cheeger deformation of gg is the 1-parameter family g,, s > 0, of

diagonal cohomogeneity one metrics (2.1) determined by the functions

cos p sin p
ps(p) = ———== N Er
v/ 1+ scos®p v 1+ ssin®p

see [AB15, Ex 6.46]. For all s > 0, the metric g; is C°° smooth and
G-invariant, the orbit space of the G-action on (3", g;) is $"/G = [0, %],

and v remains a unit speed geodesic orthogonal to all G-orbits. As the

and  Ys(p) = (2.2)

projection $"” — $"/G is distance-nonincreasing, we have
diam(S", gs) > 7, for all s > 0. (2.3)

Moreover, ($",gs) has sec > 0 for all s > 0, and it converges in Gromov—

Hausdorff sense to $"/G = [O, g] as s /' 4o0.
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The G-orbits in ($”, g), where g is the cohomogeneity one diagonal met-
ric (2.1), are isometric to the product G(y(p)) = $*(¢(p)) x S *~1(x)(p))
of round spheres of radii ¢(p) and 1 (p). Thus, the distance between any

z,y € G(y(p)) is

dg(z,y) < diam(G(v(p)), g)
= \/difsmn(S’“(sO(p)))2 + diam($"~*1(1(p)))? = T/ @(p)? + ¥ (p)*.

Setting ¢ and 1 to be the functions in (2.2), one easily checks that the

maximum value of the above is achieved at p = 7 for all s > 0, and is

™
The antipodal map I: $" — $”, which acts as [ = —Id € O(n + 1),

commutes with the G-action on (3", gs), thus I leaves invariant all G-orbits.

equal to

In fact, I restricts to the antipodal map on each sphere factor in G(v(p)),
pE [0, %] Thus, the displacement of I on ($", gs) satisfies

dg, (z, I(z)) < pérfg%] diam(G(v(p)), 8s) = 7+

N|w

Together with (2.3), this proves the Theorem in the Introduction. O

Remark 2.1. Not all G-invariant metrics on $” are diagonal, i.e., of the
form (2.1), if n is odd. For instance, let n = 3 and k = 1. For all ¢ # 1,
the isometry group of the Berger sphere ($3,g(t)) is U(2) C SO(4), which
contains G = SO(2) x SO(2), so g(t) is G-invariant. However, g(t) is not of
the form (2.1) if ¢ # 1. Indeed, principal G-orbits in ($3, g(¢)) are isometric
to flat 2-tori (G(v(p)), g(t)) = R?/T,;) and none of the lattices I'(,; are
rectangular if ¢ # 1. Meanwhile, principal G-orbits in ($3,g), with g as in
(2.1), are rectangular flat tori (G(v(p)),g) = R?/27¢(p)Z @ 27 (p)Z.
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3 Final remarks

3.1 Berger spheres

Let us expand on our discussion of the spheres ($24*1, g(t)), whose Hopf
circles are closed geodesics of length 27 ¢. According to [Ra85, Pol8a],

™

- ; 1
Wipr=i 1f0<t§\/§,
diam (82911 g(t)) = L 3.1
iam (8201, g(t)) = { 7+, it <t (3.1)
m, if 1 <t

As pairs of antipodal points z and I(z) are joined by half of the Hopf
circle to which they belong, dy(y(z, I(z)) < 7t < diam (8?7, g(t)) for all
t< %, see Figure 3.1.

N

ORI §I|>‘

Figure 3.1: Diameter (black) and half length of Hopf circle (red) in
(S2q+17g(t))‘
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A similar situation occurs on the Berger spheres ($%*3 h(t)) and
($1°, k(t)) obtained by scaling the unit round sphere by ¢ > 0 in the vertical
direction of the Hopf bundles $2 — $%3 — HP? and §7 — $'° — SB(%),
respectively. Namely, for all ¢ > 0, the projection map of these bun-
dles remains a Riemannian submersion, and thus diam($%9+3 h(t)) >
diam(HP?) = Z and diam($'% k(t)) > diam($®(3)) = 3. Pairs of an-
tipodal points belong to the same Hopf circle, hence to the same (totally
geodesic) fiber, which is isometric to $2(t) or $7(t), so dg (z, I(x)) < t.
Thus, for sufficiently small ¢ > 0, these spheres also provide a negative

answer to Question 1.

3.2 First Laplace eigenvalue

Spectral geometry provides an alternative path to show that Berger

spheres yield a negative answer to Question 1, by considering
g >\1(Ma g) dlam(M7 g)Qa

where A\ (M, g) is the smallest positive eigenvalue of the Laplace—Beltrami
operator. This scale-invariant functional is bounded from below by %2 on
compact connected homogeneous spaces [Li80]. Moreover, one has that
A1 (8291 o(t)) < 4(g+ 1) for all t > 0, since

A (8%t g(t)) =min {4(g + 1), 2+ 5} =
2q—|—t%, ift> L

see [BP13, Prop. 5.3]. Similar upper bounds on A\; for ($**3 h(t)) and
(12 k(t)) can be obtained from [BLP22]. This yields a positive diameter
lower bound, independent of ¢ > 0, that could be used in lieu of the exact
value (3.1) for ($%¢*1, g(t)) or of the submersion lower bound 3 in general.
However, this spectral lower bound on the diameter is weaker than the

latter, and becomes arbitrarily small as ¢ 7 4oc.
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