NONPLANAR MINIMAL SPHERES
IN ELLIPSOIDS OF REVOLUTION

RENATO G. BETTIOL AND PAOLO PICCIONE

ABSTRACT. We use global bifurcation techniques to establish the existence of
arbitrarily many geometrically distinct nonplanar embedded smooth minimal
2-spheres in sufficiently elongated 3-dimensional ellipsoids of revolution. More
precisely, we quantify the growth rate of the number of such minimal spheres,
and describe their asymptotic behavior as the ellipsoids converge to a cylinder.

1. INTRODUCTION

Consider 3-dimensional ellipsoids in R* with semiaxes a, b, ¢, d, given by:

b2 d?
The reflection about a coordinate hyperplane x; = 0 is an isometry of E(a, b, ¢, d), so
its fixed point set X;(a) := E(a, b, ¢,d)N{z; = 0} is a totally geodesic (in particular,
minimal) 2-sphere. Henceforth, we refer to these as planar minimal 2-spheres.
The following problem was proposed by Yau [Yau87, p. 127]:

x? 22 22 2l
(1.1) E(a,b,c,d)::{(ml,xg,xg,x4)€IR4:a;—i—2—1—0;’4—4:1}.

PROBLEM (Yau, 1987). Are all minimal 2-spheres in E(a, b, c,d) planar?

Let us mention two motivations for this problem. First, a well-known theorem
of Almgren [Alm66] implies an affirmative answer if @ = b = ¢ = d. Second, by the
solution to Smale’s Conjecture [Hat83, BK19], the space of embedded 2-spheres in
53 deformation retracts onto RP?; so, heuristically applying Morse theory to the
area functional on this space, one expects at least 4 embedded minimal 2-spheres in
any Riemannian manifold diffeomorphic to S3. Under that expectation, in analogy
with 2-dimensional ellipsoids in R? with distinct semiaxes having the least possible
number of simple closed geodesics, Yau’s problem asks whether E(a,b, ¢, d) has the
least possible number of minimal 2-spheres, if the semiaxes are all distinct.

A negative answer to Yau’s problem for sufficiently elongated ellipsoids was given
by Haslhofer and Ketover [HK19, Thm 1.5]. Namely, using Min-Max Theory and
Mean Curvature Flow, they established the existence of at least one nonplanar
embedded minimal 2-sphere in E(a, b, ¢, d), provided a is sufficiently large, for fixed
b, ¢, d. Our main results refine this negative answer under a symmetry assumption:

THEOREM. If at least two of the semiaxes b, c,d are equal, then there are arbitrarily
many geometrically distinct nonplanar embedded minimal 2-spheres in E(a,b,c,d),
provided a is sufficiently large.

By geometrically distinct minimal 2-spheres we mean they are noncongruent, i.e.,
cannot be obtained from one another via isometries of E(a,b,c,d). Note that if at
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least two among a, b, ¢, d coincide, then any minimal 2-sphere in F(a, b, ¢, d) trivially
gives rise to infinitely many minimal 2-spheres, which are pairwise congruent.

1.1. Statement of main results. We prove two main results that imply the above
Theorem, and describe certain aspects of the ensuing nonplanar embedded minimal
2-spheres. Henceforth, we shall assume that b = ¢, the case ¢ = d being totally
analogous. The first main result provides an estimate on the rate in which new
nonplanar minimal 2-spheres appear in E(a,b,b,d) as the parameter a grows:

THEOREM A. The number N(a) of geometrically distinct (up to congruence) non-
planar embedded minimal 2-spheres in FE(a,b,b,d) satisfies

. . .N(a) 1
>
(1.2) Em inf 5"

Our second main result gives further geometric information on these nonplanar
minimal 2-spheres and their asymptotic behavior as a /* +o0. Clearly, E(a,b, b, d)
converges smoothly to the elliptic cylinder E(oco,b,b,d) = ¥1(cc0) x R in R*, where

x2 22 a3
Y (o0) = {(O,xg,xg,a:4) € R*: b—22 + 1723 + dig = 1}
is the limit of the planar minimal 2-sphere ¥;(a) as a /* +00. We prove that the
nonplanar minimal 2-spheres in E(a, b, b, d) from Theorem A converge smoothly to
31(00) as a /N 400, with arbitrarily large multiplicity, area, and Morse index:

THEOREM B. Given m > 2, there exist a,, > 0 and a nonplanar embedded minimal
2-sphere Sy, (a) in E(a,b,b,d) for all a > an,, which intersects ¥4(a) transversely
at m disjoint parallel circles, and, as a /' +00, converges smoothly (away from
the singular points (0,0,0,+d) € R*) to X1(o00) with multiplicity m. In particular,
their areas converge, i.e., |Sy,(a)| = m - [E1(c0)| as a / +00. Moreover, (am)m>2
is strictly increasing, and, for any sequence (€m)m>2 with 0 < &, < Qg1 — A,

.. o index(Sy(am + em)) 1 3
1. | f > = .
(1.3) Mt T So(am + )| IBi(o0)]  4mb2d

The exact value of a,, could, in principle, be computed by solving two equations
that involve (infinite) continued fractions, as explained in Appendix A. While this
arithmetic problem seems to be beyond the reach of currently available methods,
related numerical experiments lead us to conjecture that a,, = mifb=c=d = 1.
Furthermore, one may expect {a,, : m > 2} to coincide with the set of values of
a for which |X4(a)| is an integer multiple of |X;(a)| for some i = 1,2, 3, in analogy
with the behavior of simple closed geodesics in 2-dimensional ellipsoids [K1i95, §3.5].

It is conceivable that Sa(a) is congruent to the nonplanar minimal 2-sphere Sgyx
found by Haslhofer—Ketover for sufficiently large a. Note that Sgx C E(a,b,b,d)
converges as a varifold to X (co) with multiplicity 2 as a ,* 400, just like Sa(a),
see [HK19, Prop. 1.6], but it is unclear to us whether Sy (a) realizes the second width
of E(a,b,b,d), as Sgx does. More generally, for all m > 2, it would be interesting
to determine if Sy, (a) can be obtained from m-parameter sweepouts of E(a, b, b, d).

A feature of S,,(a) for even values of m > 2 is that Sit(a) := S,,(a) N {+x; > 0}
are free boundary minimal 2-disks in the ellipsoidal hemispheres E*(a,b,b,d) :=
E(a,b,b,d) N {£z1 > 0}, see Remark 3.15. In particular, as a /* +o0, these free
boundary minimal disks converge smoothly, away from (0, 0,0, +d), to the boundary
¥ (00) with multiplicity m/2. Moreover, inequality (1.3) remains valid for the ratios
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index(SZE (am + €m))/|SE (am + €m)|, where m — 400 through even values. This
also implies a free boundary version of Theorem A; namely, the number Np(a)
of geometrically distinct nonplanar embedded free boundary minimal 2-disks in
E*(a,b,b,d) satisfies

. . .Np (a) 1
lalgfg a 2 4d’

The situation described in Theorem B bears several analogies with the scarring
phenomenon recently discovered by Song and Zhu [SZ21], where stable minimal
hypersurfaces S on a generic closed manifold (M™,g), 3 < n < 7, are shown to
be the (renormalized) varifold limit of sequences of minimal hypersurfaces S,, in
(M™,g) with diverging area and Morse index, and index(Sy,)/|Sm| — 1/|5] as
m " 4+o0o. While there do not exist any stable minimal surfaces in E(a,b,b,d)
for 0 < a < 400 because it has Ric > 0, the limiting cylinder F(occ,b,b,d) has
Ric > 0, and X (00) C E(00,b, b, d) is stable. In this sense, Theorem B establishes
the existence of minimal 2-spheres in the varying family of Riemannian manifolds
E(a,b,b,d) that scar on the limiting stable minimal 2-sphere ¥;(c0) as a ,* +o0.
Similar analogies can be drawn to the works of Colding—DeLellis [CDL05] and
Hass—Norbury—Rubinstein [HNRO03], on the existence of sequences of minimal sur-
faces with diverging Morse index that accumulate on stable minimal 2-spheres.
Somewhat paradoxically, the lack of stability in our geometric setup (which sets it
apart from the above works) is simultaneously one of the main challenges to carry
out the desired construction, and also one of the key ingredients in our proof.

While we focus exclusively on the ellipsoids (1.1) throughout this paper, it is a
posteriori clear that conclusions similar to those in Theorems A and B should hold
for minimal 2-spheres embedded in 3-spheres that are given by the boundary of
more general rotationally invariant convex bodies in R?*, as these become elongated
in a direction orthogonal to the 2-planes of revolution.

1.2. Overview of proofs. As in other recent applications of Bifurcation Theory
to Geometric Analysis (see [BP20, BP22| for surveys), we exploit the instability of
a degenerating family of highly symmetric solutions to produce our new solutions.
Namely, the Morse index of the planar minimal 2-sphere ¥4 (a) diverges as a * 400,
and each time a crosses an instant a,, where this Morse index jumps, a new nonpla-
nar minimal 2-sphere S, (a) bifurcates from ¥4(a). But, while that yields nonplanar
solutions for a near a,,, this local result is not enough to prove Theorems A and B.

It is in order to promote the above to a global result (in the parameter a) that we
use the symmetry assumption. More precisely, since b = ¢, the ellipsoids E(a, b, b, d)
carry a natural isometric O(2)-action, given by rotations in the (x3,x3)-plane, in
addition to the reflections 71 and 74 about the hyperplanes ;1 = 0 and z4 = 0,
respectively. By the classical work of Hsiang-Lawson [HL71], c¢f. Theorem 2.1,
the problem of finding O(2)-invariant minimal 2-spheres in E(a, b, b, d) reduces to
that of finding free boundary geodesics in the orbit space Q, = E(a, b,b,d)/0(2),
which is topologically a 2-disk, endowed with an appropriately rescaled Riemannian
metric that degenerates on 0€,. Due to this degeneracy, we supply an ad hoc
proof (Theorem 3.6) of the existence of geodesics in (2, starting orthogonally from
09, using solutions to the Plateau problem, following an approach inspired by
[HNRO3, Lemma 4.1]. Among these geodesics, we have those corresponding to
the planar minimal 2-spheres ¥1(a) and 4(a), which are respectively denoted
Yver and Ypor, see Figure 1. Since the reflections 7 and 74 commute with the
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O(2)-action, they descend to isometries of €2, given by reflections about 7yer and
Yhor, respectively. There are two special types of free boundary geodesics in €,
that are invariant under these reflections, which we call even and odd geodesics;
namely, those that start orthogonally from 0, and meet 7y orthogonally, or at
its central point O = ~yer N Vhor, respectively, see Figure 2. This setup enables us
to define real-valued functions feven(a,s) and foad(a, s), where s € (=%, %), whose
zeros determine even and odd geodesics in €2,, and hence minimal 2-spheres in
E(a,b,b,d), see Proposition 3.14. The fact that vy, is trivially an even and odd
geodesic for all a > 0 translates to feven(@,0) = foda(a,0) = 0 for all @ > 0, and
this is the trivial branch of solutions from which we seek bifurcations.

Sufficient conditions for the existence of local (continuous) bifurcation branches
are given by the celebrated result of Crandall-Rabinowitz [CR71], see Theorem 2.2,
involving the linearizations of foyen and foqq. These can be computed, up to rescal-
ing, as boundary values of solutions to the Jacobi equation along 7y, Which is
derived as a (singular) Sturm-Liouville ODE in Section 4. The corresponding
spectral problems are then analyzed in Section 5, see Figure 3. Through this anal-
ysis, we find a sequence (@, )m>1 of values of the parameter ¢ which are bifurcation
instants for foyen if m is even, and for f,qq if m is odd. Counting the zeros of eigen-
functions whose eigenvalue crosses zero at a = a,,, we see that the corresponding
minimal 2-spheres intersect 34(a) at m orbits of the O(2)-action. The first bifurca-
tion instant is a; = d, corresponding to the ellipsoid E(d, b, b, d), and its bifurcation
branch consists of planar minimal 2-spheres congruent to 31 (d) and X4(d). Aside
from this first uninteresting bifurcation, all other bifurcation branches issuing at
a = am, m > 2, give rise to nonplanar minimal 2-spheres. Bifurcation branches
are pairwise disjoint because the number of intersections with ¥4(a) is locally con-
stant; in particular, they do not reattach to the trivial branch. This rules out one
of the possibilities in the dichotomy established by the global bifurcation theorem
of Rabinowitz [Rab71], see Theorem 2.5; so all branches must be noncompact and
thus persist for all a > a,,, see Figure 4. Compactness of the sets of even and odd
geodesics in Q,, which follows e.g. from [CS85], is used in a crucial way to apply this
global bifurcation result. The remainder of the proof of Theorem A follows from
estimating the asymptotic growth of (@, )m>1, as explained in the end of Section 6.

The proof of Theorem B is given in Section 7, analyzing the limiting behavior
of geodesics in Q, as a / +o0o. Namely, they converge smoothly to geodesics in
the infinite strip Qo = E(00,b,b,d)/0(2), which can be easily described since Qs
has a nontrivial (constant) Killing vector field. In particular, the only geodesics
of o that intersect (the limit of) o finitely many times are vertical segments,
so geodesics corresponding to the bifurcation branch issuing from a = a,, must
converge to m copies of (the limit of) yye,. Moreover, as a 400, these geodesics
develop m — 1 sharp turns near 0f),, which correspond to m — 1 catenoidal necks
in the minimal 2-sphere in E(a,b,b,d) near the fixed points (0,0,0,+d) of the
O(2)-action. This implies they have Morse index at least m — 1, leading to (1.3).
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2. PRELIMINARIES

For the convenience of the reader, we recall the symmetry reduction principle for
G-invariant minimal submanifolds pioneered by Hsiang and Lawson [HL71], and the
bifurcation theorems of Crandall and Rabinowitz [CR71] and Rabinowitz [Rab71].

2.1. Hsiang—Lawson reduction. Suppose (M, g) is a complete Riemannian man-
ifold with an isometric action of a compact Lie group G, and let II: M — M/G
be the projection map to the orbit space. It is well-known that the principal part
My, C M is an open, dense, and connected subset, and (M,,/G,§) is a (smooth)
Riemannian manifold, such that II: My, — M, /G is a Riemannian submersion,
see e.g. [AB15, Sec 3.4-3.5].

The volume function of principal orbits, V': M,,/G — R, V(z) = Vol(II"(z)),
is a smooth function that extends to a continuous function

(2.1) V: M/G— R,

which vanishes identically on O(M/G). The cohomogeneity of a G-invariant sub-
manifold ¥ C M is the codimension k that principal G-orbits have inside . For
instance, principal orbits are themselves G-invariant submanifolds of M, of cohomo-
geneity k = 0. Clearly, e.g., by Palais’ symmetric criticality principle, such a coho-
mogeneity 0 submanifold ¥ C M is minimal if and only if ¥/G = II(X) € M, /G is
a critical point of (2.1). This characterization is naturally extended to submanifolds
of cohomogeneity k > 1 in the following well-known result [HL71, Thm. 2].

Theorem 2.1 (Hsiang-Lawson). A G-invariant submanifold ¥ of cohomogeneity
k> 1 is minimal in (M, g) if and only if the projection Xp,,/G = IL(X N M,,) of its
principal part is minimal in (Mp, /G, V2/kg).

2.2. Bifurcation theory. Although many results stated below hold in far greater
generality, see e.g. [BT03, Kie04], we focus on the following simple 2-dimensional
bifurcation setup, which suffices to prove Theorems A and B in the Introduction.
Let f: (0,4+00) x Z — R be a real analytic function, where Z C R is an open
interval with 0 € Z. Suppose that for all a > 0, the value s = 0 is a solution of

(2.2) f(a,s) =0,
i.e., f(a,0) = 0 for all @ > 0. This defines a subset of f~1(0) C (0, +o0) x Z denoted
(2.3) Bixiv = {(a,0) : a > 0},

called the trivial branch of solutions. If the closure of f=1(0) \ By contains the
point (a,0), then a, is called a bifurcation instant for (2.2), and (a.,0) € Byiy is
called a bifurcation point for (2.2). By the Implicit Function Theorem, a necessary
(but not sufficient) condition for ¢ = a, to be a bifurcation instant is that it is a
degeneracy instant, i.e., %(a*, 0) = 0. The set of all bifurcation instants is denoted

(2.4) b(f) := {a. € (0,+0) : a, is a bifurcation instant for f(a,s) =0}.

Given a, € b(f), the connected component of the closure of f~1(0)\ Byy containing
(ax,0) is called the bifurcation branch issuing from (a4,0), and denoted by B,, .
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Moreover, we let BY := {(a,s) € B,, : s > 0}. Note that Bf need not be
connected, since B,, N By may contain other bifurcation points besides (ax,0).

2.2.1. Local bifurcation. A sufficient condition for the existence of a bifurcating
branch B,, issuing from (a4, 0) € Bi,iyv, and a description of its local structure near
(ax,0), are given by the following celebrated result of Crandall and Rabinowitz
[CR71, Thm 1.7], see also [Kie04, Sec. 1.5] or [BT03, Thm 8.3.1].

Theorem 2.2 (Crandall-Rabinowitz). If the instant a = a, is such that

0
0 P a0)=0,
2
(ll) 8aaéfs (G/*, O) 7é 07

then a. € b(f), i.e., ax is a bifurcation instant for f(a,s) = 0. More precisely,
there is an open neighborhood U of (a4, 0) in (0,+00) X Z, and a real analytic curve
(—e,€) >t (a(t),s(t)) € U, with (a(0),s(0)) = (as,0) and s'(0) > 0, such that

(2.5) F7HO)NU = {(a,0) e U} U {(a(t),s(t)) : t € (—e,)}.

Remark 2.3. Of course, the first set on the right-hand side of (2.5) is By N U,
and the second is B,, N U. Although the original statement of the Crandall-
Rabinowitz Theorem only gives s'(0) # 0, since Z is 1-dimensional in our case, we
may (and will) impose s'(0) > 0, which corresponds to orienting the parametrization
of Ba, NU so that (a(t), s(t)) € BS ift € (0,¢), and (a(t), s(t)) € By, if t € (—¢,0).
Furthermore, by the Implicit Function Theorem, up to replacing U with a smaller
open neighborhood of (a.,0), we may even assume s(t) =t for all t € (—¢,¢) and
reparametrize the above real analytic curve in terms of s, obtaining

(2.6) Bo, NU = {(a(s),s) : s € (—e,e)}.

Remark 2.4. If T = (-5, 5) is symmetric around 0 € Z, and, for each a > 0, the
function Z > s — f(a, s) is either even or odd, then the set f=1(0) C (0,4+o0) x T
is clearly invariant under the reflection (a, s) — (a,—s). In this case, if a, satisfies
the hypotheses of Theorem 2.2, then B,, NU is also invariant under this reflection,
since it maps the sets Bai* to one another. In other words, if B,, NU is parametrized
as in (2.6), then s +— a(s) is even, i.e., a(—s) = a(s) for all s € (—¢,¢).

2.2.2. Global bifurcation. Under a suitable properness assumption, local bifurcation
branches of the form (2.5) are subject to a dichotomy: they either reattach to the
trivial branch By, or else connect to the boundary of (0,400) x Z. This is a
celebrated global bifurcation result of Rabinowitz [Rab71, Thm 1.3], see also [Kie04,
Sec. I1.5.2]. A more detailed statement on the geometry of these branches is given
in [BT03, Thm 9.1.1], which, in our 2-dimensional setup, yields the following:

Theorem 2.5 (Rabinowitz). Let a. € b(f) be a bifurcation instant for f(a,s) =0
that satisfies the hypotheses (1) and (ii) of Theorem 2.2. Denote by

(2.7) (—e,€) >t (a(t),s(t)) € (0,+00) x T

the real analytic curve parametrizing B, near (a4,0), as in (2.5), and assume that
(1) the map t — a(t) is not constant,

(2) the restriction of the projection p: (0,4+00) x T — (0,+00) onto the first factor
to f=1(0) C (0,+00) x T is a proper map.
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Then, the map (2.7) can be extended to a piecewise real analytic curve
(2.8) R >t (a(t),s(t)) € (0,+00) x T,

with s(t) = 0 if and only if t = 0, whose restrictions to (—o0,0) and to (0,+00)
take values in B, and BF |, respectively, such that, ast /* 400, either:

Ay’

(I) the curve (2.8) reattaches to Biyiy, i.€., tligrn (a(t), s(t)) = (asw,0), where
—+oco
asx € b(f) is a bifurcation instant distinct from ay;
(IT) the curve (2.8) approaches the boundary of (0,+00) X Z ast /400, i.e.,

75_13_~_r1f1OO (a(t),s(t)) € (0,400) x I, or t_l}&nooa(t) =0, or tl}rlloo a(t) = +o0,

and an analogous dichotomy holds as t \, —00.

Remark 2.6. Consider the situation of Remark 2.4, where the sets Bi are mapped
to one another by (a,s) — (a,—s). If a. € b(f) satisfies the hypotheses of The-
orem 2.5, then (2.8) can be chosen so that (a(—t),s(—t)) = (a(t), —s(t)) for all
t € R; in particular, the same among (I) or (II) holds as t 400 and as t \, —oc.

2.2.3. Disjoint branches. We now present an abstract sufficient condition to en-
sure that different bifurcation branches do not intersect. This approach is inspired
by similar results for Yamabe-type PDEs in [JLX08, BdIPJBP21], where global
branches are distinguished by the nodal properties of their solutions, see also [Kie04,
Sec. I11.6].

Definition 2.7. A discrete-valued invariant for the equation f(a,s) = 0 is a locally
constant function Z: f=1(0) \ Beiv — WNo.

In the above, and throughout, we denote by INg = INU{0} the set of nonnegative
integers. Clearly, if Z is a discrete-valued invariant for f(a,s) = 0 and a. € b(f),
then Z is constant on each connected component of By, \ Biiy. Moreover, if the
hypotheses of Theorem 2.2 hold at (a,0), then in light of the local form (2.5),
there exists an open neighborhood O of (a.,0) in (0,400) x Z, such that O N B
and O N B, are connected, so Z is constant on each of O N B , and we write:

(2.9) 2F(a,) = Z|OﬂBi'

Proposition 2.8. Let Z be a discrete-valued invariant for f(a,s) =0, and assume
that the restriction to f=1(0) of the projection p: (0,+0c) x T — (0,+00) onto the
first factor is a proper map. Suppose the hypotheses of Theorem 2.2 and hypothesis
(1) of Theorem 2.5 hold at every a. € b(f). If for all a;,a2 € b(f), we have
that z*(ay) # 2+ (a2), then the sets By., a. € b(f), are noncompact and pairwise

disjoint; and similarly for Ba,, if 2~ (a1) # 2z~ (ag) for all a1, as € b(f).

Proof. Since Theorem 2.2 holds at every a, € b(f), the sets Bi are connected, and

their closure is given by Bff* = Bflt* U (Ba* N Bmv). In particular, Z is constant and
equal to z*(a,) along each B .
As 2% b(f) — INg is assumed injective, it follows that the sets BY | a. € b(f),

a.)

are pairwise disjoint. Again from injectivity of 2T, we have Biff* = Bi U {(ax,0)},

which implies that By, a. € b(f), are pairwise disjoint. Furthermore, each of them
is noncompact by Theorem 2.5, as the occurrence of (I) is ruled out by the fact

that each Bf, contains only one bifurcation instant. Of course, if 2~ : b(f) — Ny is

injective, then the same arguments above lead to analogous conclusions for By,. [
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3. MINIMAL 2-SPHERES OF REVOLUTION

Let E(a,b,c,d) be an ellipsoid as in (1.1), such that at least two among b, ¢, d are
equal. Without loss of generality, to simplify the exposition, we henceforth assume
b = ¢ in the remainder of the paper, and denote by (52, g,) the ellipsoid E(a, b, b, d)
with the Riemannian metric induced by the Euclidean metric in R*.

3.1. Symmetry reduction. Consider the isometric action of G = O(2) on (53, g,)
by rotations on the (2, 23)-plane, whose orbit through x = (21, 72, x3,24) € S® is
(3.1) G(x) = {(x1, x2cosf — x3sinf, xosind + x3cos6, x4) € S*: 6 € R}.

Clearly, x € S? is fixed by the action if and only if 29 = 23 = 0, so the fixed point
set (93)€ is an ellipse with semiaxes a and d, which is a geodesic in (S3,g,). All
other points belong to principal orbits, i.e., Sgr = 53\ (83)C. The orbit space

.’EQ ,],.2 IE2
(3.2) 53/Gz{<x1,r,m4>eﬂsza;+62+d3:1,r>o}

has boundary 9(S%/G) = {(x1,0,24) € S3/G} = (5°)¢, and the projection map
II: $3 — S3/G is given by I(z) = (1, /23 + 23, ©4). Moreover, the quotient
metric g, on S3./G = {(x1,7r,24) € S?/G : r > 0} such that IT: S3 — S5 /G is
a Riemannian submersion is the metric induced on (3.2) by the Euclidean metric
in R3, and the orbital volume function (2.1) is given by

sz .132
(3.3) V:83/G—R, V(ry,rxs)=2nr= Qﬂbm.

Consider the (open) Riemannian 2-disk endowed with the conformal metric
Qq = (S3,/G, V> ga),

and identify 992, = 9(53/G). Observe that the length of a curve v in Q, is equal to
the area of II~1() in (52, g,). The following is a direct consequence of Theorem 2.1.

Proposition 3.1. A G-invariant surface 3 in (S3,g,) is minimal if and only if
the curve ¥y, /G = II(X N S3,) is a geodesic in Q.

Therefore, 3 is a minimal 2-sphere of revolution in (52, g,) if and only if ¥, /G
is a geodesic with (limiting) endpoints in 9€,.

Definition 3.2. A curve v: (to,t1) = Q, with limy . (t) = x € 09, is called
transverse, respectively orthogonal, to 0f), at the endpoint x if the limit as ¢t \ to
of v/ (t) /17 (t)||z. exists and is transverse, respectively gq-orthogonal, to T,0%,.

Remark 3.3. A minimal 2-sphere of revolution ¥ in (53, g,) is smooth if and only
if the corresponding geodesic is orthogonal to 02, at both endpoints; we call such
curves free boundary geodesics in €),. Moreover, ¥ is embedded if and only if the
corresponding free boundary geodesic has no self-intersections.

Definition 3.4. The reflections 7; and 74 of R*, about the hyperplanes z; = 0 and
x4 = 0, are isometries of (52, g, ) that commute with the G-action and hence descend
to isometries of ,, that we call Ty and Tyop, respectively. The fixed point sets
of 71 and 74 in (S3,g,) are the totally geodesic planar 2-spheres ¥1(a) and ¥4(a),
that project to the fixed point sets of 7o and 7y, in 24; these are free boundary
geodesics in , that we denote by 7yey and ynor, respectively. For convenience,
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we indiscriminately use the symbols e, and ho, for the maps into €2, and their
image. The intersection point of yyer and yher is denoted O := (0,0,0) € Q,.

Remark 3.5. If a # d, then e, and 7o, are the only free boundary geodesics in
Q, that correspond to planar minimal 2-spheres of revolution in (5%, g,). If a = d,
rotations in the (z1,z4)-plane induce isometries on €,, so there is a continuous
family of free boundary geodesics on {2, that correspond to (pairwise congruent)
planar minimal 2-spheres.

3.2. Orthogonal geodesics. Since the Riemannian metric of €2, degenerates on
09, existence and uniqueness of geodesics starting orthogonal to 9€), need to be
properly justified. Recall that 99, = 9(S%/G), and define

(3.4) B: R — 004, B(s) = (acoss,0,dsins).

Let ¥q,s = (0,1,0) € Tp5)(5*/G) be the orthogonal direction to 8, at 3(s).

The free boundary geodesics “yer and pop are trivial solutions to the initial value
problem for orthogonal geodesics starting at £ (%’r), k € Z, see Figure 1. We now
use well-known facts about the Plateau problem to construct orthogonal geodesics
starting at any ((s), s € R, following an approach inspired by [HNR03, Lemma 4.1].

B(3)
fYVeI‘

FIGURE 1. Schematic depiction of €2,, with boundary in red,
parametrized by (3.4), and free boundary geodesics Jyer and Ynor,
with endpoints (g) and 8 (f%), respectively 5(0) and S(r).

Theorem 3.6. For all s € R, there is a unique (up to reparametrization) maximal
geodesic Yq,s in Q starting transverse to 0, at B(s). Moreover, vy, s is orthogonal
to 0, at B(s), i.e., tangent to Uy s, and its dependence on (a,s) is real analytic.

Proof. Let p € Q, be sufficiently close to 9€2,, so that the G-orbit II=!(p) is an ez-
tremal curve in (S3, g, ), i.e., lies in the boundary of a convex set. Recall that I17(p)
is a circle, which is real analytic and null-homotopic. Thus, the (area-minimizing)
disk solution D,, to the Plateau problem in (S, g,) with contour dD,, = II"*(p) ex-
ists, is embedded and smooth up to the boundary, and unique, see e.g. [Whil6]. In
particular, D,, is G-invariant, and hence must contain a fixed point € D, N (S%)C.
Let s € R be such that II(z) = 8(s), and 7v,,s: (0,€) — Q, parametrize the curve
II(Dy \ {z}) C Qq, with limy 0 74,5(t) = B(s). By Proposition 3.1, 74 is a geo-
desic. Moreover, the isotropy G-representation on 7}.5° splits as a direct sum of
irreducibles T, D,, and T}, (83)C, which are hence g,-orthogonal. The G-orbit space
of the unit sphere in T}, D,, = (T,,(S%)¢)* is the g,-normal direction to (S%)¢ = 9Q,
at B(s), and hence 7, s is orthogonal to 0€,.
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The preimage under IT of any geodesic in 2, that starts transverse to 02, at
B(s) is a properly embedded minimal punctured disk in (S%\ {x}, g,). By standard
removable singularity results, see e.g. [CS85, Prop 1], this punctured disk extends
to a smooth minimal disk tangent to D,, at z, which must hence agree with D,, by
the maximum principle. Therefore, up to reparametrization, the maximal extension
of 74,5 is the unique geodesic in €2, with the above properties, where, of course, we
identify 74,5 and g, st+2-% for all k € Z, since (3.4) is 2m-periodic.

The real analytic dependence of 7, s on (a, s) is a consequence of real analytic
dependence of the area-minimizing disk D, on the contour II=!(p), which follows
from results of White [Whi87, Thm. 3.1] and [Whi91]. The nondegeneracy assump-
tion in [Whi87, Thm. 3.1], i.e., the absence of nontrivial Jacobi fields vanishing on
the boundary of the minimal disk, is satisfied if p is sufficiently close to 9€2,, which
corresponds to II7!(p) being sufficiently small. Thus, moving p around a collar
neighborhood of 99, we see this construction covers all points 5(s), s € R. (]

Remark 3.7. Existence of orthogonal geodesics on certain 2-disks = M, /G with
a Riemannian metric V2/¥g, as in Theorem 2.1, is proven in Hsiang Hsiang [HHS&2]
and Hsiang [Hsi83a, Hsi83b], among others, by reducing the geodesic problem from
an ODE system consisting of two coupled equations to a single ODE. However, such
a reduction is not possible in Theorem 3.6, because of two key differences. Namely,
the 2-disks M, /G in the above references have a nontrivial Killing field, since G
has dimension strictly smaller than that of the full isometry group of (M,g), and
V: ) — R is constant on levelsets of the distance function to 0€2. Neither of these
conditions hold in the setting of Theorem 3.6, except for the special case a = d.

Remark 3.8. In addition to the 27-periodicity, other symmetries arise from the
uniqueness statement in Theorem 3.6 via the reflections 7o, and 7o across Yyer and
Yhor- Namely, up to reparametrization, v, s = Ya,—s and 74,5 = Ya,n—s. Moreover,
Ya, k% clearly coincide with 7yer, while 74,0 and 7, » coincide with yer.

Due to the above symmetries, we shall only consider 7, s where s is in the interval

1= (-5.3).

It is convenient to parametrize v, s by arclength with respect to the quotient metric
g4, instead of the (conformal) metric V2 g, of Q,. We denote by p this g,-arclength
parameter, and by (0,4, s) the maximal domain of definition for v, s(p).

Proposition 3.9. All geodesics V4,5, with s € I, intersect vyer transversely. In
particular, there exists a real analytic function To: T — (0,4,,s) such that the first
intersection point is Ya,s(Ta(s)) € Yver, and v, ((Ta(s)) is transverse to Yyer-

Proof. Let F' C T be a closed subinterval with 0 € F', and let E be the subset of
s € F such that v, s intersects Yy transversely. Clearly, E is nonempty as 0 € E,
and open in F' by continuity of s — 7,,s, see Theorem 3.6. Moreover, we claim
that E is closed in F, and hence F = F. Indeed, if s, € E is a sequence with
Sp = Seo € F but so ¢ E, then 7,_ , intersects vyer but not transversely, hence
tangentially. Such a tangential intersection cannot occur in the interior of €2, as
it would contradict uniqueness of geodesics with the same initial condition, and
nor at 0€),, as it would contradict the uniqueness statement in Theorem 3.6. Thus
Seo € E, proving the claim. Since F' is an arbitrary close subinterval of Z, every
Ya,s» $ € L, intersects yyer transversely. The existence and regularity of the function
To: T — (0,4,,) as stated now follows from the Implicit Function Theorem. O
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Remark 3.10. If we assume that v, s: (0,4, 5) — €2, has no self-intersections and the
limit of v, s(p) as p 7 £, s exists, then the claim that 7, s intersects ~ye, transversely
follows from Frankel’s Theorem. Indeed, by maximality of ¢, s, the geodesic vq,s(p)
converges to a point of 99, as p " ¢, s, and arrives to 0€), transversely, hence
orthogonally by Theorem 3.6. By Remark 3.3, the preimage under II of any two
free boundary geodesics without self-intersections (such as Yyer, O Yhor, and this
putative 7, ) are embedded minimal 2-spheres in the positively curved manifold
(53, g4), which hence intersect. They do so along principal G-orbits and transversely
(by the maximum principle), so their images also intersect transversely in €2,.

Proposition 3.11. For all s € I, the restriction of va,s: (0,4q,s) — Qq to the
interval (0,T,(s)] C (0,4q,s) has no self-intersections.

Proof. Let S be the subset of s € 7 such that the restriction of ~y, s to (0, T,(s)] has
a self-intersection. Any such self-intersections must occur inside €2,, for otherwise
Ya,s would have returned to 0€2, before intersecting 7yer, contradicting maximality
of 4,5 and Proposition 3.9. Thus, these self-intersections are transverse, and hence
stable under small perturbations, so S C Z is open by Theorem 3.6. Moreover, we
claim S C 7 is closed. Indeed, suppose s,, € S is a sequence with s, = s, and let
pn < pl, be sequences such that V4 s, (Pn) = Va.s, (p},). Up to reparametrizing v, s, ,
assume that p, — peo and p), — pl .. One cannot have p,, = p., = 0, since any
self-intersections must occur inside Q,; nor ps, = p., > 0, as that would imply the
existence of arbitrarily short geodesic loops in the Riemannian 2-disk €2,. Thus,
Poo < Pho, 1€, Soo € S, proving the above claim. Therefore, S C Z is open and
closed, so either S =Z or S = ). The geodesic V4,0 = Ynor has no self-intersections
in (0,7,(0)], hence 0 ¢ S, so S = 0. O

3.3. Even and odd geodesics. For a >0, s € Z, and z € [0, 1), let

(3.5) o(a,s,z) = Yas (ta(z)Ta(s)),
’ ola,s,z) = (azl(a,s,z), or(a,s,z), 014(a,s,z)) € Qg,
be the reparametrizations of v, s: (0,44,5) — Qq, where Tp: Z — (0,4,5) is given
by Proposition 3.9, and ¢,: [0,1) — (0, 1] is the decreasing real analytic function so
that Yhor, parametrized as z — 7y,.0(ta(2)T4(0)), has z1-coordinate affine in z.

In other words, the above choices defining (3.5) are such that o(a, s,0) € Yy for
all a > 0 and s € Z, and 0,,(a,0,z) = az for all a > 0 and z € [0,1). Note that,
from Theorem 3.6 and Proposition 3.9, the map (3.5) is real analytic.

Definition 3.12. Using the notation above, define the real analytic functions
oven: (0,+00) x T — R, foad: (0,40) x T — R,
feven(a7 s) = %O—JM (a7 S, Z) ’z:O’ fodd(aa 5) = 04,(a,s,0).

The geodesic V4,51 (0,£€4,5) — Qq is called even if feven(a,s) = 0, and it is called
odd if foqa(a,s) = 0.

Note that the geodesic v, s is even if and only if it intersects 7yyer orthogonally,
and odd if and only if it intersects e, at the point O, see Figure 2.

Remark 3.13. It follows from Remark 3.8 that, for fixed a > 0, the functions feyen
and foqq are even and odd, respectively, as functions of s € Z, i.e.,

(36) fcvcn(a; 78) = fcvcn(av 8) and fodd(aa 73) = 7f0dd(a> 3)~
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In particular, f~1(0) C (0,+o0) x Z, for both f = feyen and foqq, are invariant
under the reflection (a, s) — (a, —s), see also Remarks 2.4 and 2.6.

Proposition 3.14. If the geodesic vq5: (0,4q,5) = Qq, s € L, is either even or
odd, then II7Y(v,.5) is a smooth embedded minimal 2-sphere in (S3,g,). If a # d,
then this minimal 2-sphere is planar if and only if s = 0.

Proof. If 74,5 is even, then it intersects 7ye, orthogonally, hence is mapped to itself
by the reflection 7yer. Similarly, if 7, is odd, then it intersects yyer at O, and
hence is mapped to itself by the isometry Tyer © Thor. In both cases, 7, s is a free
boundary geodesic in €, i.e., meets 0f2, orthogonally at both endpoints, and has
no self-intersections by Proposition 3.11. The stated conclusions now follow from
Proposition 3.1, see also Remarks 3.3 and 3.5. d

VYver

N

FIGURE 2. Schematic representation of an even geodesic (blue),
and an odd geodesic (green) in Q.

Remark 3.15. Let (Si, g.) be the ellipsoidal hemisphere consisting of the points of
(5%, gq) with z; > 0. Clearly, (5%,g,) has totally geodesic boundary i (a). Since
an even geodesic g, s intersects 7yer orthogonally at some p € Q,, the corresponding
minimal 2-sphere II7! (v, 5) also intersects II™! (yyer) = X1(a) orthogonally along
the G-orbit of II™(p) in (5%, g,). Thus, II™*(y4,5) NS? is a free boundary minimal
2-disk in the ellipsoidal hemisphere (5% ,g,).

Since o(a,0,z2), z € [0,1), parametrizes the horizontal geodesic Ynor, we have
that 04,(a,0,z) = 0. In other words, 74,0 is (the only geodesic 7,5, s € Z, to be)
simultaneously even and odd, i.e.,

(3.7 feven(a,0) = foad(a,0) =0, for all a > 0.

Thus, we have a trivial branch of solutions Biiy, exactly as in (2.3), to the equation
fla,s) =0, with f = feyen Or foad- By finding solutions (a, s) € (0,+00) x Z that
bifurcate from By as a * 400, we shall find even and odd geodesics 74,5, and
hence nonplanar minimal 2-spheres in (S%, g,) by Proposition 3.14.

4. JACOBI EQUATION OF THE TRIVIAL (PLANAR) SOLUTION

In this section, we compute the Jacobi equation of the planar 2-sphere ¥4(a) C
E(a,b,b,d), which corresponds to the geodesic o, in g, in the notation of the
previous section, and write it as a Sturm—Liouville ODE. This is key to locate all
degeneracies along the trivial branch (3.7), since the linearizations of foyen and foda
at s = 0 are determined, respectively, by the endpoint values (corresponding to the
intersection with 7ye;) of a nontrivial solution to this ODE and its first derivative,
see (4.14). The characterization of degeneracy instants along the trivial branch in
terms of a Sturm-Liouville eigenvalue problem is given in Proposition 5.6.
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4.1. Jacobi fields. Let v, be the portion of the geodesic Yo, joining 3(0) € 99,
to O € Yyer, see Figure 1. Consider the variation of %Jlror by the (reparametrized)
geodesics [0,1) 3 z — o(a, s,2) € Q,, with |s| < &, see (3.5). Linearizing at s = 0
and taking normal components, one obtains

(41) Ja(Z) = %0(a7 S, Z)’s:O € Ta’(a,O,z)Qa7
which is a Jacobi field along 'yflror, with z4-component in T, (40,22 C R* given by
(4.2) vai [0,1) = R, 0a(2) 1= 200,(a,5,2)] -

By Proposition 3.1, the preimage under II of this variation by geodesics gives rise
to a variation by G-invariant minimal surfaces in (52, g,) of the planar hemisphere

(4.3) S5 (a) =Ty ) = E(a,b,b,d) N {0 < 2y <a, x4 =0}.

The corresponding normal Jacobi field ja along EI (a) projects via II to J,. Thus,
parametrizing ¥} (a) \ {(a,0,0,0)} with coordinates (p,8) € (0,7,(0)] x [0, 27] and
denoting by 7 its unit normal in (S3, g,), we have that the function ¢, : 1 (a) — R,
given by ¥,(p,0) = ga (ja,ﬁ), satisfies 14 (4 (2) T4(0),0) = v,(z) for all z € [0,1)
and 6 € [0,27], i.e., is a well-defined real analytic radial function on ¥J (a), and
1 = 1, solves the Jacobi equation

(4.4) Ay — Ric(7) 9 =0,
where A is the Laplacian on ¥} (a). Since X] (a) is a portion of the totally geo-
desic 2-sphere ¥4(a), the curvature term in (4.4) involves only the ambient Ricci

curvature, because the second fundamental form vanishes identically, and A is the
restriction to X7 (a) of the (positive-semidefinite) Laplacian on ¥4(a).

4.2. Sturm—Liouville equation. In order to write the (radial part of the) Jacobi
equation (4.4) as a Sturm—Liouville ODE, satisfied by v,(z), recall from (4.3) that
Y1 (a) is the portion with 21 > 0 of the 2-dimensional ellipsoid of revolution

2 2 2
(4.5) Z(G): (.1‘ To, X 0)€R4~ﬁ+ﬁ+ﬁ:1
: 4 1, 42,43, © a2 b2 b2 .

The Ricci curvature of (53, g,) at (w1, 72, 23,0) € X4(a) in the unit normal direction
7 = (0,0,0,1) can be computed with the Gauss equation and (4.5) to be

a2< —fj—z)+b2 (1+§—§)
(4.6) Ric(77) = a® - 5
(1) w5)
Moreover, the induced metric on ¥4(a), i.e., such that the inclusion (4.5) into
(83, g,) is isometric, coincides with that induced by the parametrization
x1(p,0) = acos @, w2(0,0) =bsingsinbd, x3(p,0) =bsingcosb,

where ¢ € [0, 7] and 6 € [0,27]. Thus, it can be written in polar coordinates (p, 6)
as dp? + ©(p)2dh?, where

dp = \/a2 sin® ¢ +b2cos2 g dg, and  (p) = bsin(¢(p)).
In particular, the Laplacian of a radial function ¢ : ¥4(a) — R can be computed as
1 d d

Awmﬂmw(wmwwm>
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1 d sin ¢ d
4.7 =
o sin /a2 sin® ¢ + b cos? ¢ do < Va?sin® ¢ + b cos? ¢ d¢¢( ((b)))

1 d 1—22 d
- 21— 22) 1122 dz (\/a2(1 — 22) + 0222 O-lzl/)(p((b(Z)))) :

since z = ZX = cos ¢, and so p(P(2)) = arecos# \/a2 sin? € 4 b2 cos2 £ d¢. Thus, we
arrive at the desired characterization of radlal solutions to the Jacobi equation:

Proposition 4.1. A radial function ¢: ¥} (a) — R, ¥(p,0) = (p), solves the
Jacobi equation (4.4) if and only if v(z) = Y(p(¢(2))) solves the ODE

(4.8) - c;iz (pa(z);zv(z)> +q.(2)v(z) =0, ze€]0,1),
where

1—22 a?(1—2%) + b2(1 + 22)
4.9 a(2) 1= , W(2) 1= —a? .
( ) p ( ) \/0,2(1 _ 212) T b2Z2 q ( d2 (a2(1 _ 22) 4 b222)3/2

In particular, this is the case for 1, = gq (ja,ﬁ), and vq(2) = Ya(p(P(2))).

Clearly, both p,(z) and g4(%) are real analytic functions on [0, 1], and admit an
even real analytic extension to [—1,1], given by the same expressions above, and
denoted by the same symbols. Straightforward computations show that

0<pa(z) <2,

(4.10) - 2,2 g
min {~ £, 204 < g, () < max { -, 2

} forall 0 < z<1,

and p,(z) has a simple zero at z = 1, so (4.8) has a regular singular endpoint; this
is discussed further in Section 5. Moreover, from (4.9), the expansions of p,(z) and
qa(z) as power series centered at z =1,

D=3 PG -1 and gz ZW
n=1

have radius of convergence equal to
max{a,b}

(4.11) R, = |a? — b?]
~+00, if a="0.

—1, ifa#b,

It is easy to see that, for all » € (0, R,) and n € IN, the maps (0, 4+00) 3 a — r"\ﬁg")\

and (0, +00) 3 a — r”|@,§")| are real analytic, and locally bounded uniformly in n.
Finally, let us observe that p, and ¢, depend monotonically on a, since

(4.12) gpa(z) <0 and %qa(z) <0, forall ze(0,1).

da

By (4.10), these functions converge uniformly on z € [0,1] as a * 400 as follows:

(4.13) lim pa(2) =0, and  lim ga(z) = —oo.

a—+
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4.3. Boundary conditions. Let us now consider the behavior of the solution
vq(2) to the Sturm-Liouville ODE (4.8) at the endpoints z = 0 and z = 1, which
correspond to where vﬂ'or meets O and 09, respectively.

First, by Definition 3.12, the boundary conditions satisfied by v,(z) at z = 0 are:

1) 1(0) = %UM (a,s,O)’SZO = %fodd(aas)’5:07
UZI(O) = %%O’E‘l (a7 8, Z) ’z:O,s:O = %feven (a’ 8) ’s:()'

Second, let us analyze the (limiting) boundary conditions satisfied by v,(z) at
z = 1. Since lim, ~ o(a, s, z) = B(s) for all s € Z, recall (3.4), the linearization of
0z, at s = 0 satisfies lim, ~ v,(2) = d. Moreover, for all s € Z, the (reparametrized)
geodesic o(a, s, z) meets 9, orthogonally at (s) as z 1. So,

0=2g, (lim Lo(a, s, z), B’(s))

A1
. . ) . F)
= —asins il/ml 5 04,(a,5,2) +dcoss il/m1 504,(a,8,2).
Linearizing the above at s = 0, since o, (a,0, z) = az for all z € [0, 1), we see that

9 : 9
35l g5 05,2)

2
=21im 20, (a,0,2) = &
dz/132 11(7&) d >’

s=0

hence lim, ~; v} (z) = %2. Thus, altogether, the boundary conditions at z =1 are:
. _ . 12 _ ﬁ

(4.15) il/rri ve(2) = d, and ll/n} vy (2) = %

Remark 4.2. A radial function ¥ (p, ) = 1¥(p) as in Proposition 4.1 is of class C! at

p = 0 if and only if ¢’(0) = 0. This ntrinsic smoothness condition automatically

holds whenever 1(p) is defined by means of a C! function v(z) as ¥(p(¢(2))) = v(2),

independently of (4.15). Indeed, differentiating both sides in z yields:

V1—2z2
— v
Va2 (1 — 22) + 222
which converges to zero as z 1, i.e., as p N\, 0. Similar considerations can be

made regarding (4.14) and the above as z N\ 0, related to the existence of even/odd
C! extensions of : %] (a) — R to all of 34(a).

V' (p(6(2))) = "(2),

5. SINGULAR STURM—LIOUVILLE EIGENVALUE PROBLEMS

Motivated by the Sturm—Liouville equation (4.8) in Proposition 4.1, consider the
differential operator £, defined on smooth functions v: [0,1) — R by

(5.1) La(v) = pia(  (Pa') + ga),

where p, and g, are the functions defined in (4.9). An application of the classical
Frobenius method (see, e.g., [Tes12, Sec. 4.2]) yields the following existence result:

Proposition 5.1. For all a > 0 and A\ € R, there exists a unique real analytic
function ug x: [0,1] = R such that L,(Uq,n) = AU, Ug,a(1) >0 and

(5.2) /0 ta A (2)? pa(2)dz = 1.
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Furthermore, a*uq (1) — d*ul, (1) = 0, and the map (a, A, z) = uqx(2) is real
analytic. Any solution to L,(v) = Av which is not a multiple of uq x(2) is of the
formv(z) = Cuga(2)log(l—2)+w(z), with C # 0 and w: [0,1] — R real analytic.

Proof. The indicial equation for the singularity z = 1 of the ODE L,(v) = Av has
r = 0 as a double root, which implies the existence of a unique (up to constant
factors) power series solution centered at z = 1, whose radius of convergence is
equal to R, see (4.11). Since p, and g, are real analytic on [0, 1], any power series
solution of this ODE centered at z = 1 can be uniquely extended to a real analytic
solution on all of [0,1]. Thus, usx: [0,1] — R is uniquely defined by the above
normalizations. The claim characterizing unbounded solutions is standard [Tes12].

Evaluating both sides of £,(v) = Av at z = 1 shows that a necessary condition
for v: [0,1] — R to be a real analytic solution is that ¢,(1)v(1) — p,(1)v'(1) = 0,
since po(1) = 0. Thus, as ¢.(1) = —% and pj(1) = —2, any such solution; in
particular v = uq », satisfies a?v(1) — d*v’(1) = 0. Regarding analytic dependence,
after the value u, 1 (1) is chosen, all the coefficients of the power series u, x(z) =
> >0 112";\ (z — 1)™ can be determined inductively from those of p, and g, using
this initial condition, and they are easily seen to be real analytic functions of a and
A. Since the same holds for the coefficients of p, and gq,, it follows that, for all
r € (0,R,) and n € IN, the maps (a, \) — " 11((1")| are locally bounded uniformly in
n, which implies that a solution with fixed value at z = 1 depends in a real analytic
way on the pair (a, A). Clearly, the same holds under the normalization (5.2). O

Remark 5.2. If a = b= ¢ = d, the function u,¢(z) is explicitly computed in (5.10).

5.1. Eigenvalue problems and spectra. As unbounded solutions to £,(v) = 0
have a logarithmic singularity at z = 1 by Proposition 5.1, it follows that the regular
singular endpoint z = 1 is of limit circle non-oscillating type, see e.g. [Wei87, Zet05].
In particular, by Weyl-Titchmarsh—Kodaira spectral theory, the operator L, is
(essentially) self-adjoint in the following spaces (see [Wei87, §4] or [EGNT13, §6]):

Veven := v € C*°([0,1),R) : v/ (0) = 0, lim pg(2)v’'(2) =07,
- {v € 0=(0.1).R):v/(0) = 0, lim pa(2)0'(2) = 0}
Vodd = {1} € 0((0,1).R) : v(0) = 0, lim pu(2)0/(2) = o}.

We denote by (Py)even and (P,)oaa the Sturm-Liouville eigenvalue problem
L,(v) = Av on the spaces Veyen and Va4, respectively. Despite being singular,
these problems enjoy virtually all the usual spectral properties of regular Sturm—
Liouville problems. For the reader’s convenience, we discuss some of these results:

Lemma 5.3. If v € Voyen 07 v € Voaq is an eigenfunction of L, i.e., L,(v) = Ao,
X\ € R, then v(2) admits a smooth extension to z =1 and a*v(1) — d*v’'(1) = 0.

Proof. By Proposition 5.1, either v(z) is real analytic at z = 1, so v(z) = Cug 1 (2),
C € R, and the stated conclusions hold, or else v(z) = Cuq 1 (2)log(l — z) + w(z),
where w: [0,1] — R is real analytic and C' # 0. The latter functions v(z) do not
satisfy lim, ~1 pa(2)v'(2) = 0, and hence do not belong to Veyen nor Voaq. ]

Remark 5.4. Furthermore, note that eigenfunctions v: [0,1) — R of (Py)even and
(Pa)odd also extend across z = 0 to functions v: [—1,1] — R satisfying £,(v) = Av
that are even and odd, respectively, since p, and g, are both even functions.
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The resolvents of £, on both Viyen and Viqq are compact (Hilbert—Schmidt)
operators [EGNT13, Thm. 7.1]. Thus, applying the Spectral Theorem and recalling
standard oscillation results for singular Sturm—Liouville operators, we arrive at the
following statement, see also [Zet05, Thm. 10.12.1, (3), (4), p. 208-209].

Proposition 5.5. For all a > 0, the spectra of (Pa)even and (Pg)oda are discrete,
bounded from below, unbounded from above, and every eigenvalue is simple:

Spectrum of (Pa)even : A" (a) < A$*"(a) < --- < X" (a) < --- /' +00,
Spectrum of (Pa)oda :  Ag%%(a) < A9%(a) < -+ < X3 (a) < -+ S +oc.

The eigenfunctions of (Pg)even as well as those of (Pg)oaa form orthogonal bases of
the Hilbert space L*([0,1], podz). In particular, the number of negative eigenvalues
of (Pa)even and (Pg)odd is equal to the dimension of the largest subspace in Voyen
and Vyqq, respectively, on which the following quadratic form is negative-definite:

1
(5.4 Q) i= (Lot} = [ oW + au((a)? d

0
Moreover, n-th eigenfunctions of (Pg)even and (Pa)odd have exactly n zeros in (0,1).

Clearly, the right-hand side of (5.4) also defines a continuous quadratic form on
the Sobolev space W12([0,1],R). In order to estimate the index of @, in the spaces
(5.3), we shall use test functions in W12([0, 1], R) and standard density arguments.

5.2. Degeneracy instants. Analyzing the spectra of (Py)even and (Pg)odd, we
may determine whether the linearization of feven and foqq at (a,0) vanishes. Namely,
by Proposition 4.1, Lemma 5.3, and (4.14) and (4.15), we have the following:

Proposition 5.6. The instant a = ay is a degeneracy instant for f(a,s) =0, i.e.,

%(a*,()) = 0, where f = foven 0T foad, if and only if X = 0 is an eigenvalue of
(Pa.)even 07 (Pa.)odd, Tespectively. In this case, ker L,, is spanned by uq, o(2),

which is a constant multiple of the function v,, (z) defined in (4.2).

Note also that the number of negative eigenvalues of (P, )even OF (Pa)odd is the
0O(2) x Zg-equivariant Morse index of 34(a) C E(a,b,b,d) as a minimal surface,
where O(2) acts with orbits (3.1), and Zy = {£1} acts as —1 - (21, 22,23, 24) —
(—x1,x9,x3, £x4) where £ is + in the even case, and — in the odd case.

5.3. Spectral analysis. The spectra of (Py)even and (Py)odd depend not only on
a, but also on b = ¢ and d, which are omitted to simplify notation. Nevertheless,
xeven(q) and A\294(a) satisfy important monotonicity properties on both a and d:

Proposition 5.7. For alln > 0, the n-th eigenvalues \o*™ and 34 are strictly de-
creasing real analytic functions of a € (0,400), and strictly increasing real analytic
functions of d € (0,+00).

Proof. Let X\ € R be an eigenvalue of either (Pg)even OF (Pz)odd. First, we focus on
the dependence on the parameter a. We shall apply the Implicit Function Theorem
to the equation uj, ,(0) = 0 near (@, A) in the even case, and u, A (0) = 0 in the odd
case, where u, x: [0,1] — R is the real analytic function defined in Proposition 5.1.
Multiplying both sides of Lg(ug,x) = Atgx by pg e, and integrating by parts on
[0,1], together with (5.2) and (5.4), yields:

!

(5.5) A = pa(0)ug 3 (0)ua,x(0) + Qa(ua,n)-
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Differentiating the above with respect to A gives

’
Ouy, 5

(5.6) 1= pa(0) 2252 (0) g7 (0) + pa (0)us 5 (0) Za2 (0)

1 /
/ O, Oug, a .
—|—2/0 pauaA( 5 ) + Ga Ua,x 55 dz;

while, differentiating (5.2) with respect to A, we have fol Ug, 875‘3\‘* padz = 0. Using
the above and integration by parts in (5.6), recalling that p,(1) = 0, we have:

(5.7) 1= —pa(0) 1 1 (0) 222 (0) + pa(0) 222 (0) 1 (0):

Thus, if e (0) = 0, then 242(0) # 0; while if «/, ,(0) = 0, then 2252 (0) # 0.
Therefore, the Implicit Function Theorem applies in both even and odd cases,
giving e > 0 and a real analytic function A\: (@ — €,a + €) — R such that A(a)
is an eigenvalue of the corresponding problem (P,) for all @ € (@ — €,a + ¢), and
A(@) = X. The derivative of A(a) is computed analogously, by differentiating (5.5)

with respect to a. Namely, taking (5.2) into account, integration by parts yields:

O\ ' Op, 2 0qa
(5.8) = /0 (W a@) + 5 o s 42 <0,

da Oa Oa

both in the even and odd cases, and the last inequality follows from (4.12). Fur-
thermore, each of the functions J, i.e., A"® and A\244  are locally bounded near any
a € (0,4+00) by Proposition 5.5, so, by the above, they are globally defined strictly
decreasing real analytic functions of a € (0, +00).

Similarly, the above arguments can be easily adapted to show that A" and \%44
are globally defined real analytic functions of the parameter d € (0,+00). From
(5.5) and (4.9), we compute their derivative in d analogously to (5.8), obtaining;:

)\ ' 9q, 2 (!
%:/0 94 uiAdz:—g/O qau27/\dz>(). a

Proposition 5.8. The sets of instants a > 0 such that A = 0 is an eigenvalue of
problem (Pg)even, respectively (Py)oda, cf- Proposition 5.6, are unbounded strictly
odd

increasing sequences, that we denote (a$¥®"),>1, respectively (a2),>0.

Proof. By Proposition 5.1, the sets in question are the zero sets of the real analytic
functions (0,4+00) 3 a = uy, ¢(0), respectively (0,+00) 3 a = 1,,0(0). These are
closed discrete subsets of (0,+00), since the above functions are nonconstant by
Proposition 5.7. Furthermore, we claim that for all @ > 0, each of these sets contains
only finitely many points in the interval (0,a). If not, the corresponding problem
(Pz) would have infinitely many negative eigenvalues, by the monotonicity property
in a from Proposition 5.7. However, this contradicts the fact that its spectrum is
closed, discrete and bounded from below (Proposition 5.5).

It only remains to show that the sets in question are unbounded. Using again
the monotonicity of the eigenvalues in a from Proposition 5.7, it suffices to show
that the corresponding problem (P,) has arbitrarily many negative eigenvalues
as a / +oo. This follows by exhibiting subspaces of Vieyen and Voqq on which
the quadratic form @, defined in (5.4) is negative-definite, whose dimension can
be made arbitrarily large if a is sufficiently large. (This was also observed by
Haslhofer—Ketover [HK19, Prop. 9.3].) Namely, for «,d,e > 0 with o +20 +¢ < 1,
let {ns5e:[0,1] — [0,1] denote the piecewise affine function that is equal to 1
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on [+ d,a + § + €] and vanishes on [0,a] U [a 4+ 2§ + ¢,1]. By adjusting «,
0 and € judiciously, one can construct an arbitrarily large number of &, 5. with
pairwise disjoint supports. Using either (4.10) or (4.13), it is easy to see that
Qalase) < —1 < 0, for all a,d,¢ as above and a sufficiently large, thus Q,
is negative-definite on the subspace of W12([0, 1], R) spanned by these functions.
Thus, by standard density arguments, (), is also negative-definite on subspaces of
VevenMVoaa with arbitrarily large dimension, provided that a is sufficiently large. [

In the sequel, we will also need the following result similar to Proposition 5.7:
Lemma 5.9. For all \ € R, the zeros of a > ua,x(0) and a +— uj, ,(0) are simple.

Proof. Arguing as in the proof of Proposition 5.7, differentiating (5.5) with respect
to a, and integrating by parts yields:

pa(o)ua7x\(0)%u;,/\(o) - pa(o)ug,k(o)%ua,/\(o)
1
_ 7/ O (4 |12 1 % (1, )2 dz > 0,
0

where the inequality follows from (4.12). The conclusion follows, as p,(0) = 2. O

Let us analyze two special situations in which further information on the spectra
of (Pa)even and (Pg)oda may be inferred from the presence of additional symmetries.
The first is @ = b = ¢ = d, in which case (S3,g,) is a round 3-sphere of radius a,
centered at the origin in R*. In particular, ¥4(a) is an equator and isometric to a
round 2-sphere of radius a, so its Laplacian A has eigenvalues al—zk(kJrl), for k € INy.
The Ricci curvature of (S, g,) is constant and equal to a% in all unit directions,

cf. (4.6), so the Jacobi operator on $4(a) is A — 2, and its eigenvalues are:

L (k(k+1) —2), for all k € No.

Setting k = 0, we have the simple eigenvalue —a%, whose eigenspace is spanned by
constant functions, induced by translations in the z4-direction. Setting k = 1, we
have the null eigenvalue, of multiplicity 3, whose eigenspace is spanned by Jacobi
fields induced by the Killing fields of (S, g,) given by rotations preserving x4 = 0.
By the arguments leading to Proposition 4.1, a radial function ¢: ¥} (a) — R,
Y(p,0) = 1(p), is an eigenfunction of the (restriction to ¥ (a) of the) Jacobi
operator A — 2 with eigenvalue y if and only if v(z) = ¥ (p(¢(2))) solves

a2
(5.9) - %(1?2 %v(z)) —2y(2) = pav(z), z€]0,1),
where p(¢(z)) = a arccosz, i.e., z = cos £. The left-hand side of the above ODE
is precisely poLq(v), since the functions in (4.9) simplify to p,(z) = 1_;2 and

qa(z) = =2, if one assumes a = b = ¢ = d. Studying the above ODE leads us to:
Proposition 5.10. Ifa =b=c = d, then \{*"(a) < 0, and X399 (a) = 0.

Proof. The function v(z) = az belongs to Voqq and solves the ODE (5.9) with
= 0, which coincides with the ODE in (P,)oqq with A = 0. Since it has no zeros
n (0, 1), by Proposition 5.5, this is the 0-th odd eigenfunction, i.e., A34(a) = 0.
The constant function v(z) = 1 belongs t0 Veyen and solves the ODE (5.9)
with p = fa%. Although this ODE, which can be rewritten as p,L,(v) = f%v,
does not coincide with £,(v) = Av, both ODEs have the same number of negative
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eigenvalues. More concretely, by (4.10), the quadratic form @, is negative-definite
on the subspace spanned by v(z) = 1, thus AJ""(a) < 0 by Proposition 5.5. O

Corollary 5.11. The inequality A\§"*"(a) < A3 (a) holds for all a > 0.

Proof. The stated inequality holds if @ = b = ¢ = d by Proposition 5.10. Since
the eigenvalues A&"°" and A399 depend continuously on all parameters a,b,c,d,
cf. Proposition 5.7, if this inequality were to fail for some a, b, ¢, d, then there would
exist values of those parameters for which A§*"(a) = A\344(a) = X is simultaneously
an eigenvalue for (P, )even and (Pg)odda. This is impossible, because the only solution
to L4 (v) = Av with v(0) = v'(0) =0 is clearly v = 0. O
Remark 5.12. From the proof of Proposition 5.10 and (4.15), if a = b = ¢ = d, then
(4.2) is given by v,(z) = az. Since fol 0a(2)? pa(z)dz = 22, the function ug,0(2) in
Proposition 5.1, which is a constant multiple of v,(z) satisfying (5.2), is given by

(5.10) Ug0(2) = \/@z

Although all rotations preserving the hyperplane x4 = 0 induce Jacobi fields on
Y4(a), only those in the (22, x3)-plane induce Jacobi fields that are radial functions
on Y4(a). This explains the drop in multiplicity from 3 to 1 when comparing the
spectrum of the Jacobi operator A — a% on ¥4(a) and the spectrum of (Pg)odd-

Remark 5.13. Tt is easy to find all solutions to (5.9) for the above values of u:
p=0: u(z) = Cy z + Cy (1 — zarctanh(z)),
p=—=: u(z) = C1 + Cs arctanh(z),

where Cy,Cy € R, and arctanh(z) = log 4/ ifz cf. Proposition 5.1. The above are

z?

real analytic on [0, 1] if and only if they are bounded; i.e., if and only if Cy = 0.

The second special case we analyze is when a = d and b = ¢, but these two values
need not coincide. In this situation, the same conclusion of Proposition 5.10 holds:

Proposition 5.14. Ifa =d and b = c, then \§*"(a) < 0, and A3 (a) = 0.

Proof. If a = d, rotations in the (x1,x4)-plane induce isometries of €2, that fix
O, and map Yhor = Ya,0 t0 Ya,s for any s € R, cf. Theorem 3.6. The associated
Killing field induces a Jacobi field along Yner, which, by Proposition 4.1 and (4.15),
determines a real analytic solution v,: [0,1] — R to L,(v) = 0 with v,(0) = 0,
vl (1) = ve(1) = a, and v,(2) # 0 for all 0 < z < 1, cf. also Proposition 5.6. Thus,
by Proposition 5.5, this is the 0-th eigenfunction of (P, )oqd, i-e., A§9%(a) = 0. (Note
that the same argument proves the corresponding claim in Proposition 5.10, but
the extra assumption a = b made there allows to easily find the eigenfunction v, (2)

explicitly.) The claim that A§""(a) < 0 now follows from Corollary 5.11. O

Corollary 5.15. For any fired b = ¢ > 0 and d > 0, the first degeneracy instant
for foaa(a,0) = 0 is agdd = d, cf. Propositions 5.6 and 5.8. This instant is trivially
a bifurcation instant, since foaqa(d,s) =0 for all s € T.

Proof. If0 < a < d, then A% (a) > 0 by Propositions 5.7 and 5.14. Therefore, since
A344(d) = 0 by Proposition 5.14, it follows that a3 = d is the first degeneracy
instant for foqq(a,0) = 0. As explained in the proof of Proposition 5.14, if a =
a3l = d, then rotations in the (x1,z4)-plane induce isometries of €, that fix O
and act transitively on 0,; in particular, foqq(d,s) =0 for all s € Z. a
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The following result is the culmination of the spectral analysis above:

Proposition 5.16. The spectra of (Pa)even and (Py)oad are intertwined, that is,
foralla>0,b=c>0, and d > 0,

A < MG < AP < A < e < \odd cpeven < \odd <L
and each one of these eigenvalues is negative if a > 0 is chosen sufficiently large.
More precisely, \§™"(a) < 0 for all a > 0, and

(i) if n € N, then A2 (aS¥) =0 and A& (a) < 0 for all a > aZ'";

n
(ii) if n € No, then X234 (a2d) =0 and X934 (a) < 0 for all a > a9,
In particular, the degeneracy instants (a%'°"),>1 and (a29%),,>o are also intertwined:

odd d

d= agdd < a?ven < as odd even odd

< <ay ™M <apt <apy <apds <.

f o 25 0)

even od
<ag T < ag
odd
. A (a)

/\(])(ld (a) w

, > a
o agti=d ™™ agdd
~
h
A5 (a)

FIGURE 3. Schematic representation of eigenvalues of (P, )even and
(Pa)odd as a > 0 varies, for fixed b =c > 0 and d > 0.

Proof. Fix a > 0, and consider the following family of curves in the projective line:
(5.11) Oa(A) = [Pa(0)uy 4(0) : ug A (0)] € RP',  for all A € R,

where w4 (2) is defined in Proposition 5.1, and [z : 21] are the usual homogeneous
projective coordinates on RP!. Consider the points

oo =[0:1] € RP, and  0=[1:0] € RP,

and note that A € R is equal to A\¢°"(a) or A\2%4(a) for some n € INy if and only if
0,.(A) is equal to oo or 0, respectively. From (5.7), we see that

(ax (Pa(0)ugA(0))) war(0) = pa(0)uy A (0) (xuan(0)) =1,

hence the curve (5.11) rotates clockwise, i.e., the line R - (pa(O)ug,/\(O),ua,A(O))
rotates clockwise in R? as \ increases. Therefore, (5.11) does not pass consecutively
through one of co or 0 without passing through the other, so the eigenvalues of
(Pa)even and (Pg)oaa are intertwined. From Corollary 5.11, the lowest among all
eigenvalues of (Pg)even and (Pg)oda is AF¥"(a), so the intertwining is as claimed.

From (4.10), the quadratic form @, is negative-definite on the subspace of Voyen
spanned by the constant function v = 1. Thus, by Proposition 5.5, the eigenvalue

A&ven(a) is negative for all a > 0. Meanwhile, A399(a) crosses zero at a = a3dd = d,
odd

by Corollary 5.15. This implies claims (i) and (ii), as the sequences a2’*" and a®



22 R. G. BETTIOL AND P. PICCIONE

are unbounded by Proposition 5.8, and all A2"*?(a) and A\4(a) are decreasing by
Proposition 5.7 and cannot cross each other. Note that the n-th degeneracy instants
as"*™ and a2 are intertwined as stated, since they correspond to values of a at
which the n-th eigenvalue A¢V°"(a) or A\%39(a) crosses zero, and they do so with
corresponding eigenfunctions v,: [0,1] — R, that have exactly n zeros in (0,1).
(Enforcing these convenient self-indexing properties is the reason why the sequence

(a2™),,>1 is indexed with n € IN, while (a29%),,>¢ is indexed with n € Ny.) O

n

Henceforth, it will be convenient to consider the monotonic reindexing of the

union of the sequences (a299),,>¢ and (aS***),,>1, which by Proposition 5.16 is
asv®™, if m=2n
5.12 Am =1 7 ’ m € NN,
(5:12) " {agdd, iftm=2n+1,

even odd even

ie., a; = a3l =d, ay = a$"*", a3 = a$d, ay = a$"*", and so on.

5.4. Growth estimates. We now provide a simple (and rather rough) estimate
on the growth of the sequence (a,)m>1 defined in equation (5.12).

Proposition 5.17. The sequence (am)m>1 has the following asymptotic behavior:

(5.13) limsup 2 < 2d.
m

m—r o0

Proof. From (5.12), it suffices to show that

qeven aodd
(5.14) limsup *— <4d and limsup 2— < 4d.
n

n—00 n n—00

Consider the piecewise affine test functions £, s.: [0,1] — [0, 1] defined in the
proof of Proposition 5.8, with e = 2§. Using (4.10), if a > b and b6 < d, then:

a+o a+46 a+36

Qulnsan) < [ pulCoa e+ [ pa@paP et [ aalCasan s
o a+36 a+o
2 2 2(a®+b%)d
<=z . 25 w(2)= = - 25 T2 7 <,
5 2 pele) +20 1max 0a(2) = 05 =~

provided a > \/gl—i—b? Given N € NN, set § = ﬁ and a; = %, 0<j <N,
so that at most one among &,; 5,25 can be nonzero at any given z € [0,1], i.e.,
the functions &, 525, 0 < j < N, have pairwise disjoint support. By the above
and standard density arguments, the quadratic form @, is negative-definite on an
N-dimensional subspace of Veyen N Voaa, provided that a > v16N2d? — b2. Thus,
(5.14) now follows from Propositions 5.5 and 5.16, as NEIEW 7”6]\7;,‘{24’2 =4d. O

6. ARBITRARILY MANY NONPLANAR MINIMAL 2-SPHERES

In this section, we prove Theorem A in the Introduction by analyzing bifurcation
branches of solutions to f(a,s) = 0, where f = foyen O foad, recall (2.3), (2.4),
Definition 3.12, and Propositions 3.14, 5.6, 5.8 and 5.16.

First, we show that all degeneracy instants are bifurcation instants:

Proposition 6.1. All degeneracy instants a"*", n > 1, and a4, n > 0, satisfy
the hypotheses of Theorem 2.2, and are hence bifurcation instants. Therefore:

(6.1) b(foven) = {aZ™ :n € N}, and  b(foaa) = {a2? : n € No}.
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Proof. Hypothesis (i) of Theorem 2.2 follows from from Propositions 5.6 and 5.8.

From Proposition 5.6 and (4.14), we have that %(a*7 0) is a constant multiple of

%u;70(0)fa:aeven or %ua70(0)|a:aodd, according to f = feven O fodd, respectively.

The latter are nonzero by Lemma 5.9, so hypothesis (ii) also holds. Together with
the fact that every bifurcation instant is a degeneracy instant, this proves (6.1). O

Definition 6.2. We denote by Be® C f-1 (0) and 8994 C £} (0) the bifurcation
branches B,, issuing from the bifurcation point (ax,0) € By, according to whether
a, = aS", or a, = a%39, cf. Proposition 6.1, definitions in Section 2.2. Collectively,
we denote by B,,, m > 1, the bifurcation branches corresponding to a.,,, defined
in (5.12), i.e., By = B, By, = Bven| By = Bdd| B, = Bgven ete.

Remark 6.3. It follows from Remarks 2.4 and 3.13, and Proposition 6.1, that each
B, is invariant under the reflection (a, s) — (a,—s) in (0, +00) X Z.

Note that, by Corollary 5.15, there is a trivial odd bifurcation branch given by
(6.2) B =B ={(a,s):a=d, s €T}

Aside from the above, all other bifurcation branches 9, consist of points (a, s)
where s € T is bounded away from the endpoints 0Z = {+7} if a remains in
compact subsets of (0, 4+00); namely, we have the following result:

Lemma 6.4. There exists a positive function €: (d,+00) — R locally bounded
away from 0, such that if a > d and f(a,s) = 0, where f = feven 0T foad, then
s € [-Z +e(a), Z —e(a)]. Thus, the restriction to (foi(0)Uf4(0))N(d, +00)xT
of the projection p: (d,+00) x T — (d,+00) onto the first factor is a proper map.

Proof. From Propositions 5.7 and 5.14, we have A$%(a) > 0 for all 0 < a < d.
Thus, by Proposition 5.6 and Definition 3.12, if 0 < a < d, then the horizontal
geodesic Yor in €2, is nondegenerate, hence isolated. Exchanging the roles of vy,
and ~yyer, hence of the parameters a and d, it follows by the same arguments that vy,
is isolated if @ > d. In other words, the subset (foL,(0)U £,34(0)) N (d, +o0) x T is
bounded away from (d, +00) x 9Z, which proves the first assertion. The conclusion
that p: (d, +00) XZ — (d, +00) restricted to this subset is a proper map now follows

from the compactness result of Choi-Schoen [CS85], also cf. [Whi91, p. 163]. O

Thus, for fixed a > d, all zeros of the real analytic functions Z 3 s — f(a,s),
f = feven O fodd, lie in a compact subinterval of Z, which proves the following:
Corollary 6.5. For any fized a > d, we have that #(feen(0) N ({a} X I)) < 400
and #(f(;lld(O) N ({a} X I)) < 4-o00.

We are now ready to prove the main result of this section, illustrated in Figure 4.

Theorem 6.6. The bifurcation branches B,,, m > 1, are noncompact and pairwise
disjoint subsets that disconnect (0,4+00) x Z. If m > 2, then p(Bm) D [am, +00),
where p: (d,+00) x T — (d,400) is the projection on the first factor. In particular,
if @ > am, then the segment {a} x T intersects at least m — 1 bifurcation branches.
Proof. First, we claim that the function Z: f=1(0) \ Biiv — INg given by

(6.3) Z(a,s) = #{z € (0,1) : 05,(a,s,z) =0}

is a discrete-valued invariant for the equation f(a,s) = 0, where f = feven O fodd,
recall Definitions 2.7 and 3.12, and (3.5). Indeed, note that the reparametrization of
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the geodesic 7y, s given by z +— o(a, s, z), a > 0, s € T\ {0}, intersects vnor precisely
at those z where o,,(a,s,z) = 0, and every such intersection is transversal, i.e.,
z + 04,(a,s,2) only has simple zeros. If (a,s) € foil,(0) \ Biriv, then v, is an
even geodesic and s # 0, so 04,(a, s,0) # 0 and lim, 1 04, (a, s, z) # 0. Similarly,
if (a,s) € fo_dh(()) \ Biyiv, then v, s is an odd geodesic and s # 0, so 04, (a,s,0) =0
and lim, ~ 04,(a,s,z) # 0. In both cases, it follows that (6.3) is locally constant
on f71(0) \ Buiv, and hence a well-defined discrete-valued invariant.

By Proposition 6.1, the hypotheses of Theorem 2.2 hold at each a. € b(f), with
f = feven and foqq. Moreover, by Remarks 2.4 and 3.13, the bifurcation branch
B,, in a sufficiently small neighborhood of (a.,0) can be parametrized as a curve
(a(s),s), s € (—¢,¢), where a(s) is a real analytic even function with a(0) = a,. In
particular, a/(0) = 0. Recalling (4.2), this implies that, for all z € [0, 1),

(6.4) %au (a(s),s,z)‘szo = %ng (a4, 0,2)a’(0) + %UI4(G*>S>Z)’5:0 = g, (2).

Thus, the value assumed by the locally constant function Z at points (a, s) € B,,
with s # 0 sufficiently small is Z(a,s) = 2% (a.) = #{z € (0,1) : vy, (2) = 0},
cf. (2.9). By Propositions 5.5 and 5.6, the latter is equal to n if a, = a5'" or a%39,
hence 2% (aS"*") = 2% (a29d) = n. Therefore, 2 : b(f) — INy is injective both if
f = foven OT fodd, see (6.1).

We now verify the remaining hypotheses of Proposition 2.8 (in particular, those
of Theorem 2.5) in both cases f = feven and foqd, to conclude that the bifurcation
branches 8,, are noncompact and pairwise disjoint. Recall the trivial odd bifurca-
tion branch B; = B4 given by (6.2), and note that none of BE™ nor of B4,
with n > 1, can intersect it. Indeed, z¥ (a3) = 0 and 2% (a.) > 1 for all a, € b(f),
with f = feven OF foqqa- Thus, we shall disregard the first bifurcation instant a8dd
and assume a > d. By Corollary 6.5, the maps s — a(s) with a(0) = a. whose
graph (a(s),s) parametrizes B,, near (a.,0) are not constant, so hypothesis (1)
in Theorem 2.5 holds. Moreover, the restrictions of p: (d, +00) x Z — (d, +00) to
fL (0) and to f(;jld(O) are proper maps by Lemma 6.4. So, Proposition 2.8 ap-
plies, and we conclude that the bifurcation branches in the families B¢"*" and 244
are noncompact and pairwise disjoint. Moreover, pairs of bifurcation branches from
distinct families also do not intersect, because ( foyin (0)\Beriv) N (fo05(0)\Beriv) = 0.

By Proposition 5.16, the bifurcation branch that contains points (a, s) with the
smallest possible a > d is B$¥e". Since BEY™ C f.L.(0) is closed and contains only
points (a,s) with [s| < § —e(a) < § by Lemma 6.4, it follows that there exists
d > 0 such that p(B5¥") C [d + J,+00). Thus, also p(BE") C [d + 6§, +00) and
p(B24d) C [d + 6,+00) for all n > 1. Since B,, are connected, so are p(B,,), for
all m > 1. By definition, a,, € p(B,,). If some p(B,,), m > 2, was bounded,
then it would have a supremum @ < oo, and hence be contained in [d + §,@]. Since
the restriction of p to f~1(0) is proper, this would imply that the compact set
p~([d + 6,a]) N f~1(0) contains a closed but noncompact subset. Thus, it follows
that p(B,) D [am,+00) for all m > 2. Tt also follows from the above that each
B, disconnects the strip (d,+00) x Z, since it contains a curve of the form (2.8)
satisfying (IT) in Theorem 2.5, and lim;_, 4 (a(t), s(t)) ¢ (d, 00) x0T by Lemma 6.4.
Finally, #(f~1(0) N ({a} x (0,%))) > nif a > a2 or a5’ according to f = feven
or foada. Taking into account B; = B4, given by (6.2), and recalling (5.12), we
conclude that {a} x Z intersects at least m — 1 bifurcation branches if @ > a,,. O
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FIGURE 4. Schematic representation of trivial branch By, in red;
and bifurcation branches %B,,, m > 1, in the upper picture. In the
lower picture, these branches are individuated as B¢°" and 854,

Remark 6.7. From the proof of Theorem 6.6, namely the computation of (6.3), it
follows that if (a,s) € B,,, then 7, s intersects Yhor transversely at m points, and
hence the embedded minimal 2-sphere II7!(v, ) in E(a,b,b,d) intersects X4(a)
transversely at m circles parallel to the (z2,x3)-plane. In particular, cutting along
Y4(a) disconnects it into m — 1 annuli, and 2 disks. It is straightforward to verify
that these minimal 2-spheres are pairwise noncongruent for different values of m.

The above is in stark contrast with the two-piece property of minimal surfaces in
the round 3-sphere, which are disconnected into two connected components when
cut along any planar 2-sphere (i.e., an equator), see Ros [Ros95].

Proof of Theorem A. From Definition 3.12 and Proposition 3.14, the number N (a)
of noncongruent nonplanar embedded minimal 2-spheres in F(a, b, b, d) satisfies:

(6.5) N(a) >#{m>2:B, N ({a} x (0,3)) #0},
see also Remark 6.7. Consider the nondecreasing function
Np: (0,400) — INo, Np(a) :=#{m>2:a> an}.

By Theorem 6.6, the right-hand side of (6.5) is > Ngy(a), hence N(a) > Np(a).
(Recall that a; = a3 = d € b(foaa) gives rise to the branch (6.2), so this first
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bifurcation instant does not contribute to N(a), nor to Np(a).) Thus, we have:

(6.6) i inf Y9 S fim g Y@ gy, Nelon)

a——+0o0 a a—+oo a n—oo (675

for some diverging sequence («, )nen. From the proof of Proposition 5.17, it follows
that if n € IN is sufficiently large, then a > v/16n2d? — b2 implies Np(a) > 2n — 2;
because, prior to such value of a, there are at least n — 1 even bifurcation instants
and n — 1 odd bifurcation instants other than a;. Choosing an increasing function

k: IN — IN with /16 k(n)2d2 — b2 < a,, < 1/16(k( 1)2d2 — b2 for all n € IN,

16 k(n)2d? — b2
lim Nb( n) > lim ( (n ) )
67) notoo Ao V/16(k(n) + 1)2d2 — b2
' 2k(n) — 1
> lim sup k( )

oo /16(k(n) + 1) 2d2 . 2d
The desired estimate (1.2) on the growth of N(a) follows from (6.6) and (6.7). O

Remark 6.8. A bifurcation analysis similar to the above for $4(a) = II7 ! (ypor) as
a /400 can be carried out for ¥1(a) = 117! (yer) as @ N\, 0, and yields further
nonplanar embedded minimal 2-spheres in E(a,b,b,d). In particular, the zero sets
of feven and foqq contain points outside the bifurcation branches 9,, issuing from
Biriv, illustrated in Figure 4; namely, points in bifurcation branches issuing from
another trivial branch {(a, :I:%) ta > 0}, corresponding to yer. The key step in
this analysis is to show that the equivariant Morse index of 31 (a) diverges as a \ 0,
which follows reasoning as in Proposition 5.8, since the Jacobi equation for radial
functions on Y7 (a) is also of the form (4.8), where a and d exchanged in (4.9).

7. ASYMPTOTIC BEHAVIOR AND CONVERGENCE AS a  +00

In this section, we prove Theorem B in the Introduction. To that end, we first
analyze the limit of the Riemannian 2-disk §2,, and of its geodesics, as a * 4o00.

Proposition 7.1. The family of open Riemannian 2-disks 0, = (Sgr/G,V%a)
converges smoothly as a /' 400 to the open Riemannian strip

(7.1) Qo := (R x (=L, L), n(y)*(da® + dy?)),

where 1(y) = 2rbcos(v(y)), and v(y) is the inverse function of

(7.2) y: [-3.%2] — [-L, L], y()= /” \/d2 cos? £ 4 b2sin? ¢ d¢.
0

Proof. The orbit space (S®/G, g,) is isometric to the ellipsoidal hemisphere (3.2),
and can hence be parametrized with X (u,v) = (21(u, v),7(u,v), z4(u,v)), where

(7.3) z1(u,v) = acosusinv, r(u,v)=bcosv, x4(u,v)=dsinusinv,

and v € [0,7], v € [-5, 5]. This parametrization leads to an intrinsic expression
for g,, which can be computed from the Euclidean metric dz$ + dr? + dz? and
(7.3). Tt is easy to see that the limit of §, as a * +oo is the flat metric on the strip

R x [-L, L], namely
dz? +dy? = da? + (d2 cos? v + b? sin v)

where x = z1, and y = y(v) is given by (7.2), with L = y(g) The conclusion now
follows, recalling that the volume function (3.3) is given by V = 2rwbcosw. (]
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Note that the boundary 0€2,, which corresponds to r = 0, is the ellipse with
semiaxes a and d given by the union of the arcs 9+, = {X(u, :i:%) 0<u < 7r}
that meet at the antipodal points (+a, 0,0) on the zi-axis. In the limit as a 400,
these become the disjoint components 91 Q. = R x {£L} of the boundary 9.,

Remark 7.2. For all values of a € (0,+00], the length of the geodesic Yyer in §2q,
parametrized as X ( v) above, is equal to 2L with respect to the metric g,, but
equal to 4;“ b2d with respect to the metric V2 g,. The latter assertion follows from
the fact that I !(vye;) = Xi(a) is a 2-dimensional ellipsoid of revolution with
semiaxes (b, b, d), whose area |Z1(a)| = 4Tb%d is equal to the V? g,-length of yyer.

A simple analysis similar to [HNRO3, Sec. 2, 3] for geodesics of (7.1) leads to:

Lemma 7.3. A mazimal geodesic v in Qs see (7.1), is either a vertical segment
{zo} x (=L, L), for some xg € R, or the horizontal geodesic R x {0}, or else the
graph of a surjective periodic function y: R — [—w,, w,], where w, € (0,L).

Proof. By Proposition 7.1, the conformally flat metric 7(y)?(dz? + dy?) is such
that n: (=L, L) — R is an even positive function, strictly decreasing on [0, L], and
with simple zeros at y = £L. Under these conditions, given any unit speed geodesic
v(t) = (x(t),y(t)) in Qso, since 8% is a Killing field, we have that n(y(t))%2'(t) = C,,

for some C, € R. Since 2/(t) = C,n(y(t))~2 and n(y(t))*2’(t)> < 1, we have
|2’ (t)] < n(y(t))~!, and therefore
(7.4) 1O, < n(y(t)) < n(0) = 2.

If C, = 0, then ~ is a vertical segment. If |C,| = 2xb, then y(¢t) = 0 and v is
the z-axis R x {0}. So let us assume 0 < C, < 2wb, the case —27b < C, < 0
being completely analogous. By (7.4), v remains in the strip R x [—w,, w,], where

€ (0,L) and n(w,) = C,. In particular, v must be defined on the entire real
line. Moreover, since 2’ > C.,/47?b* > 0, we obtain that x is a strictly increasing
function, with tliinoc x(t) = +oo. This implies that « is the graph of a smooth

function y: R — [~w,, w,], which we now show is periodic.

It is easy to prove that y'(t) vanishes if ¢ = t,, where (¢,), is an increasing
unbounded sequence. Namely, if this were not the case, then 3’ would not vanish
on a half-line [t.,+00), and 7|;, 4.y could then be parametrized by y (assuming
y' > 0, the case y’ being totally analogous). But then, setting y. = y(¢.), we have

(75)  ay) — (v /y*\/icads</ww\/7%_cgds

which gives a contradiction, because z(y) is unbounded as y grows, while the im-
proper integral on the right-hand side of (7.5) is convergent, since the function
n? — 03 has a simple zero at s = w,. Note that the zeros of y' correspond to
points along + for which y = f+w,, and hence y’ changes sign at every zero. The
existence of zeros for y' also proves that the function y: R — [—w,,w,], whose
graph is v, is surjective. Now, choose an instant ¢; with 3/(¢t1) = 0, define to
to be the minimal ¢ > ¢; with y(t2) = y(¢1) (in particular, y/(t2) = 0), and set
A, = z(t2) — x(t1). Since translations in the z-directions are isometries, the
curve y(t) = (z(t) + Ay, y(t)) is a geodesic in Qs, and satisfies J(t1) = y(t2)
and 7'(t1) = 7'(t2). Therefore, Y(t) = y(t +t2 —t1) for all t € R, so y = y(z) is
periodic, with period A, concluding the proof. O
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The above leads us to define the period function A: (—27b,27b) — R, given by

(7.6) Ac) =2 - cl

—we V() =2

where w. € n7(c)N (0, L). Indeed, by the proof of Lemma 7.3, if v(t) = (x(t), y(t))
is a maximal geodesic in (), that is neither vertical nor horizontal, i.e., such that
|C,| € (0,2mb), then the period of y as a function of x is A, = A(C,). By the

Dominated Convergence Theorem, A(c) is continuous, and hence liné Ac) =0.
c—

Proposition 7.4. Let v(t) = (z(t),y(t)) be a unit speed geodesic in Qoo, with
z(0) = 0 and C, € (0,27b). Let T > 0 and m > 1 be fized, and assume that
’y([fT, T}) intersects the x-axis at most m times. Then, for allt € [-T,T],

(7.7) lz(t)] < (1+ 2)A,.

Proof. By Lemma 7.3, 7 is the graph of a function y = y(z) that is periodic of
period A, . Intersections of v with the z-axis correspond to zeros of y, and on each
interval [, @ + A,), the function y has exactly two zeros, which implies (7.7). O

In order to state the next result, recall that the Riemannian disk €2, is identified
with the ellipsoidal hemisphere (3.2), contained in R3, and endowed with a metric
conformal to the induced Euclidean metric, parametrized by (z1,r,24), as in (7.3).

Proposition 7.5. Given m > 2, let (o, sk)ren be a sequence of points in By, with
a S 400 as k — +oo. Let v (—1,1) = Q,, be the affine reparametrization
of Yay,s,» With coordinates (m17k,r;€,x4,;€). In particular, z1 : (—1,1) = R is odd,
while x4 (—1,1) — R is either odd or even, according to m being odd or even.
Foralll <0 <m,letl, = (—1+%, —1—|—%), and let i : (—1,1) = Qo be the
curve with components (Jch, x47k). Then, for each 1 < € < m, the sequence (Vk|1,)

converges smoothly, up to subsequences, to the vertical geodesic {0} x (=L, L) in Q.

Proof. Since oy , 400 as k — +oo, it follows from Proposition 7.4 that the
length of 74 is bounded. For all £, up to subsequences, 7, must then converge to
an affinely parametrized geodesic segment in ., (possibly with multiplicity), by
Proposition 7.1. Since 7y is orthogonal to 9€2,, at both endpoints, and ay, — oo, the
function n(x4yk)2x’17 i converges to 0 uniformly, which implies that the limit of 7y, is
a segment of vertical geodesic in 2, and that A,, \, 0 as k — +oo. This vertical
geodesic is {0} x (=L, L), by Corollary 7.4 and the fact that v intersects Yhor
exactly m times. For k sufficiently large, each interval I, contains exactly one zero
of the function x4 1, because 7y, is C'-close to a geodesic in Q.. Such limit geodesic
intersects the horizontal geodesic m times, and these intersections correspond to
instants uniformly distributed in the interval (—1,1), since translations in x are
isometries of Qo,. By the same argument, the endpoints of 4 |;, correspond to sharp
turns of 4y, that converge to the endpoints of the vertical geodesic {0} x(—L,L). O

We are now finally ready to prove Theorem B in the Introduction.

Proof of Theorem B. Let m > 2 be fixed. Let a,, be as in (5.12), and (a(¢), s(t))
be the curve (2.8) as in Theorem 2.5 corresponding to the bifurcation branch B,,
with a, = an,. For each a > a,, let tyin(a) := min{t > 0: a(t) = a} and set

(78) Sm(a) = Hil(ﬁyaas(tmin(a)))’
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which is a nonplanar embedded minimal 2-sphere in E(a, b, b, d), by Proposition 3.14.

By the proof of Theorem 6.6, namely the fact that (6.3) is constant along each
bifurcating branch, it follows that 74 (¢, (a)) intersects ynor exactly at m points.
Therefore, Sy, (a) intersects ¥4(a) exactly along m circles. From Proposition 7.5,
the geodesic v, (¢, (a)) CONVerges smoothly to {0} x (=L, L) with multiplicity m
as a /400, and hence S,,(a) converges smoothly to 31 (co) with multiplicity m,
away from the points (0,0,0,4d) € R*, which correspond to (0,+L) € 9Qu. In
particular, their areas also converge: |S,,(a)| — m|X1(c0)| as a 7 +o0.

The Morse index of S,,(a) is greater than or equal to its equivariant Morse index,
which coincides with the Morse index of the geodesic Vg (¢, (a))- For a sufficiently
large, this index is at least m — 1 by Proposition 7.5, since this geodesic develops
m — 1 sharp turns near 0€2,, and variations pushing these portions of the geodesic
closer to 09, decrease its length. (These sharp turns correspond to catenoidal necks
on Sy, (a), cf. the structural results in [CM15].) Inequality (1.3) follows readily. O

APPENDIX A. ARITHMETIC EQUATIONS SATISFIED BY a,,

In this Appendix, we use Heun functions to write the general solution to the
singular ODE L, (v) = 0 and provide arithmetic equations involving infinite contin-
ued fractions that are satisfied by the bifurcation instants a.,, in Theorem B. Recall
that (am)m>1, defined in (5.12), alternates between the sequences (aZ’*"),>1 and
(a24d),,~¢ of values of a > 0 such that £,(v) = 0 has a nontrivial solution in Veyen

and Vyq4, respectively, cf. Propositions 5.6 and 5.8, and (5.3).

A.1. Heun functions. The (local) Heun function HE((,q; o, B,7,0;2) is defined
as the unique solution w(z) holomorphic at z = 0 to the singular ODE

d2w ~ § € dw afz—q B
(A1) d,22+<z+z—1 Z—C)C1Z+Z(Z—1)(Z—C)w0’
w(0) =1, w/(0)= .

where e = a+ 8 — v — 6 + 1, see e.g. [Ron95, SK10]. (The above parameter ( is
typically denoted a in the literature, but we shall use ¢ here to distinguish it from
the parameter a > 0 used throughout the paper.) Equation (A.1) has four regular
singular points, namely 0, 1, ¢, and oo, with exponents (0,1—7), (0,1-4), (0,1—¢),
and (a, B), respectively. The following can be found in [SK10, §31.4]:

Lemma A.l. There is an infinite sequence (gm)m>o0 of values for the auziliary
parameter q such that HO((, q; «, 8,7, d; 2) is analytic at z = 1, given by solutions to

q:
Ry Py
Q1+q_ R2P3

Jr -
@2 +a Qs+q—

where the sequences (Pj)jen, (Q;)jen, and (R;)jew are given by:
Ppi=(j—-1+a)(j—1+8),
Qi=i((i=1+)(1+Q)+¢0+¢).  jeN.
Rj:=C(+1)(i+1),
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A.2. Solutions to £,(v) = 0. For all a > 0, the extension of £, to a differential
operator on the extended complex plane C = C U {oo} has regular singular points
at z = +1 and z = +(, where ( := (ﬁaijb?' Performing a change of variables with

the linear fractional transformation that moves these regular singular points to
{0,1,¢, 00}, we see that v(z) solves L,(v) = 0 if and only if

U(Z) = Cleven Veven (Z) + Codd Vodd (Z)7
for some Ceyen, Coda € R, where veyen(2) and voqq(z) are given by
Ueven(Z) = Hé (Cy GJevens Ceven ﬁeven7 %7 d2§ 22) E(Z)

(A.3) f
Voad (%) = H ((, Goad; Yodd; Bodas 5, d%; 2°) E(z) z,

42

1+4-
where FE(z) := (1 + (— — 1) ) ’ , and the parameters ¢, o, 8 are given by:

a® (d®—b?+2)—b*(d*+2)—a* a® (4d® —b*+6)—2b% (d*+3) —a*

Geven = 1(aZ—52) y  Godd = 1(aZ—b2) )
3d%+3+4/4a2+(d2—1)? 3d%4+5++/4a2+(d2—1)?
(A4) Qeven = 1 y Qodd = 1 )

3d%+3—4/4a2+(d2—1)2 3d%+5—4/4a2+(d2—1)?

6even = 1 ’ /Bodd = 1
Note that veven(0) = 1 and v}, (0) = 0, while v54q(0) = 0 and v/ ;4(0) = 1. One
may check that veyen € Veven if and only if H/ (C Geven; Qevens Beven % d ;2 )
3 d?; 2

analytic at z = 1, and voqq € Voaq if and only if H/ (C, Godd; Qodd; Bodd; 5 )
analytic at z = 1. Therefore, from Lemma A.1, we obtain the followmg

Proposition A.2. The sequences (a5'"),>1 and (aS%%),,>¢ are among the values of

a > 0 such that the corresponding geven and godd, respectively, solve equation (A.2)
in Lemma A.1, with the pammeters a and B replaced as in (A.4); the parameter ~

given by 3 in the even case, and 3 S in the odd case; 6 = d*; and ¢ = =" 7.

Remark A.3. Note that if a = b, then the above change of variables moves the
regular singular points to {0,1, 00,00}, the Heun functions in (A.3) become so-
called confluent Heun functions, and F(z) = 1. In particular, if a = b = ¢ = d,
then (A.3) simplify t0 veven(2) = 1 —z arctanh(z) and voqq(z) = z, cf. Remark 5.13.

Finding the values of ¢ that solve a continued fraction equation such as (A.2) is a
very difficult arithmetic problem. Nevertheless, numerical experiments with (A.3)
suggest that, in the special case b = d = 1, it might be reasonable to conjecture
that aS"°" = 2n and a%%d = 2n + 1, for all n € N, i.e., a,, = m for all m > 1. Note
that these conjectured bifurcation instants are precisely the instants at which the
area |¥;(a)| = “a of the planar minimal 2- spheres Yi(a) C E(a,1,1,1),4=2,3,4,
is an integer multlple of the area |X(a)| = 2, in strong analogy with the behavior
of simple closed geodesics bifurcating on 2- dlmensmnal ellipsoids of revolution in
R3, when their lengths are integer multiples of each other, see [K1i95, §3.5].
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