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Chiral NHCs have found numerous applications as ligands for transition metals and in their own rights for asymmetric

catalysis. Here, we report a synthetic route from L-malic acid to enantiopure 1,2,3-triazoliums (mesoionic carbene conjugate

acids) with the chiral center in a fused ring.

Introduction

Chirality, a fundamental property of nature, is vital in many
fields including chemistry, biology, physic and material science.
Reactions employing chiral transition metal catalysts or
organocatalysts are the most efficient ways to obtain
enantiomerically pure compounds from achiral feedstocks.
Over the past decades, N-heterocyclic carbenes (NHCs) have
been demonstrated to be both powerful ligands for transition
metal catalysts! and organocatalysts in their own right,2 and a
series of chiral NHCs have been reported.3 The stereocenter can
be located in the sidechain of the NHCs (Figure 1a, type A) or
the the saturated backbone (Figure 1a, type B). These two types
of chiral NHCs have been shown to perform well as ligands for
asymmetric metal catalysis.* However, a breakthrough for
asymmetric induction in NHC-catalyzed reactions came from
the work of Leeper,> Enders,® Rovis,” and Bode,® which
introduced rigid bicyclic scaffolds (Figure 1a, type C, and Figure
1b). For example, excellent enantioselectivity was observed in
NHC-Ir catalyzed transfer hydrogenation,® NHC-Cu catalyzed
allylic silylation® and NHC-catalyzed organic transformations.?

Another type of stable carbene, namely mesoionic
carbenes, and more specifically 1,2,3-triazol-5-ylidenes,!! has
more recently showed excellent potential as ligands for
transition metals catalysts!?2 and as organocatalysts both via
two-electron’® and single electron transfer processes.4
Importantly, MICs are readily available in large quantities, and
contrarily to other carbenes, they don’t dimerize. So far, there
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are just a handful of examples of chiral MICs all of them
featuring flexible sidechain chirality (Figure 1c).15-21

Considering the remarkable potential of MICs in catalysis, it
is necessary to broaden the types of chiral MICs/conjugate
acids. Inspired by the success of pyrrolidine-fused chiral NHCs
(Figure 1b), herein we report the preparation of enantiopure
pyrrolidine-fused 1,2,3-triazol-5-ylidene conjugate acids using a
readily available starting material from the chiral pool (Figure
1d).
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Figure 1. Chiral NHCs and MICs.
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Results and discussion

To test the feasability of the key sequence of our synthetic
strategy, we first prepared an achiral version of the fused
triazole, using pent-4-yn-1-ol (1) as a precursor. Gratifyingly, we
found that the desired heterocycle was readily accessible in
three steps (Scheme 1).22 The alcohol was treated with
methanesulfonyl chloride, followed by a substitution reaction
of the corresponding mesylate with sodium azide; then an
intramolecular  thermally-induced Huisgen cycloaddition
reaction afforded the desired fused triazole 2, which was
isolated in 77% yield (over three steps). Lastly, quaternization
by copper-catalyzed N-arylation?3 using diaryliodonium salts
produced the corresponding achiral conjugate acids MIC-H*a, b
in excellent isolated yields.
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Scheme 1. Synthesis of the achiral conjugate acid of pyrrolidine-fused
1,2,3-triazol-5-ylidenes. MsCl: methanesulfonyl chloride; Mes: 2,4,6-
trimethylphenyl.

Then, we turned our attention to the chiral version. As a starting
material, we chose enantiopure L-malic acid (Scheme 2). This
chiral pool chemical was converted in three steps into
hydroxylactone 3 using previously described conditions.24 First,
protection of the secondary alcohol and carboxy group with 2,2-
dimethoxypropane, followed reduction of the second carboxylic
moiety by borane and lastly an acid-catalyzed ring closing
esterification afforded hydroxylactone 3 (56% yield, over three
steps, 15 g scale). This sequence is easily scalable to 50 g scale
of L-malic acid, with similar yields (52%). Then, 3 was O-alkylated
and O-benzylated by reaction of 3 with benzyl-2,2,2-
trichloroacetamidate and methyl iodide to yield 4a and 4b,
respectively, with retention of configuration, whereas 4c was
prepared, with inversion of configuration, by successive
reaction with DIAD and phenol. The corresponding lactones 4
were converted to alcohols 5 with a two-step procedure. First,
lactones 4 were reduced with DIBALH giving the corresponding
lactols, which was converted into 5 using the Bestmann-Ohira
reagent (21-61% yield over two steps). From 5, the formation of
the 1,2,3-triazole ring was achieved in 39-77% yields, in three
steps as described for the parent compound (Scheme 1). It is
worth mentioning that the chiral HPLC of selected triazoles 6
confirmed that no significant drop in enantiopurity, occurred
during the whole synthetic sequence from the malic acid
(Scheme 2). Lastly, quaternization by copper-catalyzed N-
arylation?3 using diaryliodonium salts provided a library of
triazolium salts MIC-H*c-g in good-to-excellent yields (72-94%).

2| J. Name., 2012, 00, 1-3

MeO_ OMe
o

1. o
Hoos ™ O _PTSR_io,1 g oot ros Mg
OH 2. BHyMe,S
L-malic acid 3.pTSA 3:56%, 159 scale 4

98% ee 52%, 509 scale
Conditions:
4a: R = (S)-0Bn: benzyl 2,2,2-trichloroacetimidate, TfOH (cat.), 57%, 4b: R = (S)-OMe: CHgl, Ag,0, 70%

4c: R = (R)-OPh: phenol, DIAD, PPhj, 43%

o
1. DIBALH 4 1. MsCl, TEA N=N
RO ° RO OH N
* o o * A
% _OMe 2. NaN3 oR
2. P 3.A 6
4 OMe 5
N, 5a: RO = (S)-OBn: 61% 6a: RO = (S)-OBn: 69%, 98% ee

5b: RO = (S)-OMe: 21%
5¢: RO = (R)-OPh: 53%

6b: RO = (S)-OMe: 39%
6c: RO = (R)-OPh: 69%, 97% ee

MIC-H*c: RO = (S)-OBn, Ar = Ph : 79%
Ar*Ni\‘@‘:} MIC-H*d: RO = (S)-OBn, Ar = Mes : 7%
. MIC-H'e: RO = (S)-OMe, Ar = Ph : 94%
BFS bR MICH*f: RO = (R)-OPh, Ar = Ph:72%
MIC-H*g: RO = (R)-OPh, Ar = Mes : 86%

AnIBF,
Cu(OAc),
_—

N-N
N___ *

6 OR

Scheme 2. Synthesis of the chiral conjugate acid of pyrrolidine-fused
1,2,3-triazol-5-ylidenes. DIAD: diisopropyl azodicarboxylate.

The absolute configuration of the chiral center of MIC-H*f
was assigned as R using X-ray diffraction analysis (Figure 2, for
more details refer to the Supporting Information file).

Figure 2. X-ray crystal structure of MIC-H*f.

With precursors in hand, and as a proof of concept, we
prepared free carbenes MICf,g by treatment of the
corresponding triazolium MIC-H*f and MIC-H*g with an excess
of KOtBu at 0 °C (Scheme 3). The resulting carbenes were
characterized by NMR spectroscopy, with the carbene carbon
signals at 195.5 ppm (MICf) and 199.7 ppm (MICg) in THF-ds.
These chemical shifts are in accordance with those previously
reported for MICs.11 No significant decomposition was observed
in solution at O °C after 48 hours. However, MICg is totally
decomposed after 5 hrs at 40 °C (for more information, refer to
the Supporting Information file). To check that no racemization
occurred during the deprotonation of the triazolium salts, we
prepared MICf at 0 °C following the procedure described above
and added 3 equivalents of tetrafluorobic acid after 15 minutes.
Measurement of the optical rotation of regenerated MIC-H*f
proved unchanged compared to the original sample.
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Scheme 3. Generation of MICf and MICg.

Conclusions

This paper shows that enantiopure 1,2,3-triazolium salts,
featuring a fused sidechain with a chirogenic center can be
prepared in large quantities from a precursor belonging to the
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chiral pool. Importantly, starting from cheap L-malic acid, both
enantiomers of these chiral protonated MICs can be prepared,
depending on the method used to transform the
hydroxylactone 3 into 4. Additionally, the ensuing free chiral
MICs can be spectroscopically observed and are stable for a few
days at low temperatures. Because of the success of their NHC
cousins, featuring the same type of fused sidechain chirality,
numerous applications of these MICs can be expected in
asymmetric catalysis.
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