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Synthesis of Enantiopure 1,2,3-Triazolylidene-Type Mesoionic 
Carbenes (MICs) Conjugate Acids Featuring a Rigid Bicyclic 
Scaffold  

Vojtěch Dočekal,a,b Mohand Melaimi,b Simona Petrželová,c Jan Veselý,a Xiaoyu Yan,d and Guy 
Bertrand*b 

Chiral NHCs have found numerous applications as ligands for transition metals and in their own rights for asymmetric 

catalysis. Here, we report a synthetic route from L-malic acid to enantiopure 1,2,3-triazoliums (mesoionic carbene conjugate 

acids) with the chiral center in a fused ring. 

Introduction 

Chirality, a fundamental property of nature, is vital in many 

fields including chemistry, biology, physic and material science. 

Reactions employing chiral transition metal catalysts or 

organocatalysts are the most efficient ways to obtain 

enantiomerically pure compounds from achiral feedstocks. 

Over the past decades, N-heterocyclic carbenes (NHCs) have 

been demonstrated to be both powerful ligands for transition 

metal catalysts1 and organocatalysts in their own right,2 and a 

series of chiral NHCs have been reported.3 The stereocenter can 

be located in the sidechain of the NHCs (Figure 1a, type A) or 

the the saturated backbone (Figure 1a, type B). These two types 

of chiral NHCs have been shown to perform well as ligands for 

asymmetric metal catalysis.4 However, a breakthrough for 

asymmetric induction in NHC-catalyzed reactions came from 

the work of Leeper,5 Enders,6 Rovis,7 and Bode,8 which 

introduced rigid bicyclic scaffolds (Figure 1a, type C, and Figure 

1b). For example, excellent enantioselectivity was observed in 

NHC-Ir catalyzed transfer hydrogenation,9 NHC-Cu catalyzed 

allylic silylation10 and NHC-catalyzed organic transformations.2  

Another type of stable carbene, namely mesoionic 

carbenes, and more specifically 1,2,3-triazol-5-ylidenes,11 has 

more recently showed excellent potential as ligands for 

transition metals catalysts12 and as organocatalysts both via 

two-electron13 and single electron transfer processes.14 

Importantly, MICs are readily available in large quantities, and 

contrarily to other carbenes, they don’t dimerize. So far, there 

are just a handful of examples of chiral MICs all of them 

featuring flexible sidechain chirality (Figure 1c).15-21 

Considering the remarkable potential of MICs in catalysis, it 

is necessary to broaden the types of chiral MICs/conjugate 

acids. Inspired by the success of pyrrolidine-fused chiral NHCs 

(Figure 1b), herein we report the preparation of enantiopure 

pyrrolidine-fused 1,2,3-triazol-5-ylidene conjugate acids using a 

readily available starting material from the chiral pool (Figure 

1d). 

 

Figure 1. Chiral NHCs and MICs.  
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Results and discussion 

To test the feasability of the key sequence of our synthetic 

strategy, we first prepared an achiral version of the fused 

triazole, using pent-4-yn-1-ol (1) as a precursor. Gratifyingly, we 

found that the desired heterocycle was readily accessible in 

three steps (Scheme 1).22 The alcohol was treated with 

methanesulfonyl chloride, followed by a substitution reaction 

of the corresponding mesylate with sodium azide; then an 

intramolecular thermally-induced Huisgen cycloaddition 

reaction afforded the desired fused triazole 2, which was 

isolated in 77% yield (over three steps). Lastly, quaternization 

by copper-catalyzed N-arylation23 using diaryliodonium salts 

produced the corresponding achiral conjugate acids MIC-H+a, b 

in excellent isolated yields. 

  
Scheme 1. Synthesis of the achiral conjugate acid of pyrrolidine-fused 

1,2,3-triazol-5-ylidenes. MsCl: methanesulfonyl chloride; Mes: 2,4,6-

trimethylphenyl. 

Then, we turned our attention to the chiral version. As a starting 

material, we chose enantiopure L-malic acid (Scheme 2). This 

chiral pool chemical was converted in three steps into 

hydroxylactone 3 using previously described conditions.24 First, 

protection of the secondary alcohol and carboxy group with 2,2-

dimethoxypropane, followed reduction of the second carboxylic 

moiety by borane and lastly an acid-catalyzed ring closing 

esterification afforded hydroxylactone 3 (56% yield, over three 

steps, 15 g scale). This sequence is easily scalable to 50 g scale 

of L-malic acid, with similar yields (52%). Then, 3 was O-alkylated 

and O-benzylated by reaction of 3 with benzyl-2,2,2-

trichloroacetamidate and methyl iodide to yield 4a and 4b, 

respectively, with retention of configuration, whereas 4c was 

prepared, with inversion of configuration, by successive 

reaction with DIAD and phenol. The corresponding lactones 4 

were converted to alcohols 5 with a two-step procedure. First, 

lactones 4 were reduced with DIBALH giving the corresponding 

lactols, which was converted into 5 using the Bestmann-Ohira 

reagent (21-61% yield over two steps). From 5, the formation of 

the 1,2,3-triazole ring was achieved in 39-77% yields, in three 

steps as described for the parent compound (Scheme 1). It is 

worth mentioning that the chiral HPLC of selected triazoles 6 

confirmed that no significant drop in enantiopurity, occurred 

during the whole synthetic sequence from the malic acid 

(Scheme 2). Lastly, quaternization by copper-catalyzed N-

arylation23 using diaryliodonium salts provided a library of 

triazolium salts MIC-H+c-g in good-to-excellent yields (72-94%). 

 

 

 

Scheme 2. Synthesis of the chiral conjugate acid of pyrrolidine-fused 

1,2,3-triazol-5-ylidenes. DIAD: diisopropyl azodicarboxylate. 

The absolute configuration of the chiral center of MIC-H+f 

was assigned as R using X-ray diffraction analysis (Figure 2, for 

more details refer to the Supporting Information file). 

 

 
Figure 2. X-ray crystal  structure of MIC-H+f. 

 With precursors in hand, and as a proof of concept, we 

prepared free carbenes MICf,g by treatment of the 

corresponding triazolium MIC-H+f and MIC-H+g with an excess 

of KOtBu at 0 °C (Scheme 3). The resulting carbenes were 

characterized by NMR spectroscopy, with the carbene carbon 

signals at 195.5 ppm (MICf) and 199.7 ppm (MICg) in THF-d8. 

These chemical shifts are in accordance with those previously 

reported for MICs.11 No significant decomposition was observed 

in solution at 0 °C after 48 hours. However, MICg is totally 

decomposed after 5 hrs at 40 °C (for more information, refer to 

the Supporting Information file). To check that no racemization 

occurred during the deprotonation of the triazolium salts, we 

prepared MICf at 0 oC following the procedure described above 

and added 3 equivalents of tetrafluorobic acid after 15 minutes. 

Measurement of the optical rotation of regenerated MIC-H+f 

proved unchanged compared to the original sample.  

 

 
Scheme 3. Generation of MICf and MICg. 

Conclusions 

This paper shows that enantiopure 1,2,3-triazolium salts, 

featuring a fused sidechain with a chirogenic center can be 

prepared in large quantities from a precursor belonging to the 
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chiral pool. Importantly, starting from cheap L-malic acid, both 

enantiomers of these chiral protonated MICs can be prepared, 

depending on the method used to transform the 

hydroxylactone 3 into 4. Additionally, the ensuing free chiral 

MICs can be spectroscopically observed and are stable for a few 

days at low temperatures. Because of the success of their NHC 

cousins, featuring the same type of fused sidechain chirality, 

numerous applications of these MICs can be expected in 

asymmetric catalysis. 
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