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A B S T R A C T

We consider compartmental models of communicable disease with uncertain contact rates. Stochastic fluc-
tuations are often added to the contact rate to account for uncertainties. White noise, which is the typical
choice for the fluctuations, leads to significant underestimation of the disease severity. Here, starting from
reasonable assumptions on the social behavior of individuals, we model the contacts as a Markov process
which takes into account the temporal correlations present in human social activities. Consequently, we show
that the mean-reverting Ornstein–Uhlenbeck (OU) process is the correct model for the stochastic contact
rate. We demonstrate the implication of our model on two examples: a Susceptibles–Infected–Susceptibles
(SIS) model and a Susceptibles–Exposed–Infected–Removed (SEIR) model of the COVID-19 pandemic and
compare the results to the available US data from the Johns Hopkins University database. In particular,
we observe that both compartmental models with white noise uncertainties undergo transitions that lead
to the systematic underestimation of the spread of the disease. In contrast, modeling the contact rate with
the OU process significantly hinders such unrealistic noise-induced transitions. For the SIS model, we derive
its stationary probability density analytically, for both white and correlated noise. This allows us to give a
complete description of the model’s asymptotic behavior as a function of its bifurcation parameters, i.e., the
basic reproduction number, noise intensity, and correlation time. For the SEIR model, where the probability
density is not available in closed form, we study the transitions using Monte Carlo simulations. Our modeling
approach can be used to quantify uncertain parameters in a broad range of biological systems.
1. Introduction

Compartmental models describe the spread of communicable dis-
eases in a population [1–6]. In such models, the population of a
community is partitioned into disjoint compartments, e.g., the suscepti-
ble and the infected, each one containing all individuals with the same
disease status [7]. The state variables in a compartmental model are the
numbers of individuals in each compartment. The model parameters,
e.g., the contact, incubation, and curing rates, determine the flow of
individuals between compartments. In the present work, we study how
the model predictions are affected by the presence of uncertainties in
the compartmental model parameters.

Determining the value of model parameters is a delicate task that in-
volves estimation and averaging of data over the whole population [8–
11]. As such, model parameters are subject to uncertainties, arising
from the variation of social and biological factors among individuals.
Among the model parameters, average contact rate is the most volatile,
due to its strong dependence on the social activity that varies from
person to person, and also changes over time [9,12–14]. Uncertainties
in the contact rate 𝜆(𝑡) are often modeled as a stochastic perturbation
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𝜉(𝑡) with intensity 𝜎 around a constant mean 𝜆̄, so that 𝜆(𝑡) = 𝜆̄+ 𝜎𝜉(𝑡).
A common choice for 𝜉(𝑡) is Gaussian white noise, see e.g. [15]. The
remaining model parameters, such as the average incubation or curing
rate, depend mainly on the biology of the virus, and, while every
individual responds to the infection differently, they vary less compared
to the contact rate and can be considered constant.

In a recent study [16], we studied the role of temporal correlations,
which are present in social activities of individuals, on the contact rate
𝜆(𝑡). Using standard results from the theory of stochastic processes, and
assuming that the perturbation 𝜉(𝑡) has an exponentially decreasing
autocorrelation function, we showed that the only admissible model
for the stochastic contact rate is the Ornstein–Uhlenbeck (OU) process.
However, the assumption of exponentially decreasing autocorrelation
had remained unjustified in Ref. [16]. Here we take an entirely dif-
ferent modeling approach which does not require such an onerous
assumption. In fact, as we show in Section 2, the OU process emerges
naturally by making quite simple and realistic assumptions on the
contacts of each individual in the population.
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Next, we focus on determining the final size of disease in a pop-
ulation, as predicted by compartmental models with white or OU
noise fluctuations in contact rate. We study two compartmental mod-
els. First, we consider the stochastic Susceptibles-Infected-Susceptibles
(SIS) model, which is adequate for modeling sexually transmitted or
bacterial diseases such as gonorrhea or syphilis. For the SIS model,
we determine the stationary probability density function (PDF) of the
infected population fraction in closed form. This allows us to com-
pletely classify the asymptotic state of the model as a function of its
bifurcation parameters, i.e., basic reproduction number, noise intensity,
and the correlation time of the noise. As the second model, we consider
the stochastic Susceptibles-Exposed-Infected-Removed (SEIR) model for
COVID-19 pandemic in the US during the Omicron variant. Using
Monte Carlo simulations, we study the bifurcations of the asymptotic
probability density as in the SIS model.

Our main qualitative result is that, for increasing levels of white
noise in the contact rate, both compartmental models undergo a noise-
induced transition, whereby the stationary PDF of the infected exhibits
an additional peak near zero, and far away from the deterministic equi-
librium. This unrealistic behavior leads to significant underestimation
of the severity of the disease. In contrast, under OU noise this transition
is suppressed, with most of the probability mass of the stationary PDF
being concentrated around the deterministic equilibrium.

1.1. Related work

Stochasticity has been incorporated into many epidemiological
models [17,18]. One principled approach for deriving stochastic com-
partmental models begins by modeling of the number of individuals
in each compartment as continuous-time Markov chain birth–death
processes or as branching processes, see e.g. [19–21]. Then, by assum-
ing their state variables to be continuous, the Markov chain models
result in a system of stochastic differential equations (SDEs) whose
parameters contain white noise uncertainties. Another approach is to
directly add noise to the model parameters; see e.g. [12,15,22–24]. This
approach is more straightforward, but the choice of the type of noise
is largely arbitrary: The most common choice in literature is Gaussian
white noise [15,25–28]. However, OU noise has also been proposed
for parameter perturbation in biological systems, see e.g., [15,29–34],
because OU noise combines the modeling of stochastic fluctuations with
the stabilization around an equilibrium point, due to its mean-reverting
property. A disadvantage of OU model is that, since it is an unbounded
Gaussian noise, it may attain negative values. Mean reverting processes
preserving nonnegativity have already been proposed for parameter
perturbation; see, e.g., [32,35,36].

Recently, the COVID-19 pandemic has renewed interest in stochastic
modeling of disease spread; see e.g. [37] for a survey of existing fore-
cast models for COVID-19, and [22] where a lognormally distributed
process has been considered for the stochastic fluctuations in contact
rate of a COVID-19 compartmental model, to account for the presence
of superspreaders in the population. However, most of the studies
that use stochastic compartmental models to make predictions for the
COVID-19 pandemic rely primarily on simulations, see e.g., [22,24,38].

Most of the analysis performed on stochastic compartmental models
has been focused on the derivation of conditions for the eradication
or persistence of the disease in the population; see e.g., [15,25–28,39–
42] for compartmental models with white noise uncertainties. Recently,
this line of work has been extended to models with OU uncertain-
ties [29,30], and Lévy noises [43,44] to account for abrupt changes
(jumps) in disease transmission.

The focus of the present work is different; apart from conditions for
the disease to become endemic, we are also interested in the predictions
of stochastic compartmental models on the final disease size. Analytic
work in this direction is scarce; see e.g. Ref. [45] which uses the
Fokker–Planck equation to study a scalar compartmental model under
2

white noise fluctuations in contact rate. a
1.2. Outline

This paper is organized as follows. In Section 2, we present our
model of uncertainties in the contact rate. In Section 3, we study the SIS
model, for both cases of white and OU noise fluctuations in contact rate.
We analytically determine the noise-induced transitions the stochastic
SIS model undergoes, and we quantify the effect of noise correlations
in contact rate. In Section 4, we study the noise-induced transitions of a
stochastic SEIR model for the Omicron wave of the COVID-19 pandemic
in the US, by using direct Monte Carlo simulations. In Section 5, we
make our concluding remarks and outline possible directions for future
work.

2. Modeling uncertainties in contact rate

The average contact rate 𝜆, defined as the average number of
adequate contacts per individual per unit time [46, Sec. 2.7.1], [47],
is the main source of uncertainty in compartmental models. In order
to determine its properties as a random process, we begin with the
cumulative number of contacts 𝐶𝑛(𝑡) of the 𝑛th individual up to time
𝑡. We denote the incremental number of contacts by 𝛥𝐶𝑛(𝑡) which
measures the number of contacts that the 𝑛th individual makes during
the time interval [𝑡, 𝑡+𝛥𝑡], with 𝛥𝑡 being a reference time interval, e.g., a
ay or a week. The contact rate 𝜆𝑛 of the 𝑛th individual is then given
y 𝜆𝑛(𝑡) = 𝛥𝐶𝑛(𝑡)∕𝛥𝑡.

Next, we make the following assumptions on the social behavior of
ach individual.

1. The average number of contacts that individuals make in a time
interval is proportional to the length of the time interval, so that
𝖤[𝛥𝐶𝑛(𝑡)] = 𝜇𝑛𝛥𝑡, for some constant 𝜇𝑛 > 0.

2. The number of contacts 𝛥𝐶𝑛(𝑡) is subject to time-varying random
fluctuations, the intensity of which is also proportional to refer-
ence unit time 𝛥𝑡. For instance, this assumption implies that the
contacts of an individual per week are prone to more uncertainty
than the contacts of the same individual per day.

3. After a period of relatively high or low contacts compared to the
average number 𝜇𝑛𝛥𝑡, the contacts of the individual will tend
towards the mean 𝜇𝑛𝛥𝑡. In other words, high or low numbers of
contacts are not sustained for prolonged periods of time.

nder the above assumptions, we formulate the conditional probability
f 𝛥𝐶𝑛(𝑡+𝛿𝑡)−𝛥𝐶𝑛(𝑡), given the number of contacts 𝛥𝐶𝑛(𝑡), where 𝛿𝑡 ≪ 𝛥𝑡
s a small time increment. Note that 𝛥𝐶𝑛(𝑡+𝛿𝑡) is the number of contacts
hat the individual makes over the time interval [𝑡 + 𝛿𝑡, 𝑡 + 𝛿𝑡 + 𝛥𝑡].
herefore, 𝛥𝐶𝑛(𝑡+𝛿𝑡)−𝛥𝐶𝑛(𝑡) measures the variations in the number of
ontacts as the reference time interval [𝑡, 𝑡+𝛥𝑡] is shifted ever so slightly
see Fig. 1 for an illustration).

Based on the above assumptions, for given positive integers 𝑖 and 𝑗,
e define the conditional probability,
[

𝛥𝐶𝑛(𝑡 + 𝛿𝑡) − 𝛥𝐶𝑛(𝑡) = 𝑗|𝛥𝐶𝑛(𝑡) = 𝑖
]

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
2 [(𝜅𝑛𝛥𝑡)

2 − 𝜃𝑛(𝜇𝑛𝛥𝑡 − 𝑖)]𝛿𝑡 𝑗 = −1
1
2 [(𝜅𝑛𝛥𝑡)

2 + 𝜃𝑛(𝜇𝑛𝛥𝑡 − 𝑖)]𝛿𝑡 𝑗 = +1
1 − (𝜅𝑛𝛥𝑡)2𝛿𝑡 𝑗 = 0
0 otherwise,

(1)

here 𝜅𝑛, 𝜃𝑛 and 𝜇𝑛 are positive constants. We will see shortly that 𝜅𝑛
ontrols the noise intensity and 𝜃𝑛 determines the time correlation of
he resulting stochastic process. For simplicity, we assume that these
onstants are identical across the population. Therefore, we omit the
ubscript 𝑛 and simply denote them by 𝜅, 𝜃 and 𝜇.

The conditional probability (1) dictates the following. If the current
umber of contacts 𝛥𝐶𝑛(𝑡) = 𝑖 is greater than the mean 𝜇𝛥𝑡, then it
s more probable for the number of contact to decrease by one after

short time interval 𝛿𝑡 has passed (case 𝑗 = −1). Conversely, if the
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number of contacts 𝛥𝐶𝑛(𝑡) = 𝑖 is less than the mean, it is more likely
or the number of contacts to increase by one in the near future (case
= +1). Furthermore, it assumes that the probability that the number
f contacts jump by more than one within a short time 𝛿𝑡 is negligible.

Finally, the probability for case 𝑗 = 0 (no change within time 𝛿𝑡) is
defined to ensure that the total probability adds up to one.

We note that the constant 𝜃 plays a crucial role here. If 𝜃 = 0, the
number of contacts increase or decrease with the same probability and
regardless of their past history (Brownian motion). In contrast, 𝜃 > 0
introduces time correlations into the process so that the number of
contacts have a tendency to revert back to their mean value.

From Eq. (1), we calculate the conditional mean value and variance,

𝖤[𝛥𝐶𝑛(𝑡 + 𝛿𝑡) − 𝛥𝐶𝑛(𝑡)|𝛥𝐶𝑛(𝑡) = 𝑖] = 𝜃(𝜇𝛥𝑡 − 𝑖)𝛿𝑡, (2a)

𝖵𝖺𝗋[𝛥𝐶𝑛(𝑡 + 𝛿𝑡) − 𝛥𝐶𝑛(𝑡)|𝛥𝐶𝑛(𝑡) = 𝑖] = (𝜅𝛥𝑡)2𝛿𝑡. (2b)

Using Eq. (2), and the definition 𝜆𝑛(𝑡) = 𝛥𝐶𝑛(𝑡)∕𝛥𝑡, we calculate the
conditional mean and variance,

𝖤[𝜆𝑛(𝑡 + 𝛿𝑡) − 𝜆𝑛(𝑡)|𝜆𝑛(𝑡) = 𝛼] =
1
𝛥𝑡

𝖤[𝛥𝐶𝑛(𝑡 + 𝛿𝑡) − 𝛥𝐶𝑛(𝑡)|𝛥𝐶𝑛(𝑡) = 𝛼𝛥𝑡] = 𝜃(𝜇 − 𝛼)𝛿𝑡, (3a)

𝖵𝖺𝗋[𝜆𝑛(𝑡 + 𝛿𝑡) − 𝜆𝑛(𝑡)|𝜆𝑛(𝑡) = 𝛼] =
1

(𝛥𝑡)2
𝖵𝖺𝗋[𝛥𝐶𝑛(𝑡 + 𝛿𝑡) − 𝛥𝐶𝑛(𝑡)|𝛥𝐶𝑛(𝑡) = 𝛼𝛥𝑡] = 𝜅2𝛿𝑡, (3b)

here 𝛼 = 𝑖∕𝛥𝑡. Assuming no dependence between the incremental
ontacts of different individuals, 𝜆𝑛(𝑡) are independent random vari-

ables. This means that 𝜆𝑛(𝑡 + 𝛿𝑡) − 𝜆𝑛(𝑡) are also independent random
variables, with the same mean value and variance given by Eq. (3).
Hence, the central limit theorem implies that the average over the
whole population of 𝑁 individuals,

𝜆(𝑡 + 𝛿𝑡) − 𝜆(𝑡) = 1
𝑁

𝑁
∑

𝑛=1

(

𝜆𝑛(𝑡 + 𝛿𝑡) − 𝜆𝑛(𝑡)
)

, (4)

follows a normal distribution with mean 𝜃(𝜇−𝛼)𝛿𝑡 and variance 𝜅2𝛿𝑡∕𝑁 .
As a result, we have

𝜆(𝑡 + 𝛿𝑡) − 𝜆(𝑡) = 𝜃(𝜇 − 𝛼)𝛿𝑡 +𝐷
√

𝛿𝑡 (𝑡), (5)

where 𝐷 = 𝜅∕
√

𝑁 , and  (𝑡) is the standard normal distribution, with
 (𝑡) and  (𝑠) being independent for 𝑡 ≠ 𝑠. Recall that the expressions
in Eq. (3) are conditioned on 𝜆𝑛(𝑡) = 𝛼 for all 𝑛 = 1,… , 𝑁 , which implies
𝜆(𝑡) = (1∕𝑁)

∑𝑁
𝑛=1 𝜆𝑛(𝑡) = 𝛼. Therefore Eq. (5) is equivalent to

(𝑡 + 𝛿𝑡) − 𝜆(𝑡) = 𝜃(𝜇 − 𝜆(𝑡))𝛿𝑡 +𝐷
√

𝛿𝑡 (𝑡). (6)

Dividing by 𝛿𝑡 and taking the limit 𝛿𝑡 → 0, we obtain the Langevin
equation,
d𝜆(𝑡)
d𝑡

= 𝜃(𝜇 − 𝜆(𝑡)) +𝐷𝜉WN(𝑡), (7)

where 𝜉WN(𝑡) is the standard white noise. Eq. (7) is the SDE for an
Ornstein–Uhlenbeck process. Therefore, the average contact rate 𝜆(𝑡)
is an OU process.
3

𝑁

Defining the correlation time 𝜏 = 1∕𝜃 and noise intensity 𝜎2 = 𝐷2𝜏2,
Eq. (7) can be written equivalently as
𝑑𝜆(𝑡)
𝑑𝑡

= 1
𝜏
(𝜇 − 𝜆(𝑡)) + 𝜎

𝜏
𝜉WN(𝑡). (8)

The stationary solution of Eq. (8) is a Gaussian process with the
following mean and autocovariance [48],

𝖤[𝜆(𝑡)] = 𝜇, 𝖢𝗈𝗏[𝜆(𝑡)𝜆(𝑠)] = 𝜎2

2𝜏
exp

(

−
|𝑡 − 𝑠|

𝜏

)

. (9)

Note that the autocovariance given by Eq. (9) is a nascent delta
function; i.e., it converges to 𝜎𝛿(𝑡−𝑠) as 𝜏 → 0 [49, Sec. 6.6]. This means
that the solution of OU SDE (8) cast in (𝜏, 𝜎)-parametrization results in
a white noise with intensity 𝜎, for the limiting case of 𝜏 → 0. Thus,
the advantage of using the (𝜏, 𝜎)- instead of the (𝜃,𝐷)-parametrization
s that it establishes a relation between white and OU noises, allowing
s to study white and OU noise excitations in SDEs in a unified way.

We further simplify the notation by expressing the contact rate as
(𝑡) = 𝜆̄ + 𝜎𝜉OU(𝑡), where 𝜆̄ = 𝜇, 𝜎 is the noise intensity, and 𝜉OU is the
tandard OU process with unit intensity. The standard OU process 𝜉OU

atisfies the SDE,
𝑑𝜉𝑂𝑈 (𝑡)

𝑑𝑡
= −1

𝜏
𝜉𝑂𝑈 (𝑡) + 1

𝜏
𝜉𝑊𝑁 (𝑡), (10)

so that it has zero mean and its autocovariance is given by

𝖤
[

𝜉OU(𝑡)𝜉OU(𝑠)
]

= 1
2𝜏

exp
(

−
|𝑡 − 𝑠|

𝜏

)

. (11)

With this expression, 𝜆(𝑡) = 𝜆̄ + 𝜎𝜉OU(𝑡) satisfies the Langevin Eq. (8)
and its mean and covariance are given by Eq. (9).

3. SIS model

The Susceptibles-Infected-Susceptibles (SIS) model is described by
the equations
d𝑆(𝑡)
d𝑡

= − 𝜆
𝑁

𝑆(𝑡)𝐼(𝑡) + 𝛾𝐼(𝑡), (12a)

d𝐼(𝑡)
d𝑡

= 𝜆
𝑁

𝑆(𝑡)𝐼(𝑡) − 𝛾𝐼(𝑡), (12b)

here 𝑆(𝑡), 𝐼(𝑡) are the numbers of susceptible and infected individuals,
espectively, and 𝑁 is the total population. SIS model parameters are
he average contact rate 𝜆 and the average curing (or recovery) rate 𝛾,
hich is the inverse of the average time an individual needs to recover.
IS Eq. (12) is suitable for modeling diseases that are curable, and
hose infection does not confer protective immunity; thus the infected
ecome susceptibles again after their recovery. This is the case for most
acterial and sexually transmitted diseases [50,51].

Note that (𝜆∕𝑁)𝑆(𝑡)𝐼(𝑡) is the simplest form for the disease transmis-
ion term, and it is based on the assumption of homogeneous mixing
f population [7]. Under this assumption, out of the total number
f contacts that each susceptible individual makes on average per
nit time, 𝜆𝐼∕𝑁 contacts are with the infected, resulting in disease
ransmission. Transmission term without the division with 𝑁 is some-
imes used [15,45]; however, this choice is not supported by empirical
vidence [52].

Under the usual assumption of constant population 𝑆(𝑡) + 𝐼(𝑡) =

, SIS model (12) can be reduced to one scalar ordinary differential
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equation (ODE) [15]. Defining the infected fraction of the population,
𝑋(𝑡) = 𝐼(𝑡)∕𝑁 ∈ [0, 1], as the state variable, the scalar ODE is written
as
d𝑋(𝑡)
d𝑡

= 𝜆𝑋(𝑡)(1 −𝑋(𝑡)) − 𝛾𝑋(𝑡). (13)

The equilibrium points of ODE (13) are 𝑥0 = 0, and 𝑥1 = (𝜆 − 𝛾)∕𝜆.
The stability of equilibrium points depends on the basic reproduction
number 𝑅0 = 𝜆∕𝛾:

• For 𝑅0 < 1, equilibrium point 𝑥0 = 0 is stable. In this case, the
disease is eventually eradicated from the population.

• For 𝑅0 > 1, equilibrium point 𝑥0 = 0 is unstable and 𝑥1 = (𝜆−𝛾)∕𝜆
is stable. In this case, the disease persists in the population and
becomes endemic.

In the endemic case, 𝑅0 > 1, we derive a characteristic time scale for
ODE (13). For this, we linearize ODE (13) around the stable equilibrium
𝑥1, and calculate its Lyapunov exponent 𝜆 − 𝛾 (see also [53, Sec.
V.A]). The characteristic time scale is determined as the inverse of the
Lyapunov exponent, 𝜂 = (𝜆 − 𝛾)−1.

Under the stochastic perturbation of the contact rate 𝜆(𝑡) = 𝜆̄+𝜎𝜉(𝑡),
the SIS model reads
d𝑋(𝑡)
d𝑡

= 𝜆̄𝑋(𝑡)(1 −𝑋(𝑡)) − 𝛾𝑋(𝑡) + 𝜎𝑋(𝑡)(1 −𝑋(𝑡))𝜉(𝑡). (14)

Eq. (14) is a stochastic differential equation under multiplicative noise
excitation, since noise excitation 𝜉(𝑡) is multiplied by a state-dependent
function.

In the remainder of this section, we determine the asymptotic
behavior of SIS model (14) for two cases: 1. when 𝜉(𝑡) is the standard
Gaussian white noise, and 2. when 𝜉(𝑡) is the standard OU process. In
particular, we show that the OU process, as derived in Section 2, is
more suitable for modeling uncertainties in the contact rate. In contrast
to the deterministic SIS model (13), stochastic SIS model (14) exhibits
a richer asymptotic behavior that includes regions of bistablity, and
regions with 𝑅0 > 1 where 𝑥0 = 0 is stable.

For the SIS model under white noise, its stationary PDF is easily
determined as the stationary solution of the classical Fokker–Planck
equation, see, e.g., [54, Ch. 5]. For the case of OU fluctuations in con-
tact rate, determining the stationary PDF is not as straightforward; the
derivation and solution of Fokker–Planck-like equations, corresponding
to stochastic differential equations (SDEs) excited by correlated noise,
has been the topic of research for many decades [48,55–61]. Re-
cently [53,62], we have proposed a nonlinear Fokker–Planck equation
whose validity is not limited to small correlation times of the stochastic
excitation (see Appendix A). As we show in Section 3.2, the stationary
solution to this nonlinear Fokker–Planck equation is given in explicit
closed form for the case of the stochastic SIS model. Thus, stochastic
SIS model under OU perturbation is a rare instance of a nonlinear SDE
under correlated noise whose stationary solution can be analytically
determined.

By having the stationary PDFs in explicit form for both white and
OU models, we are able to systematically investigate the noise-induced
transitions that the stochastic SIS model undergoes, for increasing levels
of noise.

3.1. SIS model under white noise

In this section, we consider 𝜉(𝑡) to be the standard white noise 𝜉WN(𝑡)
with zero mean value and autocorrelation

𝖤
[

𝜉WN(𝑡)𝜉WN(𝑠)
]

= 𝛿(𝑡 − 𝑠), (15)

where 𝖤[⋅] denotes the expected value and 𝛿(𝑡 − 𝑠) is Dirac’s delta
function. For the stochastic SIS model (14) under white noise, we
calculate the stationary PDF of 𝑋(𝑡) as the stationary solution to the
corresponding Fokker–Planck equation (see Appendix A),

𝑝0(𝑥) = 𝐶𝑥
2
(

1−𝑅−10

)

(𝜎2∕𝜆̄) −2+𝜛
(1−𝑥)

−
2
(

1−𝑅−10

)

(𝜎2∕𝜆̄) −2+𝜛
exp

(

−
2𝑅−1

0
(

2 ̄)
1

)

, (16)
4

𝜎 ∕𝜆 1 − 𝑥
where 𝐶 is a normalization factor, so that ∫R 𝑝0(𝑥)d𝑥 = 1. Parameter 𝜛
models the difference, on the level of stationary PDF, between the Itō
(𝜛 = 0) and Stratonovich (𝜛 = 1) solution of SDE (14) under white
noise. This difference stems from the different definition of integrals
with respect to Wiener process in the two approaches [63]. In the limit,
where the correlation time tends to zero, Stratonovich’s interpretation
of the SDE converges towards white noise, but its Itō counterpart does
not; cf. [64, p. 128] and [65, p. 216]. As a result, one may favor
Stratonovich’s interpretation in practice. In the following, we discuss
both interpretations and their quantitative differences.

Stationary PDF (16) depends on two dimensionless parameters:
the basic reproduction number of the underlying deterministic model,
𝑅0 = 𝜆̄∕𝛾, and the relative variance of the noise, 𝜎2∕𝜆̄, measuring
the noise intensity. Using these dimensionless parameters, we study
the bifurcation diagram of the stationary PDF as shown in Fig. 2 (see
Appendix B for calculations). As we derive in Appendix B, both Itō and
Stratonovich solutions result in a disease eradication for 𝑅0 < 1, as is
the case for the deterministic SIS model. Therefore, we only consider
the range 𝑅0 > 1 in Fig. 2.

The different regions in Fig. 2, marked by roman numerals, corre-
spond to different shapes of the stationary PDF of the infected popula-
tion fraction 𝑋:

(I) Unimodal with mode at a non-zero 𝑥𝑚: The most probable
outcome is the disease to become endemic in the population.

(II) Bimodal with one mode at zero and one at a non-zero 𝑥𝑚: In
this case, the most probable outcomes is either the disease being
eradicated, or to attain the level 𝑥𝑚 in the population.

(III) Unimodal with mode at zero: The disease is most likely eradi-
cated from the population.

(IV) Delta function at zero, present only for Itō solution: disease erad-
ication is certain. This is the only case of absolute eradication of
the disease for 𝑅0 > 1. In the Itō solution, the disease persists in
the population for (𝜎2∕𝜆̄) < 2

(

1 − 1∕𝑅0
)

(region below the green
curve in Fig. 2A), written equivalently as

𝑅0 −
𝜎2

2𝛾
> 1. (17)

Eq. (17) is the disease persistence condition derived in [15],
as expressed for the stochastic SIS model (14). Thus, for the
Itō solution, increase in noise intensity results eventually in the
eradication of the disease from the population, regardless of the
value of 𝑅0. On the other hand, region IV is absent from Fig. 2B,
meaning that, under Stratonovich interpretation, the disease is
never surely eradicated from the population for 𝑅0 > 1, see
also [45].

Apart from the PDF shape, another important measure of disease
severity is the value of 𝑥𝑚, at which the non-zero PDF mode is exhib-
ited. As we observe in Fig. 3, for low levels of noise, the stationary PDFs
of the infected population fraction are narrow and unimodal, exhibiting
their mode at the stable equilibrium 𝑥1 of the underlying deterministic
SIS model. As the noise level increases, the PDF mode 𝑥𝑚 moves away
from the deterministic equilibrium. This phenomenon is called the peak
drift [48,53,62], and is commonplace in SDEs with multiplicative noise
excitation such as SDE (14).

The color in Fig. 2 encodes the peak drift phenomenon quantifying
the difference between the coordinates 𝑥𝑚 (non-zero PDF mode) and 𝑥1
(deterministic equilibrium point), as a percentage of 𝑥1. Fig. 2 revels
two opposite trends in peak drift. In regions Ia and IIa to the left of the
vertical dashed line where 𝑅0 < 2, higher noise intensity 𝜎2∕𝜆̄ results in
the non-zero PDF mode 𝑥𝑚 to drift towards zero. In contrast, in regions
Ib and IIb where 𝑅0 > 2, higher noise intensity 𝜎2∕𝜆̄ results in the
non-zero PDF mode 𝑥𝑚 to drift towards one.

The above discussion shows that, by increasing the relative noise
intensity 𝜎2∕𝜆̄, the stochastic SIS model undergoes a noise-induced
transition [59], i.e., a bifurcation in the shape of its stationary PDF.
The type of noise-induced transition is determined by the value of the

deterministic dimensionless parameter 𝑅0:
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Fig. 2. Bifurcation diagrams for the shape of stationary PDF of infected population fraction of stochastic SIS model (14) under white noise, for Itō (panel A) and Stratonovich
(panel B) solutions. We define the depicted curves in Appendix B.

Fig. 3. Stationary PDFs of infected population fraction of stochastic SIS model (14) under white noise, for Itō (left column) and Stratonovich (right column) solution. In every
figure, the deterministic equilibrium is denoted by a dash-dotted line, the open circles correspond to PDFs obtained from 50,000 samples of direct Monte Carlo simulations, while
solid lines mark the PDFs obtained from the analytic solution (16). In cases where PDF is a delta function at zero, we depict it as a vertical arrow.
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• Type 1: For 1 < 𝑅0 < 1.5, the stationary PDF stays always
unimodal. By increasing 𝜎2∕𝜆̄, the PDF peak drifts from the de-
terministic equilibrium 𝑥1 towards zero. When the relative noise
intensity 𝜎2∕𝜆̄ crosses the level marked by the blue curve in Fig. 2,
the PDF mode is located at zero. Further increase of 𝜎2∕𝜆̄ results
in more probability mass being accumulated at zero. In Fig. 3A, B,
we show an example of this noise-induced transition, for 𝑅0 = 1.4.

• Type 2: For 1.5 < 𝑅0 < 2, the PDF mode shifts towards zero as 𝜎2∕𝜆̄
increases, which is similar to the previous case. However, in this
case, when 𝜎2∕𝜆̄ crosses the blue curve level, the PDF becomes
bimodal, with the additional peak located at zero. By increasing
𝜎2∕𝜆̄ further, more probability mass accumulates at zero, and,
after 𝜎2∕𝜆̄ crosses the level marked by the magenta curve in Fig. 2,
the PDF becomes unimodal at zero. In Fig. 3C, D, we show an
example of this noise-induced transition for 𝑅0 = 1.7.

• Type 3: For 𝑅0 > 2, PDF peak drift phenomenon has the opposite
trend; by increasing 𝜎2∕𝜆̄, the PDF peak drifts towards higher
values. When 𝜎2∕𝜆̄ crosses the blue curve level, an additional
PDF mode appears at zero, whose magnitude increases by further
increase of 𝜎2∕𝜆̄. In Fig. 3E, F, we show an example of this
noise-induced transition for 𝑅0 = 2.2.

Remark 1 (Disease Severity Predictions under White Moise in Contact
Rate). We observe that, by increasing noise levels, a PDF peak at
zero appears eventually, making the eradication of disease more likely.
However, for diseases with 𝑅0 < 2 (corresponding to noise-induced
transitions of types 1 and 2), the most likely final size of disease in
the population, i.e., the non-zero mode at 𝑥𝑚, drifts towards zero, even
for low white noise levels, for which no PDF peak at zero has appeared
yet. This means that, for 𝑅0 < 2, white noise in contact rate always
results in less severe predictions for disease spread. Note that, many
SIS-modeled diseases lie in the range of 1 < 𝑅0 < 2, such as gonorrhea,
𝑅0 = 1.4 [51], syphilis, 𝑅0 = 1.32−1.50 [66], streptococcus pneumoniae
(pneumococcus), 𝑅0 = 1.4 [67], tuberculosis, 𝑅0 = 1.78 [68,69]. On the
other hand, for highly contagious diseases with 𝑅0 > 2 (e.g. pertussis,
𝑅0 = 5.5 [70]) increase in noise levels results in more spread of the
disease, since, in this case, the most likely endemic point 𝑥𝑚 drifts
towards larger values.

We note that bifurcation diagrams were also analyzed by Méndez
et al. [45] for a stochastic SIS model slightly different than Eq. (14).
However, in [45], only the Stratonovich solution was considered, the
peak drift phenomenon was not studied, and a dimensionless parameter
involving noise intensity 𝜎 and curing rate 𝛾 was chosen, instead of the
more easily interpretable relative variance 𝜎2∕𝜆̄.

3.2. SIS model under Ornstein–Uhlenbeck noise

In this section, we let the stochastic perturbation 𝜉(𝑡) to be the
standard OU process 𝜉OU(𝑡) with zero mean and autocorrelation (11).
Recall that 𝜏 > 0 is the correlation time of the OU noise. For an
SDE under OU excitation, we can approximate its stationary PDF by
the equilibrium solution of a nonlinear Fokker–Planck equation which
was only recently formulated [53,62]. For the case of stochastic SIS
model (14) under OU noise, we are able to derive an approximate
stationary PDF for the infected population fraction (see Appendix A).
This stationary PDF is available in the explicit closed form,

𝑝0(𝑥) = 𝐶𝑥𝑄1 (1−𝑥)(𝐺𝑥2−𝐷𝑥+𝐹 )𝑄2 exp

[

𝑄3 arctan

(

2𝐺𝑥 −𝐷
√

|𝛥|

)]

, (18)

here 𝐶 is the normalization factor, and

1 =
𝑃
𝐹

− 1, 𝑄2 = − 𝑃
2𝐹

− 1, 𝑄3 =
𝑃 (𝐷 − 2𝐵𝐹 )

𝐹
√

|𝛥|
, (19a)

= 𝐴2𝐵2 + 𝐴𝐵 + 1, 𝐷 = 𝐴 + 𝐴𝐵 + 2𝐴2𝐵 + 2, 𝐹 = 𝐴2 + 𝐴 + 1, (19b)
6

t

ith |𝛥| = 4𝐺𝐹 −𝐷2 > 0, and

=
2(1 + 𝑎)
𝐵(𝜎2∕𝜆̄)

, 𝐵 =
𝑅0

𝑅0 − 1
, 𝐴 = 𝑎

1 + 𝑎
, 𝑎 = 𝜏(𝜆̄ − 𝛾). (20)

Recall that white noise appears additively in the Ornstein–Uhlenbeck
SDE (10) and therefore Itō and Stratonovich interpretations coincide.

Despite its convoluted form, stationary PDF (18) depends on three
dimensionless parameters only. Two of them, 𝑅0 and 𝜎2∕𝜆̄, are the
same as in the white noise case. The additional parameter 𝑎 = 𝜏∕𝜂
is the relative correlation time of the OU noise, defined as the ratio of
the correlation time 𝜏 of the noise and the Lyapunov characteristic
time scale 𝜂 = (𝜆̄ − 𝛾)−1 of the underlying deterministic model (13).
As discussed in Appendix A, for the white noise limit 𝜏 → 0, PDF (18)
results in the Stratonovich stationary PDF (16) with 𝜛 = 1.

Using PDF (18), we formulate the bifurcation diagrams shown in
Fig. 4, which depend on the dimensionless parameters 𝑅0, 𝜎2∕𝜆̄ and
𝑎. To the best of our knowledge, such bifurcation diagrams for the
correlated noise case are considered here for the first time.

As shown in Fig. 5, although PDF (18) is approximate, it is in
excellent agreement with the stationary PDFs obtained from direct
Monte Carlo simulations of SDE (14).

Bifurcation diagrams in Fig. 4 corresponding to the correlated OU
process are similar to those in Fig. 2 for the uncorrelated white noise. In
addition, the types of noise-induced transitions are similar to those in
the white noise case. However, there are some important quantitative
differences:

• Region III, where disease eradication is most likely, is smaller
when using correlated OU process. Moreover, as the relative
correlation time 𝑎 increases, this region shrinks further.

• As the relative correlation time 𝑎 increases, the range of 𝑅0 values
corresponding to transitions of types 1 and 2 reduces. Further-
more, transitions of type 3 occur for 𝑅0 that are significantly less
than 2 (vertical dashed line).

• PDF peak drift towards zero, that occurs in transitions of types 1
and 2, becomes less pronounced, as 𝑎 increases.

To summarize, correlations in contact rate suppress the drift of the PDF
mode towards zero and delay the emergence of a PDF mode at zero.
This results in stationary PDFs whose probability mass is mainly located
around the equilibrium of the deterministic SIS model. We can also
observe the stabilizing effect of correlated noise by comparing Fig. 5A,
B for OU noise with 𝑎 = 0.5, to the respective Fig. 3B, D for white noise
(Stratonovich interpretation). We also observe the change in type of
noise-induced transitions due to correlated noise: for 𝑅0 = 1.4 (resp.,
0 = 1.7), stationary PDF exhibits a type 1 (resp., type 2) noise-induced

ransition under white noise, while it exhibits a type 2 (resp., type 3)
ransition under OU noise with 𝑎 = 0.5.

. SEIR model

In this section, we consider the Susceptibles-Exposed-Infected-
emoved (SEIR) model,
d𝑆(𝑡)
d𝑡

= − 𝜆
𝑁

𝑆(𝑡)𝐼(𝑡), (21a)

d𝐸(𝑡)
d𝑡

= 𝜆
𝑁

𝑆(𝑡)𝐼(𝑡) − 𝛼𝐸(𝑡), (21b)

d𝐼(𝑡)
d𝑡

= 𝛼𝐸(𝑡) − 𝛾𝐼(𝑡), (21c)

d𝑅(𝑡)
d𝑡

= 𝛾𝐼(𝑡). (21d)

ompared to the SIS model, the SEIR model has two additional com-
artments: the exposed 𝐸(𝑡) containing the individuals that have con-
racted the disease but are not infectious yet, and 𝑅(𝑡) containing the
ndividuals that have been removed from the population, comprising
he deceased and the immune due to vaccination or prior infection. The
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Fig. 4. Bifurcation diagrams for the shape of stationary PDF of infected population fraction of stochastic SIS model (14) under Ornstein–Uhlenbeck noise, for increasing relative
correlation time 𝑎 = 𝜏∕𝜂. We define the depicted curves in Appendix B. Regions and pseudocolor plot are the same as in Fig. 2.

Fig. 5. Stationary PDFs of infected population fraction of stochastic SIS model (14) under Ornstein–Uhlenbeck noise with relative correlation time 𝑎 = 0.5, for 𝑅0 = 1.4 (panel A),
and 𝑅0 = 1.7 (panel B). In both figures, the deterministic equilibrium is denoted by a dash-dotted line, the open circles correspond to PDFs obtained from 50,000 samples of direct
Monte Carlo simulations, while solid lines mark the PDFs obtained from the analytic solution (18).
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Fig. 6. Predictions (mean trajectories with 50% errorbars) of stochastic SEIR models for the cumulative number of COVID cases in the US during omicron wave, for increasing
noise intensity. A: white noise in contact rate. B–E: Ornstein–Uhlenbeck noise in contact rate with correlation time ranging from 1 day to 1 month.
additional model parameter 𝛼 is the average incubation rate, defined as
the inverse of the average incubation (or latency) period during which
the individual has contracted the disease but is not infectious yet. SEIR
models are suitable for describing the spread of airborne diseases such
as flu and COVID-19, whose infection follows after a latency period, and
also confers immunity after recovery, albeit temporarily [22,37,71–74].

In our study, we use SEIR model (21) to model the Omicron wave
of COVID-19 pandemic in the US, i.e., the period between December
3, 2021 and April 22, 2022. We use the data for cumulative infections
from the COVID-19 Dashboard by the Center for Systems Science and
Engineering (CSSE) at Johns Hopkins University [75,76]. The total
population 𝑁 is considered constant and equal to the US population of
329.5 million, and the initial values of the exposed 𝐸(𝑡0), the infected
𝐼(𝑡0), and the removed 𝑅(𝑡0) at the beginning of the Omicron wave were
chosen consistent with the Johns Hopkins data base to be 0.14%, 0.18%
and 14.88% of the total population, respectively. Then, SEIR model
parameters 𝑅0 = 𝜆∕𝛾, 𝛼 and 𝛾 are determined by least square fitting so
that the cumulative number of COVID-19 cases during Omicron wave,
as predicted by the model, agrees with the Johns Hopkins data. To
determine the cumulative number of COVID-19 cases from the SEIR
model, we use the relation

𝑡
𝐼(𝑠)d𝑠 = 1 (𝑅(𝑡) − 𝑅(𝑡0)), (22)
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∫𝑡0 𝛾
which is derived from Eq. (21d). By this process, we obtain the values
𝑅0 = 1.85, 𝛼 = 1∕3.5 days−1, 𝛾 = 1∕1.2 days−1.

After fitting the deterministic SEIR model to data, we add noise
fluctuations to the average contact rate. We consider both cases of
white and OU noise, for noise levels 0.5 ≤ 𝜎2∕𝜆̄ ≤ 3.0. We note that,
in prior studies which use stochastic compartmental models for COVID-
19, the parameter 𝜎∕𝜆̄ is chosen to model the noise level [16,22,38,77].
However, here we use 𝜎2∕𝜆̄, since this is a dimensionless parameter.

Contrary to the stochastic SIS model of Section 3, a stationary PDF
for the stochastic SEIR model is not available in analytic form. Thus,
we perform Monte Carlo simulations of SEIR model (21) with sample
size 50,000 and stochastically perturbed contact rate 𝜆(𝑡) = 𝜆̄+𝜎𝜉(𝑡). In
the white noise case, 𝜉(𝑡) = 𝜉WN(𝑡), the system of SDEs of SEIR model
is numerically solved under the Stratonovich interpretation, using the
predictor–corrector scheme of Cao et al. [78]. In the case of OU noise,
𝜉(𝑡) = 𝜉OU(𝑡), stochastic SEIR model is augmented by the linear SDE (10)
that generates the standard OU process 𝜉OU(𝑡). The resulting coupled
system is again solved using a predictor–corrector scheme [78]. The
time series of the mean cumulative COVID cases obtained from the
Monte Carlo simulations are shown in Fig. 6. These simulations are also
used to determine the stationary PDFs of COVID cases shown in Fig. 7.

As we show in Fig. 6, the choice between white or OU noise for

modeling uncertainties in the contact rate is consequential since they
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Fig. 7. PDF of the asymptotic cumulative number of COVID cases in the US during omicron wave, for increasing noise intensity. A: SEIR with white noise in contact rate. B–E:
Ornstein–Uhlenbeck noise in contact rate with correlation time ranging from 1 day to 1 month.
lead to very different forecasts for the spread of the pandemic. For
increasing levels of white noise intensity, SEIR model significantly
underestimates the severity of the pandemic on average. On the other
hand, OU noise leads to forecasts whose mean trajectory of COVID
cases stays always close to the actual data. The best fit is obtained
for OU noise with correlation time of 1 week, which is in agreement
with the weekly social patterns observed in human behavior [79–82].
Note however that, despite the abundance of data collected from the
COVID-19 pandemic, the correlation time of the contact rate has not
been quantified yet [83].

The reason the SEIR model under white noise underestimates the
pandemic spread is that it undergoes a noise-induced transition similar
to type 2 transition of the stochastic SIS model, see Fig. 7. As the white
noise intensity increases, the PDF peak drifts from the deterministic
equilibrium towards lower values. Due to this peak drift, the mean
trajectories of cumulative COVID cases for 𝜎2∕𝜆̄ = 0.5 and 𝜎2∕𝜆̄ = 1
lie below the actual data. For the noise level 𝜎2∕𝜆̄ = 2, an additional
peak emerges in the regime of low number of cases (≈5× 107). Further
increase of white noise intensity makes the additional peak more pro-
nounced. This results in stochastic SEIR model to greatly underestimate
the pandemic severity for 𝜎2∕𝜆̄ = 3.
9

In contrast, when the contact rate is perturbed by the OU noise,
the stationary PDF of COVID cases remains unimodal for a wider range
of noise levels. The presence of correlations in OU noise hinders the
emergence of the additional peak at lower case values; only for the
combination of small correlation time (𝜏 = 1 day) and high intensity
(𝜎2∕𝜆̄ = 3) of the OU noise does an additional peak start forming
around 5 × 107 cases (see Fig. 7B). Also, the stationary PDF for OU
noise exhibits the opposite trend in peak drift compared to the PDFs
for white noise; increasing the noise intensity makes the peak to drift
towards higher values. Thus, presence of temporal correlation in the
noise changes the type of the noise-induced transitions the SEIR model
undergoes. This is similar to our results for correlated noise in the
stochastic SIS model.

In Fig. 7C–E, we also see that larger correlation times make the
PDFs less diffusive, and the peak drift less pronounced. This is the
expected sharpening effect of correlated noise [48,53] as a result of
the mean-reverting property of the OU process [32], which becomes
stronger as the correlation time increases. The effect of mean-reverting
property of OU noise is also shown in Fig. 8, where the OU noise is more
concentrated around its mean value, compared to the white noise with
the same intensity. This also means that the OU noise becomes negative
less frequently than the respective white noise. Nonetheless, since OU
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Fig. 8. Envelope of 1000 trajectories of the contact rate for COVID-19 perturbed around its mean value 𝜆̄ = 10.8 weeks−1 (shown by black line) by noise of intensity 𝜎2 = 2𝜆̄. The
mean of the 1000 trajectories is shown by the blue curve. A: white noise perturbation B: OU perturbation, with correlation time 𝜏 = 1 week.
noise is Gaussian and thus unbounded, it can always attain negative
values, which is unrealistic for the contact rate. From a modeling per-
spective, negative values emerge as a consequence of our assumption
that the contract rates of individuals 𝜆𝑛(𝑡) are independent random
variables and the subsequent use of the central limit theorem; see
Eq. (4). Prior work on stochastic modeling in oncology remedies these
unwanted negative values by considering bounded noise [36,84,85].
Noise-induced transitions in compartmental models under bounded
noise have not been studied extensively yet (see, e.g., [86]), thus
constituting an interesting direction for future work.

5. Conclusions

It was shown recently that time correlations are essential for mod-
eling uncertainties in the contact rate of an infectious disease [16].
Using standard results from the theory of stochastic processes, Mamis
and Farazmand [16] showed that the only feasible process for modeling
such uncertainties is the Ornstein–Uhlenbeck (OU) process. However,
to arrive at this conclusion, the authors assumed that the autocorrela-
tion function of the contact rate has an exponentially decreasing form.
In the present work, we used a radically different modeling approach
which does not require such onerous assumptions. Modeling the con-
tacts of each individual as a Markov process, assuming a reasonable
conditional probability for such contacts, and using the central limit
theorem, we proved that the contact rate averaged over the population
satisfies the Langevin equation corresponding to the OU process.

We studied the implications of this result on two typical examples of
stochastic compartmental models in epidemiology; the SIS model which
describes bacterial and sexually transmitted diseases, and the SEIR
model which describes airborne diseases such as COVID-19. Stochas-
ticity enters into the compartmental models by considering stochastic
fluctuations in the contact rate, to account for uncertainties in social
behavior of individuals in the population.

For the stochastic SIS model, we derived the exact stationary PDF of
the infected population fraction for both cases of white and Ornstein–
Uhlenbeck noise fluctuations in contact rate. As a result, we were
able to determine the noise-induced transitions that a stochastic SIS
model undergoes, as well as the effect of temporal correlations in
contact rate. Our main result is that, for a range of 𝑅0 corresponding to
many SIS-modeled diseases (see Remark 1) white noise in contact rate
makes the eradication of the disease more likely. This is an unrealistic
behavior since greater uncertainty in measuring a model parameter
should not lead to the eradication of the disease. On the other hand, the
inclusion of correlations has a stabilizing effect on the stationary PDF
of the infected population fraction, mitigating the unrealistic transitions
towards zero infected population.

The results for noise-induced transitions of stochastic SEIR models
are similar to those for SIS models. By performing Monte Carlo sim-
ulations of a SEIR model fitted to data from the Omicron wave of
10
COVID-19 pandemic in the US, we observed that white noise models
of the contact rate lead to systematic underestimation of the pandemic
severity. On the other hand, when the contact rate is modeled as an
OU process, the predicted number of COVID cases is always close to
the actual data. An important direction for future work is to develop
analytic tools for stochastic SEIR models, similar to those that we have
already developed for SIS models.

Our work demonstrates that the inclusion of correlated uncertain-
ties in compartmental models is a central component for a realistic
stochastic model of disease spread. If overlooked, this would lead
to unrealistic, less severe forecasts. However, despite the abundance
of data collected, especially during the COVID-19 pandemic, the in-
tensity and temporal correlations of noise in compartmental model
parameters have not been determined with precision. This calls for
more empirical studies that would systematically quantify the nature of
uncertainties, and especially their correlation time, in the parameters
of compartmental epidemiological models.
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Appendix A. Calculation of stationary pdfs

Consider the general form of the scalar SDE
d𝑋(𝑡)
d𝑡

= ℎ(𝑋(𝑡)) + 𝜎(𝑋(𝑡))𝜉(𝑡), (A.1)

where 𝑋(𝑡) and 𝜉(𝑡) are the stochastic processes of the response and
excitation respectively, ℎ(𝑥) is the continuous drift function, and 𝜎(𝑥)
is the differentiable function of the noise intensity.
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In the case where excitation 𝜉(𝑡) is Gaussian white noise (see
Eq. (15)), the evolution of the PDF 𝑝(𝑥, 𝑡) of the response 𝑋(𝑡) is
governed by the classical Fokker–Planck equation (see, e.g., [54, Ch.
5]):
𝜕𝑝(𝑥, 𝑡)

𝜕𝑡
+ 𝜕

𝜕𝑥

[(

ℎ(𝑥) + 𝜛
2
𝜎′(𝑥)𝜎(𝑥)

)

𝑝(𝑥, 𝑡)
]

= 1
2

𝜕2

𝜕𝑥2
[

𝜎2(𝑥)𝑝(𝑥, 𝑡)
]

. (A.2)

In Eq. (A.2), the drift term ℎ(𝑥) is augmented by (1∕2)𝜎′(𝑥)𝜎(𝑥) which
is the Wong–Zakai correction (see [87,88]) modeling the difference
between Itō (𝜛 = 0) and Stratonovich (𝜛 = 1) interpretations of SDEs
under multiplicative white noise excitation. The stationary solution
𝑝0(𝑥) = lim𝑡→∞ 𝑝(𝑥, 𝑡) of Fokker–Planck equation (A.2) is given in the
closed form [54, Sec. 5.3.3]:

𝑝0(𝑥) =
𝐶

𝜎2−𝜛 (𝑥)
exp

(

2∫

𝑥 ℎ(𝑦)
𝜎2(𝑦)

d𝑦
)

, (A.3)

where ∫ 𝑥 d𝑦 denotes the antiderivative, and 𝐶 is the normalization
factor.

In our recent papers [53,62], we derived an approximate nonlinear
Fokker–Planck equation corresponding to SDE (A.1) under correlated
excitation:
𝜕𝑝(𝑥, 𝑡)

𝜕𝑡
+ 𝜕

𝜕𝑥
{[

ℎ(𝑥) + 𝜎′(𝑥)𝜎(𝑥)𝐴(𝑥, 𝑡; 𝑝)
]

𝑝(𝑥, 𝑡)
}

= 𝜕2

𝜕𝑥2
[

𝜎2(𝑥)𝐴(𝑥, 𝑡; 𝑝)𝑝(𝑥, 𝑡)
]

, (A.4)

where

𝐴(𝑥, 𝑡; 𝑝) =
2
∑

𝑚=0

𝐷𝑚(𝑡; 𝑝)
𝑚!

{𝜁 (𝑥) − 𝖤[𝜁 (𝑋(𝑡))]}𝑚 , (A.5)

with

𝜁 (𝑥) = 𝜎(𝑥)
(

ℎ(𝑥)
𝜎(𝑥)

)′
, (A.6)

and

𝐷𝑚(𝑡; 𝑝) = ∫

𝑡

𝑡0
𝐶𝜉 (𝑡, 𝑠) exp

(

∫

𝑡

𝑠
𝖤[𝜁 (𝑋(𝑢))]d𝑢

)

(𝑡 − 𝑠)𝑚d𝑠. (A.7)

where 𝐶𝜉 (𝑡, 𝑠) is the autocorrelation function of noise excitation 𝜉(𝑡).
Fokker–Planck equation (A.4) is nonlinear, due to the dependence of
coefficient 𝐴(𝑥, 𝑡; 𝑝) on the response moment 𝖤[𝜁 (𝑋(𝑡))], which in turn
depends on the unknown PDF 𝑝(𝑥, 𝑡). As we have proven in [53], for
diminishing correlation time of 𝜉(𝑡), 𝜏 → 0, coefficient 𝐴 in Eq. (A.4)
becomes 1∕2. Thus, in the white noise limit, nonlinear Fokker–Planck
Eq. (A.4) becomes the Stratonovich Fokker–Planck equation (A.2) for
𝜛 = 1. Also, note that, by keeping only the zeroth-order term in the
sum of Eq. (A.5), we obtain the widely-used Hänggi’s approximate
Fokker–Planck equation [48,56].

For 𝜉(𝑡) being the standard OU process (see Eq. (11)), the stationary
solution of the nonlinear Fokker–Planck equation (A.4) reads

𝑝0(𝑥,𝑀) = 𝐶
𝜎(𝑥)𝐴(𝑥,𝑀)

exp
(

∫

𝑥 ℎ(𝑦)
𝜎2(𝑦)𝐴(𝑦,𝑀)

d𝑦
)

, (A.8)

where 𝐴(𝑥,𝑀) is the stationary value of coefficient 𝐴(𝑥, 𝑡; 𝑝), given by

𝐴(𝑥,𝑀) = 1
2

2
∑

𝑚=0

[𝜏(𝜁 (𝑥) −𝑀)]𝑚

(1 − 𝜏𝑀)𝑚+1
, (A.9)

and 𝑀 is the stationary value of response moment 𝖤[𝜁 (𝑋(𝑡))]:

𝑀 = ∫R
𝜁 (𝑥)𝑝0(𝑥,𝑅)d𝑥. (A.10)

As derived in [53], solution (A.8) is valid under the condition 𝑀 < 𝜏−1.
Due to the presence of the unknown response moment 𝑀 , Eq. (A.8)

is an implicit stationary solution of the nonlinear Fokker–Planck equa-
tion
(A.4). In [53], we proposed an iteration scheme for the calculation
of 𝑀 , by substituting the implicit form (A.8) for 𝑝0(𝑥,𝑀) into the
11

definition relation (A.10) for 𝑀 . The initial value of moment 𝑀 for
the iteration scheme is calculated from the corresponding Stratonovich
Fokker–Planck equation. Implicit closed-form solution (A.8), supple-
mented by the iteration scheme for 𝑀 , constitutes a semi-analytic form
for the stationary response PDF for SDE (A.1) under OU stochastic
excitation.

However, for the special case of stochastic SIS model (14), we are
able to calculate moment 𝑀 analytically. Note that the calculation of
moment 𝑀 in explicit closed form is, in general, not possible.

Lemma 1 (Calculation of Stationary Response Moment 𝑀). For stochastic
SIS model (14), moment 𝑀 defined by Eq. (A.10), is

𝑀 = −(𝜆̄ − 𝛾). (A.11)

Proof. For stochastic SIS model, (14), and by substituting Eq. (A.8)
into Eq. (A.10), the definition relation for 𝑀 is specified as

𝑀 = 𝐶 ∫R
𝜁 (𝑥)

𝜎(𝑥)𝐴(𝑥,𝑀)
exp

(

∫

𝑥 ℎ(𝑦)
𝜎2(𝑦)𝐴(𝑦,𝑀)

d𝑦
)

d𝑥, (A.12)

here ℎ(𝑥) = 𝜆̄𝑥(1 − 𝑥) − 𝛾𝑥, 𝜎(𝑥) = 𝜎𝑥(1 − 𝑥) and 𝜁 (𝑥) = −𝛾𝑥∕(1− 𝑥). By
erforming integration by parts, we obtain

= 𝐶 ∫R
𝜁 (𝑥)𝜎(𝑥)
ℎ(𝑥)

[

exp
(

∫

𝑥 ℎ(𝑦)
𝜎2(𝑦)𝐴(𝑦,𝑀)

d𝑦
)]′

d𝑥

= −𝐶 ∫R

(

𝜁 (𝑥)𝜎(𝑥)
ℎ(𝑥)

)′
exp

(

∫

𝑥 ℎ(𝑦)
𝜎2(𝑦)𝐴(𝑦,𝑀)

d𝑦
)

d𝑥

= 𝐶𝜎𝛾(𝜆̄ − 𝛾)∫R
1

[𝜆̄(1 − 𝑥) − 𝛾]2
exp

(

∫

𝑥 ℎ(𝑦)
𝜎2(𝑦)𝐴(𝑦,𝑀)

d𝑦
)

d𝑥.

(A.13)

On the other hand, normalization factor 𝐶 of 𝑝0 is defined as

𝐶−1 = ∫R
1

𝜎(𝑥)𝐴(𝑥,𝑀)
exp

(

∫

𝑥 ℎ(𝑦)
𝜎2(𝑦)𝐴(𝑦,𝑀)

d𝑦
)

d𝑥, (A.14)

nd after integration by parts:

−1 = ∫R
𝜎(𝑥)
ℎ(𝑥)

[

exp
(

∫

𝑥 ℎ(𝑦)
𝜎2(𝑦)𝐴(𝑦,𝑀)

d𝑦
)]′

d𝑥

= −∫R

(

𝜎(𝑥)
ℎ(𝑥)

)′
exp

(

∫

𝑥 ℎ(𝑦)
𝜎2(𝑦)𝐴(𝑦,𝑀)

d𝑦
)

d𝑥

= −𝜎𝛾 ∫R
1

[𝜆̄(1 − 𝑥) − 𝛾]2
exp

(

∫

𝑥 ℎ(𝑦)
𝜎2(𝑦)𝐴(𝑦,𝑀)

d𝑦
)

d𝑥. (A.15)

y substituting Eq. (A.15) into Eq. (A.13), we obtain Eq. (A.11). □

Using Eq. (A.11), we calculate coefficient 𝐴 to

(𝑥) = 1
2(1 + 𝑎)

2
∑

𝑚=0

( 𝑎
1 + 𝑎

)𝑚
(1 − 𝑥)−𝑚

(

1 −
𝑅0𝑥

𝑅0 − 1

)𝑚
, (A.16)

where 𝑎 = 𝜏(𝜆̄ − 𝛾) > 0. By having coefficient 𝐴(𝑥) in explicit form, we
an perform the integration in Eq. (A.8) analytically, obtaining thus
he expression (18) for the stationary response PDF for SIS model (14)
nder OU noise.

ppendix B. Analysis of stationary PDFs for SIS models

.1. White noise model - Itō solution

In the vicinity of zero, response PDF (16) for 𝜛 = 0 is 𝑝0(𝑥) ∼
2
(

1−𝑅−10

)

(𝜎2∕𝜆̄) −2
. For

2
(

1 − 𝑅−1
0
)

(

𝜎2∕𝜆̄
) − 2 < −1 ⇒ (𝜎2∕𝜆̄) > 2

(

1 − 𝑅−1
0
)

, (B.1)

𝑝0(𝑥) is not integrable, and 𝑝0(0) = +∞. Thus, under condition (B.1),
𝑝0(𝑥) is a delta function at zero. Eq. (B.1) always holds true for 𝑅0 < 1,

resulting in disease eradication, as in the deterministic case. This is the
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reason for choosing 𝑅0 ∈ [1,+∞) in our analysis. The green curve in
Fig. 2A corresponds to (𝜎2∕𝜆̄) = 2(1 − 1∕𝑅0). For

− 1 <
2
(

1 − 𝑅−1
0
)

(

𝜎2∕𝜆̄
) − 2 < 0 ⇒ 1 − 𝑅−1

0 < (𝜎2∕𝜆̄) < 2
(

1 − 𝑅−1
0
)

, (B.2)

𝑝0(𝑥) is integrable, and has a peak at zero. The blue curve in Fig. 2A
corresponds to (𝜎2∕𝜆̄) = 1 − 1∕𝑅0. For

2
(

1 − 𝑅−1
0
)

(

𝜎2∕𝜆̄
) − 2 > 0 ⇒ (𝜎2∕𝜆̄) < 1 − 𝑅−1

0 , (B.3)

0(𝑥) is integrable, and 𝑝0(0) = 0. For the case (𝜎2∕𝜆̄) < 2
(

1 − 1∕𝑅0
)

,
where 𝑝0(𝑥) is integrable, its local extrema points for 𝑥 ∈ (0, 1) are
specified, by the first derivative test, as the roots of quadratic equation

2
(

𝜎2∕𝜆̄
)

𝑥2 +
[

1 − 3
(

𝜎2∕𝜆̄
)]

𝑥 +
(

𝜎2∕𝜆̄
)

+ 𝑅−1
0 − 1 = 0. (B.4)

The requirement of nonnegative discriminant results in the condition

𝑅0 ≥
8
(

𝜎2∕𝜆̄
)

[

1 +
(

𝜎2∕𝜆̄
)]2

. (B.5)

Eq. (B.5), for the case of equality, is the magenta curve in Fig. 2A. The
two roots of Eq. (B.5) are

𝑥± =
3
(

𝜎2∕𝜆̄
)

− 1 ±
√

[

1 +
(

𝜎2∕𝜆̄
)]2 − 8

(

𝜎2∕𝜆̄
)

𝑅−1
0

4
(

𝜎2∕𝜆̄
) . (B.6)

y the additional requirement of 𝑥± ∈ (0, 1), we summarize the
onditions for roots 𝑥± to be extrema points of 𝑝0(𝑥).

+ is extremum point for
⎧

⎪

⎨

⎪

⎩

(𝜎2∕𝜆̄) < 1∕3
⋀

(𝜎2∕𝜆̄) < 1 − 1∕𝑅0,

(𝜎2∕𝜆̄) > 1∕3
⋀

𝑅0 ≥
8
(

𝜎2∕𝜆̄
)

[

1+(𝜎2∕𝜆̄)
]2 .

− is extremum point for (𝜎2∕𝜆̄) > 1∕3
⋀

(𝜎2∕𝜆̄) > 1 − 1∕𝑅0
⋀

𝑅0

≥
8
(

𝜎2∕𝜆̄
)

[

1 +
(

𝜎2∕𝜆̄
)]2

.

Furthermore, we determine that 𝑥+ is a maximum point, and 𝑥− is a
minimum point. Thus, we identify 𝑥+ as the non-zero mode coordinate
𝑥𝑚. By using de l’Hôpital rule, we calculate lim𝜎→0 𝑥𝑚 = (𝜆̄−𝛾)∕𝜆̄, which
is the expected result that, in the deterministic limit, PDF mode 𝑥𝑚
coincides with the deterministic equilibrium.

Last, in order to capture the peak drift phenomenon, we calcu-
late the first derivative of 𝑥𝑚 with respect to (𝜎2∕𝜆̄). After algebraic
manipulations, we obtain that

𝑥′𝑚(𝜎
2∕𝜆̄) ≥ 0 ⇒ 𝑅0 ≥ 2. (B.7)

The dashed line in Fig. 2A is 𝑅0 = 2.

B.2. White noise model - Stratonovich solution

We repeat the procedure we followed in Appendix B.1, for
Stratonovich solution, Eq. (16) for 𝜛 = 1. The results we obtain are
the following: Stratonovich solution is a delta function at zero only for
𝑅0 < 1; for 𝑅0 > 1, it is always integrable. For

(𝜎2∕𝜆̄) > 2(1 − 1∕𝑅0), (B.8)

𝑝0(𝑥) has a peak at zero. The blue curve in Fig. 2B corresponds to
(𝜎2∕𝜆̄) = 2(1 − 1∕𝑅0). For 𝑥 ∈ (0, 1), the local extrema are roots of the
equation

2
(

𝜎2∕𝜆̄
)

𝑥2 +
[

2 − 3
(

𝜎2∕𝜆̄
)]

𝑥 +
(

𝜎2∕𝜆̄
)

+ 2(𝑅−1
0 − 1) = 0. (B.9)

Thus, the possible extrema points in (0, 1) are

𝑥± =
3
(

𝜎2∕𝜆̄
)

− 2 ±
√

[

2 +
(

𝜎2∕𝜆̄
)]2 − 16

(

𝜎2∕𝜆̄
)

𝑅−1
0

(

2
) , (B.10)
12

4 𝜎 ∕𝜆̄
nder the condition for nonnegative discriminant of Eq. (B.9)

0 ≥
16

(

𝜎2∕𝜆̄
)

[

2 +
(

𝜎2∕𝜆̄
)]2

. (B.11)

Eq. (B.11) for the case of equality is the magenta curve in Fig. 2B. We
further determine that

𝑥+ is maximum point for
⎧

⎪

⎨

⎪

⎩

(𝜎2∕𝜆̄) < 2∕3
⋀

(𝜎2∕𝜆̄) < 2(1 − 1∕𝑅0),

(𝜎2∕𝜆̄) > 2∕3
⋀

𝑅0 ≥
16
(

𝜎2∕𝜆̄
)

[

2+(𝜎2∕𝜆̄)
]2 .

𝑥− is minimum point for (𝜎2∕𝜆̄) > 2∕3
⋀

(𝜎2∕𝜆̄) > 2(1 − 1∕𝑅0)
⋀

𝑅0

≥
16

(

𝜎2∕𝜆̄
)

[

2 +
(

𝜎2∕𝜆̄
)]2

.

Also, we calculate that condition (B.7) is true for Stratonovich solution
too.

B.3. Ornstein–Uhlenbeck noise model

In the vicinity of zero, response PDF (18) is 𝑝0(𝑥) ∼ 𝑥𝑃∕𝐹−1. We
alculate that, for 𝑅0 < 1, solution (18) is a delta function at zero,
imilarly to the Stratonovich solution. For
(

𝜎2∕𝜆̄
)

>
2(1 + 𝑎)

𝐹
(1 − 𝑅−1

0 ), (B.12)

PDF (18) exhibits a peak at zero. The blue curve in Fig. 4 corresponds
to

(

𝜎2∕𝜆̄
)

= 2(1 + 𝑎)(1 − 𝑅−1
0 )∕𝐹 . For 𝑥 ∈ (0, 1), the local extrema are

roots of the cubic equation 𝑓 (𝑥) = 0, with

𝑓 (𝑥) = 2𝐺
(

𝜎2∕𝜆̄
)

𝑥3 +
[

2(1 + 𝑎) − (3𝐺 +𝐷)
(

𝜎2∕𝜆̄
)]

𝑥2+
[

2𝐷
(

𝜎2∕𝜆̄
)

− 2(1 + 𝑎)(2 − 𝑅−1
0 )

]

𝑥 + 2(1 + 𝑎)(1 − 𝑅−1
0 ) − 𝐹

(

𝜎2∕𝜆̄
)

.

(B.13)

The calculation of the exact roots of a cubic equation is cumbersome.
However, 𝑓 (1) = −

(

𝜎2∕𝜆̄
)

𝐴2(𝐵 − 1)2 < 0, 𝑓 (+∞) = +∞, and thus, by
intermediate value theorem, cubic polynomial 𝑓 (𝑥) has always a real
root that is greater than 1, which is not admissible as extremum point
of 𝑝0(𝑥). Thus, the regions III in Fig. 4 correspond to 𝛥3 < 0, where 𝛥3
is the discriminant of the cubic polynomial 𝑓 (𝑥).

Note also that 𝑓 (−∞) = −∞, and 𝑓 (0) > 0 under the condition
(

𝜎2∕𝜆̄
)

<
2(1 + 𝑎)

𝐹
(1 − 𝑅−1

0 ). (B.14)

Using the intermediate value theorem again, we deduce that, under
condition (B.14), polynomial 𝑓 (𝑥) has three distinct real roots, with
only one of them in (0, 1). By combining this result to the behav-
ior of PDF (18) at zero (see Eq. (B.12)), we conclude that, under
condition (B.14), PDF (18) is unimodal, with its mode at a non-zero
𝑥𝑚.

Last, we observe that, for 𝑎 = 0, condition (B.12) is identical to
condition (B.8), and the cubic polynomial 𝑓 (𝑥) is factorized to

𝑓 (𝑥) =

(𝑥 − 1)
{

2
(

𝜎2∕𝜆̄
)

𝑥2 +
[

2 − 3
(

𝜎2∕𝜆̄
)]

𝑥 +
(

𝜎2∕𝜆̄
)

+ 2(𝑅−1
0 − 1)

}

. (B.15)

We identify the second factor in the right-hand side of Eq. (B.15) as the
quadratic polynomial, whose roots determine the PDF extrema points
in (0, 1) of the white noise case, under Stratonovich interpretation (see
Eq. (B.9)). This finding shows the compatibility between results under
OU noise with 𝑎 = 0 and the Stratonovich solution for the white noise
case.
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