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Abstract

We study the problem of detecting abnormal inactivities within a single-occupied household
based on smart meter readings. Such abnormal events include immobilizing medical condi-
tions or sudden deaths of elderly or disabled occupants who live alone, the delayed discovery
of which poses realistic social concerns as the population ages. Two novel unsupervised learn-
ing algorithms are developed and compared: one is based on nested dynamic time warping
(DTW) distances and the other based on Mahalanobis distance with problem-specific fea-
tures. Both algorithms are able to cold-start from limited historical data and perform well
without extended parameter tuning. In addition, the algorithms are small profile in terms of
data usage and computational need, and thus are suitable for implementation on smart meter
hardware. The proposed methods have been thoroughly validated against real data sets with
simulated target scenarios and have exhibited satisfactory performance. An implementation
scheme on smart meter hardware is also discussed.

Keywords: Smart meter data analysis, anomaly detection, nested dynamic time warping,
unsupervised learning

1. Introduction

1.1. Background

Population aging, the increase of median age in society due to declining fertility and
rising life expectancy, is an irreversible global trend with enormous economic and social
consequences. In 2015, the World Health Organization (WHO) estimated that elderly pop-
ulations will nearly double from 12% to 22% by 2050 (Kekade et al., 2018). Among the
many alarming issues that come along with population aging, the unattended death of el-
derly adults who live alone is becoming a pressing humanitarian concern worldwide. The U.S.
Census (2014) reports that 18 million U.S. residents over the age of 65 are unmarried, and a
majority of them live alone (11 million, by Census report in 2011). Many who died during
the 1995 Chicago heat wave were poor, elderly residents, and some deaths were unnoticed
until days later. In China, the one-child policy coupled with the rural-to-urban migration
of the younger generation has left tens of millions of elderly people living in solitude in ru-
ral and suburban homes. The urbanization movement also lodged more and more people
in pigeon-hole apartments neighboring strangers, which exacerbated the social isolation and
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the lack of mutual attention in the aged group. If the urgency and manageability of such
conditions are misjudged, severe consequences will follow. In Japan, the concern and reality
of Kodokushi, referring to people dying alone and remaining undiscovered for a long period
of time, is not uncommon among senior citizens, a great proportion of whom live alone. It
was reported that in Tokyo more than two thousand senior citizens died unattended and
unnoticed in 2008.

Today’s wireless and communication technology enables a wide selection of methods to
track an individual’s activity. For instance, GPS-enabled smartphones can accurately pin-
point a person’s whereabouts and with consent the data can be transmitted to the concerned
party in real-time via wireless networks (Whipple et al., 2009; Brown et al., 2007); wearable
devices such as smart watches can analyze a person’s activities traces and biomedical con-
ditions (Wu and Luo, 2019; Reeder and David, 2016); indoor environmental sensors such as
motion, acoustic, CO2 sensors as well as surveillance cameras can capture a home’s liveliness
status with high accuracy (Guerra-Santin and Tweed, 2015; Anderson et al., 2009). However,
most these methods are to some extent intrusive. In other words, they either require instal-
lation and maintenance of instruments which incurs sizable one-time and running costs or
require close participation of those being monitored. These prerequisites are hardly realistic
among the needed population. Many seniors who live alone cannot afford a high-level of
home care enabled by sensor technology, and many choose not to have sensors installed for
privacy preferences. For the smart device option, if the person being monitored takes off or
forgets to put on the required wearable device, the monitoring will be interrupted at best,
and a false alarm may even be generated which can be costly to respond to. In comparison,
integrating emergency detection functions into the building’s standard fixtures, such as the
electricity or water meters, would provide a low-cost, non-intrusive and passive participation
option to enhance the well-being of the building’s occupants.

1.2. Contribution

In this paper, our primary focus revolves around utilizing smart meter data to identify
irregular energy consumption patterns within a household occupied by a single individual.
Within this context, detecting abnormal patterns becomes crucial as they may indicate alarm-
ing events such as occupant immobilization or even death. Therefore, achieving timely and
accurate detection of these patterns holds significant societal importance. Unlike numerous
machine learning applications where labeled training data is readily available, our scenario
presents a challenge in obtaining abnormal patterns from real-life situations. To tackle this
obstacle, we propose the development of two unsupervised, distance-based learning algo-
rithms specifically tailored to this task. These algorithms incorporate empirical insights
into feature generation and algorithmic parameters. Both methods rely on the comparison
of transformed subsequences derived from raw measurements obtained from the aggregated
main circuit of the household. However, each algorithm adopts a distinct distance metric.
The inclusion of problem-specific features plays a pivotal role in the effectiveness of our de-
tection algorithms. We will delve into a thorough discussion of these features and provide
extensive simulation experiments to demonstrate their efficacy.

Our contribution can be summarized to include: (1) a socially responsible definition of
household anomaly with regard to the health and well-being of single-living senior citizens;
(2) the identification of several effective yet easy-to-compute feature sequences and their
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application in the Mahalanobis distance based Grubb’s test for detecting anomalies in smart
meter data streams; (3) a nested dynamic time warping (DTW) algorithm for the anomaly
detection task; (4) simulation experiments, numerical validation and implementation schemes
of the proposed algorithms.

The remainder of the paper is organized as follows. Section 2 reviews the related liter-
ature and highlights our contribution. Section 3 develops the main methods, and Section 4
presents simulation experiments and result analyses. Our rationale for algorithm choice and
implementation schemes are discussed in Section 5 and Section 6 concludes the paper and
discusses possible future work.

2. Related Literature

Energy consumption data from residential smart meters have been increasingly leveraged
in areas of electric load analysis, forecasting, and management (Wang et al., 2018). Anomaly
detection is a sub-area of load analysis and has received much attention in recent years
(Himeur et al., 2021). Prominent applications include detection of abnormal behavior of
end-users (Himeur et al., 2020), detection of faulty appliances (Yip et al., 2018), household
occupancy detection (Laaroussi et al., 2020), non-technical loss detection (Yip et al., 2018;
Aziz et al., 2020), and at-home elderly monitoring (Visconti et al., 2019; Patrono et al., 2018).
Analytical methods applied to smart meter data grossly fall into several distinct categories,
including empirical and observational methods, machine learning and statistical methods, and
distance-based methods. We will provide a brief review of recent works on smart meter data
analysis by methodology category, and then focus on reviewing the occupancy monitoring
applications of smart meter data to highlight our contribution.

2.1. Empirical and Observational Methods

Because the effect of human activity on power meter readings is relatively complex, a
wealth of work in these applications has used empirical and observational methods. Pa-
trono et al. (2018) proposed an approach for monitoring elderly behavior by detecting home
appliance’s usage. A smart meter was used to constantly measures the overall energy con-
sumption, and transmit the collected values to a cloud server. The energy disaggregation,
which attempts to estimate which appliances are in use at the moment, would be performed
on the server. However, the server-side algorithms were not provided in the paper. Visconti
et al. (2019) proposed a sensors system for monitoring energy consumption and verifying
the behavior of the less-sufficient people during their everyday home life. While the authors
focused on hardware architecting and cellphone App prototyping, analytics and anomaly de-
tection algorithms were not the focus of the paper. Chen et al. (2014) proposed a statistical
predictive method for detecting anomalies in the mean and variance of energy consumption.
In their method, the prediction interval of the baseline consumption was estimated using a
generalized additive model, and the variation of the baseline was estimated by an autoregres-
sive conditional heteroscedastic model. Zyabkina et al. (2018) focused on detecting anomalies
in the time series of power quality parameters, such as the voltage and current values. They
extracted indices of the original time series and classified high indices within a sliding window
as being abnormal. The authors noted the dependence of the classification performance on
the window size, and suggested that a two-week window size best fit the application. Liu and
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Nielsen (2018) adopted a prediction-based detection approach aimed at detecting anoma-
lies in the daily energy consumption pattern of a residential building monitored by a smart
meter. In this approach, a periodic autoregression model with exogenous variables (PARX)
was used for predicting the daily pattern, and the actual consumption pattern was deemed
anomalous if it was sufficiently different (as determined by a distance metric and a Gaussian
probability model) from what was predicted. The study was based on data sets with hourly
resolution and the aim was to assist decision making in smart energy management. For the
purpose of better load profiling, Shamim and Rihan (2020) proposed a dimension reduction
method to first simplify the high-dimensional observational data by extracting features and
then cluster the load profiles based on the selected features using the K-means algorithm.
The features consisted of singular values of the pre-processed smart meter data matrix as
well as the wavelet energy entropy. In comparison, the features used in our anomaly de-
tection approach are identified through domain knowledge (i.e., the fundamental reasons for
anomalous events) and insights from exploratory analysis.

2.2. Machine Learning and Statistical Methods

Machine learning methods or a combination of statistical methods and machine learning
methods have also been commonly used in the smart meter analytics literature. For in-
stance, Yan et al. (2020) used machine learning methods to help utilities carry out household
characteristics classification based on smart meter data. Both time- and frequency-domain
features were initially input into a random forest for feature selection, and then the selected
features were fed into a support vector machine to perform the final classification tasks.
The approach was primarily data-driven, and limited domain knowledge was necessitated.
Jakkula and Cook (2010) detected outliers in power consumption data sets using a statistical
approach and a clustering approach. The statistical approach was to analyze the t-score in
various sized data windows, and the clustering approach was based on the k-nearest neigh-
bors algorithms in which the discrete time warping distance was used. Gu et al. (2019)
introduced an anomaly detection framework based on the Huber contamination model, in
which a distance-to-measure based nearest neighbor method performed the separation of
the anomalous distribution from the normal distribution. Various geometric and analytics
properties of the underlying data distribution were leveraged in the theoretical development.
Qiu et al. (2018) proposed a power anomaly detection and alarming system based on log
analysis. They trained a model by the fault log data from the collection and billing sys-
tem, and the model was used to detect frauds and anomalies in real-time. Gao et al. (2020)
proposed a robust time series anomaly detection algorithm by integrating robust time series
decomposition and convolutional neural network having an encoder-decoder architecture with
skip connections. The authors showed that the proposed algorithm, called RobustTAD, was
able to outperform several forecasting-based, decomposition-based, and statistics-based algo-
rithms on certain benchmark data sets. Himeur et al. (2020) introduced a method to detect
abnormalities in building energy consumption based on a deep neural network for micro-
movement classification, i.e., classifying movements as good use, no change, turn on, turn
off, excessive power consumption and outdoor consumption, etc. The authors nonetheless
recognized that the requirement for an annotated data set for model training pose some prac-
tical limitation to supervised learning methods, which we tend to concur. Liu et al. (2016)
proposed an anomaly detection algorithm by combining supervised learning and statistical
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methods trained upon one’s historical consumption patterns. They implemented the algo-
rithm into a lambda architecture, and validated the effectiveness experimentally. In a similar
vein, Araya et al. (2017) proposed an ensemble framework that combined pattern-based and
prediction-based anomaly classifiers via a majority voting mechanism. In experiments that
aimed to detect anomalous building energy consumption, the ensemble approach was shown
to outperform the method that relied on the pattern-based anomaly classifier alone. Devlin
and Hayes (2019) presented a multi-layer, feedforward neural network to identify the power
consumption status of common household appliances via decomposing the household’s smart
meter measurements, which could then be used to infer occupants’ activities. To increase the
amount of training data available, the authors had to duplicate (i.e., over-sample) the limited
number of true appliance profiles in the original data set. We comment that this is a typical
compromise while applying deep learning methods to an application with data scarcity.

2.3. Distance-based Methods

Distance-based methods have also been investigated in the related literature. For example,
Tran et al. (2016) evaluated algorithms for distance-based outlier detection in data streams
under various stream settings and outlier rates. Their approach is not deliberately applied
to power meter monitoring, but the outlier detection method is suitable for the application
for power meter anomaly detection. Yijia and Hang (2016) proposed a waveform feature
extraction model for power consumption anomaly detection. The authors first extracted
the edge point sequence to identify the normal patterns, and then measured the similarity
distance between the loss changing pattern and the targeted feeder. In this way, users who
were suspected of power theft could be quickly pinpointed.

2.4. Literature on Occupancy Monitoring

While energy consumption is only weakly correlated to occupancy in large non-domestic
buildings (Martani et al., 2012), a household’s electricity consumption is highly correlated
with its occupants’ activities, and such a correlation has been widely exploited from the
perspective of usage forecasting, energy conservation and home energy management systems
(HEMS). For instance, knowing the occupancy level of a building can improve energy use
forecasts (Newsham and Birt, 2010); furthermore, a building’s energy consumption such as
the heating, ventilation and air conditioning (HVAC) setpoints and lighting brightness can
be dynamically adjusted according to the occupancy status (Agarwal et al., 2010; Erickson
and Cerpa, 2010; Ardakanian et al., 2018). The reverse relationship, i.e., using electricity
usage to infer occupancy status, is relatively less studied. Zou et al. (2017) proposed an
occupancy sensing system to detect, count and locate occupancy through the WiFi traffic.
They implemented the system in a 1500m2 built environment and validated the performance.
Rafsanjani and Ahn (2016) experimentally analyzed the relation between the occupant’s en-
try and departure events and a building’s energy usage. In a follow-on paper (Rafsanjani
et al., 2018), the authors developed a clustering algorithm to efficiently monitor electric
load of a building based on occupants’ entry and departure events. Liu et al. (2018) pro-
posed a probabilistic graphical modeling approach to utilize multivariate time-series data for
non-intrusive load monitoring (NILM). Their approach applied stochastic model for pattern
learning that can discover specific patterns of energy usage or generation and particularly
focused on accurate energy disaggregation. Kleiminger et al. (2015) implemented several
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supervised machine learning algorithms as classifiers: Support vector machine (SVM), K-
nearest neighbors (KNN), Gaussian mixture models (GMM), hidden Markov model (HMM),
and a thresholding approach to detect occupancy information (at home or away) using ag-
gregate electricity consumption data from smart meters. However, the classifiers may fail
when there are small temporal changes in occupant’s behavior. In (Chen et al., 2013a), a
non-intrusive occupancy monitoring (NIOM) algorithm was proposed to produce a continu-
ous trace of a home’s occupancy status based on the smart meter’s readings. By noting that
when a home was occupied the power usage was higher and more variable than when it was
unoccupied, the authors developed a threshold-based approach to detect occupancy changes.
Specifically, an occupancy change event was retro-predicted to occur at a given time point if
both the average and standard deviation of power usage over a fixed window in the imme-
diate past exceeded a corresponding baseline threshold, whereas the baseline threshold was
estimated by nighttime usage with certain assumptions. Occupancy events that were close
to each other along the time line were then clustered together to produce a reasonable trace
of binary occupancy status. The NIOM problem has been increasingly investigated in recent
research, though different researchers used different data sets and basic assumptions. For
instance, Becker and Kleiminger (2018) based their analysis on several data sets, including
an electricity and occupancy data set (Tang et al., 2015), the ECO data set (Beckel et al.,
2014), and part of the Smart* data set (Chen et al., 2013b), and proposed three unsupervised
learning methods, i.e., a hidden Markov model, a geometric moving average algorithm and
a Page-Hinkley test based algorithm, to monitor occupancy based on smart meter readings.
The authors concluded that unsupervised learning methods could outperform supervised
learning methods in certain cases. Razavi et al. (2019) analyzed the electricity consumption
behavior of more than 5000 households over an 18-month period and deployed an array of
machine learning methods aimed at detecting and predicting the occupancy status of the
households. In this work a genetic programming approach was proposed to extract useful
features for training the predictive models. Hattori and Shinohara (2017) considered novel
applications of NIOM including ambient assisted living, sales promotions, and peak load
shifting. To overcome the difficulty in utilizing the low-resolution electric consumption data,
the authors proposed a data generation step to enrich the data set with estimations that
reflect the household characteristics, and used the enriched data to predict the household’s
occupancy status.

Compared to the existing NIOM algorithm in the literature, our methods boast several
new features. First, our methods operate in a multivariate feature space whereas NIOM
links different criteria by simple rules. Second, our algorithms can be deployed for a cold-
start at any home of a similar setting, as long as a limited set of past meter readings are
accessible in a rolling window. No long-term memory of data is necessary. Third, abnormal
inactivity encompasses richer information (or more uncertainty) than the binary occupancy
status. For instance, an immobilizing medical condition or a death event might occur when
the occupant is using an appliance such as the electric stove or bedroom light. Hence the
power consumption would remain largely unchanged after the event. Unlike moving-window
based simple occupancy detection algorithms, our method is able to detect such happenings
since more features of the time series under study can be revealed.

6



3. Methods

3.1. Assumptions and Problem Statements

Factors that influence residential power consumption can be categorized into four groups:
external conditions (e.g., location and weather), physical characteristics of dwelling, house-
hold electric appliance, and occupants (Kavousian et al., 2013). If we examine the temporal
consumption pattern for a given home, the main factors are then reduced to weather, appli-
ance and occupants’ activity. And we have made the following assumptions for the goal of
detecting abnormal inactivity:

� We target the simple home environment (small houses or apartments) with single-
occupied households.

� We assume that heating is sourced from natural gas and air-conditioning, if a unit
exists, runs on a separate circuit.

� We assume a simple indoor lifestyle of the occupant in which lighting and cooking
constitute the main source of electric consumption.

� Only the main circuit power is measured by the smart meter.

The second assumption eliminates the need to strip the weather effect from smart meter
readings, which otherwise could be performed as a preprocessing step for our algorithm.
Specifically, we constructed the targeted home environment by subsetting the Smart* Home
Dataset (Barker et al., 2012), which provides more than three years of 30-minute-level and
sub-circuit-level energy usage data accompanied by detailed home environment description
for three homes in Western Massachusetts. We composed our data set for study using four
sub-circuits from Home A. The data set consists of the electricity consumption incurred by
electric range, fridge range, bedroom lights and kitchen lights. Figure 1 plots the power
consumption (in Watts) of the four sub-circuits in the home over a 24-hour period sampled
every 30 minutes. The occupant’s normal activity throughout the day is clearly displayed by
her intermittent usage in lighting and cooking. In addition, we can see that no single category
is in dominance in terms of the peak power level. Note that in the fourth assumption for
a typical home, only the main circuit power is measured by the smart meter, so the meter
reading (input to our algorithm) only reveals the overall consumption level averaged in the
sampling interval, in this case, a 30-minute interval.

With the above assumptions, we are ready to state the main research questions to be
investigated in the sequel. We define anomaly, or abnormal inactivity, as any concerning
deviation of a home’s electric power consumption pattern from what is expected out of the
occupant’s long-held routine, that is indicative of an immobilizing health event (e.g., falling
down, passing out, drug overdose or death) otherwise gone unnoticed. We will develop data
analytic algorithms that can detect such anomalous events as timely as possible, based on
the household’s aggregated energy consumption observed every 30 minutes by a smart meter
device. For practical implementation, the anomaly detection models must be portable and
adaptable to different household environments. To this end, we focus on developing unsu-
pervised learning models that are able to establish a nominal baseline from historical data

7



02:00 07:00 12:00 17:00 22:00

0
10

0
20

0
30

0
40

0

ElectricRange
FridgeRange
BedroomLights
KitchenLights

0
10

0
20

0
30

0
40

0
Po

w
er

 (W
at

t)

Figure 1: A simple home’s electric consumption by appliance.

and extract features from it, without relying on labeled training data. Specifically, to tell
apart normal and abnormal energy consumption patterns, we measure the distance between
a recent sequence of smart meter readings (e.g., in the past 6 hours) and a typical sequence
that would be expected under nominal conditions. We present a Mahalanobis distance based
method in Sections 3.2 and 3.3, where we derive several features (i.e., summarizing statistics)
from the raw consumption sequence, and compute the distance between the feature vector
value and the distribution of the feature vector as estimated from historical meter readings
which were assumed anomaly-free1. The Mahalanobis distance is a measure of the distance
between a point (i.e., the feature vector value) and a distribution (i.e., the feature vector
distribution under normal conditions), therefore it is suitable for the purpose. Our contri-
bution resides in deriving the features and their correlation coefficients that are effective at
telling apart normal and abnormal sequences using the Mahalanobis distance. In Sections
3.4 and 3.5, we develop a nested dynamic time warping (DTW) method. In this method,
anomaly is detected by measuring the DTW distance between two sequences which them-
selves are DTW distances extracted from the raw consumption sequence, thus the detection
algorithm is able to pick up pattern changes caused by the target event regardless of the
time of occurrence. Furthermore, in Section 3.6, we describe a prediction-based baseline
approach for performance comparison purposes. To validate the effectiveness of the anomaly
detection algorithms, we simulate test cases with both normal and abnormal instances and
test the algorithms in a binary classification setting, even though the algorithmic parameters
are learned in the unsupervised learning framework.

1This assumption is reasonable, as the anomalies we consider in this paper are terminal events of the
household’s occupancy, such as the sudden death of the occupant
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Table 1: Nomenclature

Data Description
t, s Time interval index
xt Actual Watt at time t
Xt Watt at time t under the normal case, a random variable

whose distribution is estimated from past samples
µ̂Xt,D Mean of Xt estimated by the D-day same-time samples
σ̂Xt,D StdDev of Xt estimated by the D-day same-time samples
σT,t StdDev of the population {xt−T+1, . . . , xt}
ΣT,t Random process of {σT,t} under the normal case
µ̂ΣT,t,D Mean of ΣT,t estimated by the D-day same-time samples
σ̂ΣT,t,D StdDev of ΣT,t estimated by the D-day same-time samples
ft Feature vector computed at time t
w Weight vector for features
T Number of look-back intervals
yt Actual Watt at time t
Yt Consumption (Watt) at time t in nominal condition
dt The DTW distance between Xt and Yt at time t

Other symbols will be self-explanatory in the text.

3.2. Feature Extraction

In this section, we will first analyze several hypothesized cases that are representative of
the types of anomalous events in focus, and derive several summative statistics series from
the smart meter’s reading series that are sensitive to relevant changes in the consumption
pattern. These statistics will then be used as features (i.e., input values calculable at the time
of inference) in the distance-based anomaly detection algorithm, to be presented in Section
3.3. The nomenclature used in the analysis and algorithm development is given in Table 1.

Figure 2 plots the normal power consumption over a two-day period (i.e., Sunday, Feb 1 to
Monday, Feb 2, 2014), together with the would-be power levels for three anomaly cases that
were set to occur at different times. Anomaly 1 occurs at 2 am on Sunday, which mimics a
death during sleep. Realistically, there is no way to detect such a quiet happening in the first
few hours until the next morning, when the usual morning peak is gone amiss. If Anomaly
1 did occur, the Normal case (the black solid curve) would stop at Sunday 2 am hence our
visual comparison is really against the gray area, which depicts the 95% confidence interval
for Xt, the (uncertain) electricity consumption at time t whose distribution is estimated by
the same-time meter readings in the past D days. Here and for the subsequent numerical
analysis we took D = 30 to use the past 30 days of data. Given that the time line of each
day is evenly divided into c metering intervals, and a meter reading xs is available for the
past D days, where the subscript s indicates the sth interval over the whole period under
study, the expected consumption level µXt at any time t can be estimated by

µ̂Xt,D =
1

D

D∑
d=1

xt−c·d
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Figure 2: Three instances of anomaly: power levels.

and the standard deviation σXt can be estimated by

σ̂Xt,D =

(
1

D − 1

D∑
d=1

(xt−c·d − µ̂Xt,D)
2

)1/2

.

Note that both parameter estimates are calculated using the information observable as of
time t. Here the “hat” symbol on top of the corresponding parameter symbol indicates
that the quantity is an estimate, rather than the parameter itself (which is unknown). It
is reasonable to assume that under the normal case (i.e., no Anomaly) the consumption Xt

follows a Gaussian distribution with mean µ̂Xt,D and standard deviation σ̂Xt,D. As the actual
xt is observed, we can then compute the likelihood of this observation using the Gaussian
density function. If mildly low-likelihood observations accumulate for several consecutive
intervals such that the probability of observing the sequence is extremely low, an alarm
should be raised.

Anomaly 2 occurred at 5 pm Sunday when the occupant supposedly passed out while
cooking in the kitchen. The power level sustained an unusually high level (as the Electric
Range and Kitchen Lights remained on after the incidence) for the next few intervals. Such an
anomaly should be detected more quickly given that the subsequent meter readings digressed
from the predicted distribution too far too soon.

The third hypothesized anomaly occurred at Monday 6:30 am when the power usage was
at a mid-level, for instance some (but not all) kitchen lights were turned on or the lights were
at a dimmed brightness.

Across the three hypothesized instances of anomaly, we can generate the following insights.

� Unlike an occupancy event in which the average consumption will register a noticeable
change compared to the past few hours, an anomaly event does not necessarily change
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the average power consumption. Post an anomaly incidence, the average power level
can stay at any level in the full range of total consumption capacity, as demonstrated in
Figure 1. This suggests that NIOM methods that monitor the changes in the average
consumption, e.g., in Chen et al. (2013a), are not applicable in our context.

� The post-anomaly variance of the power, however, will immediately reduce and rest at
the level of the background load. Changes in the variance provide a timely indication
of an anomaly.

� The power level itself, via comparing with its expected distribution learned from the
day-to-day pattern in the past, can also be used as a reliable signal to indicate abnormal
deviation of consumption.

Let us further explore the second point above. First, we will derive a new series {σT}t
from the Watt series (xt−T+1, . . . , xt), to represent the observed variance in the past T Watt
readings. It is defined as

σT,t =

(
1

T

t∑
s=t−T+1

(xs − x̄T,t)
2

)(1/2)

(1)

where x̄T,t = (
∑t

s=t−T+1 xs)/T . Note that the series {σT}t is what is actually observed
up to time t, regardless of whether an anomaly has occurred or not. We denote the Watt
series under normal conditions by Xt, which is a stochastic process. The variance series
ΣT,t = (

∑t
s=t−T+1(Xs − X̄T,t)

2/T )(1/2) is also a stochastic process. Therefore, we can form
(and continuously refine) an idea for what the distribution of ΣT,t should look like under
the hypothesis that no anomaly has occurred up to time t, and check if the observed σT,t

conforms well to this distribution, i.e., by evaluating the likelihood of σT,t. A low-likelihood
observation, or a sequence of low- and decreasing-likelihood observations, would indicate that
an anomaly had occurred. Similar to the treatment for Xt, we assume that ΣT,t follows a
Gaussian distribution for each t, whose mean µΣT,t

and standard deviation σΣT,t
are estimated

from the past D-day same-time observations of σT,t. Specifically,

µ̂ΣT,t,D =
1

D

D∑
d=1

σT,t−c·d (2)

σ̂ΣT,t,D =

(
1

D − 1

D∑
d=1

(σT,t−c·d − µ̂ΣT,t,D)
2

)(1/2)

(3)

Figures 3 and 4 illustrate the series {σT}t for T = 48 (24 hours) and T = 12 (6 hours),
respectively, for the normal and anomaly cases. The 95% confidence interval at each time t
is constructed using equations (2) and (3) with D = 30 and t0.975,30 = 2.04, the appropriate
quantile from the t-distribution. We can see from the leveled confidence intervals in Figure 3
that the variance of power consumption in any 24-hour interval is nearly constant, which is
simply because the interval length is 24 hours, the natural period for human being’s everyday
activities. For instance, if the occupant has dinner-cooking and bedtime-reading habits, the
power peaks incurred by these events can be captured once in about any 24-hour interval
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Figure 3: Three instances of anomaly: 24-hour variation.
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Figure 4: Three instances of anomaly: 6-hour variation.
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Table 2: Simple detection rule by variance drop.

Occurred Detected (T = 24h) Detected (T = 6h)
Anomaly 1 Sun 02:00 Sun 16:00 Sun 02:00
Anomaly 2 Sun 17:00 Mon 15:00 Sun 22:00
Anomaly 3 Mon 06:30 Mon 17:30 Mon 12:00

and where such peaks happen to locate within the interval does not affect the variance at
all. This is a nice feature, in the sense that when a significant deviation from the typical
(nearly constant) variance is detected, we can reliably conclude that something abnormal
has happened. Coming with the high reliability is its insensitivity - the gap between the
occurrence and detection of an anomaly can be up to half a day. Fortunately, the reliability-
sensitivity tradeoff is adjustable via the parameter T . We can achieve a quicker detection by
choosing a smaller T , at the cost of a higher risk of false positive claims, i.e., falsely claiming
a normal case to be abnormal. For illustration let us assume a simple detection rule: an
anomaly is said to have occurred by time t if σT,t is below the lower limit of the confidence
interval. Note that this rule does not retro-predict when the anomaly occurred, which will be
discussed in future work. By this rule, we can compare the performances of T = 24h versus
T = 6h by comparing Figure 3 and Figure 4. Apparently, the latter setting led to much
quicker detections for all three anomaly cases. The specific time of detection is summarized
in Table 2.

3.3. Mahalanobis Distance Method

For a new observation xt, we have discussed how to compute different features based on
the deviation of xt and σT,t from the hypothesized distributions of Xt and ΣT,t under the
normal condition. In particular, we are able to evaluate the likelihood of the new observation
by each feature. At this point, based on the important features we have identified so far
there is a great deal of freedom in designing an anomaly detection algorithm. For instance,

1. We can independently evaluate the likelihood of each feature and compare against a
preset threshold, and then employ a voting-based decision rule to determine whether
the new observation is anomalous or not.

2. We can construct a joint Gaussian distribution of all features and make an inference
by evaluating the likelihood in the feature space.

3. We can compute the Mahalanobis distance of the feature instance and apply the
Grubb’s test (Chandola et al., 2009; Laurikkala et al., 2000) to determine anomaly.

In this section, we will apply the third option and leave a comprehensive study of algorithm
design for future work. Let ft ∈ Rp be the value vector of p features for the observation at
time t and in this paper we use three features ft = [σ48,t, σ12,t, xt], where the first two
elements follow the definition in equation (1). Let wi, i = 1, . . . , p be a pre-assigned weight
for feature i, with

∑p
i=1wi = 1, reflecting the relative importance (as a trade-off of reliability

and sensitivity) of feature i. The weight assignment can be based on ad-hoc knowledge or
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belief about the feature space (as is the case here) or can be optimally learned via cross-
validation on a training data set. To the authors’ knowledge, weighting the features as in
equation (4) in the context of multivariate Grubb’s test is a novel invention that has not been
discussed in the literature. In the algorithm to be tested below, we arbitrarily select a weight
vector w = [0.6, 0.3, 0.1], to reflect the insights gained from Figure 2 to 4 that the 24-hour
variance is a more reliable indicator of anomaly than the other two. We then compute the
weighted Mahalanobis distance between ft and its distribution, as follows

δt =
√

(ft − f̄t)TWS−1W (ft − f̄t) (4)

where f̄ is the mean vector estimated by the pastD-day same-time observations, in particular
f̄t = [µ̂Σ48,t,D, µ̂Σ12,t,D, µ̂Xt,D]; W is a p-by-p diagonal matrix whose diagonal entries are
wi, i = 1, . . . , p and whose off-diagonal entries are zero; S is the covariance matrix of the D-
day same-time historical records of the feature columns weighted by w. Note that calculating
the feature vector ft at any time t involves only the past 48 meter readings as of t. However,
the calculation of the mean vector f̄t requires 48 · D (e.g., 1440, if D = 30 days) historical
meter readings, according to equations (2) and (3).

The new observation xt is determined to be anomalous if the following condition (Grubb’s
test) holds,

δt >
D − 1√

D

√√√√ t2α/(2D),D−2

D − 2 + t2α/(2D),D−2

(5)

where D is the number of data points used to estimate the parameters, and we have D = 30
here since we use the past 30-day same-time data to estimate parameters; α is a significance
level and we choose α = 0.9 for the experiments. Note that a single observation can appear
anomalous by chance when no abnormal activity has really occurred. We further safeguard
the algorithm against making frequent false positive claims by requiring that an anomaly
alarm is raised only when the past K observations all pass the Grubb’s test. In other words,
we claim an anomaly has occurred by time t when inequality (5) holds simultaneously for
δs, s = t−K, . . . , t. The proposed detection process is summarized graphically in Figure 5.

3.4. Dynamic Time Warping Distances

This subsection reviews the basic concepts and formulation of the dynamic time warping
(DTW) distances, and the next subsection presents a novel anomaly detection approach
based on a nested application of DTW on the original data series. DTW is a well-known
technique to find optimal alignments between two time-series sequences of different lengths.
It has been successfully applied in a wide spectrum of applications, including word and speech
recognition (Myers and Rabiner, 1981b,a; Myers et al., 1980), signature verification (Munich
and Perona, 1999), fingerprint verification (Kovacs-Vajna, 2000) and aligning gene expressions
(Aach and Church, 2001). The gist of the DTW method is to measure the similarity between
two time series by computing the least cumulative distance between them. The definition
of the DTW distance can be found in (Müller, 2007) (pp 69-71), and we reproduce it below
for completeness. Given two time series X = (x1, x2, ..., xm) with length of m and Y =
(y1, y2, ..., yn) with length of n, one can build a distance matrix D, i.e., D(i, j) = |xi − yj|,
and define Φ = {ϕ(1), ϕ(2), ..., ϕ(K)} as an (m,n)-warping path with length K, in which each
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Figure 5: Proposed Mahalanobis distance method flow chart. The algorithm is executed at each time point
t to detect the target types of anomaly that has possibly occurred.

element ϕ(k) represents an index pair (ik, jk) ∈ {1, . . . ,m} × {1, . . . , n}, for k ∈ {1, . . . , K}.
The path Φ has the following properties:

1. ϕ(1) = (1, 1)1, ϕ(K) = (m,n)K

2. i1 ≤ i2 ≤ . . . ≤ iK , j1 ≤ j2 ≤ . . . ≤ jK

3. ϕ(k + 1)− ϕ(k) ∈ {(1, 0), (0, 1), (1, 1)}, ∀k

The cost cΦ(X, Y ) of a warping path ϕ between X and Y is given by

cΦ(X, Y ) :=
K∑
k=1

D(ik, jk) (6)

An optimal warping path between X and Y is a warping path Φ∗ having minimal cost among
all possible warping paths. The DTW distance between X and Y is then defined as the cost
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Figure 6: Demonstration of a wide range of DTW distances across different periods of time.

of Φ∗, i.e., DTW(X, Y ) := cΦ∗ . In our DTW-based algorithm, we used the R package “dtw”
(Giorgino, 2009) to calculate the DTW distance for any given pair of sequences X and Y .

3.5. A Nested DTW-based Detection Algorithm

For a given series of data, at time t we take the latest N time points (N = 48 is used sub-
sequently to include the past 24 hours’ condition), denoted by Xt, Xt = (xt−47, xt−46, ..., xt)
comparing with another 24-hour sequence Yt from 30 days ago, that is, Yt = Xt−T =
(xt−T−47, xt−T−46, ..., xt−T ), where T = 30 × 48. Using DTW method, we obtain a DTW
distance dt between Xt and Yt at each time t. As time advances, we can get more DTW
distances, i.e., dt+1, dt+2, . . . , dt+n, for n time periods into the future. These distances show
a quantitative difference between the current information on the residential electricity con-
sumption and the nominal consumption level as exhibited by historical data. One would
expect that if an anomaly were to occur at time t, the DTW distances dt, dt+1, ..., dt+n would
exhibit a notable increase due to dissimilarity with what the sequence would look like under
nominal conditions. However, as shown in Figure 6, the DTW distances vary substantially
over time, and the ranges of the DTW distances for the original and abnormal periods are
mostly overlapped. Thus, on the DTW distance alone, it is difficult to set a fixed threshold
value based on which we could separate nominal values and anomalies very well.

To overcome this challenge, we further calculate the DTW distances of the distance
series (hence, it is a nested DTW method). Specifically, let P = (dt−47, dt−46, ..., dt) and
Q = (dt−T−47, dt−T−46, ..., dt−T ), we can calculate the DTW distance between P and Q and
denote it as d

′
t. In this way, the range of DTW distances is narrowed and the interesting

signals are strengthened, which makes setting a detection threshold easier.
We are especially interested in one particular case of anomaly, in which the resident

experiences sudden death or accident that would leave the bedroom light, kitchen light or
the electric range unchanging after the accident’s occurrence, while the fridge keeps working
as usual. We can add a filter to the DTW distance vector to single out this particular
type of instance of interest. In particular, after examining the historical data, we found an
exploitable fact: the mean and median values of the fridge range consumption are almost the
same, while for other appliances the mean consumption values are greater than the median
values, and this difference is up to 65 in terms of the overall power consumption. See the
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Table 3: Statistics of historical data 02/02/2014 - 11/30/2014.

Watts FR* KL BL ER Total
Max 498.8 761.1 338.5 825.5 1547.9
Mean 76.0 74.8 14.8 17.8 183.3
Median 75.6 3.6 4.9 3.4 118.8
1st Quartile 33.3 3.3 4.8 2.9 62.7
* FR: Fridge Range; KL: Kitchen Lights; BL: Bedroom
Lights; ER: Electric Range.

summaries in Table 3 for demonstration.
The rationale behind taking the difference between the mean and median among these ap-

pliances is that lighting and cooking are high-power and low-duration consumption, whereas
the fridge is of an opposite nature. Therefore, after an anomaly occurs, i.e., lights and oven
remain in their pre-anomaly states, over time the mean-median gap will noticeably diminish.
Such a winding-off pattern provides a strong signal for the anomaly event we are interested
in.

The detection process is listed in Algorithm 1 in the form of a function, and is summarized
graphically in Figure 7. Input parameters include the current time t, the major look-back
period T and the minor look-back period N . In our context, the nested DTW algorithm
is configured to look back 30 days and 24 hours, that is, T = 1440 and N = 48. We use
the following shorthand notation for sequence (xs)

n
s=k := (xk, xk+1, ..., xn) for any k, n ∈ Z,

and k < n. The function DTW(X, Y ) for any two sequences X and Y returns the cost (or
distance) of the warping path as given in equation 6 along with the other defined operations
leading to that equation. Overall, the DetectAnomaly function is called at each time point
t and a Boolean anomaly indicator is returned.

3.6. Prediction-based method - a baseline

Both the Mahalanobis Distance method and the nested DTW method leverage some
problem-specific insights which are key to their effectiveness. For comparison purposes,
we present a generic, prediction-based anomaly detection approach. Prediction-based ap-
proaches have been commonly used in the literature, see, e.g., Araya et al. (2017), although
algorithmic designs are different for different applications. As a comparison baseline we im-
plement a straightforward idea here. Specifically, whenever a new meter reading becomes
available (i.e., every 30 minutes), an ARIMA model is constructed using the time series start-
ing from the same-time observation 31 days ago and ending at the same-time observation one
day ago (i.e., 30 days of data), and is applied to “forecast” the energy consumption for the
past 24 hours (48 data points to forecast). If the actual energy consumption pattern in the
past 24-hours is sufficiently different from what is forecast by the model, then an anomaly
is deemed to have occurred in the past 24 hours. For simplicity, the Euclidean distance
between the two 48-point sequences (i.e., the actual and the forecast) will be calculated and
compared to a decision threshold. We used the auto.arima function in the ‘forecast’ package
(Hyndman and Khandakar, 2008) in R to determine the parameters for ARIMA. The selected
model is ARIMA(0, 1, 1)×(2, 0, 0)48, in which the first vector and the second vector represent
the (auto-regressive, difference, moving-average) coefficient values, for the non-seasonal and
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Algorithm 1 Nested DTW method for anomaly detection at current time t

1: function DetectAnomaly(t, T , N)
2: for i = t−N + 1 to t do
3: Xi ← (xs)

i
s=i−N+1

4: Xi−T ← (xs)
i−T
s=i−N+1−T

5: Xi−2T ← (xs)
i−2T
s=i−N+1−2T

6: di ← DTW (Xi, Xi−T )
7: di−T ← DTW (Xi−T , Xi−2T )

8: Pt ← (ds)
t
s=t−N+1

9: Qt ← (ds)
t−T
s=t−N+1−T

10: d′t = DTW (Pt, Qt)
11: if d′t < THDTW then
12: result ← Xt is normal
13: else
14: mt ← mean(Xt)−median(Xt)
15: if mt > THStat then
16: result ← Xt is normal
17: else
18: result ← Anomaly detected in Xt

19: return result

Figure 7: Illustration of the nested DTW method for anomaly detection.

seasonal (with period 48) components, respectively. We have experimented with different
decision thresholds on the Euclidean distance and adopted the value 3 since it performs the
best.
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4. Experiments and Results

4.1. Validation of the Mahalanobis distance method

We adopted Home A’s meter data in the year 2014 (Barker et al., 2012) as the normal case,
in which a meter reading is available every 30 minutes for the whole year. We have made two
minor modifications on the data set: (1) The data in December were removed, because the
meter readings in that month indicate that the appliances were off most of the time, making
this period inappropriate to serve as the normal case; (2) The misaligned time stamps due to
daylight saving were corrected, which happened at 2014-03-09 02:00 and 2014-11-02 01:00.

Since the data set was collected from a real household setting and there were times during
the year when the house was indeed vacant for a prolonged period, e.g., up to tens of hours,
we would expect such incidences to be detected by our algorithm as such occupancy changes
constitute a deviation from the norm (though it probably meant that the occupants went for
a vacation). Therefore, our first order of business is to execute the algorithm for the normal
cases. Specifically, we ran the detection algorithm for each 30-minute interval from Feb 2
to Nov 29, and identified 88 anomaly cases. First, many of these cases indeed appeared to
be anomalous, such as exhibiting an unconventional fluctuation of power. However, we have
no knowledge about what caused such anomalies since the ground-truth occupant’s activity
data was unavailable. We will publish the full result data set and interested readers can mine
details there. Second, even though some misclassified cases are present, a false alarm can be
avoided by implementing a validity check in practice. For instance, an automatic phone call
can be initiated in the next daytime hour to verify the occupant’s safety status.

Next, we tested the algorithm on artificially generated anomaly cases. Given the base
data set, we created an anomaly case by the following steps: (1) Randomly pick a time point,
e.g., 2014-08-11 11:30:00 as the occurrence time of the anomaly; (2) Freeze the power level
of Bedroom Lights, Kitchen Lights and Electric Range (but not the Fridge Range) at the
current level for all subsequent time points; (3) Add up all appliances’ power by t for each t,
to serve as the total consumption xt read from the smart meter.

We also set a 24-hour timeout limit: if the algorithm is unable to identify the anomaly
within 24 hours of its actual occurrence, it is considered a failure case; otherwise, it is a
success case and the time to detection (TTD) is recorded. We tested 1000 randomly sampled
anomaly cases, among which 767 were successfully detected by the algorithm and the TTD
distribution is summarized in Figure 8. Since we used K = 6, the TTD is lower bounded at 3
hours, which is also the most common TTD among all success cases. It is worth noting that
none of the algorithmic parameters, including the weight vector w, minimum sequence length
K and the choices for T , etc., has undergone any systematic tuning to achieve the current
performance. This is evidence for the effectiveness of the features as well as the algorithm’s
cold-start capability.

4.2. Validation of the nested DTW method

We conduct two sets of experiments to test the algorithm’s ability to (1) identify the
anomaly when one exists, and (2) mark a sequence as normal when no anomaly exists. The
data generation and experiment processes are described below.

For the first set of experiments, we simulated 11233 single-anomaly test sequences. In
the test sequence for which the anomaly is planted at time t, the detection algorithm that is
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Figure 8: Distribution of the time to detection (TTD) for success cases.

run at time point s, t ≤ s ≤ t + 48, is fed with a data sequence (xs−2T−94, . . . , xs) covering
two months plus two days, where we adopt T = 30 × 48, i.e., looking back 30 days. For
each run at time s, s ∈ {t, . . . , t + 48}, the detection algorithm will be queried to make a
decision about whether an anomaly has occurred. If the algorithm answers “yes” in run s
and if s− t ≤ h, then this test sequence will be counted as a true positive (TP) case for the
performance category with time-to-detection threshold H, for all H ≥ h. The test sequence
that is not counted as TP for a given performance category will be counted as the false
negative (FN) case for this performance category. In the end, we have marked all the test
sequences as either FN or TP in this way.

For the second sets of experiments, the algorithm is fed with normal data, and true
negatives (TN) and false positives (FP) will be recorded by the same rule as described
above. In each experiment, the threshold of the difference between the mean and median of
the DTW distances are set as a parameter. Specifically, we experimented 10, 20, 30 and 40
to understand its effect on detection accuracy. The results are summarized in Figure 9 and
detailed in Table 4.

Figure 9 shows that the algorithm’s performance increases steadily with the increase in
detection lag time. At around H25 (meaning that the current time is 12.5 hours after the
occurrence of the anomaly), the accuracy increase starts to plateau. The filter value of 40 is
also the best one among the four values tested, although its advantage winds off as the lag time
increases. To evaluate the performance of the algorithm, we calculate the precision, recall
and accuracy, defined as follows. Precision = (TP )/(TP +FP ); Recall = (TP )/(TP +FN);
Accuracy = (TP + TN)/(TP + TN + FP + FN). We compare the performances under
different time window widths allowed for detection, as shown in Figure 10. The results
suggest that the algorithm performs well when the detection time window is over 24 (i.e, 12
hours). So we choose H24 as the baseline time window, and perform subsequent comparison
experiments under different parameters based on this time window. On this baseline, we find
the threshold value (for the difference between mean and median of DTW distances) of 20
performs the best in distinguishing the sudden death event.
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Table 4: Proportion of anomalies detected under different lag time using DTW distance method.

Parameter 10 20 30 40

Lag
Time

Detected
(%)

Cumulative
Detected

(%)

Detected
(%)

Cumulative
Detected

(%)

Detected
(%)

Cumulative
Detected

(%)

Detected
(%)

Cumulative
Detected

(%)
H1 6.77 6.77 12.45 12.45 20.10 20.10 29.30 29.30
H2 1.38 8.15 2.08 14.54 3.11 23.21 3.63 32.93
H3 1.39 9.54 2.03 16.57 2.86 26.07 3.16 36.09
H4 1.53 11.07 2.21 18.78 2.83 28.90 3.43 39.52
H5 1.71 12.78 2.42 21.20 3.17 32.07 3.37 42.88
H6 2.05 14.83 2.88 24.07 3.35 35.41 3.46 46.35
H7 2.30 17.13 3.20 27.27 3.48 38.89 3.34 49.68
H8 2.83 19.96 3.53 30.80 3.77 42.67 3.52 53.20
H9 3.11 23.07 3.73 34.53 3.77 46.44 3.46 56.66
H10 3.47 26.54 4.01 38.54 4.04 50.49 3.41 60.07
H11 3.72 30.26 3.77 42.30 3.60 54.08 3.26 63.33
H12 3.47 33.73 3.78 46.09 3.46 57.54 3.04 66.37
H13 3.43 37.16 3.41 49.50 3.08 60.62 2.72 69.09
H14 3.44 40.59 3.19 52.68 2.98 63.61 2.41 71.50
H15 3.40 44.00 3.48 56.16 2.92 66.53 2.49 74.00
H16 3.45 47.45 3.52 59.68 2.97 69.50 2.36 76.36
H17 3.62 51.07 3.55 63.23 2.92 72.42 2.26 78.62
H18 3.69 54.77 3.58 66.81 2.93 75.35 2.27 80.89
H19 3.85 58.61 3.71 70.52 2.67 78.02 2.12 83.01
H20 4.04 62.65 3.45 73.98 2.73 80.75 1.98 84.98
H21 4.25 66.90 3.68 77.66 2.58 83.33 1.82 86.80
H22 4.40 71.30 3.49 81.14 2.48 85.82 1.81 88.61
H23 4.18 75.48 3.21 84.36 2.34 88.16 1.47 90.07
H24 4.28 79.76 3.01 87.37 1.87 90.03 1.24 91.31
H25 3.07 82.84 1.98 89.34 0.95 90.98 0.45 91.77
H26 1.09 83.92 0.62 89.97 0.46 91.44 0.39 92.16
H27 0.85 84.78 0.48 90.45 0.33 91.77 0.28 92.44
H28 0.75 85.52 0.46 90.91 0.35 92.12 0.30 92.74
H29 0.65 86.17 0.37 91.28 0.30 92.42 0.27 93.01
H30 0.66 86.83 0.45 91.74 0.36 92.78 0.32 93.33
H31 0.57 87.40 0.33 92.07 0.24 93.02 0.22 93.55
H32 0.60 88.00 0.28 92.34 0.24 93.26 0.23 93.79
H33 0.53 88.53 0.31 92.66 0.25 93.51 0.23 94.02
H34 0.41 88.94 0.28 92.93 0.20 93.71 0.20 94.22
H35 0.44 89.38 0.23 93.16 0.20 93.91 0.19 94.41
H36 0.40 89.78 0.23 93.39 0.19 94.10 0.19 94.60
H37 0.50 90.28 0.28 93.68 0.22 94.32 0.21 94.81
H38 0.44 90.71 0.28 93.96 0.22 94.54 0.20 95.01
H39 0.29 91.01 0.23 94.19 0.21 94.76 0.20 95.21
H40 0.41 91.42 0.23 94.42 0.20 94.96 0.20 95.41
H41 0.43 91.85 0.24 94.66 0.22 95.18 0.22 95.63
H42 0.36 92.20 0.28 94.93 0.26 95.44 0.24 95.87
H43 0.34 92.54 0.24 95.17 0.19 95.63 0.17 96.04
H44 0.34 92.88 0.24 95.42 0.20 95.82 0.16 96.20
H45 0.34 93.22 0.22 95.64 0.18 96.00 0.16 96.36
H46 0.26 93.47 0.17 95.81 0.16 96.16 0.13 96.49
H47 0.21 93.69 0.12 95.93 0.12 96.29 0.12 96.61
H48 0.27 93.96 0.18 96.11 0.14 96.43 0.12 96.73
Failed 6.04 - 3.89 - 3.57 - 3.27 -
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Figure 9: Proportion of anomalies detected under different lag time and four different parameter values.

Figure 10: Performance of DTW method under different time-to-detection and filter parameter threshold
values. In each subplot, the horizontal axis represents the filter parameter threshold and the vertical axis
represents the Precision, Recall and Accuracy value in percentage.

The preceding method set T = 30 × 48, meaning that the DTW distance is tracked
for the past 30 days. Now, we experiment with different values for T in search for a more
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Figure 11: Weekly and daily patterns of total electricity consumption.

effective “look-back” period. Figure 11 shows the electricity consumption in 28 days of March,
beginning from the 10th week of the year and ending on the Saturday of the 13th week of the
year. We notice that patterns on weekdays are quite similar with comparable peaks, while
the peaks on weekends appear less uniform. So, looking back seven days is able to make
normal cases match better, and hence reduce the false negative rate. For this observation,
we choose T = 7 × 48 and repeat the experiments. Table 5 summarizes the comparison
results.

Figure 12: Performance of the nested DTW method under different parameter settings with a 7-day look-back
period.

The comparisons in Table 5 and in Figure 12 show that the seven-day-look-back method
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Table 5: Summary statistics of normal case data.

Parameter Case
T = 30× 48 T = 7× 48

Count Percentage Count Percentage

10
FP 761 6.78% 743 6.62%
TN 10471 93.22% 10489 93.38%

20
FP 1399 12.46% 1387 12.35%
TN 9833 87.54% 9845 87.65%

30
FP 2258 20.10% 2299 20.47%
TN 8974 79.90% 8933 79.53%

40
FP 3291 29.30% 3395 30.23%
TN 7941 70.70% 7837 69.77%

* FP: False Positive; TN: True Negative

gives limited improvement compared to the previous method, especially when the detection
time window is short. It may be due to the following reasons.

� Well matched patterns only help improve the accuracy for normal cases. In other
words, they only help reduce the false negative rate. A “Sudden death pattern” is very
different from a normal pattern, which does not ostensibly enlarge the DTW distances.

� The threshold is small enough to filter positive cases, and some false positive cases due
to threshold can be corrected by the “mean and median” filter. Thus, the method does
not contribute much in reducing the false positive rate.

� Patterns on weekends are not well matched, which also affects the actual performance.

4.3. Comparison between the two algorithms and with the baseline approach

We design experiments to compare the performances of the proposed algorithms with the
baseline approach. To ensure comparability, we run the Mahalanobis distance method and
the prediction-based baseline method on the same data sets (the 11233 single-anomaly test
sequences and the nominal data) with the same slide window width i.e., T = 30 × 48, as
were used in testing the nested DTW method. For the Mahalanobis distance method we
experiment different levels of weight, that is, taking ft at values [0.1, 0.5, 0.4], [0.5, 0.1, 0.4],
[0.5, 0.4, 0.1] and [0.6, 0.3, 0.1], and label these settings as 154, 514, 541 and 631, respectively.
Notice that the last setting is the same as that used in Section 3.3. The results are highlighted
in Figures 13 and 15 and detailed in Table 7.

From Figure 13, we can see that the performance of the Mahalanobis distance method
varies with weight settings. The precision, recall and accuracy are high when the detection
window is more than 24 periods (12 hours) under the weight setting of [0.1, 0.5, 0.4], while
the performance under other weight settings is less attractive. Figure 15 more clearly reveals
that the parameter setting [0.1, 0.5, 0.4] generates the dominating performance among the
four settings tested, regardless of the detection lag time. This observation suggests that the
variance in energy consumption over the past 6 hours is a more important anomaly indicator
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Figure 13: Performances of Mahalanobis distance method under different time to detection.

Figure 14: Performance of the prediction-based baseline method under different time-to-detection values.

than the variance over the past 24 hours. Comparing Figure 10 and Figure 13, we can see
that the DTW method performs slightly better than the Mahalanobis distance method at an
early stage in H12, that is, within the first 6 hours after the anomaly occurs. On the other
hand, the Mahalanobis distance method performs better in H24 and H36 under the wight
setting of [0.1, 0.5, 0.4].

The performance of the baseline approach at different time-to-detection values is plotted in
Figure 14. We can see that, as expected, the detection becomes more reliable as more time is
allowed, though the practical usefulness of the detection would decrease over time. Moreover,
the precision tends to plateau at below 90%, approaching an intrinsic upper limit imposed
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Table 6: Performance comparison among three methods.

Methods ARIMA(0,1,1)×(2,0,0)48 Mahalanobis(154) Nested DTW(20)

Avg. Detect Time (Hrs.) 12.4 7.4 7.5

Precision (%)

H6 28.56 56.70 65.90
H12 62.92 80.11 78.73
H24 82.89 89.79 87.52
H36 87.54 90.51 88.23

Recall (%)

H6 3.64 13.63 24.07
H12 15.45 41.90 46.09
H24 44.12 91.56 87.37
H36 63.95 99.20 93.39

Accuracy (%)

H6 47.27 51.61 55.81
H12 53.17 65.75 66.82
H24 67.51 90.58 87.46
H36 77.42 94.40 90.47

Figure 15: Proportion of anomalies detected by the Mahalanobis distance method under different lag time
and different parameter settings.

by the time-series prediction model. The comparison of all three methods is listed in Table 6.
It is apparent that the Mahalanobis method and the nested DTW method both outperform
the baseline method in all aspects. Part of the reason is that the proposed methods not
only model the distribution of the past observations, but also leverage the characteristics
of the target events which help guide the parameter setting. Compared to the prediction-
based method, our unsupervised learning approaches are more adaptable to complex and
fast-changing patterns, apart from their ease of implementation on smart devices.
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Table 7: Proportion of anomalies detected under different lag time using Mahalanobis distance method.

Weight 154 514 541 631

Lag
Time

Detected
(%)

Cumulative
Detected

(%)

Detected
(%)

Cumulative
Detected

(%)

Detected
(%)

Cumulative
Detected

(%)

Detected
(%)

Cumulative
Detected
(%)

H1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
H2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
H3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
H4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
H5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
H6 13.63 13.63 9.75 9.75 4.82 4.82 7.45 7.45
H7 2.85 16.48 1.71 11.46 1.11 5.93 0.93 8.38
H8 3.85 20.32 2.01 13.47 1.51 7.44 1.17 9.54
H9 4.91 25.24 2.47 15.94 1.97 9.41 1.56 11.10
H10 5.34 30.58 2.34 18.28 2.50 11.91 1.80 12.90
H11 5.54 36.12 2.38 20.65 2.80 14.71 2.19 15.09
H12 5.79 41.90 2.44 23.09 3.29 18.00 2.50 17.59
H13 5.76 47.66 2.15 25.25 3.82 21.82 2.69 20.28
H14 5.71 53.37 2.14 27.38 4.06 25.88 2.72 23.00
H15 5.62 58.99 2.02 29.40 4.47 30.35 2.63 25.63
H16 5.45 64.44 1.77 31.18 4.42 34.77 2.53 28.16
H17 4.50 68.93 1.84 33.02 3.82 38.59 2.13 30.29
H18 3.92 72.85 1.37 34.39 3.09 41.68 1.84 32.13
H19 3.47 76.32 1.18 35.57 2.31 44.00 1.41 33.54
H20 3.35 79.67 1.05 36.62 2.15 46.14 1.19 34.73
H21 3.27 82.93 0.83 37.45 2.21 48.35 1.32 36.05
H22 3.09 86.02 0.82 38.27 2.04 50.39 1.25 37.29
H23 3.02 89.04 0.76 39.03 2.04 52.43 1.12 38.41
H24 2.52 91.56 0.69 39.71 1.93 54.36 1.13 39.54
H25 2.02 93.58 0.62 40.34 1.72 56.08 1.00 40.54
H26 1.61 95.19 0.61 40.94 1.51 57.59 0.94 41.48
H27 1.27 96.47 0.61 41.56 1.42 59.00 0.86 42.35
H28 0.89 97.36 0.63 42.19 1.22 60.22 0.90 43.25
H29 0.56 97.92 0.58 42.77 1.10 61.33 0.87 44.12
H30 0.35 98.26 0.61 43.37 0.94 62.27 0.79 44.91
H31 0.25 98.51 0.69 44.07 0.71 62.98 0.75 45.66
H32 0.21 98.73 0.79 44.86 0.63 63.62 0.80 46.46
H33 0.12 98.85 1.35 46.21 0.47 64.09 0.92 47.38
H34 0.13 98.99 1.67 47.89 0.41 64.50 1.11 48.49
H35 0.12 99.11 2.05 49.93 0.44 64.93 1.30 49.79
H36 0.09 99.20 2.50 52.43 0.43 65.36 1.65 51.44
H37 0.06 99.26 2.55 54.98 0.49 65.85 1.75 53.19
H38 0.07 99.33 2.78 57.76 0.48 66.33 1.92 55.11
H39 0.07 99.40 2.76 60.52 0.58 66.91 1.95 57.06
H40 0.06 99.47 2.88 63.40 0.55 67.46 1.99 59.06
H41 0.06 99.53 2.89 66.30 0.57 68.03 2.12 61.18
H42 0.07 99.60 2.84 69.14 0.58 68.61 2.07 63.25
H43 0.05 99.65 2.78 71.91 0.59 69.20 2.27 65.52
H44 0.04 99.70 2.93 74.84 0.61 69.80 2.39 67.91
H45 0.04 99.73 2.84 77.68 0.63 70.44 2.48 70.39
H46 0.03 99.76 2.81 80.49 0.74 71.17 2.55 72.94
H47 0.04 99.80 2.86 83.35 0.76 71.93 2.84 75.78
H48 0.03 99.82 2.78 86.13 0.90 72.83 2.64 78.42
Failed 0.18 - 13.87 - 27.17 - 21.58 -
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5. Discussions

5.1. Rationale for unsupervised learning

The proposed methods are both unsupervised learning methods that are based purely on
the historical data with limited preprocessing or artificial treatments. In contrast, supervised
learning would require training a model using labeled data. There are some challenges in
preparing labeled data for this application. Due to the great variability of the instantaneous
power consumption, it is impossible to tell whether a single data/time point is anomalous
or not based on observations leading to this point. Instead, an anomalous event always
reveals itself as a sequence of data points whose pattern is significantly different from what
is expected. Since the ground-truth anomalous event occurs at a specific time point but its
effect unfolds over the next several time points, it is difficult to select and label an anomalous
sequence without imposing subjectivity, i.e., decisions such as how many time points after the
event will be considered as part of the anomalous sequence. Furthermore, supervised learning
methods such as logistics regression, decision trees and neural networks would require a model
(i.e., coefficients, rule sets, or parameters) to be pre-trained offline, which would lack flexibility
in dealing with occupant’s behavioral change and routine differences in different households.
More frequent model updates would be required which might pose additional challenges in
device deployment and maintenance. In comparison, the data-driven unsupervised learning
methods are relatively immune to these nuisances. Therefore, we believe that the distance
based unsupervised learning methods proposed herein are novel and useful contributions.

5.2. Rationale for distance-based method

The baseline method, ARIMA, is a statistical model that combines autoregressive and
moving average components to learn patterns in time sequence data. The model is parametric
and assumes that the pattern learned from historical data do not change over time. However,
in the problem of detecting abnormal inactivity based on smart meter readings, the mean,
variance, and covariance of electricity consumption within any practical time window are
not constant, rendering ARIMA less effective at characterizing the relevant features. In
comparison, our distance-based unsupervised learning methods are specifically designed to
capture the complex and changing patterns in household electricity consumption, thus are
more capable of detecting anomalous events.

5.3. Notes on implementation

Both algorithms developed in this paper have been coded into computer programs (Python)
that involve only basic arithmetic operations independent of any third-party library. The pro-
grams are highly portable and can be directly transcribed into C or MicroPython programs
suitable for deployment on a microcontroller unit (MCU). At any time, at most 4500 single-
precision input values (i.e., three months’ of meter readings) need to be stored, corresponding
to a RAM requirement well under the capacity of most MCUs. The anomaly detection com-
putation is carried out once every 30 minutes (the actual computation only takes no more
than a couple of seconds) and in most of the idle time, the MCU can either enter a low-power
sleep mode or handle other smart meter functions, such as taking energy measurements and
aggregation. Figure 16 illustrates the schematic overview of our proposed implementation
method. In this scheme, an Espressif ESP32 MCU equipped with a 240 MHz single-core
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Figure 16: System architecture for practical deployment of the proposed algorithms.

CPU, a 2.4GHz Wi-Fi radio and a Bluetooth lower energy (BLE) radio is used to handle all
of the data aggregation, anomaly detection and communication functions. Specifically, the
electric current in the household’s main circuit is measured via a Hall sensor and the sampled
measurements (voltage signals in the 0 to 1 V range) are read using the analog-to-digital con-
verter (ADC) peripheral of the MCU. The MCU then aggregates these samples into Watts
for the 30-min interval at the nominal voltage level, e.g., 110 V. The Watt values are stored
in a first-in-first-out (FIFO) queue in the RAM. Every 30 minutes, the anomaly detection
algorithm is executed based on Watt values in the queue. If an anomaly is detected, the MCU
will ping the resident’s cellphone via a pre-installed App through BLE (or Wi-Fi) and request
a simple response, such as a tap on the cellphone screen. The resident, if safe and healthy,
can simply tap the phone screen to cancel the false alarm. On the other hand, if the pings
are not responded to for contiguous periods, outside assistance will be called automatically
and a pre-recorded voice message will be played to request an emergency home visit.

This implementation scheme offloads as much computation as possible to the edge device
(i.e., the ESP32 MCU) instead of sending raw meter readings to a server for central process-
ing. Compared to the alternative, see, e.g., Patrono et al. (2018), this scheme is more efficient
in the use of communication bandwidth and potentially more scalable. Yet another imple-
mentation approach is to inject the anomaly detection functions into the onboard software
suite of an existing smart meter brand, possibly as a third-party add-in module, although
this approach would depend on the manufacturer’s willingness to foster an open hardware
interface along with a software marketplace. We believe that the market is evolving in the
promising direction as the IoT and edge AI technologies mature.

6. Conclusion

Smart meter data analytics provides a promising pathway to non-intrusive household
anomaly monitoring. The electricity consumption data aggregated every 30 minutes do
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not reveal privacy-leaking activities in the house, yet, the data can be leveraged to detect
major abnormal events, such as the unattended death of the occupant in a single-person
home. Timely detection of such events is important both socially and economically. In
this paper, we have proposed and compared two effective anomaly detection algorithms
operating on electricity consumption data recorded by residential smart meters. Effective
features were extracted from the time series data and two methods based on the weighted
Mahalanobis distance and the nested DTW distance have been developed to identify single-
point anomalies. A sequence smoothing technique was used to effectively hedge against false
alarms. The algorithms have demonstrated remarkable efficacy on test scenarios from real
data sets. Comparison results have suggested that the Mahalanobis distance based method
is more reliable at a longer lag time, while the nested DTW method performs better when
the lag time is shorter. Both methods do not require offline training or parameter tuning to
work well, and thus can be programmed directly into the smart meter hardware for practical
implementation.

While the current work operates on an individual household, follow-on research could
extend the scope to cover multiple households in a neighborhood, which would introduce more
exploitable features, correlations and patterns. The system implementation and integration
challenges, including the hardware and software design, device networking and outbound
communication protocols, etc., need also be investigated in future work. More observational
study and data analysis based on real-life implementation are also worthwhile topics for
future investigation.
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