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Abstract—This paper considers the use of recently proposed
optimal transport-based multivariate goodness-of-fit (GoF) test
statistics, namely rank energy and its variant the soft rank
energy derived from entropy-regularized optimal transport, for
unsupervised non-parametric change point detection (CPD) in
multivariate time series data. We show that the soft rank energy
enjoys both fast rates of statistical convergence and robust
continuity properties which lead to strong performance on real
datasets. Our analyses remove the need for resampling and out-
of-sample extensions previously required to obtain such rates.
Our theoretical results show that the rank energy suffers from the
curse of dimensionality in statistical estimation and moreover can
signal a change point from arbitrarily small perturbations, which
leads to a high rate of false alarms in CPD. Additionally, under
mild regularity conditions, we quantify the discrepancy between
soft rank energy and rank energy in terms of the regularization
parameter. Finally, we show our approach performs favorably
in numerical experiments compared to several other optimal
transport-based methods as well as maximum mean discrepancy
(MMD), which is a popular multivariate GoF statistic.

Index Terms—Optimal transport, goodness-of-fit, change point
detection

I. INTRODUCTION

THE problem of detecting changes or transitions in multi-
variate time series data (Xt) ⊂ Rd, referred to henceforth

as change point detection (CPD), is a central problem in
a number of scientific domains [1]–[8]. The CPD problem
amounts to partitioning the time series data into disjoint
segments, with data in each consecutive segment being sta-
tistically distinct. In this context, we consider an unsupervised
setting in which no prior examples of change points are made
available and focus on non-parametric methods.

Motivated by recent developments in multivariate goodness-
of-fit (GoF) tests based on notions of multivariate ranks
derived from the theory of optimal transport (see [9] for
a recent survey), we propose the use of the rank energy
[10] and its numerically and sample efficient variant, the
soft rank energy [11], for performing unsupervised non-
parametric CPD. As noted in [10], [12] there are several
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advantages in considering rank energy and soft rank energy
for GoF testing. First, rank energy is distribution-free under
the null, a property which we numerically observe to be
approximately also shared by the soft rank energy and that
is lacking in other popular multivariate GoF measures such
as the maximum mean discrepancy (MMD) [13], Wasserstein
distances [14], and Sinkhorn divergences [15]. In the context
of CPD, distribution-freeness potentially allows one to select
a threshold for detection that is independent of the underlying
distribution. Furthermore, statistical testing based on rank
energy is shown to be robust to outliers and has better power
for heavy tailed distributions [10]. Note while one can consider
other optimal transport (OT) based rank GoF measures such
as the rank MMD [10], Hotelling’s-T 2 [12], and soft rank
MMD [11], in this paper we focus on rank energy and soft
rank energy and leave analogous development for these cases
to future investigations.

We make the following fundamental contributions in this
paper, keeping in view the practical utility of these tests
towards robust CPD.

1) Wasserstein Continuity Properties of GoF Statistics:
Theorems IV.1 and IV.2 provide novel analytic insights
into rank energy and soft rank energy which explain their
behaviors in practice. We show that the soft rank energy
is Lipschitz with respect to the Wasserstein-1 metric
while the rank energy fails to even be continuous. These
properties translate to the smoothness (or lack thereof)
of the GoF statistics in the proposed CPD algorithm
with respect to small perturbations that are typical of
real data.

2) Convergence of Soft Rank Energy to Rank Energy:
In Theorem IV.4, under appropriate technical conditions,
we provide an explicit convergence rate of the soft rank
energy to the rank energy in terms of the regularization
parameter. These results relax the conditions required
to obtain convergence in existing work on the soft rank
energy [11].

3) Realistic and Fast Sample Convergence: In Theorem
IV.6 we establish the fast convergence rate of n−1/2

of the plugin estimate of the soft rank energy to its
population counterpart. Importantly, this result does not
require using an out-of-sample extension as is required
for the theoretical analysis in [11] thereby making most
use of the limited samples and justifying the practical
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Fig. 1. (Xt)Tt=1 is time series data (gray) with several change points (dashed purple lines). The window of n samples between t and t+n is Xt, ..., Xt+n.

implementation.
4) Applications to CPD: We numerically investigate and

compare the performance of the soft rank energy with
other OT-based and popular GoF statistics for CPD [5],
[6], [16], [17]. Our results demonstrate the effectiveness
of the soft rank energy in detecting change points on a
variety of real-world datasets.

II. OVERVIEW OF CHANGE POINT DETECTION

We begin by outlining the problem set-up and a brief
overview of a class of methods that we focus on in this paper.

Data model: Consider a sequence of samples (Xt) ⊂
Rd, t = 1, 2, ... and assume that the sequence can be sequen-
tially partitioned into disjoint segments [τj−1 + 1, ..., τj ] such
that Xτj−1+1, ..., Xτj

i.i.d.∼ Pj , j = 1, 2, .... Here Pj ∈ P(Rd),
the set of distributions on Rd, are such that Pj ̸= Pj+1

and the time indices τj are referred to as change points. The
distributions (Pj) and the change points (τj) are arbitrary and
not known in advance. We further consider a non-parametric
setting in which the data generating distributions (Pj) are not
assumed to belong to a parametric family of distributions.

Problem: Given the observed sequence (Xt), output a
sequence of predicted change point indices (τ̂k) such that the
sequence (τ̂k) is close to the true sequence (τj).

One method to estimate change points is the “sliding
window” approach [5], [6], [18], [19] visualized in Figure
1 and outlined in Algorithm 1. For each time t ∈ {n, n +
1, . . . , T − n} let zt be a GoF statistic computed between the
time-adjacent sets {Xt−n+1, ..., Xt}, and {Xt+1, ..., Xt+n}.

Repeating this for every time t creates a sequence (zt)
from which a sequence (τ̂i) of predicted change points can
be extracted. For example, one can predict that τ̂ is a change
point when zτ̂ takes a large value or is a local maximizer
within the sequence (zτ ). Since the predicted change points
(τ̂k) are extracted from the sequence (zτ ) which is determined
by a GoF statistic, the choice of GoF statistic will make a
substantial difference in the quality of the predicted change
points. The purpose of this paper is to argue theoretically and
empirically that the soft rank energy (given in Definition III.6)
is a strong choice of statistic, due to its favorable theoretical
and computational properties.

Within the context of the sliding window approach we
discuss several ways to quantify how close the sequence (τ̂k)
is to (τj) which are made precise in Section V. Heuristically
a sequence (τ̂k) is close to (τj) if it has the following two
properties.

Algorithm 1: Sliding window-based CPD

Input : Time series data (Xt)
T
t=1, window size n,

threshold η, GoF statistic function GoFstat,
peak search procedure PeakSearch

Output: Predicted change point sequence (τ̂k).
1 for t = n, n+ 1, . . . , T − n do
2 zt =

GoFstat
(
{Xt−n+1, ...Xt}, {Xt+1, ..., Xt+n}

)
3 end for
4 (τ̂k) = PeakSearch((zt), η)

1) (High True Change Point Detection Rate) For most
τj , there should be a point τ̂k close to it. For a pre-
specified tolerance ξ > 0, we say that the change point
τj is detected if there is a τ̂k such that |τj − τ̂k| ≤ ξ,
otherwise it is missed. This requires the algorithm to
identify and localize changes in the distribution.

2) (Low False Alarm Rate) For almost every τ̂k there
should be a point τj such that |τ̂k−τj | ≤ ξ. A predicted
change point τ̂k that is far from every true change
point τj is considered a false alarm. This rules out
algorithms which find true change points by proposing
many spurious ones.

In Section V we measure the quality of the sequence (τ̂k)
using two popular metrics in CPD literature [5], [18] to
evaluate the performance, (a) area under the precision-recall
curve, (b) F1-score. The F1-score, precision, and recall are
defined as:

F1-score =
2 · precision × recall

precision + recall
,

precision =
TP

TP + FP
, recall =

TP
TP + FN

,

where TP, FP, and FN represent the total number of true
positive, false positive, and false negative points, respectively.

The recall is only high if most of the change points in the
data are predicted and few of them are missed (the missed
change points are FN). The precision is only high if most
of the predicted change points truly are change points (TP)
while at the same time the spurious change points (FP) are
minimized. These directly correspond to the two heuristics
of what makes a sequence (τ̂k) close to (τj). Note that these
metrics do not consider true negatives (TN), and this is natural
in our problem because the vast majority of time-points in a
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sequence are not change points so metrics such as specificity
(TN / (TN + FP)) are always extremely close to 1.

The CPD setting described above is idealized in two
important ways. First, in practice there is often no sharp
threshold where a shift in the sampling distribution occurs.
The distribution may undergo a short phase transition, and one
would like to register this as only a single change point instead
of a change point at every time step during the transition [20].
Second, real data distributions may exhibit subtle fluctuations
around a typical distribution, and only occasionally undergo
meaningful transitions. This can make statistical tests which
are too powerful ineffective in practice because one often does
not want to register small fluctuations as change points. The
discrepancy between practical and theoretical change points
should inform the design of a CPD algorithm. Any CPD
algorithm should be sensitive enough to identify potentially
subtle shifts and capture all the true changes, while being
robust to insignificant fluctuations.

A. Related Works

There are many flavors of CPD: supervised [21] or unsu-
pervised [17]; online [3] or offline [17]; number of change
points (single [22] or multiple [23]); univariate [24] or multi-
variate [25] signals; and if the signal model is parametric or
non-parametric. Supervised CPD methods require annotated
training data with labeled change points to train the model,
while unsupervised CPD methods operate without labeled
change points, allowing them to detect change points in new
signals without prior knowledge of their locations. Online
CPD methods analyze data in real-time or streaming scenarios,
enabling immediate detection of change points using only
historical data, while offline methods process the entire dataset
retrospectively. Single CPD methods are designed to detect
a single change in the data, whereas multiple CPD methods
are able to detect multiple potential change points. Parametric
approaches make specific assumptions about the underlying
data distributions and detect change points based on statistics
computed from pre-change and post-change distributions [26],
[27]. The most widely used parametric approaches are cumu-
lative sum- [28], and generalized likelihood ratio (GLR)- [29]
based CPD. These parametric approaches are mostly suited for
quickest change point detection where the goal is to detect a
change in the quickest time. In contrast, nonparametric meth-
ods are able to detect change points without any assumptions
on the underlying distribution. In this work we are interested
in unsupervised, offline, and non-parametric CPD methods.

One popular method for nonparametric CPD is the sliding
window technique [18], [19] (Algorithm 1), which measures
the similarity at every possible point of the signal using
two-sample GoF statistics. While these methods may not be
optimal for offline CPD in parametric settings, such as the one
considered in [30], we focus our attention on these methods
because they provide fast alternatives to optimal methods
[19]. Classical and popular statistics such as Kolmogorov-
Smirnov [31]–[33] and Cramér-von-Mises [34]–[37] statistics
have been used for CPD. However, these statistics rely on
comparing empirical CDFs, and only apply when the data

dimension d = 1. Maximum mean discrepancy (MMD)
[13] is a GoF statistic that comes from a family of integral
probability metrics [38] and has been used to detect change
points when d > 2 [17]. Recently, OT-based statistics have also
been proposed for sliding-window-based CPD for multivariate
signals: Wasserstein-1 (W1) distance [6], a distribution-free
variant of Wasserstein distance that measures the Wasserstein
distance of the Q-Q function to the uniform measure known
as Wasserstein-Quantile test (WQT) [5], [14], and Sinkhorn
divergence [16].

III. BACKGROUND

A. Optimal Transport and Rank Energy

Let P(Ω) denote the space of probability measures over an
open set Ω ⊆ Rd and let Pac(Ω) be those measures which are
absolutely continuous with respect to the Lebesgue measure on
Ω (i.e. those that admit a density function). For two measures
P,Q ∈ P(Ω), the optimal transport problem with squared
Euclidean ground cost seeks an optimal coupling π between
the source distribution P and the target distribution Q via
solving [39]

W 2
2 (P,Q) ≜ min

π∈Π(P,Q)

∫
1

2
∥x− y∥2dπ(x, y), (1)

where Π(P,Q) is the set of joint probability measures on
P(Ω⊗ Ω) with marginals P and Q.

The connection between optimal transport and ranking can
be understood starting with d = 1, where if P ∈ Pac(Ω)
and Q = Unif[0, 1], the optimal plan is supported on
{(x,CDFP (x))} [39] (CDFP (x) is the cumulative distribution
function of P ), which corresponds to a cyclically monotone
rearrangement that in turn aligns with the natural ordering on
R. In higher dimensions, as implicitly noted in the seminal
papers extending the notion of ranks to higher dimensions via
optimal transport [10], [40], [41], the key geometric property
of cyclical monotonicty is preserved in that when P ∈ Pac(Ω),
by the Brenier-McCann theorem [42], [43], the optimal trans-
port plans are supported on cyclically monotone sets i.e., on
{(x, T (x)) : x ∈ supp(P )} for a map T : Rd → Rd, which
is a gradient of a convex function (hence cyclically monotone
by a well-known theorem of Rockafeller [44]) and satisfies
(T#P )[A] = P [T−1(A)] for all measurable sets A.

This allows one to meaningfully interpret multivariate ranks
via optimal transport maps as corresponding to a cyclically
monotone rearrangement with respect to a target measure Q.
Fixing the target measure Q to be Unif([0, 1]d) motivates the
following definition of the multivariate rank map.

Definition III.1 ( [10]). Let P ∈ Pac(Ω) and let Q =
Unif([0, 1]d). The (multivariate) rank map of P is defined as
R = ∇ϕ : Rd → Rd where ϕ is the convex function such that
∇ϕ optimally transports P to Q.

Using this notion of rank, rank energy is defined as follows.

Definition III.2 (Definition 3.2, [10]). Let PX , PY ∈ Pac(Ω)

and let X,X ′ i.i.d.∼ PX and Y, Y ′ i.i.d.∼ PY . Let Pλ = λPX +
(1− λ)PY denote the mixture distribution for any λ ∈ (0, 1)
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and let Rλ be the multivariate rank map of Pλ as in Definition
III.1. The (population) rank energy is given by

REλ(PX , PY )
2 ≜ 2E

∥∥Rλ(X)− Rλ(Y )
∥∥

−E
∥∥Rλ(X)− Rλ(X

′)
∥∥− E

∥∥Rλ(Y )− Rλ(Y
′)
∥∥. (2)

In [10] it is shown that the rank energy is distribution
free under the null, consistent against alternatives (under the
alternative hypothesis the probability of accepting the null
hypothesis goes to zero as the number of samples goes to
infinity), and computationally feasible as long as the number
of samples is not too large. These make the rank energy a
good candidate for GoF testing since it is zero if PX = PY

and is distribution-free under the null.

B. Entropic Optimal Transport and Soft Rank Energy

In order to define the soft rank energy we begin by
introducing the entropy-regularized OT (EOT) problem. The
entropy-regularized version of (1) adds an additional term to
the objective [45]–[47]. For ε > 0, the primal formulation of
EOT is given by

min
π∈Π(P,Q)

∫
1

2
∥x− y∥2dπ(x, y) + εKL(π || P ⊗Q), (3)

where

KL(π|P ⊗Q) ≜
∫

ln

(
dπ(x, y)

dP (x)dQ(y)

)
dπ(x, y).

Let πε denote the solution to (3) and let πx
ε denote the

conditional distribution of πε with first coordinate fixed at
X = x. Extending the ideas in [48], [11] proposed the
following.

Definition III.3 ( [11]). Let P ∈ Pac(Ω) and Q =
Unif([0, 1]d). Define the entropic rank map via

Rε(x) ≜ EY∼πε
[Y |X = x] = EY∼πx

ε
[Y ],

the conditional expectation under the coupling πε.

Remark III.4. We note that Rε is a gradient of a convex
function [49] thereby maintaining the key geometric property
of rank maps, namely cyclical monotonicity.

Based on this notion, and motivated by the nicer sample
and computational complexity as well as differentiability of
entropic rank maps in [11] the following variant of rank energy
was proposed and utilized for learning generative models.

Definition III.5 (Soft Rank Energy, [11]). Let PX , PY ∈
Pac(Ω) and let X,X ′ i.i.d.∼ PX , Y, Y ′ i.i.d.∼ PY . Let Pλ =
λPX + (1 − λ)PY for λ ∈ (0, 1) and let Rελ be the entropic
rank map of Pλ. The soft rank energy (sRE) is defined as:

sREελ(PX , PY )
2 = 2E

∥∥Rελ(X)− Rελ(Y )
∥∥

− E
∥∥Rελ(X)− Rελ(X

′)
∥∥− E

∥∥Rελ(Y )− Rελ(Y
′)
∥∥. (4)

Note that while sREελ is not a metric, it is symmetric and
sREελ(PX , PY ) = 0 if PX = PY , which is useful in CPD
applications.

C. Estimating REλ and sREελ from Samples

Let X1, ..., Xn
i.i.d.∼ P and Y1, ..., Yn

i.i.d.∼ Q be jointly
independent samples. Using these samples one constructs the
empirical measures Pn = 1

n

∑n
i=1 δXi

, Qn = 1
n

∑n
i=1 δYi

.
The plug-in estimates of the OT map Tn and the optimal EOT
coupling πn

ε are obtained by solving

Tn = argmin
T :T#Pn=Qn

1

n

n∑
i=1

∥∥T (Xi)−Xi

∥∥2,
πn
ε = argmin

π∈Π(Pn,Qn)

n∑
i,j=1

πij

∥∥Xi − Yj

∥∥2 + επij log πij .

The plug-in estimate of the entropic map Tn
ε is given by

Tn
ε (Xi) = EY∼π̂ε [Y |X = Xi] = n

n∑
j=1

(πn
ε )ijYj .

Note that like Tn, the map Tn
ε is only defined on the samples

{X1, ..., Xn}.
When Q = Unif([0, 1]d) we say that the estimate Tn is the

sample rank and denote it by Rn. In our setting we consider a
mixture distribution of PX and PY and we specify the number
of samples from PX with m, the number of samples from PY

with n, and draw m + n samples from Q. In this setting we
use Rm,n to denote the sample rank where m,n refer to the
number of samples from each distribution. Analogously the
estimate Tm,n

ε is referred to as the entropic sample rank and
denoted by Rεm,n.

We can now define the sample rank energy and sample soft
rank energy.

Definition III.6. Given two sets of samples
X1, . . . , Xm

i.i.d.∼ PX and Y1, . . . , Yn
i.i.d.∼ PY ,

define the empirical mixture of the two sets of
samples Pm+n = 1

m+n

(∑m
i=1 δXi +

∑n
j=1 δYj

)
. Let

Qm+n = 1
m+n

∑n+m
i=1 δUi

where Ui
i.i.d∼ Unif([0, 1]d). Let

Rm,n be the sample rank of Pm+n to Qm+n. The sample
rank energy is given by

REm,n(PX , PY )
2 ≜

2

mn

m,n∑
i,j=1

∥Rm,n(Xi)− Rm,n(Yj)∥

− 1

m2

m∑
i,j=1

∥Rm,n(Xi)− Rm,n(Xj)∥

− 1

n2

n∑
i,j=1

∥Rm,n(Yi)− Rm,n(Yj)∥.

Let Rεm,n be the entropic sample rank of Pm+n to Qm+n

defined via the plug-in estimate of the entropic map. The
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sample soft rank energy is given by

sREεm,n(PX , PY )
2 ≜

2

mn

m,n∑
i,j=1

∥Rεm,n(Xi)− Rεm,n(Yj)∥

− 1

m2

m∑
i,j=1

∥Rεm,n(Xi)− Rεm,n(Xj)∥

− 1

n2

n∑
i,j=1

∥Rεm,n(Yi)− Rεm,n(Yj)∥.

IV. UTILIZING sREελ FOR CHANGE POINT DETECTION

The primary application of this paper is the use of sREελ as
a means to solve the CPD problem introduced in Section II
by using it as a GoF statistic (see Algorithm 1 and Figure 1).
While it is now well-established that entropic OT maps can be
computed much faster with practical methods that are paral-
lelizable [50], computation of OT maps that require solving a
linear program still does not scale well in practice [51], thereby
putting use of RE at a computational disadvantage compared
to sRE. In this Section, we argue that soft rank energy has
several more important advantages over rank energy for CPD.

A. Wasserstein Continuity Properties of Rank and Soft Rank
Energy

In [10] it was shown that the rank energy is distribution-free
under the null hypothesis that PX = PY . Given that the soft
rank energy is “close to” the rank energy (as quantified by
Theorem IV.4), it is reasonable to hope that it should retain
this property in an approximate sense. While the rank energy
enjoys this important theoretical property, it poses issues for
CPD beyond its considerable computational and statistical
burdens [11]. In particular the rank energy can be highly
unstable to small Wasserstein perturbations when measured
according to W1, which is defined1

W1(P,Q) ≜ min
π∈Π(P,Q)

∫
∥x− y∥dπ(x, y).

This is made precise in the following theorem.

Theorem IV.1. For any λ ∈ (0, 1) and any ϵ, δ > 0 there
exists a pair of measures PX , PY with W1(PX , PY ) < δ and

REλ(PX , PY ) ≥ sup
QX ,QY ∈Pac(Ω)

REλ(QX , QY )− ϵ.

The proof is deferred to Section A1, and relies on an
invariance to dilations of the OT map. This result shows that
the rank energy strongly distorts the Wasserstein-1 metric, in
the sense that there are no universal constants 0 < α ≤ β < ∞
such that

αW1(PX , PY ) ≤ REλ(PX , PY ) ≤ βW1(PX , PY )

for any pair PX , PY . The nonexistence of β follows im-
mediately from Theorem IV.1. The nonexistence of α
follows by taking a sequence {(P i

X , P i
Y )}∞i=1 so that

W1(P
i
X , P i

Y ) → ∞ and noting that by definition, for any

1We use the convention that W p
p (P,Q) ≜ minπ∈Π(P,Q)

∫
1
p
∥x −

y∥pdπ(x, y) for all p ≥ 1.

P i
X , P i

Y , REλ(P i
X , P i

Y )
2 ≤ 2

√
d. At this level, the rank energy

fails to properly capture a standard notion of distance between
measures, and can either greatly inflate or diminish relative to
Wasserstein-1 metric.

We posit that the lack of an upper bound makes the rank
energy overly sensitive and leads to a high false alarm rate
in the CPD problem. This is because in practice there is
an implicit, application-dependent threshold of distributional
change which should be tolerated and not be flagged as a
change point. In contrast, the rank energy aims to capture any
change, no matter how subtle, which leads to the identification
of change points below the implicit threshold. The proof of
Theorem IV.1 also suggests that the rank energy is unstable
when working with distributions that are much more concen-
trated than Unif([0, 1]d).

In contrast, the soft rank energy enjoys a stability property
with respect to W1, which suggests that it is robust to small
Wasserstein perturbations and may not raise a false alarm in
these circumstances.

Theorem IV.2. For any λ ∈ (0, 1) and PX , PY ∈ Pac(Rd) it
holds

sREελ(PX , PY )
2 ≤ 2d

ε
W1(PX , PY ).

The proof is deferred to Section A2 and relies crucially on
the Lipschitz continuity of the entropic map (see Lemma A.1).
Remark IV.3. In Theorem IV.2, the factor 2d in the bound is
an artifact of using Q = Unif([0, 1]d). If instead one chooses
Q = Unif(Bd

2 (u, 1)) for any u ∈ Rd, then the factor of 2d
in the bound above can be replaced by a dimension-free 8.
Additionally, since W1(PX , PY ) ≤ p1/pWp(PX , PY ) for all
p ≥ 1 the conclusion also holds for these variants of the
Wasserstein distance. We state it in terms of W1 since up
to an absolute constant it is the strongest bound of this form.

Comparing Theorem IV.1 to Theorem IV.2, there is a clear
qualitative difference between the rank energy and the soft
rank energy. This sensitivity also appears empirically and is
demonstrated in Figure 2. In this figure when the samples
are highly concentrated the rank energy suffers from large
fluctuations while the soft rank energy remains comparatively
smooth. This leads the RE to produce a few false positives
while the sRE shows stability against those fluctuations. The-
orem IV.2 also suggests the role of ε may act as a sensitivity
knob with small ε leading to a highly sensitive signal while a
large ε is more stable against perturbations.

B. Convergence of sREελ to REλ

While Theorems IV.1 and IV.2 suggest that there may be
some fundamental differences between the soft rank energy
and the rank energy, it is still possible to derive convergence
results between them. This is to be expected since the optimal
entropic coupling, πε between P ∈ Pac(Rd) and Q is known
to converge weakly to the unregularized coupling π = [Id ⊗
T ]#P (where T is the OT map from P to Q) as ε → 0+ (See
[52] Proposition 3.2). If one imposes the condition that the OT
map is Lipschitz, one may use the recent results from [53] to
arrive at a quantitative estimate of the difference between sREελ
and REλ.
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Fig. 2. The left plot shows a sequence of HASC-PAC2016 dataset with the detected change points marked by red dots. The right plot is a zoomed-in version
of a short segment. Both RE and sRE can detect the true changes (black dashed line) within a certain margin (dashed purple), but RE also produces false
positives due to sensitivity to small signal fluctuations. On the other hand, sRE displays greater stability in this aspect, leading to superior performance as
seen in Table II.

Theorem IV.4. Let PX , PY ∈ Pac(B(0, r)) for some r < ∞.
If Rλ is L-Lipschitz then it holds that |sREελ(PX , PY )

2 −
REλ(PX , PY )

2| ≤ C
√
Ldε log(1/ε) +O(ε), for some con-

stant C.

The proof is deferred to Section A3. Theorem IV.4 implies
that for small ε the soft rank energy is a close approximation
of the rank energy. This is important because the rank energy
is distribution-free under the null hypothesis that P = Q.
It is reasonable to expect that the soft rank energy with
small ε approximately inherits this property; this is empirically
observed in Figure 3, where one can see that the soft rank
energy is nearly distribution-free under the null. An asymptotic
variant of this result appears in [ [11] Proposition 16], however
they require that PX and PY have compact support, Rλ is
Lipschitz, the inverse map R−1

λ be Hölder smooth, and that
the Jacobian of Rλ be strictly positive definite. Theorem IV.4
implies their result by taking the limit as ε → 0+ and we
obtain it with only the conditions that PX and PY have
compact support and Rλ is Lipschitz. In addition one can only
derive a slower rate of convergence from an analysis of their
proof and the leading coefficient depends on the integrated
Fisher information [54].
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Fig. 3. Kernel density estimates of RE (ε = 0) and sRE under the null
for v1 (Cauchy), v2 (multivariate Gaussian), v3 (Uniform), and v4 (Laplace)
distributional settings scaled by a factor of mn/(m + n). RE exhibits
distribution-free behavior under the null, and sRE shows qualitatively similar
behavior for small values of ε. However, for larger values of ε, the density
curves of sRE deviate from this pattern, indicating a loss of the distribution-
freeness property. Here m = n = 200 and the statistics are plotted using
1000 random draws.

Remark IV.5. The convergence of sREελ to REλ in the presence
of Theorems IV.1 and IV.2 may seem surprising since these
results suggest that RE and sRE are fundamentally different.
This can be reconciled by noting the bound sREελ(PX , PY )

2 ≤
2
√
d for any PX , PY and ε and by choosing ε small enough

relative to W1(PX , PY ) it will hold that W1(PX , PY )/ε >
2
√
d, which leads to the bound in Theorem IV.2 becoming

vacuous.

C. Statistical Properties

It is now well-known that the plug-in estimate of the optimal
map suffers from the curse of dimensionality. In fact, [55]
show that for any (measurable) estimator T0 of the OT map
T there exists a measure P with

E
∫
Rd

∥∥T0(x)− T (x)
∥∥2dP (x) ≳ n−2/d.

This says that estimation of the OT maps suffer from the curse
of dimensionality unless further assumptions such as higher
order smoothness of the densities are placed on the measures
P and Q. Since estimation of rank energy requires estimation
of the OT map, this result implies that rank energy also suffers
from the curse of dimensionality in statistical estimation from
samples, that is, REm,n(PX , PY )

2 will converge slowly to
REλ(PX , PY )

2.
In contrast, once entropy regularization is introduced the

high-dimensional statistical issues are largely avoided. In [11]
it is shown that when P is subgaussian and Q has bounded
support then a certain canonical extension of Tn,n

ε (which we
will also denote by Tn,n

ε ) enjoys the following bound:

E||Tn,n
ε − Tε||2L2(P ) ≲ n−1/2.

When both P and Q have bounded support it is shown in [56]
that

E||Tn,n
ε − Tε||2L2(P ) ≲ n−1.

Using this canonical extension and decoupling the estima-
tion of the map from the estimation of the soft rank energy
statistic, in [11] fast dimension-independent rates of conver-
gence of soft rank energy are established. In this paper, we do
not employ the canonical extension and avoid decoupling the
estimates of the map and the statistic while obtaining faster
rates of convergence, albeit under the assumption that mea-
sures are compactly supported. This is stated in the following
result.
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Theorem IV.6. Let PX , PY ∈ P(B(0, r)) and let r0 =

max(r,
√
d). Let X1, ..., Xn

i.i.d.∼ PX and Y1, ..., Yn
i.i.d.∼ PY

be jointly independent. Then

E|sREεn,n(PX , PY )
2 − sREε1/2(PX , PY )

2|

≤ 24r0
√
1 + ε2√
2n

exp(22r20/ε) + 6

√
dπ

n
.

The proof is deferred to Section A4. The first step in proving
this result is to introduce an intermediary term which approxi-
mates sREε1/2 by a discrete sum evaluated at the sample points
X1, ..., Xn, Y1, ..., Yn and then applies the triangle inequality.
This breaks the estimate into two terms, the first a Monte
Carlo estimate of an expectation (which is easily controlled),
the second measuring how closely Rεn,n approximates Rε1/2
on the sampled points. Controlling the second term is sub-
stantially complicated by two things. First, the distribution of
(X1, ..., Xn, Y1, ..., Yn) is not the same as (P1/2)

n+n. Second
there is a dependence between the sample entropic rank Rεn,n
and the points used to estimate it, and one must ensure that
on these points the soft rank map is well-behaved. In [11]
these issues are handled via resampling ideas in which two
batches of independent samples, (X1, ..., Xn, Y1, ..., Yn) and
(X ′

1, ..., X
′
n, Y

′
1 , ..., Y

′
n) are used. The first batch estimates a

suitably extendable version of Rεn,n and the second batch is
used to actually compute sREεn,n but not estimate Rεn,n. This
approach requires extra samples, requires artificially sampling
from P1/2 instead of PX and PY separately, and requires
an out-of-sample extension of the soft rank map since Rεn,n
is only defined at the sample points. These technical points
differentiate the estimate in [11] from the one we consider
which is the true plug-in estimate of sRE, is computationally
simpler, and more efficient in its use of samples. In addition
in the context of the sliding-window approach, it is not clear
how one would partition samples to use the estimator in [11].
However our approach is limited to measures with compact
support while [11] is able to cover subgaussian measures, a
question we leave to future work.

V. NUMERICAL EVALUATION

Apart from the hyperparameters that are specific to the GoF
statistic picked, the other main hyperparameters for Algorithm
1 are the window size n and threshold parameter η. For
practically all methods, the choice of the window size n
is primarily governed by the frequency of change points.
In general, if there are more change points to be expected
in a given window, n should be chosen small enough (so
that at the true change point there is no contamination from
other distributions) and vice-versa. The threshold parameter
η is typically data specific and can be either heuristically
picked depending on relative size of the peaks over all the
data or can be selected based on a theoretically justified
threshold if the limiting statistics under the null for the
statistics employed are known. In our experiments, once we
have calculated the change point statistics, we use a standard
peak finding procedure2 with thresholding to identify potential

2We use scipy.signal.find peaks from Python Scipy1.9.1.

change points. Since the statistical guarantees of the various
tests differ, we evaluate their performance using metrics that
vary the threshold parameter η over all possible values3. One
potential drawback of the peak search algorithm is that it
may generate many small sub-peaks around the largest peaks.
To prevent the detection of multiple successive change points
when only one change point is present, we apply a minimal
horizontal distance ∆ in samples to ensure that every pair
of predicted change points τ̂ ̸= τ̂ ′ are at least ∆ samples
apart. A comprehensive explanation of these hyperparameters
is provided in Appendix B.

A. Evaluation Metrics

As noted in Section II we consider two widely used metrics
in the CPD literature [5], [18] to evaluate the performance: (a)
area under the precision-recall curve (AUC-PR) and (b) best
F1-score across all detection thresholds.

To account for uncertainty in the exact annotation of true
change points, we allow a margin of error ξ when declaring
a point either as TP or FP or FN. A predicted change point
τ̂k is considered a TP if it is within ξ of a true change point
τj (i.e., |τj − τ̂k| ≤ ξ), otherwise it is considered a FP. A
true change point τj that does not have a detected change
within ξ is considered a FN. The choice of ξ is important for
proper performance assessment. A small ξ may increase the
number of FPs, while a larger ξ may misleadingly improve
performance by considering detected change points far from
true change points as TPs. Additionally, multiple true change
points in close proximity may increase ambiguity when using
a larger ξ. To ensure fairness in comparison, we use the same
ξ for all methods.

Apart from the window size n, threshold η, detection mar-
gin ξ, and minimal horizontal distance ∆, the regularization
parameter ε for sRE is crucial to CPD performance. Section
V-B provides a detailed exploration of its impact for various
choices of window size.

B. Selection of Window Size n and ε for sRE

To gain insights into selecting appropriate values for n
and ε, we evaluate the performance of sRE-based CPD on
a synthetic dataset. The dataset we considered is comprised
of 10 distinct segments with a total length of 3300 samples
and 9 change points. Details about segment lengths and
corresponding distributions are provided in Table I.

For window size n = 25, a comparison between RE and
sRE with various choices of regularization on the synthetic
dataset is shown in Figure 4. In this figure we see that
increasing the regularization parameter ε of sRE does indeed
produce a smoothing effect on the change point statistics in
agreement with Theorem IV.2. For ε = 0.1 and ε = 1 we
see that increasing ε leads to smaller fluctuations away from
the true change points and leads to a better performance than
RE which is highly oscillatory and has many false positives
which we believe is because of its poor continuity properties

3Code to reproduce results is available at https://github.com/
ShoaibBinMasud/CPD-using-sRE
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TABLE I
UNDERLYING DISTRIBUTION AND LENGTH OF EACH SEGMENT OF THE SYNTHETIC DATASET.

seg:1 seg:2 seg:3 seg:4 seg:5 seg:6 seg:7 seg:8 seg:9 seg:10
Distribution N (0d, .001Id) N (0d, .01Id) N (1d, Id) Laplace(0d, Id) N (1d, Id) Γ(2, 2) N (0d, .1Id) N (1d, 0d) N (0d, .01Id) N (0d, .001Id)

Length 300 400 500 300 400 300 200 300 200 400
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Fig. 4. Top Row: A single dimension of the synthetic data (top row) with
true change points (vertical dotted red line). Bottom Four Rows: Change
point statistics (with window size n = 25) using RE and sRE on synthetic
dataset with threshold η (horizontal dashed purple) providing the best F1-
score, the detected change points (red dot). We choose minimum horizontal
distance ∆ = n. For every n, we use detection margin ξ = 20. The plot
shows that sRE statistics become smoother as the value of ε increases.

as discussed in Theorem IV.1. However, over-regularizing
leads to two problems. First, it causes missed changed points
because the bound W1/ε becomes small yet still dominates
sRE, as is the case for the first and last change points in Figure
4. Second, in order to recover the true change points when the
statistic is small one must choose a small threshold which can
cause false positives elsewhere in the signal as is the case when
ε = 10 in Figure 4. An additional plot (Figure 6) depicting the
effect of ε for window size n = 50 is included in Appendix
D.

Numerical evaluation across a range of window sizes n and
regularization parameters ε is presented in Figure 5, revealing
three distinct behaviors related to n. In the small n regime
(e.g., n ∈ {10, 25}), where statistical noise in the estimate
triggers numerous false alarms, moderately large regularization
parameters (e.g., ε ∈ {0.5, 2}) are preferred, as suggested
by the bounds in Theorem IV.6. For typical window sizes
(e.g., n ∈ {50, 100}), a range of regularization parameters
(e.g., ε ∈ {0.1, 1, 2, 5}) achieves a balance between sensitivity
and robustness, with performance generally improving as n
increases. In the large n regime (e.g., n = 300), where a
single window encompasses multiple change points, localiza-
tion becomes challenging, leading to performance degradation.
Throughout most window size regimes, although it improves
with increasing window size, small regularization parameters
(e.g., ε = 0.01) tend to yield poor results and may suffer from
numerical issues. Similarly, over-regularization (e.g., ε = 10)
fails to achieve the best performance in most window regimes,
although accuracy increases with n.

The optimal range of ε is influenced by the scale of the
data (quantified by average pairwise distance, for example) and
dimension, while the optimal range of n is typically governed
by the frequency of the change points. However these two
parameters also interact with each other in guaranteeing the

quality of the estimate of the sRE statistic from samples as in-
dicated by Theorem IV.6. While precise claims about the best
choices are challenging, empirical observations suggest that
setting these parameters to moderate values (e.g., ε ∈ {0.1, 1}
and n ∈ {50, 200}) tends to yield reasonable performance in
various settings considered in this work.

Additional results, including a comparison with other GoF
statistics-based CPD methods on the synthetic datasets, are
provided in Appendix D.

C. Results on Real Data

In this study, we evaluate and compare the performance of
the sRE with other GoF statistics for CPD on 5 real-world
datasets including 4 time-series datasets and a hyperspectral
image dataset. Detailed descriptions of these datasets as well
as discussion of the various hyperparameters used in this study
can be found in Appendix C.

a) HASC-PAC2016, HASC-2011: On HASC-PAC2016,
sRE performs the best on all metrics. On HASC2011, sRE
also performs better overall compared to most of the methods.
In contrast, RE has the lowest overall performance on both
datasets. This is because RE produces false positives in low
amplitude regions between activities, called “rest,” due to its
sensitivity to any signal regardless of its amplitude (Figure
2). In contrast, sRE provides smoother statistics compared to
RE which is validated by Theorem IV.2 and ignores changes
in those regions, resulting in a significant improvement in
performance.

b) Bee Dance: Beedance is a comparatively challeng-
ing dataset for CPD due it frequent fluctuations. Among
the methods tested, SinkDiv and W1 demonstrated the best
performance in terms of AUC-PR and F1-score. While sRE
also performs well, it does not achieve the same level of
success as SinkDiv and W1. In contrast, RE has the poorest
overall performance, likely due to its tendency to respond to
all fluctuations, including those that may not be considered as
change points.

c) Salinas A: On this high-dimensional hyperspectral
image dataset, sRE outperforms all other methods by a signif-
icant margin in AUC-PR score and a decent margin in the
F1-score. To further investigate this we construct a lower-
dimensional version of this dataset by performing PCA to
reduce to five dimensions (which accounts for 99.79% of the
variance). These findings are summarized in Table III. In this
setting we see that sRE still performs competitively with all
other methods. The relatively high jump in performance for the
AUC-PR metric for sRE in going from low to high dimensions
seems to be specific to this dataset. This is evidenced by the
high dimensional synthetic data experiments in Appendix D in
Table V, which indicates that while sRE remains competitive
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Fig. 5. Average AUC-PR and best F1-scores on synthetic dataset w.r.t. n and ε for different ε and n, respectively.

TABLE II
PERFORMANCE COMPARISON OF RE AND SRE WITH OTHER STATISTICS USED FOR CPD (BOLD: BEST).

Method AUC-PR Average Best F1-score AverageHSAC
PAC2016

(d=3)

HSAC
2011
(d=3)

Beedance
(d=3)

Salinas
(d=204)

ECG
(d=1)

HSAC
PAC2016

(d=3)

HSAC
2011
(d=3)

Beedance
(d=3)

Salinas
(d=204)

ECG
(d=1)

M-stat [17] 0.688 0.565 0.566 0.471 0.442 0.546 0.804 0.676 0.723 0.708 0.667 0.716
SinkDiv [16] 0.679 0.578 0.764 0.501 0.487 0.601 0.791 0.699 0.823 0.558 0.682 0.710

W1 [6] 0.678 0.652 0.763 0.252 0.441 0.557 0.806 0.702 0.820 0.525 0.682 0.707
WQT [5] 0.638 0.411 0.424 0.308 0.449 0.446 0.772 0.636 0.698 0.598 0.682 0.677

RE 0.596 0.382 0.367 0.312 0.482 0.427 0.779 0.641 0.646 0.523 0.684 0.654
sRE 0.740 0.598 0.687 0.714 0.473 0.642 0.831 0.709 0.801 0.772 0.682 0.759

TABLE III
TABLE INVESTIGATING THE HIGH DISCREPANCY IN AUC-PR FOR SALINAS A DATASET.

Method AUC-PR Best F1-score
PCA(5) Original PCA(5) Original

M-stat [17] 0.475 0.471 0.710 0.708
SinkDiv [16] 0.307 0.501 0.613 0.558

W1 [6] 0.251 0.252 0.525 0.525
WQT [5] 0.478 0.308 0.710 0.598

RE 0.456 0.312 0.581 0.523
sRE 0.524 0.714 0.619 0.772

in high dimensions with its combined computational and
statistical advantages, it may not necessarily outperform others
by a large margin.

d) ECG: Despite being developed based on the concept
of multivariate rank, both RE and sRE are effective at detecting
change points when the signal is one-dimensional. As shown in
Table II, all methods, including RE and sRE, perform similarly
well on the univariate ECG signal.

e) Overall: The overall competitive performance of sRE
compared to SinkDiv, W1, WQT, and M-stat for real-world
data may be attributed to the following reasons. First, as
shown in [10], RE being rank-based is relatively insensitive
to presence of outliers. Real-world data is expected to contain
outliers due to sensor motion and other extraneous factors.
This robustness to outliers, combined with the stability to
distributional perturbations (Theorems IV.1, IV.2), gives sRE
an advantage over other statistics in practical cases. Second,
we also note that compared with WQT, which is implicitly a

univariate GoF adapted to high-dimensional data via projec-
tions, sRE is multivariate. Compared to W1, we note that in
practical settings estimating the true W1 statistic from the data
suffers from curse of dimensionality (with estimation error
rate scaling as O(n−1/d)). On the other hand Theorem IV.6
shows that the estimation error rate for sRE is independent
of the dimension and is parametric in n. We therefore expect
that for moderate window sizes in practical settings sRE can
perform better. We note that SinkDiv beats or comes close to
sRE in performance on several data sets. We believe that this
could be due to the fact that estimating Sinkhorn divergence
is as sample efficient as sRE [57] and interpolates between
MMD and W2 distances [15], which for some datasets may
lead to improved performance. We would like to point out that
there is no clear winner and we are reporting the results giving
each method its best shot with comprehensive hyperparameter
tuning.
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VI. CONCLUSION AND FUTURE WORK

We have established that soft rank energy enjoys effi-
cient statistical and computational complexity, is Lipschitz
with respect to Wasserstein-1, and performs well as a high-
dimensional GoF measure on a range of real-world CPD
problems. A problem left to future work is to extend The-
orem IV.6 to measures with unbounded support under cer-
tain concentration assumptions, namely the subgaussian [58]
or subexponential distributions, without the resampling and
map extension tricks which are used in [11]. The important
technical question of deriving theoretically optimal selection
of thresholds guaranteeing a false alarm rate control is also
left for future work. In this context, since sRE is a function of
the entropy-regularized transport map, one can utilize recent
work on limit theorems for these maps under the null [59]
for establishing limit theorems for sRE. This in turn may be
used to establish a theoretically optimal threshold for rejection
under the null for a user specified false alarm rate.

In addition, while we have chosen the uniform distribution
on the unit cube [0, 1]d as the target measure in the definitions
of the rank maps in this paper, it is of interest to consider the
role of this distribution and if other distributions may lead to
better theoretical guarantees (see Remark IV.3 for a specific
example). Noting that the rank maps allow for comparisons of
distributions vis-à-vis their transport maps to a specified target
distribution, it is of interest to investigate the complementary
picture, namely comparing distributions via their multivariate
quantile maps [40], [41] and connections with the linear
optimal transport framework [60], where one compares the
distributions via the transport maps from a specific reference
measure to these distributions as the target measures.
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APPENDIX

A. Proofs from Section IV
1) Proof of Theorem IV.1:

Proof of Theorem IV.1. Without loss of generality we can
assume that ϵ < supQX ,QY

REλ(QX , QY ) since otherwise the
claim holds by the positivity of REλ (See Section A3). Now
let P ′

X , P ′
Y be absolutely continuous and such that

REλ(P
′
X , P ′

Y ) ≥ sup
QX ,QY

REλ(QX , QY )− ϵ.

Let w = W1(P
′
X , P ′

Y ). Note that REλ(P ′
X , P ′

Y ) > 0 implies
w > 0 so that the map S : Rd → Rd given by

S(x) =
δ

w
x,

is well-defined. Let PX = S#P ′
X and PY = S#P ′

Y , and note
that PX , PY are also both absolutely continuous. We will show
that REλ(PX , PY ) = REλ(P

′
X , P ′

Y ), which can be seen as a
consequence of the fact that the optimal transport map has
an invariance to scaling. Indeed let R′λ denote the rank map
of P ′

λ = λP ′
X + (1 − λ)P ′

Y and let Rλ denote the rank of
Pλ = λPX + (1 − λ)PY . We claim that Rλ = R′λ ◦ S−1. To
see that R′λ ◦S−1 is a valid map, note that S−1#Pλ = P ′

λ and
therefore

(R′λ ◦S−1)#Pλ = R′λ#(S−1#Pλ) = R′λ#P ′
λ = Unif([0, 1]d).

To see that it is optimal, we can compute its gradient as

∇(R′λ ◦ S−1)(x) =∇S−1(x)∇R′λ(S
−1(x))

=
w

δ
I∇R′λ(S

−1(x))

=
w

δ
∇R′λ(S

−1(x)).

Since R′λ is the gradient of a convex function, ∇R′λ(S
−1(x)) is

a positive semi-definite matrix and since w/δ > 0 it must be
that (w/δ)∇R′λ(S

−1(x)) is also positive semi-definite, which
shows that R′λ ◦ S−1 is the gradient of a convex function.
Recalling that PX , PY are absolutely continuous and using
Brenier’s theorem, this shows that ∇R′λ(S

−1(x)) is the unique
optimal map. This confirms Rλ = R′λ ◦ S−1.

In particular, this establishes

REλ(PX , PY )
2

= 2EPX ,PY

∥∥Rλ(X)− Rλ(Y )
∥∥− EPX

∥∥Rλ(X)− Rλ(X
′)
∥∥

− EPY

∥∥Rλ(Y )− Rλ(Y
′)
∥∥

= 2EPX ,PY

∥∥R′λ(S−1((X)))− R′λ(S
−1((Y )))

∥∥
− EPX

∥∥R′λ(S−1((X)))− R′λ(S
−1((X ′)))

∥∥
− EPY

∥∥R′λ(S−1((Y )))− R′λ(S
−1((Y ′)))

∥∥
= 2EP ′

XP ′
Y

∥∥R′λ(X)− R′λ(Y )
∥∥

− EP ′
X

∥∥R′λ(X)− R′λ(X
′)
∥∥

− EP ′
Y

∥∥R′λ(Y )− R′λ(Y
′)
∥∥

= REλ(P
′
X , P ′

Y )
2

Taking square roots and using the assumptions on P ′
X and P ′

Y

shows

REλ(PX , PY ) = REλ(P
′
X , P ′

Y ) ≥ sup
QX ,QY

REλ(QX , QY )− ϵ.
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To conclude, let T ′ be the optimal map in terms of W1 from
P ′
X to P ′

Y . Then we have

W1(PX , PY ) ≤
∫ ∥∥(δ/w)T ′((w/δ)x)− x

∥∥dPX(x)

=
δ

w

∫ ∥∥T ′((w/δ)x)− (w/δ)x
∥∥dPX(x)

=
δ

w

∫ ∥∥T ′(x)− x
∥∥dP ′

X(x)

=
δ

w
W1(P

′
X , P ′

Y ) =
δ

w
w = δ

where we have used the fact that (δ/w)T ′((w/δ)x)#PX =
PY , which can be verified in a similar way as above. This
shows that the pair PX , PY satisfy the two required properties.

2) Proof of Theorem IV.2:
Before proving Theorem IV.2, we first establish the Lipschitz
continuity of the entropic map.

Lemma A.1. Suppose that Supp(Q) ⊆ Bd
2 (u, r) for some

u ∈ Rd, r > 0. Then the entropic transport map Tε from P
to Q is (4r2/ε)-Lipschitz continuous.

For convenience we will introduce the notation Σx
ε ≜

CovY∼πx
ε
(Y ). We first recall a known result in the literature.

Lemma A.2 ( [49] Lemma 1). Let πx
ε denote the conditional

distribution of πε given X = x. Then

∇Tε(x) =
1

ε
CovY∼πx

ε
(Y ) =

1

ε
Σx

ε .

Using that the Lipschitz constant of a vector-valued function
is the supremum of the operator norm of its Jacobian, we have
the following corollary.

Corollary A.3. The entropic map is L-Lipschitz with respect
to the Euclidean distance with

L =
1

ε
sup
x∈Ω

∥∥Σx
ε

∥∥
op.

Proof of Lemma A.1. Note that for all x the support of πx
ε

is contained in Bd
2 (u, r). Let Ȳ = EY∼πx

ε
[Y ] ∈ Bd

2 (u, r).
Letting Z = Y − Ȳ we have by the translation invariance of
the covariance matrix and the fact that Z is mean-zero

Σx
ε = Cov(Z) = EZZ⊤.

Note that

Z ∈ Bd
2 (u, r)−Ȳ ⊂ (u+Bd

2 (0, r))−(u+Bd
2 (0, r)) = Bd

2 (0, 2r)

and therefore for any unit v ∈ Rd with
∥∥v∥∥ = 1 we have

v⊤Σx
εv = v⊤E[ZZ⊤]v

= E[(v⊤Z)(Z⊤v)]

≤ E[(
∥∥v∥∥ · ∥∥Z∥∥)(∥∥Z∥∥ · ∥∥v∥∥)]

≤ E
∥∥Z∥∥2 ≤ 4r2.

This implies that for all x ∈ Ω we have
∥∥Σx

ε

∥∥
op

≤ 4r2. Taking
the supremum over x and applying Corollary A.3 we have
L = 1

ε supx∈Ω

∥∥Σx
ε

∥∥
op

≤ 1
ε (4r

2) which proves the result.

Proof of Theorem IV.2. First note that we are using Q =
Unif([0, 1]d) and Supp(Q) ⊂ Bd

2 ((1/2)1,
√

d/4) where 1
denotes the all 1 vector in Rd. Therefore by Lemma A.1 we
have that soft rank map Rελ from Pλ to Q is (d/ε)−Lipschitz.

In addition let T be a transport map from PX to PY such
that

EX

∥∥T (X)−X
∥∥ = W1(PX , PY ).

Now let X,X ′ ∼ PX , Y, Y ′ ∼ PY be independent of each
other. Note from definition III.5 we have:

sREελ(PX , PY )
2

= 2EX,Y

[∥∥Rελ(X)− Rελ(Y )
∥∥]

− EX,X′
[∥∥Rελ(X)− Rελ(X

′)
∥∥]

− EY,Y ′
[∥∥Rελ(Y )− Rελ(Y

′)
∥∥]

= 2EX,X′
[∥∥Rελ(X)− Rελ(T (X

′))
∥∥]

− EX,X′
[∥∥Rελ(X)− Rελ(X

′)
∥∥]

− EX,X′
[∥∥Rελ(T (X))− Rελ(T (X

′))
∥∥]

= EX,X′

[
2
∥∥Rελ(X)− Rελ(T (X

′))
∥∥

−
∥∥Rελ(X)− Rελ(X

′)
∥∥

−
∥∥Rελ(T (X))− Rελ(T (X

′))
∥∥]

≤ EX,X′

∣∣∣∣∥∥Rελ(X)− Rελ(T (X
′))
∥∥− ∥∥Rελ(X)− Rελ(X

′)
∥∥∣∣∣∣

+ EX,X′

∣∣∣∣∥∥Rελ(X)− Rελ(T (X
′))
∥∥

−
∥∥Rελ(T (X))− Rελ(T (X

′))
∥∥∣∣∣∣

≤ EX,X′
∥∥(Rελ(X)− Rελ(T (X

′)))− (Rελ(X)− Rελ(X
′))
∥∥

+ EX,X′∥(Rελ(X)− Rελ(T (X
′)))

− (Rελ(T (X))− Rελ(T (X
′)))∥

= EX,X′
[∥∥Rελ(T (X ′))− Rελ(X

′)
∥∥+ ∥∥Rελ(X)− Rελ(T (X))

∥∥]
= 2EX

[∥∥Rελ(T (X))− Rελ(X)
∥∥]

≤ 2EX

[
d

ε

∥∥T (X)−X
∥∥] = 2d

ε
W1(PX , PY ).

On the third line we have used that since T transports PX

to PY that T (X ′) ∼ PY . In the sixth line we have used
the reverse-triangle inequality. The eighth line uses the fact
that X,X ′ are i.i.d. The ninth uses the fact that Tλ

ε is (d/ε)-
Lipschitz and the last line is by the assumption on T .

3) Proof of Theorem IV.4:

Proof of Theorem IV.4. We begin by recalling that REλ and
sREελ have an equivalent formulation [11]

sREελ(PX , PY )
2 =

Cd

∫
Sd−1

∫
R

(
P
(
a⊤Rελ(X) ≤ t

)
−P
(
a⊤Rελ(Y ) ≤ t

))2
dtdκ(a)

REλ(PX , PY )
2 =

Cd

∫
Sd−1

∫
R

(
P
(
a⊤Rλ(X) ≤ t

)
−P
(
a⊤Rλ(Y ) ≤ t

))2
dtdκ(a)
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where Sd−1 is the unit sphere in Rd and dκ(a) is integration
over its surface and Cd = (2Γ(d/2))

−1 √
π(d−1)Γ

(
(d−1)/2

)
is an appropriate normalizing constant. Let

ua,t ≜ P
(
a⊤Rελ(X) ≤ t

)
− P

(
a⊤Rελ(Y ) ≤ t

)
,

va,t ≜ P
(
a⊤Rλ(X) ≤ t

)
− P

(
a⊤Rλ(Y ) ≤ t

)
.

Then, it follows that

|sREελ(PX , PY )
2 − REλ(PX , PY )|2

= Cd

∣∣∣∣∫
Sd−1

∫
R
u2
a,t − v2a,tdtdκ(a)

∣∣∣∣
≤ Cd

∫
Sd−1

∫
R
|u2

a,t − v2a,t|dtdκ(a)

= Cd

∫
Sd−1

∫
R
|(ua,t − va,t)(ua,t + va,t)|dtdκ(a)

≤ 2Cd

∫
Sd−1

∫
R
|ua,t − va,t|dtdκ(a).

We can further simplify the last integral as

∫
R
|ua,t − va,t|dt

=

∫
R

∣∣∣∣P (a⊤Rελ(X) ≤ t
)
− P

(
a⊤Rελ(Y ) ≤ t

)
− P

(
a⊤Rλ(X) ≤ t

)
+ P

(
a⊤Rλ(Y ) ≤ t

) ∣∣∣∣dt
≤
∫
R

∣∣P (a⊤Rελ(X) ≤ t
)
− P

(
a⊤Rλ(X) ≤ t

)∣∣ dt
+

∫
R

∣∣P (a⊤Rελ(Y ) ≤ t
)
− P

(
a⊤Rλ(Y ) ≤ t

)∣∣ .
Let Xε

a = a⊤Rελ(X), Xa = a⊤Rλ(X) and PXε
a
, PXa

be their
laws respectively. By the formula of Wasserstein-1 distance in
dimension 1,∫

R

∣∣P (a⊤Rελ(X) ≤ t
)
− P

(
a⊤Rλ(X) ≤ t

)∣∣ dt
=

∫
R
|P (Xε

a ≤ t)− P (Xa ≤ t)| dt

= W1(PXε
a
, PXa)

= W1((a
⊤Rελ)#PX , (a⊤Rλ)#PX)

≤ W2((a
⊤Rελ)#PX , (a⊤Rλ)#PX)

≤
√
EX |a⊤Rελ(X)− a⊤Rλ(X)|2 (5)

≤
√
EX

∥∥Rελ(X)− Rλ(X)
∥∥2.

In equation (5) we have used the sub-optimal coupling
(a⊤Rελ(·) ⊗ a⊤Rλ(·))#PX . We have also used the fact that
W1 ≤ W2, Cauchy-Schwartz and the fact that ∥a∥ = 1. By
an analogous computation we also have∫

R

∣∣P (a⊤Rελ(Y ) ≤ t
)
− P

(
a⊤Rλ(Y ) ≤ t

)∣∣ dt
≤
√
EY

∥∥Rελ(Y )− Rλ(Y )
∥∥2.

Now under the assumption that Rλ is L Lipschitz and that
Pλ is supported on a bounded domain, we note from [ [53],
Proposition 4.5] the following bound

∥Rελ − Rλ∥2L2(Pλ)
≤ Lε log(1/ε) +O(ε) ≜ g(ε).

Now note that

∥Rελ − Rλ∥2L2(Pλ)

= λ∥Rελ(X)− Rλ(X)∥2L2(PX)

+ (1− λ)∥Rελ(Y )− Rλ(Y )∥2L2(PY )

≤ g(ε).

This implies both

∥Rελ(X)− Rλ(X)∥2L2(PX) ≤
1

λ
g(ε)

∥Rελ(Y )− Rλ(Y )∥2L2(PY ) ≤
1

1− λ
g(ε).

Collecting the computations above we have,

|sREελ(PX , PY )
2 − REλ(PX , PY )

2|

≤ 2Cd

∫
Sd−1

√
EX

∥∥Rελ(X)− Rλ(X)
∥∥2

+

√
EY

∥∥Rελ(Y )− Rλ(Y )
∥∥2dκ(a)

= 2Cdγd

√
EX

∥∥Rελ(X)− Rλ(X)
∥∥2

+ 2CdγdE
√

EY

∥∥Rεm,n(Y )− Rλ(Y )
∥∥2

≤ 2Cdγd

(
1√
λ
+

1√
1− λ

)√
g(ε),

where γd is the surface area of the unit sphere in Rd.

4) Proof of Theorem IV.6:
In order to state the proof of this result, we must introduce an
additional piece of notation:

sREε,Sn,n(PX , PY )
2 ≜

1

n2

n∑
i,j=1

(
2
∥∥Rελ(Xi)− Rελ(Yj)

∥∥
−
∥∥Rελ(Xi)− Rελ(Xj)

∥∥− ∥∥Rελ(Yi)− Rελ(Yj)
∥∥).

This is a mixture of both sREελ(PX , PY )
2 and

sREεm,n(PX , PY )
2 since it takes the a finite sum when

computing the integral and uses the population soft rank map.
This one point of difference between both sREελ(PX , PY )

2

(using the finite sum) and sREεm,n(PX , PY )
2 (using the

population map) makes it a natural intermediate step between
the two terms. The choice of superscript S is to indicate that
it is a summation version of the sample soft rank energy.
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Proof of Theorem IV.6.
Adding and subtracting sREε,Sn,n(PX , PY )

2 and using the trian-
gle inequality we have

E
∣∣∣sREεn,n(PX , PY )

2 − sREε1/2(PX , PY )
2
∣∣∣

≤ E
∣∣sREεn,n(PX , PY )

2 − sREε,Sn,n(PX , PY )
2
∣∣

+ E
∣∣∣sREε,Sn,n(PX , PY )

2 − sREε1/2(PX , PY )
2
∣∣∣

≤ 24r0
√
1 + ε2√
2n

exp(22r20/ε) + 6

√
dπ

n

where the last inequality applies Lemmas A.4 and A.5.

The proof of Theorem IV.6 requires two technical lemmas
involving sREε,Sn,n(PX , PY )

2. The first handles error incurred
by the map estimate.

Lemma A.4. With the notation defined above it holds that

E
∣∣sREεn,n(PX , PY )

2 − sREε,Sn,n(PX , PY )
2
∣∣

≤ 24r0
√
1 + ε2√
2n

exp(22r20/ε).

Proof. Through several applications of the triangle and reverse
triangle inequalities one can show the first line of the following
chain. The rest is using that L1 ≤ L2 followed by the bound

in Lemma A.14:∣∣∣∣sREεn,n(PX , PY )
2−sREε,Sn,n(PX , PY )

2

∣∣∣∣
=

∣∣∣∣ 1n2

n∑
i,j=1

(
2
∥∥Rεn,n(Xi)−Rεn,n(Yj)

∥∥
−
∥∥Rεn,n(Xi)−Rεn,n(Xj)

∥∥−∥∥Rεn,n(Yi)−Rεn,n(Yj)
∥∥)

− 1

n2

n∑
i,j=1

(
2
∥∥sRε1/2(Xi)−sRε1/2(Yj)

∥∥
−
∥∥sRε1/2(Xi)−sRε1/2(Xj)

∥∥−∥∥sRε1/2(Yi)−sRε1/2(Yj)
∥∥)∣∣∣∣

≤ 1

n2

n∑
i,j=1

2

∣∣∣∣∥∥Rεn,n(Xi)−Rεn,n(Yj)
∥∥

−
∥∥sRε1/2(Xi)−sRε1/2(Yj)

∥∥∣∣∣∣
+

∣∣∣∣∥∥Rεn,n(Xi)−Rεn,n(Xj)
∥∥−∥∥sRε1/2(Xi)−sRε1/2(Xj)

∥∥∣∣∣∣
+

∣∣∣∣∥∥Rεn,n(Yi)−Rεn,n(Yj)
∥∥−∥∥sRε1/2(Yi)−sRε1/2(Yj)

∥∥∣∣∣∣
≤ 1

n2

n∑
i,j=1

2
∥∥(Rεn,n(Xi)−Rεn,n(Yj))

−(sRε1/2(Xi)−sRε1/2(Yj))
∥∥

+
∥∥(Rεn,n(Xi)−Rεn,n(Xj))−(sRε1/2(Xi)−sRε1/2(Xj))

∥∥
+
∥∥(Rεn,n(Yi)−Rεn,n(Yj))−(sRε1/2(Yi)−sRε1/2(Yj))

∥∥
≤ 1

n2

n∑
i,j=1

2
∥∥Rεn,n(Xi)−sRε1/2(Xi)

∥∥
+ 2
∥∥Rεn,n(Yj)−sRε1/2(Yj)

∥∥+ ∥∥Rεn,n(Xi)−sRε1/2(Xi)
∥∥

+
∥∥Rεn,n(Xj)−sRε1/2(Xj)

∥∥+ ∥∥Rεn,n(Yi)−sRε1/2(Yi)
∥∥

+
∥∥Rεn,n(Yj)−sRε1/2(Yj)

∥∥
=

4

n

n∑
i=1

∥∥Rεn,n(Xi)−sRε1/2(Xi)
∥∥+ ∥∥Rεn,n(Yi)−sRε1/2(Yi)

∥∥
= 8
∥∥Rεn,n−sRε1/2

∥∥
L1((Pn

X+Pn
Y )/2

≤ 8
∥∥Rεn,n−sRε1/2

∥∥
L2((Pn

X+Pn
Y )/2

Taking expectations on both sides and applying Jensen’s
inequality followed by Lemma A.14 (with r0 so that PX , PY

and Q = Unif([0, 1]d) all have support in B(0, r0)) we have

E
∣∣∣∣sREεn,n(PX , PY )

2 − sREε,Sn,n(PX , PY )
2

∣∣∣∣
≤ E8

∥∥Rεn,n − sRε1/2
∥∥
L2((Pn

X+Pn
Y )/2)

≤ 8

√
E
∥∥Rεn,n − sRε1/2

∥∥2
L2((Pn

X+Pn
Y )/2)

≤ 24r0
√
1 + ε2√
2n

exp(22r20/ε).

The second lemma handles the error incurred by using a
discrete sum instead of an integration.
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Lemma A.5. With the notation defined above it holds that

E
∣∣∣∣sREε,Sn,n(PX , PY )

2 − sREε1/2(PX , PY )
2

∣∣∣∣ ≤ 6

√
dπ

n

Proof. In the setting of Lemma A.15 let h(x, y) =∥∥sRε1/2(x) − sRε1/2(y)
∥∥. Then

∥∥h∥∥∞ ≤
√
d. It can also be

seen from the definitions that

sREε,Sn,n(PX , PY )
2 =

2

n2

n∑
i,j=1

h(Xi, Yj)

− 1

n2

n∑
i,j=1

h(Xi, Xj)−
1

n2

n∑
i,j=1

h(Yi, Yj),

EsREε,Sn,n(PX , PY )
2 = E[2h(X,Y )− h(X,X ′)− h(Y, Y ′)]

= sREε1/2(PX , PY )
2.

Therefore by Lemma A.15 we have

E
∣∣∣∣sREε,Sn,n(PX , PY )

2 − sREε1/2(PX , PY )
2

∣∣∣∣ ≤ 6

√
dπ

n
.

B. Descriptions of Hyperparameters

In the evaluation we require several hyperparameters which
have been mentioned in the main text. The complete list of
the hyperparameters as well as their effects are summarized
below

• Window Size n: The number of samples seen in each one
of the windows. Increasing n typically leads to smoother
changes in the GoF statistic over time and a gain in
performance. However if the window size is too large
multiple change points may fall within the same half of
a window which may be problematic.

• Threshold η: The minimum value the GoF statistic must
take in order to be registered as a change point. Since
the GoF statistic computed on samples is very rarely a
constant 0 it is useful to choose a small threshold below
which no change points can be predicted. This prevents
the peak finding procedure from proposing change points
in regions where there are clearly no changes. Increasing
η leads to discarding more and more proposed changed
points. However a value of η which is too large may lead
to missing subtle change points.

• Horizontal Displacement ∆: The minimum distance
apart which two predicted change points must be, that
is |τ̂j − τ̂k| ≥ ∆ for every j, k. Using this prevents the
prediction of several change points in rapid succession
due to small sub-peaks near a single large peak. The
larger the setting of ∆ is taken the more spaced out
the predicted change points must be. Taking ∆ too large
relative to the frequency of the true change points may
be problematic as it can force true change points to be
ignored because of the horizontal displacement constraint.

• Margin of Error ξ: The maximum allowable distance
which a predicted change point τ̂k can be from a true

change point τj while still being considered correct. If
|τ̂k−τj | ≤ ξ than it is considered to have correctly identi-
fied τj . This only impacts the numerical evaluation of the
methods and scores will increase as the margin of error
increases. The choice of ξ should depend on the quality
of the annotated change points which can be noisy. A
large ξ may inflate the performance of the methods. A ξ
which is too small may lead to poor scores for methods
which perform well but do not consistently place the
precise change points in a small target, especially if there
is ambiguity in the proper placement of the annotations,

C. Datasets and Hyperparameters in Section V-C

(a) HASC-PAC2016: A human activity recognition dataset
consists of over 700 three-axis accelerometer sequences
sampled at 100Hz where the subjects perform six differ-
ent actions, ‘stay’, ‘walk’, ‘jog’, ‘skip’, ‘stairs up’, and
‘stairs down’ (d = 3). Time points that exhibits changes
in activity are annotated as ground truth. To evaluate
the performance of the CPD methods on this dataset,
we consider the 20 longest sequences which have an
average length of 17,000 samples and 15 change points.
We choose n = 500, ξ = 200,∆ = 250 for this dataset.
We use ε = 0.1 to compute sRE.

(b) HASC-2011: Another human activity recognition dataset
where people perform six different actions, ‘stay’, ‘walk’,
‘escalator up’, ‘elevator up’, ‘stairs up’ and ‘stairs down’
and an accelerometer takes three-dimensional data (d =
3). Change points are annotated in the same way as in
HASC-PAC2016 dataset. This dataset consists of 2 se-
quences, which have an average length of 37000 samples
and 46 change points. We select n = 500, ξ = 200,∆ =
250 and ε = 0.1 to compute sRE for this dataset.

(c) Bee Dance: A dataset containing 6 three-dimensional
sequences each collected from the movement of dancing
honeybees communicating through three actions: ‘turn
right’, ‘turn left’ and ‘waggle’ (d = 3). The first two
dimensions correspond to the spatial x and y coordinates
and the third one is the heading angle of the bees captured
via video tracking. Each sequence has an average length
of 790 samples and 19 change points. For this dataset,
we choose n = 20, ξ = 10,∆ = 10 and ε = 1 for sRE.

(d) Salinas A Hyperspectral Image: A high-dimensional im-
age consisting of 83 × 86 pixels, each a d = 204
dimensional vector of spectral reflectances. The data was
recorded by the Airborne Visible/Infrared Imaging Spec-
trometer (AVIRIS) sensor over farmland in Salinas Valley,
California, USA in 1998 at a spatial resolution of 1.3
m. Spectral signatures, ranging in recorded wavelength
from 380 nm to 2500 nm across 204 spectral bands,
were recorded. For this data, each pixel is treated as a
sample. Samples are divided into six different classes,
corresponding to the material classes of the pixels (e.g.,
broccoli greens, corn greens, lettuce of different ages).
While not a time series, we can read the pixels row-
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TABLE IV
AVERAGE AUC-PR AND BEST F1-SCORES ON SYNTHETIC DATASET (TAKEN OVER 25 INDEPENDENT INSTANCES) W.R.T. WINDOW SIZE n (BOLD: BEST,

ITALIC: SECOND BEST). REPORTED SRE IS CALCULATED USING THE BEST REGULARIZATION PARAMETER ε = 0.1. AS n INCREASES, EACH METHOD
GAINS A SIGNIFICANT IMPROVEMENT IN BOTH METRICS.

Method AUC-PR Best F1-score
n = 25 n = 50 n = 100 n = 200 n = 25 n = 50 n = 100 n = 200

M-stat [17] 0.442 0.665 0.879 0.879 0.625 0.737 1.0 1.0
SinkDiv [16] 0.329 0.425 0.598 0.657 0.510 0.695 0.834 0.875

W1 [5] 0.259 0.462 0.563 0.756 0.459 0.747 0.825 0.889
WQT [6] 0.867 0.879 0.887 0.882 0.947 1.0 1.0 1.0

RE 0.377 0.717 0.746 0.767 0.538 0.875 0.875 0.875
sRE 0.631 0.882 0.885 0.886 0.724 1.0 1.0 1.0

wise and annotate a pixel as a change point if it has a
different labeled class from the previous pixel. For this
paper, we consider first 500 samples which contain 54
change points. We choose n = 10, ξ = 2,∆ = 2. To
compute sRE, we use ε = 1.

(e) ECG: A one dimensional (d = 1) dataset consisting
of a single sequence having a length of 8600 samples
and 89 change points, where each change point repre-
sent an abnormal heartbeat. For this dataset, we choose
n = 50, ξ = 20,∆ = 25 and ε = 0.1 to compute sRE.

D. Results on Synthetic Data

Table IV provides a numerical comparison of sRE with other
GoF statistics for various window sizes n on the synthetic
dataset (Table I). For a relatively smaller window size n =
25, WQT outperforms all other methods, with sRE exhibiting
the second-best performance. As the window size increases to
n = 50, sRE demonstrates a comparable performance to WQT.
While other statistics like M-stats, RE, SinkDiv, and W1 all
show improved performance with larger window sizes, they
require even larger window sizes for comparable performance.

We note that WQT is very competitive with and outperforms
other methods in a small window regime. This is due to
our choice of synthetic data (Table I) where we picked the
distributions to be isotropic and hence each projection in WQT
is as informative as working in high dimensions and may in
fact be better, since estimation of WQT in 1-dimension is
very sample efficient. To assess the generalizability of this
scenario, we conduct further evaluations on another synthetic
dataset, denoted as “synthetic data II” featuring non-isotropic
distributions. The details of this new synthetic dataset are
outlined below.

Synthetic data II: This is a d = 10 dimensional dataset
comprising 31 segments and 30 change points, with each seg-
ment consisting of 50 samples. In each segment, samples are
drawn from a multivariate Gaussian distribution with a mean
of 0 and a randomly generated covariance matrix Σi. Specifi-
cally, X1, . . . , Xτ1 ∼ N (0,Σ1), Xτ1+1, . . . , Xτ2 ∼ N (0,Σ2),
and so forth. Each covariance matrix Σi is generated by
first sampling a square matrix Σ̃i with i.i.d. entries sampled
uniformly from [0, 1]. We then set Σi = Σ̃T

i Σ̃i.
The comparison on this synthetic data II is presented in

Table V. Interestingly, WQT is no longer the top performer,
and the proposed sRE is the second best method among the

ones compared. This also indicates that it is not necessarily the
case that sRE will outperform other methods, but is a sample
and computationally efficient option even for high-dimensional
datasets.

E. Background on Entropic Optimal Transport
1) Dual Optimality Conditions: In this section of the ap-

pendix we review the essentials of entropic optimal transport,
mainly following the work in [56]. The most important fact is
the dual of the EOT stated below.

Theorem A.6. Let P,Q be distributions on Rd with bounded
support and let ε > 0. Then

Sε(P,Q) = sup
(f,g)∈L∞(P )×L∞(Q)

∫
fdP +

∫
gdQ+ ε

−ε

∫ ∫
exp

(
1

ε

[
f(x)+g(y)− 1

2

∥∥x−y
∥∥2]) dP (x)dQ(y).

The supremum is attained at a pair (f0, g0) ∈ L∞(P ) ×
L∞(Q) of dual potentials, which are unique up to the trans-
lation (f0, g0) 7→ (f0 + c, g0 − c) for c ∈ R.

Moreover, primal and dual solutions are linked via the fol-
lowing relationships. For any pair (f, g) ∈ L∞(P )×L∞(Q),
let π be the measure with density

dπ

d(P ⊗Q)
(x, y) = exp

(
1

ε

[
f(x) + g(y)− 1

2

∥∥x− y
∥∥2]) .

(6)
Then the pair (f, g) is optimal for Sε(P,Q) if and only if π
is a coupling of P and Q and π is optimal for Sε(P,Q).

For proof and discussion of this result see [61]. We will let
(f∗, g∗) denote the optimal dual potentials in Sε(P,Q) which
satisfy

∫
g∗dQ = 0. Given a set of samples Y1, ..., Yn

i.i.d.∼ Q,
we define another pair of optimal dual potentials (f∗, g∗) by

f∗ ≜ f∗ +
1

n

n∑
i=1

g∗(Yi), g∗ ≜ g∗ −
1

n

n∑
i=1

g∗(Yi).

In addition, let (fn, gn) be the unique optimizers for
Sε(P

n, Qn) such that 1
n

∑n
i=1 gn(Yi) = 0. Using these

definitions, the optimality condition (6) for (f∗, g∗) and can
be re-written as

f∗(x) = −ε ln

(∫
exp

(
ε

[
g∗(y)−

1

2

∥∥x− y
∥∥2]) dQ(y)

)
,

g∗(y) = −ε ln

(∫
exp

(
ε

[
f∗(x)−

1

2

∥∥x− y
∥∥2]) dP (x)

)
,
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TABLE V
AVERAGE AUC-PR AND F1-SCORE ARE COMPUTED OVER 10 INDEPENDENT INSTANCES OF SYNTHETIC DATASET II, UTILIZING A WINDOW SIZE OF

n = 25 FOR ALL METHODS.

Method AUC-PR Best F1-score
M-stat [17] 0.479 0.648

SinkDiv [16] 0.572 0.615
W1 [5] 0.622 0.677

WQT [6] 0.476 0.562
RE 0.464 0.559
sRE 0.619 0.668
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Fig. 6. Top Row: A single dimension of the synthetic data (top row) with true change points (vertical dotted red line). Bottom Four Rows: Change point
statistics (with window size, left: n = 25, right: n = 50) using RE and sRE on synthetic dataset with threshold η (horizontal dashed purple) providing the
best F1-score and the detected change points (red dot). The plot shows that sRE statistics become smoother as the value of ε increases.

which holds for P a.e. x and Q a.e. y. Similarly for (fn, gn)
the optimality condition can be restated as

fn(x) = −ε ln

(∫
exp

(
1

ε

[
gn(y)−

1

2

∥∥x− y
∥∥2]) dQn(y)

)
,

gn(y) = −ε ln

(∫
exp

(
1

ε

[
fn(x)−

1

2

∥∥x− y
∥∥2]) dPn(x)

)
,

which must hold for every x ∈ {X1, ..., Xn} and every
y ∈ {Y1, ..., Yn}. Finally we will define the optimal relative
densities as

p∗(x, y) ≜
dπ

d(P ⊗Q)
(x, y)

= exp

(
1

ε

[
f∗(x) + g∗(y)−

1

2

∥∥x− y
∥∥2]) ,

pn(x, y) ≜
dπn

d(Pn ⊗Qn)
(x, y)

= exp

(
1

ε

[
fn(x) + gn(y)−

1

2

∥∥x− y
∥∥2]) ,

where the latter is only defined on the support of Pn ⊗ Qn.
From the optimality conditions for (f∗, g∗) and the definition
of p∗(x, y) it follows that for P a.e. x and Q a.e. y

EY∼Q[p∗(x, Y )] =

∫
p∗(x, y

′)dQ(y′) = 1 (7)

EX∼P [p∗(y,X)] =

∫
p∗(x

′, y)dP (x′) = 1. (8)

From these equations we can express the population and
sample entropic maps as

Tε(x) =

∫
yp∗(x, y)dQ(y),

Tn
ε (x) =

1

n

n∑
i=1

Yipn(x, Yi),

where the latter is only defined for x ∈ {X1, ..., Xn}.

2) Dual Results:
Following [56] we denote the objective in the dual problem
by

Φ(f, g) ≜
∫

fdP +

∫
gdQ+ ε

− ε

∫ ∫
exp

(
1

ε

[
f(x)+g(y)− 1

2

∥∥x−y
∥∥2]) dP (x)dQ(y).

Furthermore, denote the empirical dual objective Φn by

Φn(f, g) ≜
1

n

n∑
i=1

[f(Xi) + g(Yi)] + ε

− ε

n2

n∑
i,j=1

exp

(
1

ε

[
f(Xi)+g(Yj)−

1

2

∥∥Xi − Yj

∥∥2]) .

One can calculate the partial derivatives of the empirical
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dual as

∂Φn(f, g)

∂f(Xi)
=

1

n
− 1

n2

n∑
j=1

p(Xi, Yj)

∂Φn(f, g)

∂g(Yj)
=

1

n
− 1

n2

n∑
i=1

p(Xi, Yj)

where

p(x, y) = exp

(
1

ε

[
f(x) + g(y)− 1

2

∥∥x− y
∥∥2]) .

For what follows it will be useful to introduce the space
L2(Pn)×L2(Qn). This is the Cartesian product of the spaces
L2(Pn) and L2(Qn) and as such it has the following inner
product

⟨(a, b), (u, v)⟩L2(Pn)×L2(Qn)

= ⟨a, u⟩L2(Pn) + ⟨b, v⟩L2(Qn)

=
1

n

n∑
i=1

a(Xi)u(Xi) +
1

n

n∑
j=1

b(Yj)v(Yj)

for the functions a, u ∈ L2(Pn), b, v ∈ L2(Qn). This space is
a Hilbert space and its norm is given by∥∥(a, b)∥∥2

L2(Pn)×L2(Qn)
= ⟨(a, b), (a, b)⟩L2(Pn)×L2(Qn).

In addition, we can identify the gradient ∇Φn(f, g) as an
element of (the dual of) L2(Pn) × L2(Qn), which is given
by

∇Φn(f, g)

= n ·
([

∂Φn(f, g)

∂f(X1)
, ...,

∂Φn(f, g)

∂f(Xn)

]
,[

∂Φn(f, g)

∂g(Y1)
, ...,

∂Φn(f, g)

∂g(Yn)

])
=

([
1− 1

n

n∑
j=1

p(X1, Yj), ..., 1−
1

n

n∑
j=1

p(Xn, Yj)

]
,

[
1− 1

n

n∑
i=1

p(Xi, Y1), ..., 1−
1

n

n∑
i=1

p(Xi, Yn)

])
.

Note that because we are treating ∇Φn(f, g) as an element
of L2(Pn) × L2(Qn) we must multiply it by a factor of n
because it must be the unique element which satisfies

lim
h→0

Φn((f, g) + h(a, b))− Φn(f, g)

h
= ⟨∇Φn(f, g), (a, b)⟩L2(Pn)×L2(Qn)

and the extra factor of n is required to cancel the factor of 1
n

which appears in the definition of ⟨·, ·, ⟩L2(Pn)×L2(Qn).
Using the formulas above we can now calculate∥∥∇Φn(f, g)

∥∥2
L2(Pn)×L2(Qn)

=
1

n

n∑
i=1

1− 1

n

n∑
j=1

p(Xi, Yj)

2

(9)

+
1

n

n∑
j=1

(
1− 1

n

n∑
i=1

p(Xi, Yj)

)2

.

Note that by the translational invariance of the dual poten-
tials we have for every c ∈ R that

Φ(f, g) = Φ(f + c, g − c),

Φn(f, g) = Φn(f + c, g − c),

∇Φn(f, g) = ∇Φn(f + c, g − c).

We now move onto a first basic structural result bounding
the optimal dual potentials above and below. This result is
essentially contained in both [56], [57] and we include it here
only to make the constants explicit in our case.

Lemma A.7. Let P,Q ∈ P(B(0, r)) and let (f∗, g∗), (fn, gn)
be the optimal dual potentials as above for Sε(P,Q) and
Sε(P

n, Qn) respectively. Then∥∥fn∥∥L∞(Pn)
,
∥∥gn∥∥L∞(Qn)

≤ 2r2,∥∥f∗∥∥L∞(P )
,
∥∥g∗∥∥L∞(Q)

≤ 2r2.

As a consequence it also holds that∥∥f∗
∥∥
L∞(P )

,
∥∥g∗∥∥L∞(Q)

≤ 4r2.

In particular for (P ⊗ Q)-a.e. (x, y) and every (x, y) ∈
Supp(Pn ⊗Qn),

exp

(
−6r2

ε

)
≤ p∗(x, y) ≤ exp

(
4r2

ε

)
,

exp

(
−6r2

ε

)
≤ pn(x, y) ≤ exp

(
4r2

ε

)
.

Proof. The optimality condition (6) and marginal constraints
on π∗ imply for P -a.e. x that

1 =

∫
exp

(
1

ε

[
f∗(x) + g∗(y)−

1

2

∥∥x− y
∥∥2]) dQ(y)

≥ exp

(
1

ε

[
f∗(x)−

1

2
(2r)2

])∫
exp

(
1

ε
g∗(y)

)
dQ(y)

≥ exp

(
1

ε

[
f∗(x)− 2r2

])
where the first inequality uses the fact that x, y ∈ B(0, r)
which implies

∥∥x − y
∥∥ ≤ 2r and the last inequality uses

Jensen’s inequality and the assumption that
∫
g∗dQ = 0.

Taking logs on both sides and rearranging we see that for
P a.e. x

f∗(x) ≤ 2r2. (10)

Using this with the optimality and the marginal constraints on
π∗ we have

1 =

∫
exp

(
1

ε

[
f∗(x) + g∗(y)−

1

2

∥∥x− y
∥∥2]) dP (x)

≤
∫

exp

(
1

ε

[
2r2 + g∗(y)

])
dP (x)

= exp

(
1

ε

[
2r2 + g∗(y)

])
.

Taking logarithms on both sides we have

−2r2 ≤ g∗(y).
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We next claim that
∫
f∗(x)dP (x) ≥ 0 which can be seen from

the fact that

0 ≤ Sε(P,Q)

=

∫
f∗dP +

∫
g∗dQ+ ε−

ε

∫ ∫
exp

(
1

ε

[
f∗(x)+g∗(y)−

1

2

∥∥x−y
∥∥2]) dP (x)dQ(y)

=

∫
f∗dP + 0− ε

∫
dπ + ε

=

∫
f∗dP

where we have used the optimality condition on g∗ to remove
one integral and (6) to simplify the other. With this established
we can repeat the proof above swapping the roles of (x, f∗, P )
with (y, g∗, Q) respectively with the only important note being
that∫

exp

(
1

ε
f∗

)
dP ≥ exp

(
1

ε

∫
f∗dP

)
≥ exp

(
1

ε
· 0
)

= 1

which is enough to show

exp

(
1

ε

[
g∗(y)−

1

2
(2r)2

])∫
exp

(
1

ε
f∗(x)

)
dP (x)

≥ exp

(
1

ε

[
g∗(y)− 2r2

])
which mirrors the calculation above.

The proof for fn and gn is completely analogous, just
replacing the integrals with summations as needed.

The bounds on f∗ and g∗ follow from

|f∗(Xi)| =

∣∣∣∣∣∣f∗(Xi) +
1

2n

2n∑
j=1

gn(Zj)

∣∣∣∣∣∣
≤ |f∗(Xi)|+

1

2n

2n∑
j=1

|gn(Zj)|

≤ 2r2 + 2r2 = 4r2,

and an identical calculation for g∗.
The bounds on p∗ and pn follow from

p∗(x, y) = exp

(
1

ε

[
f∗(x) + g∗(y)−

1

2

∥∥x− y
∥∥2])

≤ exp

(
1

ε

[
2r2 + 2r2 − 0

])
= exp

(
4r2

ε

)
,

p∗(x, y) = exp

(
1

ε

[
f∗(x) + g∗(y)−

1

2

∥∥x− y
∥∥2])

≥ exp

(
1

ε

[
−2r2 − 2r2 − 2r2

])
= exp

(
−6r2

ε

)
,

and an analogous calculation for pn.

For convenience we introduce the set

SL ≜

{
(f, g) ∈ L∞(Pn)× L∞(Qn) :∥∥f∥∥

L∞(Pn)
,
∥∥g∥∥

L∞(Qn)
≤ L,

∫
gdQn = 0

}
.

With this set defined we have the following two results, which
are slight generalizations of existing results in [56] in that they
use a general r instead of r = 1/2.

Lemma A.8. Let P,Q ∈ P(B(0, r)). Then for each L, Φn is
δ-strongly concave with respect to the norm

∥∥·∥∥
L2(Pn)×L2(Qn)

on SL for δ = exp(−[2L + 2r2]/ε)/ε in the sense that for
any (f, g), (f ′, g′) ∈ SL we have with probability 1

Φn(f, g)− Φn(f
′, g′)

≥ ⟨∇Φn(f, g), (f, g)− (f ′, g′)⟩L2(Pn)×L2(Qn)

+
δ

2

∥∥(f, g)− (f ′, g′)
∥∥2
L2(Pn)×L2(Qn)

.

Proof. Fix (f, g), (f ′, g′) ∈ SL and define the function h :
[0, 1] → R by

h(t) ≜ Φn((1− t)f + tf ′, (1− t)g + tg′).

Then it suffices to show that h satisfies

h′′(t) ≤ −δ
∥∥(f, g)− (f ′, g′)

∥∥2
L2(Pn)×L2(Qn)

,

for all t ∈ [0, 1]. Fix t ∈ [0, 1]. A direct calculation shows

h′′(t)

= − 1

εn2

n∑
i,j=1

(f(Xi)− f ′(Xi) + g(Yj)− g′(Yj))
2

× exp

(
1

ε

[
(1− t)(f(Xi) + g(Yj))

+ t(f ′(Xi) + g′(Yk))−
1

2

∥∥Xi − Yj

∥∥2]).
By the bounds |f |, |f ′|, |g|, |g′| ≤ L and

∥∥Xi − Yj

∥∥ ≤ 2r, we
have

h′′(t) ≤ − 1

εn2
exp(−[2L+ 2r2]/ε)

×
n∑

i,j=1

(f(Xi)− f ′(Xi) + g(Yj)− g′(Yj))
2.

The last sum can be re-factored as

1

n2

n∑
i,j=1

(f(Xi)− f ′(Xi) + g(Yj)− g′(Yj))
2

=
∥∥(f, g)− (f ′, g′)

∥∥2
L2(Pn)×L2(Qn)

+
2

n2

[
n∑

i=1

f(Xi)− f ′(Xi)

] n∑
j=1

g(Yj)− g′(Yj)


=
∥∥(f, g)− (f ′, g′)

∥∥2
L2(Pn)×L2(Qn)

.

On the second line the latter term is zero because
∫
gdQn =∫

g′dQn = 0 since g, g′ ∈ SL.
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A direct consequence of strong concavity is the following
result known as the Polyak-Łojasiewicz (PL) inequality [62].

Lemma A.9. Let P,Q ∈ P(B(0, r)). Let L > 0 be such that
(fn, gn) ∈ SL. Then for any f, g ∈ SL,

Φn(fn, gn)− Φn(f, g)

≤ ε

2
e[2L+2r2]/ε

∥∥∇Φn(f, g)
∥∥2
L2(Pn)×L2(Qn)

.

Combining the two preceding lemmas we have the follow-
ing result known as the “error bound”.

Lemma A.10. Let P,Q ∈ P(B(0, r)). Let L > 0 be such
that (fn, gn) ∈ SL. The for any f, g ∈ SL,

∥∥(fn, gn)− (f, g)
∥∥2
L2(Pn)×L2(Qn)

≤ ε2e4[L+r2]/ε
∥∥∇Φn(f, g)

∥∥2
L2(Pn)×L2(Qn)

.
(11)

Proof. Note that since (fn, gn) is optimal for Φn we have
∇Φn(fn, gn) = 0. Therefore by Lemmas A.8 and A.9 we
have

exp(−[2L+ 2r2]/ε)

2ε

∥∥(fn, gn)− (f, g)
∥∥2
L2(Pn)×L2(Qn)

≤ Φn(fn, gn)− Φn(f, g)

≤ ε

2
e[2L+2r2]/ε

∥∥∇Φn(f, g)
∥∥2
L2(Pn)×L2(Qn)

.

Multiplying the first and last by 2ε exp([2L+ 2r2]/ε) gives

∥∥(fn, gn)− (f, g)
∥∥2
L2(Pn)×L2(Qn)

≤ ε2e4[L+r2]/ε
∥∥∇Φn(f, g)

∥∥2
L2(Pn)×L2(Qn)

.

We now proceed to an upper bound in expectation of the
quantity on the right hand side of (11). This is the first point at
which sampling patterns play any role as well as the first time
we derive a novel result which is not essentially contained in
[56].

Lemma A.11. Suppose that PX , PY , Q ∈ P(B(0, r)). Let
X1, ...Xn ∼ PX , Y1, ..., Yn ∼ PY and Z1, ..., Z2n ∼ Q be
jointly independent samples. Let P1/2 = 1

2PX + 1
2PY . Let

Φ2n denote the dual objective between 1
2 (P

n
X +Pn

Y ) and Q2n

and let f∗, g∗ be the optimal entropic potentials between P1/2

and Q with
∫
g∗dQ = 0. Then

E
∥∥∇Φ2n(f∗, g∗)

∥∥2
L2((Pn

X+Pn
Y )/2)×L2(Q2n)

≤ 9 exp(8r2/ε)

8n

where the expectation is with respect to the samples
X1, ..., Xn, Y1, ..., Yn, Z1, ..., Z2n.

Proof. Using (9), taking expectations and applying linearity
we have

E
∥∥∇Φ2n(f∗, g∗)

∥∥2
L2((Pn

X+Pn
Y )/2)×L2(Q2n)

=E

 1

2n

n∑
i=1

1− 1

2n

2n∑
j=1

p∗(Xi, Zj)

2


+E

 1

2n

n∑
i=1

1− 1

2n

2n∑
j=1

p∗(Yi, Zj)

2


+E

 1

2n

2n∑
j=1

(
1− 1

2n

n∑
i=1

p∗(Xi, Zj)−
1

2n

n∑
i=1

p∗(Yi, Zj)

)2


We will handle the three terms separately. For the first term
we have

E

 1

2n

n∑
i=1

1− 1

2n

2n∑
j=1

p∗(Xi, Zj)

2


=
1

2
E


 1

2n

2n∑
j=1

(1− p∗(X1, Zj))

2


=
1

2

1

4n2

2n∑
j,k=1

E [(1− p∗(X1, Zj))(1− p∗(X1, Zk))]

=
1

8n2

2n∑
j=1

E
[
(1− p∗(X1, Zj))

2
]

=
1

4n
Var(p∗(X1, Zj))

≤ 1

4n

exp(8r2/ε)

4

=
exp(8r2/ε)

16n
,

where the first line uses the fact that the Xi are identically
distributed, the second is just factoring and linearity of ex-
pectation, the third uses the fact that E[(1− p∗(X1, Zj))(1−
p∗(X1, Zk))] = 0 if j ̸= k (see below), the fourth uses that
Ep∗(X1, Zj) = 1, and the fifth uses that by Lemma A.7 that
p∗ ∈ [0, exp(4r2/ε)] and Popoviciu’s inequality. The zero-
mean formula is verified as follows

E[(1− p∗(X1, Zj))(1− p∗(X1, Zk))]

= EX1

[
EZj ,Zk

[
(1− p∗(X1, Zj))(1− p∗(X1, Zk))

∣∣∣∣X1

]]
= EX1

[
EZj

[
1−p∗(X1, Zj)

∣∣∣∣X1

]
EZk

[
1−p∗(X1, Zk)

∣∣∣∣X1

]]
= EX1

[(0)(0)] = 0

where we have used that 1 − p∗(X1, Zj) is conditionally
independent of 1− p∗(X1, Zk) given X1, followed by (7).
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Replacing X with Y in the calculations above one can
handle the second term in an identical way and show

E

 1

2n

n∑
i=1

1− 1

2n

2n∑
j=1

p∗(Yi, Zj)

2
 ≤ exp(8r2/ε)

16n
.

This handles the first two terms which must be controlled.
We now turn our focus to the last term which is the most
challenging to handle.

E

 1

2n

2n∑
j=1

(
1− 1

2n

n∑
i=1

p∗(Xi, Zj)−
1

2n

n∑
i=1

p∗(Yi, Zj)

)2


= E

( 1

2n

n∑
i=1

(1−p∗(Xi, Z1))+
1

2n

n∑
i=1

(1−p∗(Yi, Z1))

)2


= E
[

1

4n2

n∑
i,k=1

(1− p∗(Xi, Z1))(1− p∗(Xk, Z1))

+ 2(1− p∗(Xi, Z1))(1− p∗(Yk, Z1))

+ (1− p∗(Yi, Z1))(1− p∗(Yk, Z1))

]
=

1

4n2

n∑
i=1

E
[
(1− p∗(Xi, Z1))

2

+ 2(1− p∗(Xi, Z1))(1− p∗(Yi, Z1)) + (1− p∗(Yi, Zi))
2

]
≤ 1

4n
4 exp(8r2/ε) =

exp(8r2/ε)

n

where the second line is just linearity, i.i.d. assumptions, and
refactoring. The third expanding the squares. The fourth uses
a fact shown below, and the fifth uses the uniform bounds on
p∗ from Lemma A.7 which in turn implies an upper bound on
1− p∗. The fact that we must show is that for i ̸= k

E
[
(1− p∗(Xi, Z1))(1− p∗(Xk, Z1))

+ 2(1− p∗(Xi, Z1))(1− p∗(Yi, Z1))

+ (1− p∗(Yi, Z1))(1− p∗(Yk, Z1))

]
= 0.

Note that by (8)

1 = EW∼P1/2
[p∗(W,Z)]

= EX,Y [(1/2)p∗(X,Z) + (1/2)p∗(Y, Z)]

=
1

2
EX [p∗(X,Z)] +

1

2
EY [p∗(Y,Z)].

Rearranging the first and last equalities shows

EX [1− p∗(X,Z)] = EY [p∗(Y,Z)− 1] = −EY [1− p∗(Y,Z)]

which is the crucial identity that we require. Using this we
have conditioned on Z1 that

E[(1− p∗(Xi, Z1))(1− p∗(Xk, Z1))

+ (1− p∗(Xi, Z1))(1− p∗(Yk, Z1))]

= E[(1− p∗(Xi, Z1))]E[(1− p∗(Xk, Z1))]

+ E[(1− p∗(Xi, Z1))]E[(1− p∗(Yk, Z1))]

= E[(1− p∗(Xi, Z1))]E[(1− p∗(Xk, Z1))]

+ E[(1− p∗(Xi, Z1))] (−E[(1− p∗(Xk, Z1))])

= 0.

Similarly,

E[(1− p∗(Yi, Z1))(1− p∗(Yk, Z1))

+ (1− p∗(Xi, Z1))(1− p∗(Yk, Z1))]

= E[(1− p∗(Yi, Z1))]E[(1− p∗(Yk, Z1))]

+ E[(1− p∗(Xi, Z1))]E[(1− p∗(Yk, Z1))]

= E[(1− p∗(Yi, Z1))]E[(1− p∗(Yk, Z1))]

+ (−E[(1− p∗(Yi, Z1))])E[(1− p∗(Yk, Z1))]

= 0.

Adding these expressions proves the required result.
Tracking back the bounds above we have shown

E
∥∥∇Φn(f∗, g∗)

∥∥2
L2((Pn

X+Pn
Y )/2)×L2(Q2n)

≤ exp(8r2/ε)

16n
+

exp(8r2/ε)

16n
+

exp(8r2/ε)

n

=
9 exp(8r2/ε)

8n
.

By combining Lemmas A.7, A.10, and A.11 we achieve the
following bound in the deviation of the potentials. This bound
compares the estimated potentials to the true potentials once
they have been appropriately shifted to account for the fact
that the optimal potentials are only unique up to an additive
constant.

Lemma A.12. Consider the setting of Lemma A.11. Then
f∗, g∗ satisfy

E
∥∥(fn, gn)− (f∗, g∗)

∥∥2
L2((Pn

X+Pn
Y )/2)×L2(Q2n)

≤ 9ε2

8n
exp(28r2/ε).

Proof. Let L be such that fn, gn, f∗, g∗ are with probability
1 contained in SL. Taking expectations in Lemma A.10 and
then applying Lemma A.11 we have

E
∥∥(fn, gn)− (f∗, g∗)

∥∥2
L2((Pn

X+Pn
Y )/2)×L2(Q2n)

≤ ε2e4[L+r2]/εE
∥∥∇Φ2n(f∗, g∗)

∥∥2
L2((Pn

X+Pn
Y )/2)×L2(Q2n)

= ε2e4[L+r2]/εE
∥∥∇Φ2n(f∗, g∗)

∥∥2
L2((Pn

X+Pn
Y )/2)×L2(Q2n)

≤ ε2e4[L+r2]/ε 9 exp(8r
2/ε)

8n
.
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Lemma A.7 ensures that fn, gn, f∗, g∗ ∈ S4r2 . Using this
setting of L in the bound above we have

E
∥∥(fn, gn)− (f∗, g∗)

∥∥2
L2((Pn

X+Pn
Y )/2)×L2(Q2n)

≤ ε2e4[4r
2+r2]/ε 9 exp(8r

2/ε)

8n

=
9ε2

8n
exp(28r2/ε).

By observing that the relative densities p∗ and pn are
determined by the dual potentials (f∗, g∗) and (fn, gn) one
can immediately convert the result above into a bound on the
relative densities as follows.

Lemma A.13. Consider the setting of Lemma A.11. Then the
relative density pn satisfies

E
∥∥pn − p∗

∥∥2
L2((Pn

X+Pn
Y )/2⊗Q2n)

≤ 9ε2

4n
exp(44r2/ε).

Proof. To start note that for every (w, z) ∈ ({X1, ..., Xn} ∪
{Y1, ..., Yn})× {Z1, ..., Z2n} we have

|pn(w, z)− p∗(w, z)|

=

∣∣∣∣ exp(1

ε

[
fn(w) + gn(z)−

1

2

∥∥w − z
∥∥2])

− exp

(
1

ε

[
f∗(w) + g∗(z)−

1

2

∥∥w − z
∥∥2])∣∣∣∣

=

∣∣∣∣ exp(1

ε

[
fn(w) + gn(z)−

1

2

∥∥w − z
∥∥2])

− exp

(
1

ε

[
f∗(w) + g∗(z)−

1

2

∥∥w − z
∥∥2])∣∣∣∣

≤ e
1
ε 8r

2

∣∣∣∣fn(w)− f∗(w) + gn(z)− g∗(z)

∣∣∣∣
≤ e

1
ε 8r

2

∣∣∣∣fn(w)− f∗(w)

∣∣∣∣+ e
1
ε 8r

2

∣∣∣∣gn(z)− g∗(z)

∣∣∣∣
where we have used the fact that fn, gn, f∗, g∗ ∈ S4r2 by
Lemma A.7 followed by the fact that et is eC-Lipschitz over
(−∞, C].

From here we can compute∥∥pn − p∗
∥∥2
L2((Pn

X+Pn
Y )/2⊗Q2n)

=
1

4n2

n∑
i=1

2n∑
j=1

|pn(Xi, Zj)− p∗(Xi, Zj)|2

+ |pn(Yi, Zj)− p∗(Yi, Zj)|2

≤ 1

4n2

n∑
i=1

2n∑
j=1

2e16r
2/ε|fn(Xi)− f∗(Xi)|

+ 2e16r
2/ε|fn(Yi)−f∗(Yi)|+4e16r

2/ε|gn(Zj)−g∗(Zj)|

=2e16r
2/ε
∥∥fn−f∗

∥∥2
L2((Pn

X+Pn
Y )/2)

+2e16r
2/ε
∥∥gn−g∗

∥∥2
L2(Q2n)

=2e16r
2/ε
∥∥(fn, gn)− (f∗, g∗)

∥∥2
L2((Pn

X+Pn
Y )/2)×L2(Q2n)

.

Taking expectations on the first and last and applying Lemma
A.12 we have

E
∥∥pn − p∗

∥∥2
L2((Pn

X+Pn
Y )/2⊗Q2n)

≤ 2e16r
2/εE

∥∥(fn, gn)− (f∗, g∗)
∥∥2
L2((Pn

X+Pn
Y )/2)×L2(Q2n)

≤ 9ε2

4n
exp(44r2/ε).

Now we can proceed to bounding the deviation of the
entropic map on the samples.

Lemma A.14. Consider the setting of Lemma A.11. Then the
entropic map Tn

ε satisfies

E
∥∥Tn

ε − Tε

∥∥2
L2((Pn

X+Pn
Y )/2)

≤ 9r2(1 + ε2)

2n
exp(44r2/ε)

Proof. For each sample w ∈ {X1, ..., Xn} ∪ {Y1, ..., Yn} we
have the bound∥∥Tn

ε (w)− Tε(w)
∥∥2

=
∥∥ 1

2n

2n∑
j=1

pn(w,Zj)Zj −
∫

p∗(w, z)zdQ(z)
∥∥2

≤ 2
∥∥ 1

2n

2n∑
j=1

(pn(w,Zj)− p∗(w,Zj))Zj

∥∥2
+ 2
∥∥ 1

2n

2n∑
j=1

p∗(w,Zj)Zj −
∫

p∗(w, z)zdQ(z)
∥∥2

We will handle these two terms separately. For the first we
have by Jensen’s inequality followed by the boundedness of
Q ∥∥ 1

2n

2n∑
j=1

(pn(w,Zj)− p∗(w,Zj))Zj

∥∥2
≤ 1

2n

2n∑
j=1

∥∥(pn(x, Zj)− p∗(w,Zj))Zj

∥∥2
≤ 1

2n

2n∑
j=1

r2 (pn(w,Zj)− p∗(w,Zj))
2
.

For the second term we can expand the square and take
expectation over the Zj to obtain

E
∥∥ 1

2n

2n∑
j=1

p∗(w,Zj)Zj −
∫

p∗(w, z)zdQ(z)
∥∥2

=
1

4n2

2n∑
j,k=1

E
〈
p∗(w,Zj)Zj −

∫
p∗(w, z)zdQ(z),

p∗(w,Zk)Zk −
∫

p∗(w, z)zdQ(z)

〉
=

1

2n
E
∥∥p∗(w,Z1)Z1 −

∫
p∗(w, z)zdQ(z)

∥∥2
where we have used that for fixed x that p∗(x, Zj)Zj −∫
p∗(x, z)zdQ(z) and p∗(x, Zk)Zk −

∫
p∗(x, z)zdQ(z) are

zero-mean and independent for all j ̸= k, which implies that
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the cross terms cancel. We can further bound this by using
Lemma A.7

E
∥∥p∗(x, Z1)Z1 −

∫
p∗(x, z)zdQ(z)

∥∥2
≤ E

∥∥p∗(x, Z1)Z1

∥∥2
≤ E

∥∥p∗∥∥2∞ ·
∥∥Z1

∥∥2
≤ r2 exp(8r2/ε)

where the first inequality is an application of the variational
formula for the variance and the fact that E[p∗(x, Z1)Z1] =∫
p∗(x, z)zdQ(z).
Combining the inequalities derived we have

E
∥∥Tn

ε − Tε

∥∥2
L2((Pn

X+Pn
Y )/2)

= E
1

2n

n∑
i=1

∥∥Tn
ε (Xi)− Tε(Xi)

∥∥2 + ∥∥Tn
ε (Yi)− Tε(Y )

∥∥2
≤ E

1

n

n∑
i=1

[
r2

2n

2n∑
j=1

(pn(Xi, Zj)− p∗(Xi, Zj))
2

+ (pn(Yi, Zj)− p∗(Yi, Zj))
2

]
+ E

1

n

n∑
i=1

[
1

2n
r2 exp(8r2/ε) +

1

2n
r2 exp(8r2/ε)

]
= 2r2E

∥∥pn − p∗
∥∥2
L2((Pn

X+Pn
Y )/2⊗Q2n)

+
r2

n
exp(8r2/ε)

≤ 9r2ε2

2n
exp(44r2/ε) +

r2

n
exp(8r2/ε)

≤ 9r2(1 + ε2)

2n
exp(44r2/ε)

where the second to last inequality follows from Lemma A.13.

F. Additional Technical Results

Lemma A.15. Let P,Q be any probability measures and let
X,X ′, X1, ...Xn ∼ P and Y, Y ′, Y1, ..., Yn ∼ Q be jointly
independent. Let h : Rd × Rd → R such that h(x, x) = 0 for
every x ∈ Rd. Then

E
∣∣∣∣ 1n2

n∑
i,j=1

[2h(Xi, Yj)− h(Xi, Xj)− h(Yi, Yj)]

− E[2h(X,Y )− h(X,X ′)− h(Y, Y ′)]

∣∣∣∣
≤ 6
∥∥h∥∥∞√π

n
.

Proof. The proof leverages the bounded differences inequality
[63] for the function

Hh(x1, ..., xn, y1, ..., yn)

=
1

n2

n∑
i,j=1

2h(xi, yj)− h(xi, xj)− h(yi, yj).

This function satisfies the bounded differences property for
each variable xi:

|Hh(x1, x2, ..., xn, y1, ..., yn)−Hh(x
′
1, x2, ..., xn, y1, ..., yn)|

=

∣∣∣∣ 2n2

n∑
i=1

[h(x1, yi)− h(x′
1, yi)]

− 1

n2

n∑
i=2

[h(x1, xi)− h(x′
1, xi)]

∣∣∣∣
≤ 2

n2

n∑
i=1

[|h(x1, yi)|+ |h(x′
1, yi)|]

+
1

n2

n∑
i=2

[|h(x1, xi)|+ |h(x′
1, xi)|]

≤ 2

n2
n2
∥∥h∥∥∞ +

1

n2
(n− 1)2

∥∥h∥∥∞
≤ 6

n

∥∥h∥∥∞

where we have used that h(x1, x1) = h(x′
1, x

′
1) = 0 by the

assumptions on h. An analogous computation holds for every
other xi and yi. Next note that

EHh(X1, ..., Xn, Y1, ..., Yn)

= E

 1

n2

n∑
i,j=1

2h(Xi, Yj)− h(Xi, Xj)− h(Yi, Yj)


= E [2h(X,Y )− h(X,X ′)− h(Y, Y ′)]

Therefore by the bounded differences inequality we have

P
{∣∣∣∣ 1n2

n∑
i,j=1

[2h(Xi, Yj)− h(Xi, Xj)− h(Yi, Yj)]

− E[2h(X,Y )− h(X,X ′)− h(Y, Y ′)]

∣∣∣∣ > t

}
= P

{∣∣∣∣Hh(X1, ..., Xn, Y1, ..., Yn)

− EHh(X1, ..., Xn, Y1, ..., Yn)

∣∣∣∣ > t

}
≤ 2 exp

(
−2t2

2n(6
∥∥h∥∥∞/n)2

)
= 2 exp

(
−nt2

36
∥∥h∥∥2∞

)
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Now using the tail bound form of expectation we have

E
∣∣∣∣ 1n2

n∑
i,j=1

[2h(Xi, Yj)− h(Xi, Xj)− h(Yi, Yj)]

− E[2h(X,Y )− h(X,X ′)− h(Y, Y ′)]

∣∣∣∣
=

∫ ∞

0

P
{∣∣∣∣ 1n2

n∑
i,j=1

[2h(Xi, Yj)− h(Xi, Xj)− h(Yi, Yj)]

− E[2h(X,Y )− h(X,X ′)− h(Y, Y ′)]

∣∣∣∣ > t

}
dt

≤ 2

∫ ∞

0

exp

(
−nt2

36
∥∥h∥∥2∞

)
dt

= 6
∥∥h∥∥∞√π

n
.
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