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Abstract— Hyperspectral images (HSIs) provide exceptional
spatial and spectral resolution of a scene, crucial for various
remote sensing applications. However, the high dimensional-
ity, presence of noise and outliers, and the need for precise
labels of HSIs present significant challenges to the analysis of
HSIs, motivating the development of performant HSI clustering
algorithms. This article introduces a novel unsupervised HSI
clustering algorithm—superpixel-based and spatially regularized
diffusion learning (S2DL)—which addresses these challenges by
incorporating rich spatial information encoded in HSIs into
diffusion geometry-based clustering. S2DL employs the entropy
rate superpixel (ERS) segmentation technique to partition an
image into superpixels, then constructs a spatially regularized
diffusion graph using the most representative high-density pixels.
This approach reduces computational burden while preserving
accuracy. Cluster modes, serving as exemplars for underlying
cluster structure, are identified as the highest-density pixels
farthest in diffusion distance from other highest-density pixels.
These modes guide the labeling of the remaining represen-
tative pixels from ERS superpixels. Finally, majority voting
is applied to the labels assigned within each superpixel to
propagate labels to the rest of the image. This spatial–spectral
approach simultaneously simplifies graph construction, reduces
computational cost, and improves clustering performance. S2DL’s
performance is illustrated with extensive experiments on four
publicly available, real-world HSIs: Indian Pines, Salinas, Salinas
A, and WHU-Hi. Additionally, we apply S2DL to landscape-
scale, unsupervised mangrove species mapping in the Mai Po
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Nature Reserve (MPNR), Hong Kong, using a Gaofen-5 HSI. The
success of S2DL in these diverse numerical experiments indicates
its efficacy on a wide range of important unsupervised remote
sensing analysis tasks.

Index Terms— Diffusion geometry, hyperspectral image (HSI)
clustering, spatial regularization, species mapping, superpixel
segmentation.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) encode reflectance
across a broad spectrum of wavelengths in the visual and

infrared light spectra, storing a rich characterization of large
spatial regions with high spectral resolution. These images
can be obtained through various platforms, such as airplanes,
drones, or orbital spectrometers [1], [2]. HSI data have been
shown to be useful in a wide range of high-impact applications,
e.g., the identification of land use and land cover [3], [4],
[5], [6], [7], [8], the unmixing of spectral signatures [9], [10],
[11], [12], and the fusion of images from different sources
and modalities [13], [14], [15], [16], [17]. These applications
often leverage machine learning and deep learning approaches
to exploit the rich information stored within HSIs.

Machine learning and deep learning have significantly
improved HSI classification with advanced models that handle
the complex spatial–spectral aspects of HSIs [18], [19], [20],
[21], [22]. Convolutional, graph convolutional, and recurrent
neural networks have redefined accuracy and efficiency bench-
marks in supervised HSI classification tasks [23], [24], [25],
[26], [27], [28]. However, the need for specialized knowledge
and extensive fieldwork for expert annotations makes HSI
labeling a resource-intensive and costly task, motivating the
development of unsupervised clustering algorithms for ana-
lyzing HSIs [1], [5], [29]. Nevertheless, even HSI clustering
algorithms, which rely upon no expert annotations or ground-
truth (GT) labels for image segmentations, face at least two
key challenges in practice [30], [31], [32], [33].

The first challenge for HSI clustering is the sheer vol-
ume of pixels in an image that the algorithm must analyze.
HSIs being large datasets are a challenge independent of
their inherent high dimensionality, which stems from the
high spectral resolution obtained using advanced hyperspectral
spectrometers to generate high-quality HSI data. Large images
are especially challenging for graph-based HSI clustering
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methods, which construct a graph to represent pixel affinities
and can scale quadratically, if not worse, with the number
of pixels if the graph is not constructed carefully [1], [4],
[34], [35]. Several techniques have been proposed to mit-
igate the computational demands of the graph construction
process. For instance, anchor-based graph approaches reduce
the number of graph nodes by selecting representative anchor
points, while the Nyström extension approximates the graph’s
eigendecomposition to streamline later analysis [36], [37],
[38]. However, the selection of anchors, often through random
or K -Means methods, can misrepresent the dataset, neglect
spatial information, and be noise-sensitive [39]. Addressing
the computational challenges, it is important to recognize that
HSIs typically possess a low intrinsic dimensionality because
of the natural relationships between spectral bands, which
can often be captured in a manifold coordinate system [40],
[41], [42]. This reduced intrinsic dimensionality motivates the
downsampling of pixels, as a carefully selected subset of the
HSI is likely to contain sufficient information to approximate
the low-dimensional geometry intrinsic to an HSI [40].

A second major challenge to HSI clustering algorithms
is the presence of noise and outliers in HSIs, which often
results in a significant reduction in performance on important
unsupervised material classification problems due to inter-
nal and external factors. These factors include sensor noise,
atmospheric effects, and spectral variability, resulting in a
noisy characterization of a scene in which it can be difficult
to differentiate materials in an unsupervised setting [43],
[44]. A further complication is the high intra-class spectral
variability often observed in different locations of an HSI
resulting from variance in illumination conditions and viewing
angles [9]. Integrating spatial information with spectral infor-
mation can help mitigate the effects of spectral variability.
This allows the algorithm to use contextual information from
spatially nearby pixels, which often belong to the same class
and share similar spectral characteristics [45], [46], [47].

In this article, we propose superpixel-based and spatially
regularized diffusion learning (S2DL): a superpixel-based dif-
fusion learning (DL) approach to unsupervised clustering of
large HSIs. Our approach first employs entropy rate superpixel
(ERS) segmentation to partition the image into spatial regions
of similarly expressive pixels. ERS segmentation assumes
local homogeneity and is meant to reduce the effect of
spatial–spectral variability within each superpixel. S2DL uses
a kernel density estimate (KDE) to identify a small number
of most-representative pixels from each superpixel for use in
the construction of a spatially regularized k-nearest neighbor
(kNN) graph [41], [48], [49], [50]. Importantly, the graph used
in S2DL explicitly incorporates spatial information into graph
construction by allowing edges only between pixels and their
nearest neighbors within a spatial radius. S2DL locates and
assigns unique labels to single pixels from each cluster to
serve as cluster exemplars: highest-density pixels farthest in
spatially regularized diffusion distances [41], [48], [49], [50]
from other high-density pixels. S2DL then propagates labels
across the graph using a local backbone (LBB) spread and
diffusion-based label propagation. After the clustering of pix-
els representative of superpixels, majority voting is performed

within each superpixel, ensuring spatial homogeneity of cluster
assignments. As will become clear in extensive numerical
experiments showing its efficacy, S2DL’s procedure results in
a substantial decrease in computational complexity while at
the same time mitigating the effects of noise and outliers.
Thus, S2DL is a highly efficient and accurate approach to
unsupervised HSI clustering.

To summarize, our contributions are threefold. First,
we present an efficient approach that merges superpixel
segmentation with the selection of representative pixels, sig-
nificantly reducing computational demands for graph-based
analysis. Second, we introduce spatially regularized graphs
that capitalize on the inherent spatial regularity of HSIs,
thereby enhancing clustering efficacy. Lastly, we employ
the LBB spread to further incorporate modal pixels into
downstream non-modal labeling. This article is organized as
follows. In Section II, we discuss related work on HSI clus-
tering, diffusion geometry, and spatial–spectral HSI clustering
algorithms while overviewing terminology and background.
Section III introduces S2DL and motivates its approach to
spatial–spectral clustering (SC) of HSIs. Section IV shows
the efficacy of S2DL through extensive numerical experiments
comparing S2DL with classical and state-of-the-art unsuper-
vised approaches on four benchmark HSI datasets: Indian
Pines, Salinas, Salinas A, and WHU-Hi. Additionally, this
section showcases the application of S2DL to a Gaofen-5
sensor-collected HSI dataset for unsupervised mapping man-
grove species in Mai Po Nature Reserve (MPNR), Hong
Kong [51]. Section V concludes and discusses future work.

II. RELATED WORKS

A. Overview of HSI Clustering Techniques

Clustering is an unsupervised learning technique that groups
similar objects or data points without the need for GT labels
or expert annotations [52]. We denote pixels in an HSI as a
set X = {xi }

N
i=1 ⊂ RB , where each xi denotes the spectral

signature of a pixel in the image, and B represents the number
of spectral bands. HSI clustering algorithms partition pixels
into a clustering {Xk}

K
k=1 (where each Xk is a cluster) such

that pixels from the same cluster are “similar” (possibly due
to a similar material constitution), while pixels from different
clusters are “dissimilar” (containing different materials) [53].
The specific notion of similarity used varies widely across the
many clustering algorithms in the literature.

Traditional clustering methods—e.g., K -Means [54], Gaus-
sian mixture model [55], and density-based spatial clustering
of applications with noise [56]—have been employed for
HSI clustering [4]. However, these methods often encounter
challenges due to the presence of spectrally mixed pixels
and noise inherent in HSI data [41], [43], [53], e.g., sen-
sitivity to initialization, assumptions on the distribution of
data [40], [41], [57], [58], and sensitivity to noise [4]. Density
peak clustering (DPC) [59] was introduced to mitigate some
of these distribution assumption errors (specifically, that of
uniform density across clusters). DPC locates K points in
a dataset to serve as cluster modes: exemplars for latent
underlying cluster structure. DPC cluster modes are defined as
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the highest-density points farthest in Euclidean distance from
other high-density points. These cluster modes are assigned
unique labels, which are propagated across the dataset by
assigning (in order of decreasing density) each point the label
of its ℓ2-nearest neighbor of higher density that is already
labeled. However, the use of Euclidean distances to make
pairwise comparisons between HSI pixels in DPC [59] and
other traditional clustering algorithms [52] has been shown to
reduce clustering quality on datasets with nonlinear decision
boundaries between latent clusters [40], [49], [53], or due to
the “curse of dimensionality,” that all pixels tend to appear
roughly equidistant from one another in high-dimensional
space [4], [41]. Finally, these methods often cluster individual
pixels, agnostic to rich spatial information present in HSI
data [1], [4], [9], [45], [49].

Deep clustering algorithms have been investigated for use
on HSIs due to their ability to capture nonlinear decision
boundaries and learn discriminative features for material clas-
sification in recent years [4], [5], [16], [60], [61], [62],
[63], [64]. The vast deep clustering techniques in the lit-
erature range from contrastive learning-based [61], [62] to
graph-based approaches [63], [64], [65]. The integration of
superpixels in deep HSI analysis has been shown to enhance
computational efficiency and semantic consistency [62], [66].
Despite their success on a wide range of HSI clustering
problems, deep clustering algorithms are often highly sensitive
to noise and perturbations in the data [67], [68], and recent
research has indicated that their success may be attributable to
preprocessing steps rather than the learning capabilities of the
network itself [69]. Moreover, despite their highly accurate
recovery of latent material structure in some applications,
many deep HSI clustering approaches face limitations such
as high computational complexity of training and the need for
large training sets [60], [62], [64].

B. DL for HSI

DL has emerged as a highly effective approach to extracting
and utilizing the inherent geometric structure contained within
HSI data in an unsupervised clustering framework [41], [42],
[49], [53], [58]. DL interprets HSI pixels as nodes in an
undirected, weighted graph, the edges between which indicate
pairwise similarity between pixels [41], [70]. This graph
can be stored in a sparse adjacency matrix W ∈ RN×N ,
where Wi j = 1 if the pixel x j is one of the kn ℓ

2-nearest
neighbors (where ℓ2 denotes the Euclidean distance) of the
pixel xi in X , and Wi j = 0 otherwise. DL relies on the
data-dependent diffusion distance metric to make pairwise
comparisons between pixels in the HSI [41], [42], enabling
highly accurate extraction of latent nonlinear structure in
HSIs [6], [41], [48], [53], [57], [71].

Diffusion distances are calculated by considering a Markov
diffusion process on the graph underlying W [42]. The transi-
tion matrix for this diffusion process can be calculated directly
from W: P = D−1W, where D is the diagonal degree matrix
with Di i =

∑N
j=1 Wi j . Provided the graph underlying P is

irreducible and aperiodic, P will possess a unique stationary
distribution π ∈ R1×N such that πP = π . The diffusion

distance at a time t ≥ 0 between any two pixels in the HSI
xi , x j ∈ X [42], [48], [57], [58] is defined by

Dt (xi , x j ) =

√√√√ N∑
k=1

[(Pt )ik − (Pt ) jk]
2/πk . (1)

Diffusion distances have a natural relationship to the cluster-
ing problem [42], [53], [58]. Indeed, one may expect many
high-weight length-t paths between pixels sampled from the
same latent cluster but very few such paths between pix-
els sampled from different clusters, resulting in intra-cluster
diffusion distances that are small relative to inter-cluster
diffusion distances [42], [53], [58]. The diffusion time param-
eter t governs the scale of structure considered by diffusion
distances, with smaller t enabling retrieval of small-scale
local structure in the image and larger t retrieving global
structure [42], [48], [57].

Importantly, the eigendecomposition of P can be used for
the efficient computation of diffusion distances. Indeed, given
the eigenvalue–eigenvector pairs {(λk, ψk)}

N
k=1 of the transition

matrix P, it can be shown [42] that

Dt (xi , x j ) =

√√√√ N∑
k=1

|λk |
2t [(ψk)i − (ψk) j ]

2 (2)

for t ≥ 0 and xi , x j ∈ X . Crucially, under the assumptions
of irreducibility and aperiodicity, |λk | < 1 for k > 1. This
implies that, for sufficiently large t , diffusion distances can be
accurately approximated using only the few eigenvectors ψk

corresponding to the largest |λk | [42], [57], [58].
Employing diffusion geometry for HSI clustering yields

significant advantages. Diffusion distances effectively counter
the “curse of dimensionality” inherent to high-dimensional
datasets like HSIs by extracting an intrinsic lower-dimensional,
nonlinear representation of pixels, simultaneously reduc-
ing sensitivity to noise and redundant information [40],
[41], [58]. Consequently, these methods provide a robust
approach to extracting latent geometric structure hidden in
high-dimensional HSI data [41], [48], [53] and have strong
performance guarantees on clustering recovery across wide
classes of data types [57], [58].

Furthermore, several studies have utilized random walks
on graphs for HSI classification. These studies estimate
the probabilities of transitioning from unlabeled to labeled
pixels by minimizing energy derived from random walk
processes, thereby facilitating the classification of unlabeled
pixels [72], [73], [74]. However, DL distinguishes itself
from these related algorithms through its temporal parameter,
enabling the exploitation of both local and global data struc-
tures in HSIs effectively [42], [57]. Moreover, DL leverages
eigendecomposition to efficiently estimate diffusion distances,
thereby enhancing scalability [42], [58]. In addition, as will
be discussed soon, there exist spatial–spectral variants of
DL, achieved by constructing a spatially regularized graph
or assigning labels via spatial window constraints, enhancing
these algorithms’ sensitivity to the spatial context of each
HSI pixel and therefore improving the quality of derived
clusters [48], [49], [50], [75].
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C. Spatial–Spectral Analysis of HSI
Incorporating the spatial structure of an HSI into an HSI

clustering algorithm is essential for achieving high-quality
partitions and mitigating the effects of noise and spectral
variability in HSIs. This is due to the tendency of nearby
pixels to exhibit similar spectral properties [4], [37], [39], [60],
[62], [63], [75]. Spatially regularized graphs offer a robust
framework for embedding spatial context into graph-based
HSI clustering algorithms like DL [48], [49]. Traditional
graph-based methods that focus solely on spectral information
and are agnostic to the spectral consistency observed within
localized spatial regions in HSIs tend to perform poorly due to
the heterogeneous spectral signatures and noise across an HSI
scene [36], [39], [76]. Spatially regularized graphs counteract
this spectral variance by limiting connections between pixels
to those within a spatial radius around each pixel. Mathe-
matically, a spatially regularized kNN graph may be defined
through its corresponding weight matrix W, with Wi j = 1 if
x j is one of the kn Euclidean distance nearest neighbors of
xi from points within a (2R + 1) × (2R + 1) spatial square
centered at xi in the HSI, where R ∈ N is a user-defined spatial
radius, and Wi j = 0 otherwise [48], [49], [53], [76]. Thus, spa-
tially regularized graphs efficiently encode spatial coherence
within the HSI by restricting edges within the graph underlying
W to spatially close pixels [4], [48], [49], [53], [76].

Spatially regularized graphs have emerged as a pivotal tool
in enhancing HSI clustering and semi-supervised classifica-
tion tasks [48], [49], [50]. The spatially regularized graph,
specifically tailored for HSIs with diffusion distances and
enhanced by a spatial window-based labeling consensus mech-
anism, was introduced in [49] to effectively leverage spatial
context. Extending this approach, a multiscale framework
was introduced, utilizing spatially regularized graphs to learn
a single clustering scale that is most explanatory of latent
multiscale cluster structure extracted by varying t in diffusion
distances, as measured by the variation of information [48],
[57]. Furthermore, spatially regularized graphs have found
utility in active learning, a branch of semi-supervised learning
that requires human input. Spatially regularized graphs aid in
the strategic selection of a set of pixels for labeling—based on
available budget—ensuring that the chosen pixels are locally
coherent due to spatial constraints and globally representative
through density estimation [50].

A second important field of research meant to incorporate
spatial information into HSI clustering algorithms is that
of superpixel segmentation. Superpixel segmentation algo-
rithms partition the HSI into relatively small spatial regions
exhibiting comparable spectral signatures, possibly due to
similar mixtures of materials in the region they correspond
to. These regions (or superpixels) capture local spatial struc-
ture, and the analysis of them (rather than that of the full
HSI) reduces the number of pixels being analyzed, and
hence, computational complexity associated with later analy-
sis [77], [78]. Superpixel algorithms fall into two main classes:
clustering-based, which iteratively cluster pixels based on
convergence criteria [79], [80], [81], [82], and graph-based,
which form superpixels by optimizing a cost function on a
pixel-node graph [77], [78], [83], [84], [85]. Simple linear

iterative clustering (SLIC), as one of the most widely used
clustering-based superpixel segmentation algorithm, adapts
K -Means clustering to generate high-quality superpixels while
maintaining a remarkably low computational and memory
cost [79]. ERS is a representative graph-based segmentation
algorithm that generates compact, homogeneous superpixels
with similar sizes by minimizing the cost of cuts on the image
graph, see Section III-B [77]. Given ERS’s precision and
enhanced boundary delineation, as demonstrated in superpixel
segmentation benchmarks [86], we have chosen to integrate
ERS into our proposed method.

Superpixel-based methods have been employed in HSI
classification to incorporate spatial information into their pre-
dictions and reduce the effect of spatial–spectral variability
within each superpixel [87], [88], [89], [90]. Several methods
have combined superpixel segmentation with dimensionality
reduction to address the high dimensionality of HSIs and sim-
plify classification by using contextual pixel information. For
instance, SuperPCA utilizes ERS and PCA at the superpixel
level for enhanced local feature extraction from homogeneous
areas, improving classification [46]. Similarly, superpixel-
wise collaborative-representation graph embedding employs
a Laplacian-regularized collaborative representation within
superpixels for dimensionality reduction, tackling spectral
redundancy and class variability [91]. Superpixel constraints
aid in subspace learning and classification accuracy [92],
and ERS effectively reduces noise and identifies anchor
points for clustering [39]. Additionally, superpixel pooling
autoencoders have been developed to capture superpixel-level
latent representations to assist subsequent cluster analysis [62].
Despite these developments, the integration and exploration of
superpixels in unsupervised HSI clustering are still relatively
limited, particularly in conjunction with diffusion geome-
try [48], [49], [66], [75], [93].

III. SUPERPIXEL-BASED AND SPATIALLY
REGULARIZED DL

This section introduces the proposed algorithm for unsu-
pervised HSI clustering: S2DL. While pixel-wise clustering
methods can be effective in certain scenarios, they often
fail when applied to HSIs due to their disregard for spatial
information: a key characteristic in HSI data. Ignoring the
spatial context can lead to inaccurate clustering results as the
spatial proximity of pixels often correlates with similarity in
material composition in remotely sensed images.

A. Overview of S2DL

S2DL addresses this challenge by integrating spatial infor-
mation into its clustering process in two key steps. First,
S2DL employs the graph-based ERS superpixel segmentation
technique to obtain a high-quality superpixel segmenta-
tion of the HSI [77], [86], as described in Section III-B.
Second, as described in Section III-C, S2DL constructs a
spatially regularized graph from carefully selected pixels
from each ERS-derived superpixel, effectively capturing intrin-
sic spectral–spatial relationships between pixels within the
HSI [41], [48], [49] while reducing overall computational
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Fig. 1. Workflow of the S2DL algorithm. The algorithm begins by projecting the first three PCs of the input HSI, which are then used to create a superpixel
map via the ERS algorithm. S2DL estimates the k highest-density pixels within each superpixel as representatives in graph construction, and then constructs
a spatially regularized kNN graph. Mode pixels are subsequently identified and assigned unique labels, with the LBB of each mode receiving the same label
as its respective mode. Then the labels are propagated to unlabeled selected pixels. The process concludes with majority voting within each superpixel to
finalize the clustering.

complexity of graph construction and analysis. Finally, S2DL
performs a diffusion-based clustering procedure to label super-
pixel exemplars and propagate those labels to the remaining
image as described in Section III-D.

The combination of superpixel segmentation and the use
of a spatially regularized graph is expected to result in
superior clustering results using S2DL (as will be shown
in our numerical experiments in Section IV). As is shown
in the complexity analysis in Section III-E, S2DL’s use of
superpixel segmentation and spatially regularized diffusion
distances offers a computationally efficient approach to HSI
cluster analysis that is expected to translate to high-quality
unsupervised analysis of large-scale HSI datasets. The detailed
steps of S2DL are introduced in Sections III-B–III-E and
summarized in Fig. 1 and Algorithm 2.

B. ERS-Based Superpixel Segmentation

S2DL begins by computing a superpixel segmentation map
using ERS, see Algorithm 1 [77]. As will become clear soon,
the superpixels derived using ERS not only reflect spectral
similarities between pixels in a graph-based procedure, but
also the spatial information. Incorporating spatial information
through superpixels not only offers a significant improvement
over traditional pixel-wise clustering techniques, which often
disregard spatial information, but also substantially reduces
computational complexity by decreasing the number of pixels
processed in subsequent graph construction.

ERS builds its superpixel segmentation based on an undi-
rected weighted graph based on the projection of pixel spectra
onto their first three principal components (PCs), denoted
XPCA. Mathematically, this initial graph may be defined using
the weight matrix Z ∈ RN×N as

Zi j =

{
exp

(
−

mi j

2σ 2

)
, if xi ∈ Nℓ(xi ) or x j ∈ Nℓ(x j )

0, otherwise

where mi j = ∥l(xi ) − l(x j )∥
2
2 · ∥xi − x j∥

2
2, with l(xi ) and

l(x j ) representing spatial coordinates of pixels xi and x j ,
respectively, and σ > 0 is a tuning parameter meant to
control interactions between pixels, and Nℓ(x) is the set of
ℓ spatial nearest neighbors of x in the PCA-reduced feature
space. In our later experiments, we set σ = 5 and ℓ = 8,
the default values for these parameters [77]. Denote the edge
set underlying this graph as E = {(i, j)|Zi j > 0}. ERS
performs superpixel segmentation by locating a subset of edges
A ⊆ E to form Ns compact, homogeneous, and well-balanced
superpixels using the following optimization:

A∗
= argmax

A
J (A) = H(A)+ αB(A)

s.t. A ⊆ E and NA ≥ Ns (3)

where NA is the number of connected components in A and
α > 0 is the balancing factor that determines the trade-off
between the terms H(A) and B(A) that are described below.

The term H(A) = −
∑N

i=1 µi
∑N

j=1 qi j (A) log(qi j (A)) mea-
sures the entropy rate of the edge set A, encouraging compact
and homogeneous spatial regions in the ERS superpixel seg-
mentation by considering a random walk on the graph subset
A [77]. The entropy rate calculation relies on two main
quantities: the N × 1 stationary distribution µ ∈ RN×1 of
a random walk on the initial graph underlying Z—defined
by µi = (

∑N
i=1 Zi j/

∑N
i, j=1 Zi j )—and transition probabilities

qi j (A) on the edge subset A of E , defined as

qi j (A) =


1 −

∑
k∈Ai

Zik∑N
k=1 Zik

, if i = j

Zi j∑N
k=1 Zik

, if i ̸= j and (i, j) ∈ A

0, if i ̸= j and (i, j) /∈ A

where Ai = {k ∈ {1, 2, . . . , N }|(i, k) ∈ A} denotes the set
of indices of pixels directly connected to xi in A. Thus, the
entropy rate H(A) increases monotonically with the addition
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Algorithm 1 ERS Algorithm [77]
Input: X PC A (Projection of Pixels onto first 3 PCs),

Ns (# superpixels), α (# balancing factor)
Output: S (Superpixel Map)

1 Construct the graph G = (X PC A, E,Z);
2 Initialize the subset edge A∗

= ∅, U = E and
S = {Si | Si = {xi }, 1 ≤ i ≤ N };

3 while U ̸= ∅ and NA ≥ Ns do
4 Find edge â = argmaxa J (A∗

∪ {a})− J (A∗),
where J (A∗) = H(A∗)+ αB(A∗)

5 if A∗
∪ {â} is cycle-free then

6 Update A∗
= A∗

∪ {â}
7 end
8 Update U = U − {â}
9 end

10 while A ̸= ∅ do
11 if (i, j) ∈ A then
12 Find xi ∈ Sa and x j ∈ Sb, update Sa = Sa ∪ Sb

13 Update A = A − {(i, j)} and S = S − Sb

14 end
15 end

of edges to A, particularly when these edges contribute to
more coherent clusters [77].

The second term in ERS’s optimization B(A) is meant to
encourage uniform superpixel size and a balanced number of
superpixels. Mathematically, B(A) = −

∑NA
i=1 r i log(r i )− NA,

where r ∈ [0, 1]NA denotes the distribution of pixels in NA

connected components, i.e., r i is the fraction of pixels in XPCA
that exist in connected component i . Therefore, all else equal,
the incorporation of B(A) downweights both complicated
superpixel segmentations with high variation in superpixel size
across the image, or segmentations with extraneous superpix-
els. Hence, the incorporation of B(A) can be interpreted as
balancing the resulting ERS superpixel segmentation, ensuring
that new superpixels are roughly equal in scale when edges
are added to A in the ERS optimization [77].

Together, these two terms in J (A) monotonically increase
as edges are added to A, referencing uniformly sized, spec-
trally similar spatial regions as derived superpixels. The
proposed objective function is efficiently addressed using a
“lazy greedy” heuristic that initializes with an empty edge set
A and gradually adds edges to maximize the ERS objective
function [94]. This iterative addition persists until the number
of connected components NA matches the pre-set target Ns ,
thereby achieving the specified number of superpixels [77].
Finally, superpixels are generated from the connected edges
in the optimized edge set A∗. Mathematically, a superpixel
Si is a set of pixels with a coherent subset of edges in A∗,
see details in Algorithm 1. In the proposed S2DL algorithm,
the superpixel segmentation S is utilized for subsequent graph
construction, as will become clear soon in Section III-C.

C. Reduced Spatially Regularized Graph Construction

S2DL computes a spatially regularized graph (see
Section II-C for details) using a small subset of carefully

selected pixels from the ERS superpixel segmentation. To find
the representative pixels from each superpixel, S2DL first relies
on the following quantity:

ζ(x) =
1
Z

∑
y∈kn(x)

exp
(
−||x − y||22/σ

2
0

)
(4)

for each pixel x ∈ X , where kn(x) denotes the set of kn

ℓ2-nearest neighbors of the HSI pixel x in X , σ0 > 0 is
a scaling factor controlling the interaction radius between
pixels, and the quantity Z normalizes ζ(x) to ensure that∑

y∈X ζ(y) = 1. Thus, ζ(x) will be higher for modal pixels
that are close in Euclidean distance to their kn ℓ2-nearest
neighbors and small otherwise [41], [53], [58]. For each ERS
superpixel, S2DL selects the k pixels within the superpixel
maximizing ζ(x), resulting in Ns × k representative pixels
used for graph construction. Mathematically, we define this
highly explanatory subset Xs of X by Xs =

⋃Ns
i=1{x ∈ Si |x is

one of the k maximizers of ζ(x) in Si }.
Importantly, constructing the graph using Xs instead of the

entire set X leads to a significant reduction in computational
complexity, while maintaining an accurate characterization
of essential spatial–spectral and geometric information. Once
representative pixels have been identified, a sparse spatially
regularized kNN adjacency graph is constructed from the pix-
els in Xs , following the procedure described in Section II-C.
This graph encodes rich spatial information in an HSI data
by restricting edges between pixels to spatial nearest neigh-
bors [48], [50].

D. Diffusion-Based Clustering

This section describes S2DL’s unsupervised diffusion-based
clustering procedure to obtain high-quality labeling of super-
pixels. S2DL is inspired by the ubiquitous DPC algorithm [59]
(See Section II-A) and its diffusion geometry-based exten-
sions [41], [53], [58] that rely on diffusion distances rather
than Euclidean distances to perform cluster analysis. Specif-
ically, S2DL uses diffusion distances calculated from the
spatially regularized graph introduced in Section III-C for the
unsupervised identification of cluster modes [48], [49], [58].
First, S2DL locates K pixels meant to serve as cluster modes—
exemplars for latent cluster structure—and assigns these pixels
unique labels. These cluster modes are identified as the K
pixels in Xs that maximize 1t (x) = dt (x)ζ(x), where

dt (x)

=


max
y∈Xs

Dt (x, y), x = argmax
y∈Xs

ζ(y)

min
y∈Xs

{Dt (x, y)|ζ(y) ≥ ζ(x)}, otherwise.

(5)

In particular, dt (x) is the diffusion distance at time t
between x and that HSI pixel’s Dt -nearest neighbor with
higher density. Thus, cluster modes identified using S2DL
are the highest-density pixels in Xs farthest in diffusion
distance from other highest-density pixels [6], [41], [48],
[49], [50], [53], [57], [58]. S2DL assigns Ĉ(xmk ) = k for
k = 1, 2, . . . , K , where {xmk }

K
k=1 are the K maximizers of
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1t (x) and Ĉ ∈ {1, 2, . . . , K }
N is a clustering map with

Ĉ i = k indicating that pixel xi is assigned to cluster k.
After locating cluster modes, S2DL relies on an LBB to

propagate modal labels to unlabeled pixels in Xs [95]. The
LBB is pivotal, consisting not only of the cluster center but
also of the nearest neighbors most likely to belong to the
same cluster, as inferred through similarity measures such as
Euclidean distance or cosine similarity. In S2DL, the LBB of
each modal pixel—defined as the first kn spatially regularized
nearest neighbors of that cluster mode—is assigned the same
label as that of the modal pixel [95]. The formation of the
LBB plays a crucial role in the S2DL algorithm, highlighting
the spatial coherence of HSI data early in the non-modal
labeling process. Next, in order of descending density, the
remaining pixels x ∈ Xs are labeled according to their Dt -
nearest neighbor of higher density that is already labeled [49],
[58], [59]: Ĉ(x) = Ĉ(x∗), where

x∗
= argmin

y∈Xs

{Dt (x, y)|Ĉ(y) > 0 ∧ ζ(y) ≥ ζ(x)}. (6)

This label propagation is entirely unsupervised, requiring no
input labels. Once all pixels in Xs have been labeled, S2DL
propagates labels within to the rest of the image using a
majority voting process, assigning the majority label of repre-
sentative pixels in each superpixel to all pixels in a superpixel.
Notably, the majority voting procedure further enforces the
retention of essential spatial–spectral characteristics of the
original HSI data in S2DL.

E. Computational Complexity

This section analyzes S2DL (Algorithm 2) concerning its
computational complexity and scaling. The first stage, wherein
superpixels are calculated using ERS, has the following main
components: computing the first three PCs at a complexity
of O(N B2), and the ERS algorithm itself. While the worst
case complexity of ERS is O(N 2 log(N )), in practice, it often
performs more efficiently, typically exhibiting an average-case
complexity closer to O(N log(N )) [77].

For nearest neighbor searches, we assume the use of cover
trees, which enables efficient nearest neighbor searches in
high-dimensional spaces [96]. Indeed, the computational com-
plexity of searching for the k ℓ2-nearest neighbors in X
using cover trees is O(kn Bcd N log(N )), where d is the HSI’s
doubling dimension [53], [96] and c > 0 is a constant that is
O(1) with respect to the other parameters kn , B, d, and N .
In this complexity analysis, we assume that these two values
remain constant across subsets of X , e.g., that the doubling
dimension of X is the same as that of Xs [96]. Under this
assumption, the computational complexity of computing the
KDE at each pixel is O(kn Bcd N log(N )). Similarly, locating
the k KDE-maximizers from each superpixel has complexity
O(Ns log(N/Ns) + O(k Ns). Finally, the computational com-
plexity of building our reduced spatially regularized graph is
O(kn Bcdk Ns log(k Ns)), a notable reduction in computational
complexity due to our earlier downsampling procedure.

To perform its diffusion-based clustering, S2DL requires
O(kn Bcdk Ns log(k Ns) + kn L2k Ns) to calculate dt (x), where
L is the number of eigenvectors of P used to approximate

Algorithm 2 S2DL Method
Input: X (HSI), Ns (# superpixels), k (# representative

pixels per superpixel), σ0 (kernel scaling
factor), kn (# nearest neighbors), R (spatial
radius), K (# of clusters)

Output: C (Clustering Map)
ERS-Based Superpixel Segmentation;

1 Calculate Xs : the projection of pixels in X onto its
first three PCs;

2 Run ERS to segment the PCA-reduced HSI X PC A

into Ns superpixels;
Reduced Spatially Regularized Graph Construction;

3 Compute kernel density estimation
ζ(x) =

∑
y∈kn(x) exp(−||x − y||22/σ

2
0 ) for all

x ∈ X ;
4 For each superpixel, store the k pixels in that

superpixel maximizing ζ(x) in Xs ;
5 Construct a spatially-regularized kNN adjacency

graph using the selected k · Ns pixels with spatial
radius R;

Diffusion-Based Clustering;
6 Compute 1t (x) = ζ(x)dt (x) for x ∈ Xs , where

dt (x) is as in Equation 5;
7 Identify the K maximizers of 1t (x) as modal

pixels and assign unique labels from 1 to K ;
8 For each cluster mode, assign its LBB (with kn

nearest neighbors) the modal pixel’s label;
9 In order of decreasing density, assign each

unlabeled pixel in Xs the label of their Dt -nearest
neighbor of higher density ζ that is already
labeled (Equation 6);

10 For each superpixel, assign all pixels in the
superpixel the modal label among the k
representative pixels in Xs from this superpixel;

diffusion distances [42], [58]. In contrast to diffusion-based
methods clustering all the pixels, S2DL therefore operates
at a significantly reduced computational complexity through
its analysis of superpixel exemplars. Then, the computational
complexity of labeling the LBB and remaining pixels is
O(K kn) and O(kn L Bcdk Ns log(k Ns)), respectively [58], [95].
Finally, it costs O(Nsk) to perform majority voting. Prior
work has demonstrated that it is sufficient to take kn =

O(log(N )) [53], [57], [58] and we expect that, for HSIs taken
over the same scene, Ns = O(1) and K = O(1) with respect
to N . Assuming that L = O(1) and k = O(log(N )) with
respect to N also, S2DL’s overall computational complexity
reduces to O(Bcd N log2(N )): log-linear with respect to the
number of pixels. Notably, S2DL’s computational complexity
is dominated by its calculation of the KDE (not graph con-
struction, as in other diffusion-based algorithms), indicating
high-quality scaling to large-scale HSI clustering problems.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

This section contains extensive numerical experiments
showing the efficacy of the proposed S2DL algorithm.

Authorized licensed use limited to: TUFTS UNIV. Downloaded on June 11,2024 at 23:32:28 UTC from IEEE Xplore.  Restrictions apply. 



4405818 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

We compared S2DL against both traditional and state-of-the-
art comparison methods on four real-world HSIs often used
for benchmarking new algorithms (Section IV-A). In addition,
we demonstrate that S2DL may be applied to the real-world
problem of landscape-scale species mapping of mangroves
using remotely sensed HSI data collected over the MPNR
(Section IV-B).

Among the algorithms we analyzed, several serve as
baselines, as they do not integrate spatial information.
K -Means [54] partitions data by minimizing intra-cluster
ℓ2-distances. SC [70] employs K -Means on the first K eigen-
vectors of P to identify clusters. DPC [59] defines cluster
modes as high-density points distant from others, assigning
them unique labels that are then propagated to neighboring
points based on decreasing density. PGDPC [97] discrimi-
nates many “peak” pixels with highest density among nearest
neighbors as measured with a KDE from “non-peak” pixels,
which are associated with their nearest neighbor of higher
density. It then derives graph-based cluster assignments for
peak pixels (relying on both density and pairwise geodesic dis-
tances for graph construction) and propagates along geodesic
paths to remaining non-peak pixels [97]. DL [58]—recognized
as an early diffusion-based clustering technique—relies on
the metric 1t (x) from Section III-D for identifying cluster
modes, and performs label propagation by assigning to each
point the label of its Dt -nearest neighbor with higher density.
Diffusion and volume maximization-based image clustering
(D-VIC) [53] is a recent diffusion-based clustering algorithm
that incorporates spectral unmixing into a DL clustering
framework, downweighting high-density, low-purity pixels in
mode selection and non-modal labeling, while following DL
for other aspects. Although shown to be successful on a
wide range of HSI data [41], [53], [57], DL and D-VIC do
not natively incorporate spatial information into their labeling
procedures.

Other comparison algorithms implemented exploit both
spatial and spectral information in their labeling proce-
dures. Improved SC with Multiplicative Update Algorithm
(SC-I) [37] modifies SC by iteratively solving the eigenvalue
decomposition of the Laplacian matrix L, relaxing its discrete-
ness condition, and integrating spatial context into the graph
underlying P. SLIC-PGDPC (S-PGDPC) [97] extends PGDPC
by taking the average of the spectral signatures within each
superpixel and using this average as input for the PGDPC
algorithm. Spectral–spatial diffusion learning (DLSS) [41]
enhances DL by adopting a two-stage labeling scheme: ini-
tially, it assigns labels via DL, subject to a spatial consensus
check through majority voting within a specified window,
leaving non-conforming pixels unlabeled; this is followed by a
secondary DL process to label the remaining unlabeled pixels.
Spatial-spectral image reconstruction and clustering with dif-
fusion geometry (DSIRC) builds on the D-VIC framework,
utilizing both purity and density metrics for cluster mode
identification, and enhances clustering accuracy by integrating
spatial information through a shape-adaptive reconstruction
process that effectively reduces noise before applying DL [75].
Spatially regularized DL (SRDL) [48], [49] further refines
DLSS by constructing a spatially regularized graph, resulting

in clusters that are more spatially consistent. Hyperparameters
for all algorithms were optimized for a grid search, as is
described in Appendix.

To evaluate the performance of our S2DL algorithm,
we employ a suite of metrics. Overall accuracy (OA)
calculates the total fraction of pixels correctly clustered.
Average accuracy (AA) measures the average OA across
different classes. Cohen’s kappa coefficient (κ), defined as
κ = (po − pe)/(1 − pe), contrasts observed accuracy against
expected random accuracy [98]. Additionally, we introduce
the sum of OA, AA, and κ (sum) as a composite metric
to assess overall performance. We track the runtime (RT)
in seconds to assess computational efficiency. The Hungar-
ian algorithm is applied to align the clusters generated by
S2DL and related algorithms with the GT labels, ensuring
each cluster is accurately matched with its corresponding
GT class for performance evaluation [99], and we determine
the optimal clustering outcome by maximizing the sum. For
all datasets, we set K as the GT number of clusters. All
experiments were conducted in MATLAB R2021a with the
same environment: Intel1 Core2 i7-10875H CPU @ 2.30 GHz,
8 cores, 64 GB RAM, run on a Windows 64-bit system.
The code to replicate numerical experiments can be found at:
https://github.com/ckn3/S2DLgithub.com/ckn3/S2DL.

A. Experiments on Benchmark HSI Datasets

1) Benchmark Datasets: In this section, we introduce the
four benchmark datasets chosen for this study. These datasets,
captured using the AVIRIS and Hyperspec sensors, serve as
representatives of diverse agricultural landscapes and have
been widely utilized for evaluating machine learning methods
for HSI.

a) Salinas and Salinas A: Captured by the AVIRIS
sensor in 1998, the spatially regular dataset Salinas showcases
the agricultural terrains of Salinas Valley, California. It has
a spectral range of 380 to 2500 nm across 224 bands, with
spatial size 512 × 217 pixels, totaling 111 104 pixels. The
Salinas A subset zooms in on a specific region of the Salinas
scene with 83 × 86 pixels, totaling 7138 pixels. Gaussian
noise was added for distinctiveness. While the broader Salinas
dataset has 16 classes, Salinas A focuses on six main crop
types.

b) Indian Pines: Produced by the AVIRIS sensor in
1992, this dataset portrays northwest Indiana farmlands. It cov-
ers a spectral range of 400 to 2500 nm over 224 bands
and spreads over 145 × 145 pixels, making up 21 025 pixels.
Notably, it includes 16 GT classes, capturing various crops
and infrastructure.

c) WHU-Hi: Collected in 2018 using the Headwall
Nano-Hyperspec imaging sensor mounted on unmanned aerial
vehicles, the dataset offers a detailed view of agricultural
fields in LongKou, Hubei Province, China. It encompasses
270 spectral bands ranging from 400 to 1000 nm and covers
a spatial extent of 550 × 400 pixels, summing up to 220 000
pixels. The dataset is categorized into nine GT classes, which
include six types of crops and three non-crop categories.

1Registered trademark.
2Trademarked.
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Fig. 2. Comparison of clustering results of (b)–(g) algorithms using spectral information and (h)–(l) algorithms using both spatial and spectral information
and (m) S2DL on (a) Salinas A dataset with (n) GT.

2) Numerical Results on Benchmark Datasets: This section
offers detailed comparisons between the clusterings produced
by S2DL and various classical and state-of-the-art algorithms
introduced earlier in this section. Across the four benchmark
HSIs analyzed, S2DL delivers clusterings with the highest
performance in terms of three evaluation metrics. Notably,
it achieves almost perfect clustering on the Salinas A dataset,
despite being unsupervised. Similarly, although the Indian
Pines dataset is widely considered challenging due to its many
classes being distributed widely across the scene, S2DL still
manages to surpass its competitors in performance. On the
Salinas dataset, S2DL not only yields the best performance
in OA and κ but also completes the task in 8.80 s of RT.
In contrast, the next best algorithm (SRDL) required 445.31 s
of RT. This impressive improvement on RT is attributed to the
use of superpixel-based reduction in graph size, illustrating
S2DL’s balanced approach to both speed and accuracy. For
the WHU-Hi dataset, S2DL achieves the highest sum of
OA, AA, and κ , exceeding the second best by 5.6%, and
completes its analysis in only 15.46 s. Though the OA and
κ are lower than the highest values, the AA surpasses the
second best by 13.5%. These findings underscore S2DL’s
efficacy and efficiency in HSI clustering, marking it as a
suitable choice for practical applications.

As visualized in Fig. 2, S2DL demonstrates notable pre-
cision in accurately identifying the GT labels within the
Salinas A dataset. Whereas various algorithms split the cluster
associated with the eight-week maturity romaine into two parts
(visualized in dark blue in Fig. 2), both S2DL and the next
highest-performing algorithm, D-VIC, correctly group these
pixels into a unified cluster, with S2DL surpassing D-VIC by
approximately 2% across all three metrics (see Table I). The
precision demonstrated by D-VIC primarily stems from its
incorporation of spectral unmixing information [53], whereas
S2DL’s effectiveness is attributed to its incorporation of both
spatial and spectral data into its diffusion-based clustering
procedure. Notably, S2DL mitigates spatial noise in its cluster-
ing through its superpixelation step, yielding a more spatially
regularized clustering compared to D-VIC. This demonstrates
the capability of S2DL to utilize spatial information as a robust
alternative to the spectral unmixing in D-VIC, especially with
spatially regular HSIs.

The performance of S2DL on the Salinas dataset is par-
ticularly noteworthy, having achieved the highest OA and
κ scores in Table I. The AA of S2DL is marginally lower
than that of SRDL (<3%), potentially because of SRDL’s
efficiency in recognizing smaller classes. Nevertheless, this
slightly lower AA is compensated with over 5% higher OA
and κ . Additionally, S2DL boasts a much lower RT due to
its superpixelation step, further highlighting its efficiency. The
gap in performance among S2DL, SRDL, and other methods
indicates the significance of a spatially regularized graph
approach in handling large and regular HSIs like Salinas.

As shown in Fig. 3, S2DL exhibits outstanding performance
on the Indian Pines dataset as well. Indeed, S2DL achieved
OA and κ values slightly higher than those of SRDL—its
nearest competitor—by approximately 1% and AA values
4% in Table I. This improvement indicates S2DL’s enhanced
accuracy in classifying diverse classes, including those with
fewer labels. Furthermore, S2DL delivers its efficient clus-
tering performance with substantially lower RT than SRDL.
As discussed earlier, this significant reduction in computa-
tional cost is due to S2DL’s utilization of superpixelization.
While SRDL utilizes a spatially regularized graph, S2DL inte-
grates both superpixels and a spatially regularized graph. This
combination not only facilitates more efficient use of spatial
information but also optimizes the computational process,
leading to the observed RT advantage.

Finally, S2DL distinguishes itself on the WHU-Hi dataset
by achieving the best sum of metrics and the highest AA
by 5.6% and 13.5% compared to DPC, its nearest competi-
tor. DL and DPC, despite outperforming S2DL in OA and
κ slightly, require extensive processing times due to pixel-
wise analysis, exceeding 1800 s. Conversely, S2DL leverages
superpixels for a swift analysis, concluding in merely 15.46 s.
S2DL’s lower OA and κ on WHU-Hi result from the limited
utility of spatial regularization for this dataset, a contrast to
its benefits on other datasets. This aspect is detailed later
in Section IV-A4.

3) Hyperparameter Robustness Analysis: This section con-
siders the robustness of S2DL’s clustering performance to the
selection of hyperparameters. We focus on parameters such
as the number of superpixels Ns , the spatial radius R, the
number of representative pixels per superpixel k, and the
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TABLE I
COMPARISON OF UNSUPERVISED CLUSTERING METHODS ON BENCHMARK HSI DATASETS. THE BEST AND SECOND-BEST PERFORMANCES ARE

INDICATED BY BOLD AND UNDERLINED VALUES, RESPECTIVELY. S2DL STANDS OUT FOR ITS HIGH-QUALITY CLUSTERING ACROSS ALMOST
ALL METRICS AND DATASETS, WITH THE EXCEPTION OF AA ON SALINAS, AND OA & κ ON WHU. THE RELATIVELY LOW RTS AND TOP

SUM SCORES COMPARED TO OTHER ALGORITHMS ALSO HIGHLIGHT THE SCALABILITY OF S2DL AND EFFICACY FOR ANALYSIS
OF LARGE HSIS

Fig. 3. Comparison of clustering results of (b)–(g) algorithms using spectral information and (h)–(l) algorithms using both spatial and spectral information
and (m) S2DL on (a) Indian Pines dataset with (n) GT.

diffusion time t . Given the established stability of DL for the
kernel scaling factor σ0 and the number of nearest neighbors
kn [41], [53], [58], [100], these parameters are not the focus
of our robustness analysis here. Instead, we focus on the
new hyperparameters introduced with S2DL as a part of its
incorporation of spatial information and diffusion time.

Fig. 4 illustrates the impact of the number of superpixels,
denoted as Ns , and the spatial radius R on clustering out-
comes (k held constant). An examination of the algorithm’s
performance on four HSIs suggests that a larger spatial radius
R is preferable when Ns is relatively small. This strategy
guarantees an adequate pixel count for the construction of a
spatially regularized graph. The Salinas dataset, characterized
by its expansive size and homogeneous areas, requires a
larger spatial radius compared to the other two datasets under
consideration, and S2DL’s performance is fairly consistent

when R ∈ [10, 30] and Ns ∈ [300, 1500]. On the other
hand, the Indian Pines dataset, with its constrained spatial
dimensions relative to the Salinas dataset, is more amenable
to the selection of a smaller radius. As depicted in Fig. 4(c),
a similar result can be achieved when R falls within [5, 15]
and Ns ∈ [300, 1500]. Regarding the Salinas A dataset, its size
coupled with consistent spatial clusters make it suitable for a
reduced number of superpixels. Notably, S2DL can still yield
high performance with Ns < 1000. For the WHU-Hi dataset,
the need for a larger spatial radius range of R ∈ [25, 60]
and a superpixel range of Ns ∈ [300, 1500] is attributed to
its extensive size. In general, there is an inverse relationship
between the number of superpixels Ns and the spatial radius R
across various datasets. The spatial dimensions and complexity
of each dataset also influence the optimal selection of Ns and
R. Despite these variations, the S2DL algorithm demonstrates
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Fig. 4. Analysis of OA, AA, and κ for four HSIs under varying spatial radii
R and number of superpixels Ns , with a fixed value of k. Columns in the
figure represent the OA, AA, and κ , respectively, while rows correspond to the
four different datasets. Each subplot within the figure depicts the performances
achieved through various combinations of R and Ns . The x-axis represents the
spatial radius, while the y-axis denotes the number of superpixels. (a) Salinas,
k = 3. (b) Salinas A, k = 5. (c) Indian Pines, k = 5. (d) WHU-Hi, k = 5.

robustness to changes in the hyperparameters R and Ns ,
maintaining consistent performance across HSIs of different
sizes and spatial complexities.

Fig. 5 quantifies the robustness of S2DL to different spatial
radii R and the number of representative pixels k. The top
row of Fig. 5 shows that, with an increase in spatial radius,
the average performance across the four datasets initially
experiences a swift uptick before eventually flattening. This
pattern not only indicates robustness to changes in the spatial
radius but also underscores the enhancement in results upon
the integration of spatial information. For the Salinas A and
Indian Pines datasets, the flattened phases both occur around
R = 10, while for the Salinas dataset, the flat phase arises near
R = 20. For the WHU-Hi dataset, performance continues to
improve with increasing R, with the gains becoming marginal
beyond R = 40. Similarly, Fig. 5 indicates that S2DL is highly
robust to the selection of k—the number of representative
pixels sampled from ERS superpixels—across the evaluated
four datasets. We observe that S2DL achieves the highest
performance on Salinas A for k > 3 in Fig. 5. S2DL
achieves its peak performance on Salinas for k = 3 and
has stable performance for k > 3. Although there is slight
fluctuation in the performance of S2DL on Indian Pines as k
increases, the variance in peak performance remains consistent
within a narrow margin less than 5%. Finally, for the WHU-
Hi dataset, performance slightly increases and achieves its
best when k = 5, then slightly drops when k = 6. This
consistent trend across different values of k demonstrates to the
robustness of the proposed method for all four datasets under
consideration.

Finally, we analyzed the robustness of S2DL to the selection
of t , the diffusion time parameter used in diffusion distances,
to explicitly understand how the diffusion process influences
clustering outcomes. Specifically, we evaluated S2DL at the
optimal parameter set across a data-dependent exponential
grid of t-values that captures the portion of the diffusion
process during which cluster structure may be extracted, see
Appendix for more [48], [53], [57]. In Fig. 6, it is evident that,
for each dataset, there exists a wide window of diffusion time
during which S2DL achieves optimal performance. Notably,
different algorithms required different diffusion time inputs
for optimal clustering performance, likely due to differences
in intrinsic geometric structure within the HSIs. That S2DL
is capable of recovering latent cluster structure during regions
of time aligns with the literature in diffusion clustering [42],
[48], [57], which has demonstrated that diffusion time is
closely linked with the scale of discoverable cluster structure.
Notably, this also indicates that S2DL may be applied to
the important problem of multiscale clustering by varying
the diffusion time parameter t [48], [57], [100]. Regardless,
the steady performance overextended periods of diffusion time
indicates the algorithm’s robustness to this parameter at the
scale of interest.

4) Ablation Studies: This section provides ablation studies
focused on the LBB [95] and the spatial regularization [48],
[49] within the S2DL algorithm. Our objective is to empirically
compare the performance of S2DL with and without the imple-
mentation of these components. The performance differences
are quantitatively analyzed based on the three metrics utilized
throughout this section.

Our analysis begins with an examination of LBB, revealing
varied impacts on performance across datasets, as depicted in
Fig. 7(a). For Salinas, LBB generally enhances performance
metrics, although a notable exception occurs at k = 1, where
the limited pixel selection due to the dataset’s size causes
LBB to overemphasize pixel similarity. Conversely, S2DL’s
performance on Indian Pines is uniform across k for k > 1,
with or without the use of an LBB. Finally, on Salinas A,
incorporating LBB leads to a slight reduction in over half
of the metrics assessed, yet its overall performance remains
robust. This slight decline can be attributed to the smaller size
and the subtle differences between classes of Salinas A; when
k is larger, the inclusion of more noisy pixels can diminish
the reliability of LBB.

Next, we turn our attention to the impact of spatial regular-
ization, showcased in Fig. 7(b). This ablation study modifies
the S2DL by removing the spatial window constraint in the
kNN graph construction, thereby allowing the algorithm to
consider all representative pixels in its search. For Indian Pines
and Salinas, adding spatial regularization leads to improved
OA and κ , but at the cost of AA, enhancing overall per-
formance. This indicates spatial regularization tends to favor
overall accuracy, possibly at the expense of accurately identify-
ing minor classes. In contrast, Salinas A sees improvements in
all metrics with spatial regularization, highlighting its efficacy
in focusing searches within spatial neighborhoods for spectral
neighbors. Yet, WHU-Hi faces a distinct situation; while AA
sees a minor increase, both OA and κ experience notable
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Fig. 5. Average performance in relation to the spatial radius R (first row) and the best performance concerning the number of representative pixels k (second
row). Each panel corresponds to one of the datasets: (a) Salinas A, (b) Salinas, (c) Indian Pines, and (d) WHU-Hi, with a fixed number of superpixels.

Fig. 6. Analysis of OA, AA, and κ for S2DL Across Various Diffusion Times: The x-axis represents the exponential scale of diffusion time (expressed as 2x ),
while the y-axis shows the corresponding values of OA, AA, and κ as the time parameter t varies across the diffusion process. This figure effectively illustrates
the variation and stability of these performance metrics in response to changes in diffusion time. (a) Salinas A. (b) Salinas. (c) Indian Pines. (d) WHU-Hi.

Fig. 7. Performance Impact of LBB and Spatial Regularization in S2DL.
(a) Summed performance differences across three metrics, calculated as the
performance with LBB minus the performance without LBB. (b) Compares
the performance metrics between S2DL and its variant without spatial regu-
larization, S2DL⋆.

declines with spatial regularization. The drop is linked to the
spatial disconnection of major classes, making local searches
ineffective for bridging these areas.

To further investigate the performance on WHU-Hi,
we visualize the clusterings produced by algorithms that rely
solely on spectral information and demonstrate good perfor-
mance for WHU-Hi, such as DL and DPC, alongside the
clusterings from algorithms that utilize spatially regularized
graphs, namely SRDL and S2DL, and S2DL without spatial
regularization (S2DL⋆), in Fig. 8. The clusterings by DL and
DPC, shown in Fig. 8(a) and (b), although noisy, effectively
identify broad-leaf soybean (yellow) and corn (orange) classes.
However, SRDL and S2DL, shown in Fig. 8(c) and (d),
which employ spatial regularization, underperform on these
classes due to their spatial disconnection; spatial regularization
restricts pixel connections to spectral nearest neighbors within
a local spatial domain. Without a sufficiently large radius,
establishing connections between pixels of the same class
but in disconnected regions becomes challenging. S2DL⋆,
as depicted in Fig. 8(e), significantly improves performance by
sacrificing 1% in AA for a 7.9% increase in OA and a 10.4%
increase in kappa compared to S2DL. In this scenario, S2DL⋆

surpasses all competing algorithms in all metrics, achieving
improvements of 4.4% in OA, 12.5% in AA, 6% in κ , and

Fig. 8. Comparison of clustering results of (a) and (b) algorithms using
spectral information and (c) and (d) algorithms using both spatial and
spectral information through spatial regularization and (e) without spatial
regularization on (f) WHU-Hi dataset with GT.

a cumulative 22.9% increase in sum, as compared to all
algorithms with the exception of S2DL itself, as detailed in
Table I.

In summary, LBB enhances clustering in spatially homo-
geneous datasets like Salinas but may be less beneficial for
datasets with intricate spatial structures or smaller sizes. Spa-
tial regularization generally enhances clustering performance,
yet its application may be counterproductive in cases like
WHU-Hi, characterized by spatial disconnection within the
same class. The improved performance of S2DL without
spatial regularization (S2DL⋆) on WHU-Hi illustrates the
importance of balancing between enhancing connectivity and
preserving spatial characteristics.

B. Experiments on Mangrove Forests in Hong Kong

The MPNR, positioned at the entrance of the Shenzhen
River in northwest Hong Kong and facing the Futian
Nature Reserve in Shenzhen, spans the coordinates 113◦59’E–
114◦03’E, 22◦28’N–22◦32’N. This reserve boasts a rich
tapestry of ecosystems, including wetlands, freshwater ponds,
inter-tidal mudflats, mangroves, reed beds, and fishponds,
each fostering a diverse array of wildlife. Recognized for
its ecological significance and unique location, MPNR was
designated a restricted area in 1975 and subsequently declared
a site of special scientific importance in 1976 [51]. At the
heart of MPNR lies its expansive mangrove forests, covering

Authorized licensed use limited to: TUFTS UNIV. Downloaded on June 11,2024 at 23:32:28 UTC from IEEE Xplore.  Restrictions apply. 



CUI et al.: S2DL FOR UNSUPERVISED HYPERSPECTRAL IMAGE CLUSTERING 4405818

TABLE II

COMPARATIVE PERFORMANCE ANALYSIS OF S2DL AND OTHER METHODS ON THE MPNR DATASET. THE TABLE PRESENTS THE OVERALL PER-
FORMANCE AND PRODUCER’S ACCURACY FOR VARYING k VALUES IN S2DL AND COMPARES IT WITH OTHER CLUSTERING METHODS. BEST

PERFORMANCES IN EACH COLUMN FOR BOTH S2DL AND OTHER METHODS ARE HIGHLIGHTED IN BOLD

approximately 319 hectares and recognized as Hong Kong’s
largest mangrove habitat [101].

Originally, there were six native mangrove species within
the Reserve, including Kandelia obovate (KO), Avicennia
marina (AM), Aegiceras corniculatum (AC), Acanthus ili-
cifolius (AI), Bruguiera gymnorrhiza (BG), and Excoecaria
agallocha (EA). The latter two species are rarer compared to
their counterparts. Additionally, two exotic species, Sonner-
atia caseolaris and Sonneratia apetala, originating from the
nearby Futian Nature Reserve, have been identified within
MPNR. These are actively removed to mitigate their potential
impact on the native mangrove population. Consequently, four
dominant, well-studied species remain: KO, AM, AC, and
AI. Specifically, KO and AI exhibit significant intraspecific
variation, leading to their classification into sub-species: KO1,
KO2, AI1, and AI2 [102].

The hyperspectral data analyzed in this study were acquired
using the Advanced Hyperspectral Imaging system aboard
the Gaofen-5 Chinese satellite. This dataset encompasses
330 spectral bands, covering a 92 × 72 pixel spatial region
with a spatial resolution of 30 m. These bands include both
the visible/near-infrared spectrum, with a spectral resolution of
5 nm, and the shortwave infrared spectrum, with a resolution
of 10 nm [51]. The study area includes not only the six primary
mangrove classes but also classes such as mudflats and water
bodies, collectively accounting for a total of 6624 pixels.

The evaluation metrics employed for benchmark HSIs,
including the introduction of producer’s accuracy, are used
in this study. This metric calculates the ratio of correctly
classified pixels for a specific class to the total number
of GT pixels for that class, thereby assessing class-specific
performance. As depicted in Table II, our method demonstrates
stable results across different values of the parameter k, with
optimal performance observed at k = 5, achieving an OA
of 0.732, AA of 0.77, and κ of 0.686. Notably, the best
performance for half of the six mangrove species (spanning

Fig. 9. Confusion matrix for S2DL clustering (k = 5) and spectral signatures
of samples from each class, colored by GT. Notably, different classes exhibit
separation within spectral signatures in some spectral bands (but not all),
making mangrove species mapping a challenging unsupervised remote sensing
problem. (a) Confusion matrix. (b) Spectral signatures.

from column KO2 to AC) is achieved at k = 5. S2DL
consistently outperforms other methods in OA, AA, and κ ,
with SRDL as its nearest competitor. S2DL surpasses SRDL
in half of the producer accuracy metrics across eight classes,
while SRDL faces challenges in precisely identifying the AC
and AM classes. In contrast, other methods struggle with
accurately clustering classes like KO2, AI1, and AC due to
sample imbalance, spectral similarities between classes, and
diverse signatures within classes. S2DL’s success, therefore,
highlights the benefit of using representative pixels from each
superpixel to reduce the variability within spatial regions prior
to cluster analysis.

Fig. 10 presents the visualizations of S2DL clustering
outcomes for different values of k. The results are consis-
tently high-performing across all settings, with most classes
demonstrating optimal performance at k = 5. Additionally,
Fig. 9(a) presents the confusion matrix for the S2DL clustering
with k = 5, where most classes are effectively separated,
with notable overlaps in predictions observed for classes such
as KO1, AM, and AI1. As depicted in Fig. 9(b), which
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Fig. 10. Comparison of clustering results of S2DL on the MPNR dataset with varying number of representative pixels per superpixel k. The color coding
for the GT in (a) is as follows: gray for background, white for mudflat, blue for water, red for KO2, orange for KO1, pink for AM, purple for AI2, light rose
for AI1, and green for AC. (a) GT. (b) k = 1. (c) k = 3. (d) k = 4. (e) k = 5. (f) k = 6.

showcases the top five samples closest to the mean, AM and
AI1 exhibit only subtle spectral differences. In contrast, KO1’s
spectral signature, which substantially differs from AM and
AI1 spectra, leads to the frequent misclassification by S2DL of
its upper-right and bottom pixels as AM and AI1, respectively,
due to the spatial constraints in S2DL. The high-quality unsu-
pervised species mappings produced in this section underscore
S2DL’s capability to deliver robust results in real-world forest
environments.

V. CONCLUSION

This work introduces S2DL for unsupervised HSI clustering.
Given the high levels of noise and spectral variability often
observed in the HSIs, algorithms that rely exclusively on
spectral information fail to recover latent cluster structure
or produce suboptimal material classifications [2], [4], [45].
To mitigate these important challenges, S2DL incorporates
both spatial and spectral information, effectively processing
HSIs that have consistent spatial patterns but also contain areas
with noise or varied spectral characteristics. S2DL demon-
strates impressive clustering performance on both real-world
benchmarking HSIs and the practical landscapes of the MPNR.
This balanced performance highlights its robustness in stan-
dard scenarios and its adaptability to real-world environmental
variations. Moreover, S2DL is capable of achieving these
high-quality clustering results at a fraction of the compu-
tational cost of related algorithms due to its reliance on
superpixel segmentation prior to graph construction. Indeed,
S2DL’s derived superpixels not only encapsulate localized
spatial coherence within the image but also reduce the number
of data to be analyzed, resulting in a computationally efficient
clustering process and a robust utilization of spatial informa-
tion [39], [89]. Using a spatially regularized graph on this
reduced dataset in a diffusion geometry-based clustering pro-
cedure enables S2DL to efficiently leverage spatial information
into a low-RT and highly accurate clustering estimate [48],
[49]. Nevertheless, the limitations of the algorithm include
dependency on hyperparameter tuning and the method of
selecting representative pixels within each superpixel, which
might lead to potential information loss.

In future work, we aim to estimate the optimal number
of superpixels by leveraging the intrinsic characteristics of
datasets, such as size, spatial complexity, and resolution [88],
[103]. Since most common superpixel segmentation meth-
ods are designed primarily for RGB or grayscale images,
they often fall short of fully extracting the abundant spatial
and spectral information available in HSIs. Consequently,

exploring and developing superpixel segmentation methods
specifically tailored for HSIs will be worthwhile [89], [104].
Additionally, integrating feature extraction techniques into the
S2DL framework is a promising avenue, allowing us to utilize
more effectively the rich spatial and spectral information
within superpixels, thereby enhancing the overall performance
and efficiency of the algorithm in clustering HSIs [46], [62],
[87], [93]. Furthermore, as referenced in Section IV-A3, S2DL
is expected to be well-equipped to handle multiscale clustering
problems by varying its diffusion time parameter. Moreover,
by identifying the optimal clustering across scales through
minimization of average variation of information [48], [57],
[105], we expect to be able to mitigate the dependence of
S2DL on diffusion time. While this may slightly reduce peak
performance, it greatly enhances the practical applicability of
the method. Lastly, pursuing the active extension of S2DL,
especially when a limited number of carefully selected labels
are available depending on budget constraints, is a valuable
direction for semi-supervised practical applications [41], [50],
[71], [106].

APPENDIX
OPTIMIZATION OF HYPERPARAMETERS

This appendix details the process by which hyperparam-
eters were tuned in order to obtain the experimental results
presented in Section IV. Table III provides a summary of
the parameter grids for each algorithm. K -Means was imple-
mented without the need for hyperparameter adjustments. For
stochastic algorithms that require hyperparameter inputs (SC,
D-VIC, and DSIRC), optimization was based on achieving the
median sum of OA, AA, and κ over ten trials for each set of
parameters in the specified hyperparameter grids.

All graph-based algorithms in this study utilized adjacency
matrices from sparse kNN graphs, with SC-I employing a full
graph. For algorithms without spatial regularization, we used
N1, an exponential sampling range of 10–900 for nearest
neighbors. For those with spatial regularization, N2 was
used, with values from 10 to 50 in increments of 10. DL,
D-VIC, DLSS, DSIRC, SRDL, and S2DL were executed
at each t within T = 0, 1, 2, 22, . . . , 2T , where T =

⌈log2[logλ2(P)((2 × 10−5)/min(π))]⌉. The process concludes
at t = 2T since, for t ≥ 2T , maxx,y∈X Dt (x, y) ≤ 10−5 [57].
The optimal time step t from this range was selected for each
dataset, maximizing the sum of OA, AA, and κ . Additionally,
the KDE and σ0 hyperparameters were uniformly applied
across these algorithms. In our grid searches, σ0 covered D ,
which involved sampling ℓ2-distances between HSI pixels and
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TABLE III
HYPERPARAMETER RANGES FOR ALGORITHMS, INCLUDING N1 FOR

EXPONENTIAL NEAREST NEIGHBOR SAMPLING [10,900], N2 FOR
SPATIALLY REGULARIZED GRAPHS [10,50], D FOR ℓ2-DISTANCES

WITH 1000 NEAREST NEIGHBORS, D1 FOR SC-I DISTANCES,
D2 FOR S-PGDPC GAUSSIAN FILTER σ , T FOR DIFFU-

SION TIME SAMPLING, B FOR SC-I SPATIAL–SPECTRAL
INFORMATION RATIO, R FOR SPATIAL REGULARIZA-

TION RADII, R1 FOR DSIRC ADAPTIVE RADIUS,
AND S FOR SUPERPIXEL NUMBER RANGE

[100-1500]. “—” INDICATES NO HYPER-
PARAMETER REQUIREMENT

their kn nearest neighbors. Additionally, σ1 spanned D1 for
SC-I, sampling ℓ2-distances between each data point and
all others. For S-PGDPC, σ2 was used as a parameter for
Gaussian filtering, applied to blur the image prior to superpixel
segmentation. For DLSS, SRDL, and S2DL, the spatial radius
R ranged from 1 to 30, with an exception for the WHU-Hi
dataset where this parameter’s range is 1–60, likely due to
that dataset’s large spatial dimensions. DSIRC utilized R1 to
automatically determine the radius of a spatially adaptive
window in various directions. SC-I employed B as the ratio
parameter for balancing spatial and spectral information. The
number of superpixels Ns in S was set within a range of
100–1500 in increments of 100.
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