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% Check for updates Saltwater intrusion on coastal farmlands can render productive

land unsuitable for agricultural activities. While the visible extent of
salt-impacted land provides a useful saltwater intrusion proxy, it is
challenging to identify in early stages. Moreover, associated ecological
and economicimpacts are often underestimated as reduced crop
yields in farmlands surrounding salt patches are difficult to quantify.
Here we develop a high-resolution (1 m) dataset showing salt patches
on farm fringes and quantify the extent of salt-impacted lands across
the Delmarva Peninsula, United States. Our method is transferable to
other regions across and beyond the mid-Atlantic with similar saltwater
intrusionissues, such as Georgia and the Carolinas. Our results show
that between 2011 and 2017, visible salt patches almost doubled and
8,096 ha of farmlands converted to marsh—another saltwater intrusion
consequence. Field-based electrical conductivity measurements show
elevated salinity values hundreds of metres from visible salt patches,
indicating the broader extent of at-risk farmlands. More farmland areas
were within 200 m of a visible salt patch in 2017 compared to 2011, arise
ranging between 68% in Delaware and 93% in Maryland. On the basis

of assumed 100% profit loss in at-risk farmlands within a200 m buffer
around salt patchesin 2016-2017, the range of economic losses was
estimated between US$39.4 million and US$107.5 million annually,
under 100% soy or corn counterfactuals, respectively.

With continued sea-levelrise, coastal waters are reaching farther inland
causing changes in soil salinity and water quality, leading to perma-
nent land loss and ecosystem alterations'™®. In coastal counties of the
United States, which hosts about 9% of all US farmlands’, saltwater
intrusion (SWI) into coastal ground- and surface-water results froma
combination of natural sea-level variability and sea-level rise, land sub-
sidence, drought and stormsurges, the connectivity of the landscape
to tidal channels and groundwater extraction**'°, Furthermore, SWI

increasingly results from frequent far-reaching seasonal high tides, as
opposed to solely from infrequent powerful storms, as was the more
dominant driver a few decades ago". With reported rates of sea-level
rise twice the global average’, the Mid-Atlantic region of the United
States deserves special attention.

SWIisleadingto asuite of ecological changesincludingincreased
soil salinity, visible salt patches on the soil, the formation of ghost
forests and expansion of salt-tolerant invasive species®. Moreover,
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Fig.1|Where crops do notgrow. a, Visible salt patches at the farm fringes. b, Many Delmarva farmlands are close to brackish or saline water. ¢, A droneimage from a
farmin Somerset County, Maryland (2019).d, Study area showing 14 coastal Delmarva counties in Delaware, Maryland and Virginia.

SWI can directly reduce crop yield, as most crops are highly sensitive
to saline soil®™°, Yet, it is challenging to quantify agricultural losses
due to SWI, since marginal yield losses are difficult to detect or quan-
tify. Visible salt patches on farm fields, that typically occur near field
edges, close toagricultural ditches and tidal creeks at the lowest lying
points on the field (Fig. 1), can be used as a proxy for SWI mapping.
However, documenting these salt signatures is challenging due to
their fine spatial scale and patchiness, ranging from a few to hundreds
of metres. Measuring the extent and severity of the impacts of SWI
through field-based methods is labour-intensive, time-consuming and
expensive. Amore direct and cost-effective approach would be to use
remotely sensed images (aerial and satellite data) and machine-learning
approaches to identify white, reflective patches on the soil as salt
signatures (Fig. 1). Combining field-based knowledge of salt patches
in the study area and remote sensing techniques, we have developed
amethod that is efficient in identifying fine-scale salt patch features
over alarge geographicregion.

We provide high-resolution mapping of visual evidence of salt
patches on farmlands in the Delmarva Peninsula covering 1.54 mil-
lion ha over 14 coastal countiesin Delaware, Maryland and Virginia; an
area that hosts 28.4% of the total harvested farmlands in those three
states. At least 35% of theland on the Delmarva Peninsulais within 5 m
of the high tideline"”. Using a Random Forest (RF) algorithm trained
and tested with 94,240 reference points, we mapped and quantified
farmland in 14 counties that displayed transient or persistent salt
patches between 2011 and 2017 (Fig. 2) and estimated the loss in profit
fromthese salt-impacted farmlands. The ‘salt patch’ class in this study

includes bright white salt patches along the farm fringes (Fig. 1), mostly
foundin elevation <1 m, as well as bright white patches scattered any-
where in a field. We further quantified the area that converted from
salt patch, farmlands and bare soil into marsh (Fig. 3) that often rep-
resents the permanentloss in productive farmlands due to increasing
soil salinity.

Our results show that the effect of salt patches on agricultural
productivity extends far beyond what is currently mappable. For exam-
ple, while the acreage of land with visible salt patches may be small, its
presence denotes that the entire field is at risk of conversion to saline
soilunsuitable for traditional farming. Further, in some instances, soil
salinity in nearby areas of the field may be high enough to reduce crop
yield but not enough to leave bare patches. Toidentify farmlands at the
greatest risk of SWI, we calculated the acreage of corn and soybeans
within 50, 100 and 200 m buffers around the existing salt patches
using the United States Department of Agriculture (USDA) Cropland
Data Layer'®. We selected these distances on the basis of measure-
ments of soil electrical conductivity (EC) collected from 36 farm sites
(Supplementary Fig.1; Methods). Our choice of corn and soybeans as
preferred crops is because the Delmarva economy is dominated by
corn-soybean farming.

Most farmlands on the Delmarva Peninsula are planted in grain
crop rotations during summer (for example, corn-soybean). While
soybean is more tolerant to salt”, corn is a more profitable crop. Due
tothe ongoing and increasing SWl effects, crop yieldsin affected sites
are expected to decline over the coming years™'>*, In an attempt to
quantify the range in potential losses in profit from increased soil
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Fig.2|Changesin visible salt patches between2011-2013 and 2016-2017.
a, Percentage change in total area of visible salt patches. b, Regions in the study
area highlighting farmlands that converted to salt patches between 2011 and
2017 (in purple).

[ ] Farmland in 2011-2013

salinization, we used an ‘enterprise budget’ (Methods) that considers
yields, land rental, fertilizer prices and harvested grain prices for three
scenarios: (1) ‘business-as-usual’ where the at-risk farmlands have the
currentcornand soybeanacreage, (2) ‘corn counterfactual’ (assuming
at-risk farmlands with corn and soybean combined have 100% corn,
thus 100% annual profit from corn) and (3) ‘soybean counterfactual’
(assuming at-risk farmlands with corn and soybean combined have
100% soybean, thus 100% annual profit from soybean). We estimated
potential losses assuming zero profits (not zero yield) on salt patches
and surrounding farmland within 50,100 and 200 m buffers, relative
toacounterfactual of average profits under highyields. Inaddition, we
estimated potential losses assuming a reduced 80% yield for the two
counterfactual scenarios. Counterfactual profits (potential losses)
were calculated on the basis of average 10 year input, crop prices and
the highest reported annual county-based crop yields”.

Results

Visible salt patches expanding at an alarmingly high rate

Salt patches, associated with very little to no plant growth, represent
a complete loss of productive land. About 472 ha of land across the
Delmarva Peninsula, mostly near field edges, had visible salt patches
during 2011-2013 (Fig. 2). This area nearly doubled to 905 ha during
2016-2017 and varied greatly by county. The nine coastal Maryland
counties experienceda79%increaseinsalt patch area.In Delaware and
the Eastern Shore of Virginia, the area of salt patches increased 81% and
243%, respectively, between 2011 and 2017. While the expansionrate is
alarming, the absolute area of these identified salt patches remained
smallin2017: about 445 hain Maryland; 339 hain Delaware; and 122 ha
in Virginia. The rate of change between time-steps varied across the
counties with numbers ranging from a 7.6% increase in Kent County
to a450.5% increase in Caroline County, both in Maryland (Fig. 2).

Salt patches remained a small fraction of total land cover across
Delmarva, ranging between 0.01% and 0.18% of total farmlandsinagiven
countyin2011-2013 and between 0.01% and 0.39%in2016-2017 (Fig.4a).
Moreover, appearance and disappearance of salt patches varied over
time, with only 24 ha of visible salt patches identified in the period
2011-2013 remaining visible in2016-2017 (8.7 hain Maryland, 15 hain
Delaware and 0.6 hain Virginia). The overall expansion of salt patches
was largely due to 436,323 and 121 ha of new salt patches that appeared
in2016-2017 in Maryland, Delaware and Virginia, respectively. About
36% and 32% of the salt patch area are located on sites with elevation
<2 mduring 2011-2013 and 2016-2017, respectively.

Farmlands at risk from further saltwater intrusion

Increasing soil salinity might resultin gradual conversion of farmlands
to marsh?. We estimated that about 36.5 haof land was converted from
salt patch to marsh and about 1,007 ha of land was converted from bare
soilto marsh between 2011 and 2017 across our study area. Over 188 ha
and 275 haof bare soil converted to marsh between 2011 and 2017 within
the 100 and 200 m buffers, respectively. In addition, over 8,096 ha of
farmland was converted to marsh across the 14 coastal Delmarva coun-
tiesbetween 2011 and 2017 (Fig. 3). The three Delaware counties have
thelargest share of such conversions at 3,824 ha, followed by the nine
countiesinMaryland (3,488 ha) and two counties in Virginia (784 ha).
These converted lands are more suitable for salt-tolerant species''**,
including both native marsh species and salt-tolerantinvasive species
such as the commonreed (the Eurasian lineage of Phragmites australis).

We estimated about 13,732 ha of at-risk farmland across the
Delmarva Peninsula during 2011-2013 that are located within 50 mofa
visible salt patch. By 2016-2017, that number grew to about 28,022 ha
or about three-quarters the size of Philadelphia. Theincrease in at-risk
farmlands varied by state—from 4,726 t0 9,150 hain the three Delaware
counties (94%increase), from1,321t02,636 hain the two Virginiacoun-
ties (99% increase) and from 7,684 to 16,236 ha in the nine Maryland
counties (111% increase). Between the two time-steps, this represents
achange from2.5%t0 5.2%, 2.3% to 4.3% and 1.9% to 4.1% of total farm-
landsinthe study countiesin Virginia, Delaware and Maryland, respec-
tively. In2011-2013, these at-risk farmlands represented between as
little as 0.4% of all farmlands in Cecil County, Maryland, to up to 4.7%
of all farmlands in Somerset County, Maryland (Fig. 4b).In2016-2017,
therange of at-risk farmlandsincreased to aminimum of 1.6% in Kent,
Maryland, and amaximum of 8% in Somerset, Maryland (Fig. 4b).

We found that ~35,032 ha of farmland were within 100 m of a
salt patch during 2011-2013, which increased to 68,475 ha, or about
twice the size of Philadelphia, during 2016-2017. Delaware coun-
ties experienced a rise in at-risk farmlands from 12,368 to 22,416 ha
(81%), whereas the counties in Virginiaand Maryland had anincrease
from 3,250 to 6,283 ha (93%) and from 19,414 to 39,775 ha (105%),
respectively. Thisrepresents anincrease from 6%t012.2%, 6%t010.5%
and 4.7% to 10.1% of the total farmlands in the study counties in Vir-
ginia, Delaware and Maryland, respectively. The distribution pattern
remains the same as was seen for at-risk farmlands within a 50 mbuffer.
Somerset County, Maryland, had the largest share for both time-steps
(11.7% and 16.9%; Fig. 4¢).

Usingamoreliberal estimate of the areaaround visible salt patches
in which crop yields may be affected, we found that about 91,073 and
166,930 ha of at-risk farmland was within 200 m of a visible salt patch
during 2011-2013 and 2016-2017, respectively. The study counties in
Delaware, Virginia and Maryland witnessed arise in at-risk farmlands
from 33,064 to 55,511 ha (68%), 8,095 to 14,898 ha (84%) and 49,914
t0 96,521 ha (93%), respectively (Fig. 4d). This represents an increase
from16.1%1t026.1%,15%t029.4% and 12.2% to 24.5% in the study coun-
tiesin Delaware, Virginiaand Maryland, respectively. It is noteworthy
that crop stress due to soil salinization does not decline linearly with
distance fromavisible salt patch. In other words, the deleterious effects
experienced by crops do not depend on their exact location within
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and Accomack, Virginia (c).
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these buffers per se, as we recorded similar soil EC values in all these
buffers (Supplementary Fig.1).

Substantial profit loss from saltwater intrusion on Delmarva

Within the buffers around the salt patches, the sources of financial
losses stem from both observed salt patches and potential saliniza-
tion of the adjacent farmlands, thereby reducing yield and profit.

Itis not possible to estimate the exact percentage of loss in profit due
to the varied levels of salinity in farmlands where salt patches are not
visible yet. Hence, we first estimated an upper bound in these losses
with the assumption of zero profit on the salt-impacted farmlands,
both salt patches and farmlands within these buffers, planted in corn
orsoybean. Loss estimates are based on the assumption thatyields on
salt-affected lands generate revenue that only just coversinput costs, as
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opposed to assuming zero yields, which would induce financial losses
ifcrops were planted. We calculated foregone profits (potential losses)
on the basis of high yield and average per bushel profits over 10 years
(2011-2020) in each county (Fig. 5). Then we estimated subscenarios
within our two counterfactuals (100% profit coming from corn and
soybeans, respectively) assuming a 20% yield loss, that is 80% crop
yield potential. It should be noted that the same level of salinity would
result in different yield decline for corn and soybeans.

Business-as-usual scenario. Considering the current scenario in
which profits are derived from corn and soybeans, planted in rota-
tion, we estimated an annual loss in profit from visible salt patches
ranging between US$101,642 (considering 2011-2013 salt patches)
and US$325,419 (considering 2016-2017 salt patches) (Fig. 5a). Since
cornis more profitable, the higher share of loss also comes from corn—
US$67,202 for 2011-2013 and US$234,017 for 2016-2017. These ‘loss
in profit’ values from corn consist of about 66-72% of the total loss in
profit. Sussex County in Delaware showed the mostincrease in poten-
tial losses, estimated at US$84,431 (Fig. 5a).

Considering all farmlands within 50 m buffers around the salt
patches, we estimated the losses in profit to be US$5.8 million in 2011-
2013 and US$11.9 million in 20162017 (Fig. 5d). For 100 m buffers, our
estimated annual profit loss ranged between US$14.9 million in 2011-
2013 and US$29 millionin2016-2017 (Fig. 5g). For 200 mbuffers, the esti-
mated annual profit loss ranged between US$39.3 million in2011-2013
and US$70.7 millionin 20162017 (Fig. 5j). Out of this total loss in profit,
the share of corn is 70-71% for all three buffer estimates. Delaware’s
Sussex County had the most losses in profit under a business-as-usual
scenario, estimated at US$3.1 million (50 m buffer), US$7.4 million
(100 mbuffer) and US$18.5 million (200 m buffer) in2016-2017.

Corn counterfactual scenario. Focusing only on visible salt patches
and assuming zero profitsinthese locations over a10 year average, we
estimated potential annual losses of US$163,963 across the Peninsula
in2011-2013 (Fig. 5b). By 2016-2017, the potential financial losses tri-
pled to US$493,138, owing to the increase in the extent of salt patches.
We estimated the highest profit loss in Sussex County in Delaware at
US$160,000 in 2016-2017, also showing the largest increase in losses
between the two time-steps (Fig. 5b).

Extending our analysis to the 50 m buffer on at-risk farmlands
adjacent to visible salt patches, we estimated a potential profit loss in
the range US$8.7 million (2011-2013) to US$18.1 million (2016-2017)
under a100% corn scenario (Fig. 5e). Considering a 100 m buffer
around each observed salt patch (Fig. 5h), the potential losses for the
DelmarvaPeninsula ranged between US$22.2 million (2011-2013) and
US$44.1 million (2016-2017). Considering a200 m buffer (Fig. 5k), the
potential losses in profit ranged between US$58.3 million (2011-2013)
and US$107.5 million (2016-2017). The top three counties from each
state with the largest share of losses are Sussex (Delaware), Dorchester
(Maryland) and Accomack (Virginia) for all buffers in 2016-2017 (Fig. 5).

Within this100% corn counterfactual, we further considered a20%
yield loss scenario and estimated a profit loss range of US$4.8 million
(2011-2013) to US$10.1 million (2016-2017) in the 50 m buffer. Consid-
ering the 100 mbuffer, the profit loss ranged between US$12.3 million
(2011-2013) and US$24.7 million (2016-2017). For the 200 m buffer, the
assumed yield loss resulted in an estimated profit loss ranging between
US$32.5 million (2011-2013) and US$60.5 million (2016-2017).

Soybean counterfactual scenario. Since soybeans are less profit-
able than corn, acounterfactual scenario with100% soybean gener-
atestheleast potential losses due to SWI. For this counterfactual, we
estimated potential losses of US$59,186 from visible salt patches
across the Peninsulain2011-2013, almost half of the estimated losses
inthe business-as-usual scenario (Fig. 5c). For 2016-2017, the poten-
tiallosses in this counterfactual tripled to US$178,746 but were still

only about one-third of the potential losses in a100% corn counter-
factual scenario.

For 50 m buffers (Fig. 5f), estimated losses in profit across the
Peninsularanged between US$3.2 million (2011-2013) and US$6.6 mil-
lion (2016-2017). For 100 m buffers (Fig. 5i), our estimated losses in
profit ranged between US$8.4 million (2011-2013) and US$16.1 million
(2016-2017). Considering a200 mbuffer (Fig. 5I), the potential losses
in profit ranged between US$22.2 million (2011-2013) and US$39.4 mil-
lion (2016-2017). The potential losses for this counterfactual were the
largest for Sussex County in Delaware, estimated at US$1.5 million
(50 mbuffer), US$3.6 million (100 m buffer) and US$8.9 million (200 m
buffer) in 2016-2017 (Fig. 5).

Ina20%yield loss scenario under al00% soybeans counterfactual,
we estimated a profit loss of US$2.6 million (2011-2013) to US$5.4 mil-
lion (2016-2017) in the 50 m buffer. The losses in profit increased to
US$6.6 million (2011-2013) and US$13.2 million (2016-2017) in the
100 mbuffer. Withthe sameyield loss assumption, we estimated arange
of profitloss between US$17.5 million (2011-2013) and US$32.4 million
(2016-2017) in the 200 m buffer.

Discussion

The mid-Atlantic region of the United States has been witnessing rapid
landscape-level changes over the last few decades®***. This study docu-
ments visible salt patches and their spatiotemporal evolution across the
Delmarva Peninsula. Our results show that the rapid growth of salt patch
areaacross the Delmarva during the last decadeis notable. Bare areas
in farm fields displaying the distinct signature of SWI nearly doubled
(92% increase) during the 6 years of the study period (2011-2017), as
did the potential losses in profitin at-risk farmlands.

While visible salt patches are agood indicator of the spatial distri-
bution of salt-impacted farmlands, their absence may not necessarily
indicate a productive farmland or absence of SWI; high salinity areas
may not be equally visible at all times. Various factors ranging from
farming practices to regional climate and weather events may modify
identifiable salt patches onthe ground. For example, following alarge
rain event, farm abandonment or a fallow period**?, salt patches
may not be visible in aerial images. Compared to drier climates, the
Delmarva Peninsula receives an average rainfall of 1,140 mm rainfall
annually”®. Thisis usually enough to dilute and remove salts from the
soil surface and to allow plants to germinate’®; yet, the water table in
our study region is often close enough to the surface that the saline
water has nowhere else to go. Moreover, soil salinity may increase
incidentally following nuisance flooding®’ or weather events such as
northeasters or hurricanes, which push saltsinland and may increase
the visibility of salt signatures in remotely sensed data. The addition of
saltsat later crop growth stages may reduce yields*°, without causing
bare patches. As such, visible salt patches and the approach of estimat-
ing at-risk farmlands using buffers around them should be considered
ahighly conservative estimate of farmlands affected by SWI.

On the basis of our findings, it is a reasonable assumption that
all visible salt patches indicate land presently affected by SWI or the
very frontlines of coastal changes due to sea-level rise. Visible salt
patches are ephemeral, often occurring before farm abandonment
and land use change. However, widespread marsh conversion in the
study region denotes astrong directional changein land covers asaSWI
consequence. About 36.5 ha of salt patch area converted to marsh, while
8,096 ha of farmland in the DelmarvaPeninsula converted to marsh dur-
ing the 6 year study period, which exceeds the area of fields exhibiting
salt patches and suggests that sea-level rise is a substantial source of
land cover change in this region. Moreover, the extent of sea-level rise
impacts appearstobe growing; we estimated thatin 2016-2017 between
28,022 (using a 50 m buffer) and 166,930 (using a 200 m buffer) addi-
tional hectares of farmland were at-risk on the Peninsula due to their
proximity to the visible salt patches. Evidently, the effects of sea-level
rise and SWIlare far more extensive than what is visible at the surface.
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scenarios: business-as-usual (BAU) where profit is derived from both corn and
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soybean (a,d,g,j), a corn counterfactual where 100% profit comes from corn
(b,e,h k) and a soybean counterfactual where 100% profit comes from soybean
(c,f,il). Yellow and purple circles represent profit losses using salt patch
estimates from 2011-2013 and 2016-2017, respectively, whereas the grey bars
denote the change in estimated losses in profit.

These changes are of great economic concern and having avisible
signal of contemporary sea-level rise presents an opportunity to detect
the geographic distribution of sea-level impacts in near real-time,

which holds promise for anumber of future applications. From a basic
science perspective, real-time tracking will enable greater mechanis-
tic understanding and improved ability to model SWI. For example,
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empirical models based on spatial correlations could help us to better
understand the role of ditch and canal networks®, soil characteristics
and geologic features, legacies of land reclamation®* or water table
levels and recharge® ™. Greater understanding of how human activities
exacerbate or reduce salt patches and marsh, such as the construction
or removal of tide gates and berms, should be of particular interest to
policy-makers. Real-time tracking could also be used to better under-
stand the distribution and inequity of economicimpactsin the coastal
zone, knowledge of which could be used to design and target new
incentive programmes to the landowners who most need themin the
changing coastal landscape. Our high-resolution geospatial datasets
provide afiner spatial resolution compared to global datasets, such as
the Global Map of Salt-affected Soils or GSASmap™. This level of detail
is critical for the farm-level decision-making that is often required to
design and implement state-level policies.

Our work provides evidence for an immediate policy attention
requiredto protect the coastal lands against increasing soil salinization.
Duetoitssensitivity tosalinity, the corn-focused agricultural economy
is not suitable for many SWI-affected coastal fields across Delmarva.
Increasing the share of farmlands under more salt-tolerant crops (for
example, soybeans, sorghum or barley), reducing inputs, adding gyp-
sum to the salt-affected lands or using crop insurance as a strategy
to limit losses and delay transitions might result in lower economic
lossesintheimmediate future. However, landowners might be forced
to abandon these farmlands once the soil becomes salinized beyond
the tolerance of any traditionally farmed food crops. Recent studies
have examined alternative crops, such as barley, quinoaand sorghum
that might be more suitable for these landscapes'®. Other adaptation
strategies might include a controlled conversion of these landscapes
into marsh that can support wildlife or act as abarrier to encroaching
seawater’’. While such transitions are vital to sustainable solutions,
the fate of such coastal frontier zones will be shaped by the salinity
gradientacross these evolvinglandscapes. In highly salinized regions,
halophytes might contribute to further soil salinization through con-
tinued and efficient water uptake in brackish soils—an example of a
positive feedback loop*®*'. Conversely, marsh vegetation might protect
comparatively less salinized regions from further saltaccumulation**.

SWIlis rampant across the North American Coastal Plain, from
Massachusetts, United States, in the north to Northern Mexico in
the south, with documented coastal forest loss®. This study high-
lights another SWI consequence that has far-reaching implications
for the US economy as well as coastal ecosystems, by drawing atten-
tion to the gradual loss of productive Delmarva farmlands from SWI.
Due to the reliance on freely available aerial and satellite images
and well-established machine-learning methods, our geospatial
method is transferable to other coastal regions across and beyond
the mid-Atlantic with known SWlissues'. While other long-term SWI
consequences, such as the expansion of ghost forests along the US
coasts, have been documented in recent studies™®, the elusive nature
of salt patches posed a challenge in estimating agricultural losses.
Our high-resolution datasets not only address that challenge but also
provide a baseline and a reproducible approach that can be used to
track the spread and cost of SWlin the Delmarva Peninsulaand beyond.

Methods

Aerial and satellite imagery

To quantify land uses/covers, including salt patches, across the
DelmarvaPeninsulawe used aerialimagery from the National Agricul-
ture Imagery Program (NAIP). NAIP images are high-resolution (1 m)
aerialimages containing red, green, blue and near-infrared (NIR) bands
thatare collected by the USDA onan -3 year basis. We accessed orthorec-
tified NAIP images fromJune-July 2011 (Maryland), May 2012 (Virginia),
September 2013 (Delaware), June 2016 (Virginia),June 2017 (Maryland)
and July-August 2017 (Delaware) on the Google Earth Engine (GEE)
platform and developed high-resolution datasets for the study area

for two time-steps: 2011-2013 and 2016-2017. In addition to the visible
(red, greenand blue) and NIRNAIP spectral bands, we calculated several
other bands to be used as the inputs to the machine-learning based
classification scheme. The additional bands include (1) four principal
component analysis (PCA) bands derived from the four original NAIP
bands using eigen analysis, (2) one normalized difference vegetation
index (NDVI) band ((NIR - Red)/(NIR + Red)), (3) one normalized differ-
ence water index band ((Green — NIR)/(Green + NIR)), (4) one shadow
index band ((256 — Blue) x (256 + Blue)) and (5) four smoothed bands
derived from the four original NAIP spectral bands smoothed with a
3 x3boxcar kernel**"*. Each input band has a spatial resolution of 1m.
The derived bands are used to overcome unique challenges associ-
ated with high-resolution NAIP images used as inputs for land cover
classifications, such as low spectral resolution, shadows and limited
acquisition dates*®. For example, PCAis a data reduction technique that
converts correlated variables into a new set of uncorrelated variables
and in remote sensing can be used to remove redundant information
and enhance the details**%, We followed the eigen analysis workflow in
GEE to create four additional PCA bands by converting the four original
NAIP bands into a one-dimensional array, calculating a covariance
matrix, calculating eigenvalues and eigenvectors, using eigenvectors to
transform the original array and finally normalizing the components®.
In addition, shadows from tree crowns are a persistent problem and
were addressed using the shadow index; NDVIand normalized differ-
encewater index aided in differentiating marsh and wetland vegetation
from other green vegetation; and the smoothed bands reduced the
speckle effect created by the high-resolution dataset.

NAIP-based classification, however, could only achieveanaccuracy
up to 75%, primarily due to the challenges stemming fromits very high
spatial resolution and the lack of seasonal information since all NAIP
images are from summer/early autumn. We used moderate-resolution
satelliteimages from Landsat to overcome these challenges andincor-
porate additional spectralinformation. Landsatis aseries of satellites
launched by the National Aeronautics and Space Administration with
satelliteimages distributed through the United States Geological Sur-
vey.Landsatdataincludered, green, blue, NIR, shortwave infrared, aer-
osol, cirrus, panchromatic and thermal bands. Allbands are collected at
a30 mresolution except the panchromatic band, whichis collected at
al5 mresolutionand the thermal bands which are collectedatal00 m
resolution. Cloud-masked top-of-atmosphere (TOA) reflectanceimages
from Landsat 5 (2011 and 2012), Landsat 7 (2013) and Landsat 8 (2016
and 2017) were obtained using GEE. To capture seasonal changes in
vegetation, we derived four seasonal enhanced vegetationindex (EVI)
bands from the TOA images using this formula: 2.5 x ((NIR — Red)/(NI
R+ 6 xRed - 7.5 x Blue +1)) (ref. 50). The coefficients used in the EVI
equation are sensor-specific, hence we could not use EVI for NAIP
images. We initially used NDVI for both NAIP and Landsat; however,
for Landsat, EVI was preferred over NDVI because it yielded a higher
accuracy. Each of the four EVI bands is a median of a different sea-
son: summer (June-August), autumn (September-November),
winter (December-February) and spring (March-May). The EVIbands
were smoothed witha3 x 3boxcar kernel to reduce noise™. These four
EVIbands capture seasonal differences across spring, summer, autumn
and winter. Thermal bands from the TOA images were also used to cap-
ture differences between non-vegetated surfaces such as sand, bare soil
and buildings. Landsat 5 contains one thermal band (B6) while Landsat
7 and Landsat 8 contain two bands (B10 and B11). Again, amedian was
calculated to create aband for each of the four seasons and the bands
were smoothed using a3 x 3 boxcar kernel.

Random Forest classifier

A supervised classification using the RF algorithm was used to clas-
sify land uses/covers across the Delmarva Peninsula®. The input data
used for the RF are comprised of the four NAIP bands, four PCA bands
from NAIP, three indices from NAIP, four smoothed NAIP bands, four
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smoothed seasonal EVI bands from Landsat and four (from Land-
sat 5) or eight (from Landsat 7 and 8) smoothed seasonal thermal
bands. Landsatimages were overlaid on NAIPimages, so that the pixel
values from different Landsat bands can be assigned to all the NAIP
pixels residing within that particular Landsat pixel. This step ensured
providing more spectral information to the RF classifier required to
differentiate between spectrally similar land cover classes, such as
farmland and residential neighbourhood lawn. The data used to test
and train the RF were a combination of coordinates from ground data
collected during summer of 2019 and reference points collected by
visually assessing the NAIP imagery. In total, 94,240 points were col-
lected spanning over both time-steps (Supplementary Table 1). We split
these reference data using 70% of the points to train the RF and 30%
to test the accuracy of the classification. The RF algorithm separates
the data into eight defined land use/cover classes: forest, marsh, salt
patch, built, open water, farmland, bare soil and other vegetation. We
used the GEE platform for running the RF algorithm from the statistical
machineintelligence and learning engine. The hyperparameters were
set to 100 for the number of trees and the default values for variables
per split (4), minimum leaf population (1), bag fraction (0.5) and max
nodes (no limit). We ran a separate RF classifier for each state-year
combination to avoid confusing the classifiers with a range of values
for the same land cover across space and time. This is a widely used
method for postclassification change detection.

Postprocessing

Due to the high resolution of the input data, there is a considerable
‘salt-and-pepper effect’ or speckle effect on the classified image. Such
effects aremore visiblein the salt patch class and its surroundings com-
pared to other land covers (due to larger sample size, that is number
of pixels). As apostprocessing step to reduce such speckle effects, we
applied amajority filter to the classified image using the Focal Statistics
toolin ArcGISProv.3.0.3witha3 x 3 pixel neighbourhood. For example,
any solitary salt patch pixel was ‘reclassified’ as the majority land cover
within the immediate neighbourhood. Furthermore, we considered
only patches of ten or more connected ‘salt patch’ pixels as a valid salt
patch. We also used a road mask to minimize the confusion between
impervious streets and salt patches. Figures were created using ArcMap
10.8.1and Microsoft PowerPoint 2016.

Accuracy assessment

To determine the accuracy of the classification, we compared about
30% of points (n =30,414) withheld from the RF algorithm to the classi-
fiedimage results. From the resulting confusion matrix, we calculated
several accuracy estimates: user’saccuracy, producer’s accuracy, over-
all accuracy, kappa statistic and the F-score (Supplementary Table 1).
User’s accuracy is complement of the error of commission and is cal-
culated as the correctly classified pixels within a class divided by the
count of pixels that were classified as that class. Producer’s accuracy is
complement of the error of omission and is calculated as the correctly
classified pixels within a class divided by the count of pixels that were
referenced as that classin the training data. Overall accuracy indicates
how effective the overall classification was and is calculated as the
total correctly classified pixels divided by all of the training pixels. The
accuracies range between 0% and 100%, with 100% representing total
agreement between the training data and the classification.

The kappa analysis is a discrete multivariate technique used in
accuracy assessment to measure the chance agreement®***. Kappa
values over 80% represent strong agreement between the classified
images and the ground reference information®.

The F-score provides a similar measure to overall accuracy while
accounting forimbalancesinthe amount of training data for each class
and is calculated as*® ((user’s accuracy x producer’s accuracy)/(user’s
accuracy + producer’s accuracy) x 2). The F-score ranges between O
and 1, with1meaning complete agreement.

Caveats

While our datasets” have an overall high accuracy (Supplementary
Table 1), a few caveats should be considered when using the data for
other applications. Some salt patches or bare soil that were misclas-
sified as marsh in the classified image may have been an artefact of a
flooding eventimmediately before the image acquisition. This would
resultinslight underestimation of salt patch area. Shadows within built
areas are sometimes classified as water, while shadows on fields are
sometimes classified as the built class. The classes most often confused
withoneanother are crop fields and other vegetation, which typically
encompasses open fields and lawns. These misclassifications do not
have any direct implications for salt patch estimates. The algorithm
used in this work often underpredicted salt patches because the typi-
cal bright white signature of these salt patches can look different when
those areas become wet, leading these areas to be classified as crop
fields. Most prominent salt patches appear at elevation <1 m. Some
of the areas classified as salt patches, especially at higher elevations,
mightbebleached siliceous minerals visible on the soil surface, leading
to negligible overestimation of salt patch area.

Buffer assessment

Buffers around salt patches were used to assess the impact on farm-
lands surrounding the observed salt patches. Three different buffer
areas were used: 50,100 and 200 m. Round buffers on all sides of the
salt patches were used with a planar distance, excluding the core patch.
We estimated acreage for both salt patches and farmlands within these
three buffers, which was then used to calculate the potential losses
in profit.

Satellite-derived datasets for crop types

To calculate the extent of corn and soybean acreage in salt-affected
and salt-adjacent lands, we used the USDA-National Agricultural
Statistics Service (NASS) Cropland Data Layers’ (spatial resolution
30 m). These are annual crop-specific data layers derived from sat-
ellite imagery. We downloaded the geospatial data layers for the
three states matched with the NAIP image dates—2013 and 2017 for
Delaware, 2011and 2017 for Maryland and 2012 and 2016 for Virginia.
Wereprojected the filesin WGS84 using ArcMap 10.8.1 making them
compatible with our high-resolution data layers, before resampling
those to 1 m. For corn acreage, we combined the following classes:
corn, double crop winter wheat/corn, double crop oats/corn, double
crop barley/corn and double crop corn/soybeans. To calculate soy-
bean acreage, we combined the following classes: soybeans, double
crop winter wheat/soybeans, double crop soybeans/oats and double
crop barley/soybeans. We then used our salt patch polygons (derived
fromour 1 m classified images) and buffer polygonsto calculate corn
and soybeans acreage.

Soil EC sampling and analysis

Todetermine soil EC, ameasure of soil salinity, we firstidentified areas
of potential SWI using Google Earth to locate white patches on the
edges of farm fields, along with farm fields regardless of the pres-
ence of visible signs of salt patches. This step was completed without
consulting our geospatial datasets, toinclude anindependent assess-
ment of our geospatial work. We worked with the Somerset County
Soil Conservation District Office (Princess Anne, Maryland) to obtain
permission from landowners to sample on these properties and in
the summer of 2019 we sampled 36 farm fields where we were able to
obtain permission. A 3 x 3 m? plot was established in a salt patch on
eachfield and ahandheld Garmin GPS was used torecord thelocation
atthe centre of the plot. After soil sample collection, locations of these
farmsites were used to calculate the nearest distance to asalt patchin
our geospatial data layer. We collected at least five soil samples from
withinthe plotat 0-10 and 10-20 cm depths using a2 cm push probe.
Soils were homogenized by depth at the plot-level and transported
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on ice back to the University of Maryland Lab for processing and EC
analysis (total of 72 samples). In the laboratory, soils were mixed with
deionized water in a 2:1 deionized water:soil slurry. The slurries were
shaken for 1 h and allowed to settle overnight. Samples with a cloudy
supernatant the next morning were centrifuged for 10 min (4,180g)
until clear. An Orion three-electrode conductivity cell connected to a
Versa Star multiparameter benchtop meter (ThermoFisher Scientific)
was used to measure EC in mS cm™ of the clear supernatant and the
values were corrected to saturated paste equivalent measures by mul-
tiplying by the ratio of soil slurry mass to soil mass. EC was measured
intriplicate on each sample.

Soil EC threshold tolerances for corn, soy and wheatare1.7,5.0 and
6.0 mS cm™, respectively'. We recorded high EC values (>5mS cm™)
hundreds of metres away from a salt patch (Supplementary Fig. 1).
Thus, our three buffers of 50,100 and 200 m from visible salt patches
provide arange of estimates of at-risk farmlands.

Financial loss estimates

We used the enterprise budget tool available from the University of
Maryland Extension to estimate potential profit loss for no-till corn
(Zea mays) and soybean (Glycine max) grain crop production®. The
University of Maryland enterprise budget tool calculates the profit
per acre by subtracting fixed and variable costs from the gross profit
(grainyields x grain price). Fixed costs include equipment costs and
land rents while variable costs include seed, fertilizer and pesticide
applications. We estimated profits separately for each county in
Maryland, Delaware and Virginia using county-specificyields and land
rental, fertilizer and harvested grain prices. We estimated potential
profits on the basis of the highest annual yield during 2011-2020 for
each county, based on survey data from the USDA-NASS*. We used
these valuestorepresent theyield that could be achieved under ideal
planting and weather conditions. Thus, we attribute losses in our
scenarios to soluble salts beyond crop thresholds—as opposed to
climate or other factors. Due to the large interannual fluctuations in
input costs and grain prices, we calculated potential profits on the
basis of average per bushel profits over multiple growing seasons.
Specifically, annual profits were calculated on the basis of average
input and crop prices over 10 years (2011-2020). We used cash land
rental prices for non-irrigated fields”. Fertilizer prices for nitrogen
(N), phosphorus (P,0;) and potassium (K,0) are based on USDA-NASS
averages from 2006 to 2014 and numbers from Data Transmission
Network/Progressive Farmer reports from2014 t0 2020 (https:/www.
dtnpf.com/agriculture/web/ag/home). Nitrogen prices are based
on 28% urea ammonium nitrate (UAN28) prices, which is more com-
monly used on the Delmarva Peninsula, while P,O; is based on diam-
monium phosphate and K,O in potash (KCI). Harvested grain prices
for the eastern shore of Maryland and Delaware are from Ag Market
News published by the Maryland Department of Agriculture (https://
agmarketnews.com/), while historical eastern shore Virginia grain
prices are obtained from the Virginia Department of Agriculture his-
torical grain market reports®’. We assumed the grain prices to be
September cash prices. We did not consider storage, grain marketing
or crop insurance costs or returns in these budgets. We calculated
potential profit loss for each county as the area affected by SWI (salt
patches or salt-impacted farmlands within buffers) times the average
potential per acre profits for that county.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The high-resolution dataset for salt patches and other land covers
for 2011-2013 and 2016-2017 are available at https://zenodo.org/
record/6685695#.Y9AiVXbMIdU.

Code availability
Sample GEE code is available along with the high-resolution dataset™.
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Field work, collection and transport

Field conditions Soils were collected from private lands on the Lower Eastern Shore of Maryland. Annual precipitation is 1085 mm per year. Sea level
rise rates in the region have increased from ~1-3 mm per year in the 1930s to ~4—10 mm year in 2011.
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Access & import/export  Soils were collected with landowner permission with help of the Somerset County Soil Conservation District Office.
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