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The spread and cost of saltwater intrusion in 
the US Mid-Atlantic

Pinki Mondal    1,2  , Matthew Walter1, Jarrod Miller    2, 
Rebecca Epanchin-Niell    3,4, Keryn Gedan5, Vishruta Yawatkar    1, 
Elizabeth Nguyen6 & Katherine L. Tully    6

Saltwater intrusion on coastal farmlands can render productive 
land unsuitable for agricultural activities. While the visible extent of 
salt-impacted land provides a useful saltwater intrusion proxy, it is 
challenging to identify in early stages. Moreover, associated ecological 
and economic impacts are often underestimated as reduced crop 
yields in farmlands surrounding salt patches are difficult to quantify. 
Here we develop a high-resolution (1 m) dataset showing salt patches 
on farm fringes and quantify the extent of salt-impacted lands across 
the Delmarva Peninsula, United States. Our method is transferable to 
other regions across and beyond the mid-Atlantic with similar saltwater 
intrusion issues, such as Georgia and the Carolinas. Our results show 
that between 2011 and 2017, visible salt patches almost doubled and 
8,096 ha of farmlands converted to marsh—another saltwater intrusion 
consequence. Field-based electrical conductivity measurements show 
elevated salinity values hundreds of metres from visible salt patches, 
indicating the broader extent of at-risk farmlands. More farmland areas 
were within 200 m of a visible salt patch in 2017 compared to 2011, a rise 
ranging between 68% in Delaware and 93% in Maryland. On the basis 
of assumed 100% profit loss in at-risk farmlands within a 200 m buffer 
around salt patches in 2016–2017, the range of economic losses was 
estimated between US$39.4 million and US$107.5 million annually,  
under 100% soy or corn counterfactuals, respectively.

With continued sea-level rise, coastal waters are reaching farther inland 
causing changes in soil salinity and water quality, leading to perma-
nent land loss and ecosystem alterations1–6. In coastal counties of the 
United States, which hosts about 9% of all US farmlands7, saltwater 
intrusion (SWI) into coastal ground- and surface-water results from a 
combination of natural sea-level variability and sea-level rise, land sub-
sidence, drought and storm surges, the connectivity of the landscape 
to tidal channels and groundwater extraction4,8–10. Furthermore, SWI 

increasingly results from frequent far-reaching seasonal high tides, as 
opposed to solely from infrequent powerful storms, as was the more 
dominant driver a few decades ago11. With reported rates of sea-level 
rise twice the global average9, the Mid-Atlantic region of the United 
States deserves special attention.

SWI is leading to a suite of ecological changes including increased 
soil salinity, visible salt patches on the soil, the formation of ghost 
forests and expansion of salt-tolerant invasive species2,12. Moreover, 
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includes bright white salt patches along the farm fringes (Fig. 1), mostly 
found in elevation <1 m, as well as bright white patches scattered any-
where in a field. We further quantified the area that converted from 
salt patch, farmlands and bare soil into marsh (Fig. 3) that often rep-
resents the permanent loss in productive farmlands due to increasing 
soil salinity.

Our results show that the effect of salt patches on agricultural 
productivity extends far beyond what is currently mappable. For exam-
ple, while the acreage of land with visible salt patches may be small, its 
presence denotes that the entire field is at risk of conversion to saline 
soil unsuitable for traditional farming. Further, in some instances, soil 
salinity in nearby areas of the field may be high enough to reduce crop 
yield but not enough to leave bare patches. To identify farmlands at the 
greatest risk of SWI, we calculated the acreage of corn and soybeans 
within 50, 100 and 200 m buffers around the existing salt patches 
using the United States Department of Agriculture (USDA) Cropland 
Data Layer18. We selected these distances on the basis of measure-
ments of soil electrical conductivity (EC) collected from 36 farm sites 
(Supplementary Fig. 1; Methods). Our choice of corn and soybeans as 
preferred crops is because the Delmarva economy is dominated by 
corn–soybean farming.

Most farmlands on the Delmarva Peninsula are planted in grain 
crop rotations during summer (for example, corn–soybean). While 
soybean is more tolerant to salt13, corn is a more profitable crop. Due 
to the ongoing and increasing SWI effects, crop yields in affected sites 
are expected to decline over the coming years15,19,20. In an attempt to 
quantify the range in potential losses in profit from increased soil 

SWI can directly reduce crop yield, as most crops are highly sensitive 
to saline soil13–16. Yet, it is challenging to quantify agricultural losses 
due to SWI, since marginal yield losses are difficult to detect or quan-
tify. Visible salt patches on farm fields, that typically occur near field 
edges, close to agricultural ditches and tidal creeks at the lowest lying 
points on the field (Fig. 1), can be used as a proxy for SWI mapping. 
However, documenting these salt signatures is challenging due to 
their fine spatial scale and patchiness, ranging from a few to hundreds 
of metres. Measuring the extent and severity of the impacts of SWI 
through field-based methods is labour-intensive, time-consuming and 
expensive. A more direct and cost-effective approach would be to use 
remotely sensed images (aerial and satellite data) and machine-learning 
approaches to identify white, reflective patches on the soil as salt 
signatures (Fig. 1). Combining field-based knowledge of salt patches 
in the study area and remote sensing techniques, we have developed 
a method that is efficient in identifying fine-scale salt patch features 
over a large geographic region.

We provide high-resolution mapping of visual evidence of salt 
patches on farmlands in the Delmarva Peninsula covering 1.54 mil-
lion ha over 14 coastal counties in Delaware, Maryland and Virginia; an 
area that hosts 28.4% of the total harvested farmlands in those three 
states. At least 35% of the land on the Delmarva Peninsula is within 5 m 
of the high tideline17. Using a Random Forest (RF) algorithm trained 
and tested with 94,240 reference points, we mapped and quantified 
farmland in 14 counties that displayed transient or persistent salt 
patches between 2011 and 2017 (Fig. 2) and estimated the loss in profit 
from these salt-impacted farmlands. The ‘salt patch’ class in this study 
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Fig. 1 | Where crops do not grow. a, Visible salt patches at the farm fringes. b, Many Delmarva farmlands are close to brackish or saline water. c, A drone image from a 
farm in Somerset County, Maryland (2019). d, Study area showing 14 coastal Delmarva counties in Delaware, Maryland and Virginia.
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salinization, we used an ‘enterprise budget’ (Methods) that considers 
yields, land rental, fertilizer prices and harvested grain prices for three 
scenarios: (1) ‘business-as-usual’ where the at-risk farmlands have the 
current corn and soybean acreage, (2) ‘corn counterfactual’ (assuming 
at-risk farmlands with corn and soybean combined have 100% corn, 
thus 100% annual profit from corn) and (3) ‘soybean counterfactual’ 
(assuming at-risk farmlands with corn and soybean combined have 
100% soybean, thus 100% annual profit from soybean). We estimated 
potential losses assuming zero profits (not zero yield) on salt patches 
and surrounding farmland within 50, 100 and 200 m buffers, relative 
to a counterfactual of average profits under high yields. In addition, we 
estimated potential losses assuming a reduced 80% yield for the two 
counterfactual scenarios. Counterfactual profits (potential losses) 
were calculated on the basis of average 10 year input, crop prices and 
the highest reported annual county-based crop yields21.

Results
Visible salt patches expanding at an alarmingly high rate
Salt patches, associated with very little to no plant growth, represent 
a complete loss of productive land. About 472 ha of land across the 
Delmarva Peninsula, mostly near field edges, had visible salt patches 
during 2011–2013 (Fig. 2). This area nearly doubled to 905 ha during 
2016–2017 and varied greatly by county. The nine coastal Maryland 
counties experienced a 79% increase in salt patch area. In Delaware and 
the Eastern Shore of Virginia, the area of salt patches increased 81% and 
243%, respectively, between 2011 and 2017. While the expansion rate is 
alarming, the absolute area of these identified salt patches remained 
small in 2017: about 445 ha in Maryland; 339 ha in Delaware; and 122 ha 
in Virginia. The rate of change between time-steps varied across the 
counties with numbers ranging from a 7.6% increase in Kent County 
to a 450.5% increase in Caroline County, both in Maryland (Fig. 2).  

Salt patches remained a small fraction of total land cover across  
Delmarva, ranging between 0.01% and 0.18% of total farmlands in a given 
county in 2011–2013 and between 0.01% and 0.39% in 2016–2017 (Fig. 4a).  
Moreover, appearance and disappearance of salt patches varied over 
time, with only 24 ha of visible salt patches identified in the period 
2011–2013 remaining visible in 2016–2017 (8.7 ha in Maryland, 15 ha in 
Delaware and 0.6 ha in Virginia). The overall expansion of salt patches 
was largely due to 436, 323 and 121 ha of new salt patches that appeared 
in 2016–2017 in Maryland, Delaware and Virginia, respectively. About 
36% and 32% of the salt patch area are located on sites with elevation 
<2 m during 2011–2013 and 2016–2017, respectively.

Farmlands at risk from further saltwater intrusion
Increasing soil salinity might result in gradual conversion of farmlands 
to marsh22. We estimated that about 36.5 ha of land was converted from 
salt patch to marsh and about 1,007 ha of land was converted from bare 
soil to marsh between 2011 and 2017 across our study area. Over 188 ha 
and 275 ha of bare soil converted to marsh between 2011 and 2017 within 
the 100 and 200 m buffers, respectively. In addition, over 8,096 ha of 
farmland was converted to marsh across the 14 coastal Delmarva coun-
ties between 2011 and 2017 (Fig. 3). The three Delaware counties have 
the largest share of such conversions at 3,824 ha, followed by the nine 
counties in Maryland (3,488 ha) and two counties in Virginia (784 ha). 
These converted lands are more suitable for salt-tolerant species14,16,23, 
including both native marsh species and salt-tolerant invasive species 
such as the common reed (the Eurasian lineage of Phragmites australis).

We estimated about 13,732 ha of at-risk farmland across the  
Delmarva Peninsula during 2011–2013 that are located within 50 m of a 
visible salt patch. By 2016–2017, that number grew to about 28,022 ha 
or about three-quarters the size of Philadelphia. The increase in at-risk 
farmlands varied by state—from 4,726 to 9,150 ha in the three Delaware 
counties (94% increase), from 1,321 to 2,636 ha in the two Virginia coun-
ties (99% increase) and from 7,684 to 16,236 ha in the nine Maryland 
counties (111% increase). Between the two time-steps, this represents 
a change from 2.5% to 5.2%, 2.3% to 4.3% and 1.9% to 4.1% of total farm-
lands in the study counties in Virginia, Delaware and Maryland, respec-
tively. In 2011–2013, these at-risk farmlands represented between as 
little as 0.4% of all farmlands in Cecil County, Maryland, to up to 4.7% 
of all farmlands in Somerset County, Maryland (Fig. 4b). In 2016–2017, 
the range of at-risk farmlands increased to a minimum of 1.6% in Kent, 
Maryland, and a maximum of 8% in Somerset, Maryland (Fig. 4b).

We found that ~35,032 ha of farmland were within 100 m of a 
salt patch during 2011–2013, which increased to 68,475 ha, or about 
twice the size of Philadelphia, during 2016–2017. Delaware coun-
ties experienced a rise in at-risk farmlands from 12,368 to 22,416 ha 
(81%), whereas the counties in Virginia and Maryland had an increase 
from 3,250 to 6,283 ha (93%) and from 19,414 to 39,775 ha (105%), 
respectively. This represents an increase from 6% to 12.2%, 6% to 10.5% 
and 4.7% to 10.1% of the total farmlands in the study counties in Vir-
ginia, Delaware and Maryland, respectively. The distribution pattern 
remains the same as was seen for at-risk farmlands within a 50 m buffer.  
Somerset County, Maryland, had the largest share for both time-steps 
(11.7% and 16.9%; Fig. 4c).

Using a more liberal estimate of the area around visible salt patches 
in which crop yields may be affected, we found that about 91,073 and 
166,930 ha of at-risk farmland was within 200 m of a visible salt patch 
during 2011–2013 and 2016–2017, respectively. The study counties in 
Delaware, Virginia and Maryland witnessed a rise in at-risk farmlands 
from 33,064 to 55,511 ha (68%), 8,095 to 14,898 ha (84%) and 49,914 
to 96,521 ha (93%), respectively (Fig. 4d). This represents an increase 
from 16.1% to 26.1%, 15% to 29.4% and 12.2% to 24.5% in the study coun-
ties in Delaware, Virginia and Maryland, respectively. It is noteworthy 
that crop stress due to soil salinization does not decline linearly with 
distance from a visible salt patch. In other words, the deleterious effects 
experienced by crops do not depend on their exact location within 
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Fig. 2 | Changes in visible salt patches between 2011–2013 and 2016–2017.  
a, Percentage change in total area of visible salt patches. b, Regions in the study 
area highlighting farmlands that converted to salt patches between 2011 and  
2017 (in purple).
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these buffers per se, as we recorded similar soil EC values in all these 
buffers (Supplementary Fig. 1).

Substantial profit loss from saltwater intrusion on Delmarva
Within the buffers around the salt patches, the sources of financial 
losses stem from both observed salt patches and potential saliniza-
tion of the adjacent farmlands, thereby reducing yield and profit.  

It is not possible to estimate the exact percentage of loss in profit due 
to the varied levels of salinity in farmlands where salt patches are not 
visible yet. Hence, we first estimated an upper bound in these losses 
with the assumption of zero profit on the salt-impacted farmlands, 
both salt patches and farmlands within these buffers, planted in corn 
or soybean. Loss estimates are based on the assumption that yields on 
salt-affected lands generate revenue that only just covers input costs, as 
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opposed to assuming zero yields, which would induce financial losses 
if crops were planted. We calculated foregone profits (potential losses) 
on the basis of high yield and average per bushel profits over 10 years 
(2011–2020) in each county (Fig. 5). Then we estimated subscenarios 
within our two counterfactuals (100% profit coming from corn and 
soybeans, respectively) assuming a 20% yield loss, that is 80% crop 
yield potential. It should be noted that the same level of salinity would 
result in different yield decline for corn and soybeans.

Business-as-usual scenario. Considering the current scenario in 
which profits are derived from corn and soybeans, planted in rota-
tion, we estimated an annual loss in profit from visible salt patches 
ranging between US$101,642 (considering 2011–2013 salt patches) 
and US$325,419 (considering 2016–2017 salt patches) (Fig. 5a). Since 
corn is more profitable, the higher share of loss also comes from corn—
US$67,202 for 2011–2013 and US$234,017 for 2016–2017. These ‘loss 
in profit’ values from corn consist of about 66–72% of the total loss in 
profit. Sussex County in Delaware showed the most increase in poten-
tial losses, estimated at US$84,431 (Fig. 5a).

Considering all farmlands within 50 m buffers around the salt 
patches, we estimated the losses in profit to be US$5.8 million in 2011–
2013 and US$11.9 million in 2016–2017 (Fig. 5d). For 100 m buffers, our 
estimated annual profit loss ranged between US$14.9 million in 2011–
2013 and US$29 million in 2016–2017 (Fig. 5g). For 200 m buffers, the esti-
mated annual profit loss ranged between US$39.3 million in 2011–2013 
and US$70.7 million in 2016–2017 (Fig. 5j). Out of this total loss in profit, 
the share of corn is 70–71% for all three buffer estimates. Delaware’s  
Sussex County had the most losses in profit under a business-as-usual 
scenario, estimated at US$3.1 million (50 m buffer), US$7.4 million 
(100 m buffer) and US$18.5 million (200 m buffer) in 2016–2017.

Corn counterfactual scenario. Focusing only on visible salt patches 
and assuming zero profits in these locations over a 10 year average, we 
estimated potential annual losses of US$163,963 across the Peninsula 
in 2011–2013 (Fig. 5b). By 2016–2017, the potential financial losses tri-
pled to US$493,138, owing to the increase in the extent of salt patches. 
We estimated the highest profit loss in Sussex County in Delaware at 
US$160,000 in 2016–2017, also showing the largest increase in losses 
between the two time-steps (Fig. 5b).

Extending our analysis to the 50 m buffer on at-risk farmlands 
adjacent to visible salt patches, we estimated a potential profit loss in 
the range US$8.7 million (2011–2013) to US$18.1 million (2016–2017) 
under a 100% corn scenario (Fig. 5e). Considering a 100 m buffer 
around each observed salt patch (Fig. 5h), the potential losses for the  
Delmarva Peninsula ranged between US$22.2 million (2011–2013) and 
US$44.1 million (2016–2017). Considering a 200 m buffer (Fig. 5k), the 
potential losses in profit ranged between US$58.3 million (2011–2013) 
and US$107.5 million (2016–2017). The top three counties from each 
state with the largest share of losses are Sussex (Delaware), Dorchester 
(Maryland) and Accomack (Virginia) for all buffers in 2016–2017 (Fig. 5).

Within this 100% corn counterfactual, we further considered a 20% 
yield loss scenario and estimated a profit loss range of US$4.8 million 
(2011–2013) to US$10.1 million (2016–2017) in the 50 m buffer. Consid-
ering the 100 m buffer, the profit loss ranged between US$12.3 million 
(2011–2013) and US$24.7 million (2016–2017). For the 200 m buffer, the 
assumed yield loss resulted in an estimated profit loss ranging between 
US$32.5 million (2011–2013) and US$60.5 million (2016–2017).

Soybean counterfactual scenario. Since soybeans are less profit-
able than corn, a counterfactual scenario with 100% soybean gener-
ates the least potential losses due to SWI. For this counterfactual, we 
estimated potential losses of US$59,186 from visible salt patches 
across the Peninsula in 2011–2013, almost half of the estimated losses 
in the business-as-usual scenario (Fig. 5c). For 2016–2017, the poten-
tial losses in this counterfactual tripled to US$178,746 but were still 

only about one-third of the potential losses in a 100% corn counter-
factual scenario.

For 50 m buffers (Fig. 5f), estimated losses in profit across the 
Peninsula ranged between US$3.2 million (2011–2013) and US$6.6 mil-
lion (2016–2017). For 100 m buffers (Fig. 5i), our estimated losses in 
profit ranged between US$8.4 million (2011–2013) and US$16.1 million 
(2016–2017). Considering a 200 m buffer (Fig. 5l), the potential losses 
in profit ranged between US$22.2 million (2011–2013) and US$39.4 mil-
lion (2016–2017). The potential losses for this counterfactual were the 
largest for Sussex County in Delaware, estimated at US$1.5 million 
(50 m buffer), US$3.6 million (100 m buffer) and US$8.9 million (200 m 
buffer) in 2016–2017 (Fig. 5).

In a 20% yield loss scenario under a 100% soybeans counterfactual, 
we estimated a profit loss of US$2.6 million (2011–2013) to US$5.4 mil-
lion (2016–2017) in the 50 m buffer. The losses in profit increased to 
US$6.6 million (2011–2013) and US$13.2 million (2016–2017) in the 
100 m buffer. With the same yield loss assumption, we estimated a range 
of profit loss between US$17.5 million (2011–2013) and US$32.4 million 
(2016–2017) in the 200 m buffer.

Discussion
The mid-Atlantic region of the United States has been witnessing rapid 
landscape-level changes over the last few decades6,24,25. This study docu-
ments visible salt patches and their spatiotemporal evolution across the 
Delmarva Peninsula. Our results show that the rapid growth of salt patch 
area across the Delmarva during the last decade is notable. Bare areas 
in farm fields displaying the distinct signature of SWI nearly doubled 
(92% increase) during the 6 years of the study period (2011–2017), as 
did the potential losses in profit in at-risk farmlands.

While visible salt patches are a good indicator of the spatial distri-
bution of salt-impacted farmlands, their absence may not necessarily 
indicate a productive farmland or absence of SWI; high salinity areas 
may not be equally visible at all times. Various factors ranging from 
farming practices to regional climate and weather events may modify 
identifiable salt patches on the ground. For example, following a large 
rain event, farm abandonment or a fallow period26,27, salt patches 
may not be visible in aerial images. Compared to drier climates, the 
Delmarva Peninsula receives an average rainfall of 1,140 mm rainfall 
annually28. This is usually enough to dilute and remove salts from the 
soil surface and to allow plants to germinate16; yet, the water table in 
our study region is often close enough to the surface that the saline 
water has nowhere else to go. Moreover, soil salinity may increase 
incidentally following nuisance flooding29 or weather events such as 
northeasters or hurricanes, which push salts inland and may increase 
the visibility of salt signatures in remotely sensed data. The addition of 
salts at later crop growth stages may reduce yields30, without causing 
bare patches. As such, visible salt patches and the approach of estimat-
ing at-risk farmlands using buffers around them should be considered 
a highly conservative estimate of farmlands affected by SWI.

On the basis of our findings, it is a reasonable assumption that 
all visible salt patches indicate land presently affected by SWI or the 
very frontlines of coastal changes due to sea-level rise. Visible salt 
patches are ephemeral, often occurring before farm abandonment 
and land use change. However, widespread marsh conversion in the 
study region denotes a strong directional change in land covers as a SWI 
consequence. About 36.5 ha of salt patch area converted to marsh, while 
8,096 ha of farmland in the Delmarva Peninsula converted to marsh dur-
ing the 6 year study period, which exceeds the area of fields exhibiting 
salt patches and suggests that sea-level rise is a substantial source of 
land cover change in this region. Moreover, the extent of sea-level rise 
impacts appears to be growing; we estimated that in 2016–2017 between 
28,022 (using a 50 m buffer) and 166,930 (using a 200 m buffer) addi-
tional hectares of farmland were at-risk on the Peninsula due to their 
proximity to the visible salt patches. Evidently, the effects of sea-level 
rise and SWI are far more extensive than what is visible at the surface.
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These changes are of great economic concern and having a visible 
signal of contemporary sea-level rise presents an opportunity to detect 
the geographic distribution of sea-level impacts in near real-time, 

which holds promise for a number of future applications. From a basic 
science perspective, real-time tracking will enable greater mechanis-
tic understanding and improved ability to model SWI. For example, 
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Fig. 5 | Potential loss in profit in US$ from salt patches and at-risk farmlands 
considering 10 year averages in crop prices. a–c, Potential losses from salt-
affected lands. d–f, Potential losses in salt-adjacent lands within a 50 m buffer. 
g–i, Potential losses in salt-adjacent lands within a 100 m buffer. j–l, Potential 
losses in salt-adjacent lands within a 200 m buffer. Each panel row shows three 
scenarios: business-as-usual (BAU) where profit is derived from both corn and 

soybean (a,d,g,j), a corn counterfactual where 100% profit comes from corn 
(b,e,h,k) and a soybean counterfactual where 100% profit comes from soybean 
(c,f,i,l). Yellow and purple circles represent profit losses using salt patch 
estimates from 2011–2013 and 2016–2017, respectively, whereas the grey bars 
denote the change in estimated losses in profit.
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empirical models based on spatial correlations could help us to better 
understand the role of ditch and canal networks31, soil characteristics 
and geologic features32, legacies of land reclamation33,34 or water table 
levels and recharge35–37. Greater understanding of how human activities 
exacerbate or reduce salt patches and marsh, such as the construction 
or removal of tide gates and berms, should be of particular interest to 
policy-makers. Real-time tracking could also be used to better under-
stand the distribution and inequity of economic impacts in the coastal 
zone, knowledge of which could be used to design and target new 
incentive programmes to the landowners who most need them in the 
changing coastal landscape. Our high-resolution geospatial datasets 
provide a finer spatial resolution compared to global datasets, such as 
the Global Map of Salt-affected Soils or GSASmap38. This level of detail 
is critical for the farm-level decision-making that is often required to 
design and implement state-level policies.

Our work provides evidence for an immediate policy attention 
required to protect the coastal lands against increasing soil salinization. 
Due to its sensitivity to salinity, the corn-focused agricultural economy 
is not suitable for many SWI-affected coastal fields across Delmarva. 
Increasing the share of farmlands under more salt-tolerant crops (for 
example, soybeans, sorghum or barley), reducing inputs, adding gyp-
sum to the salt-affected lands or using crop insurance as a strategy 
to limit losses and delay transitions might result in lower economic 
losses in the immediate future. However, landowners might be forced 
to abandon these farmlands once the soil becomes salinized beyond 
the tolerance of any traditionally farmed food crops. Recent studies 
have examined alternative crops, such as barley, quinoa and sorghum 
that might be more suitable for these landscapes16. Other adaptation 
strategies might include a controlled conversion of these landscapes 
into marsh that can support wildlife or act as a barrier to encroaching 
seawater39. While such transitions are vital to sustainable solutions, 
the fate of such coastal frontier zones will be shaped by the salinity 
gradient across these evolving landscapes. In highly salinized regions, 
halophytes might contribute to further soil salinization through con-
tinued and efficient water uptake in brackish soils—an example of a 
positive feedback loop40,41. Conversely, marsh vegetation might protect 
comparatively less salinized regions from further salt accumulation42.

SWI is rampant across the North American Coastal Plain, from  
Massachusetts, United States, in the north to Northern Mexico in 
the south, with documented coastal forest loss6. This study high-
lights another SWI consequence that has far-reaching implications 
for the US economy as well as coastal ecosystems, by drawing atten-
tion to the gradual loss of productive Delmarva farmlands from SWI. 
Due to the reliance on freely available aerial and satellite images 
and well-established machine-learning methods, our geospatial 
method is transferable to other coastal regions across and beyond 
the mid-Atlantic with known SWI issues1. While other long-term SWI 
consequences, such as the expansion of ghost forests along the US 
coasts, have been documented in recent studies1,6, the elusive nature 
of salt patches posed a challenge in estimating agricultural losses. 
Our high-resolution datasets not only address that challenge but also 
provide a baseline and a reproducible approach that can be used to 
track the spread and cost of SWI in the Delmarva Peninsula and beyond.

Methods
Aerial and satellite imagery
To quantify land uses/covers, including salt patches, across the  
Delmarva Peninsula we used aerial imagery from the National Agricul-
ture Imagery Program (NAIP). NAIP images are high-resolution (1 m) 
aerial images containing red, green, blue and near-infrared (NIR) bands 
that are collected by the USDA on an ~3 year basis. We accessed orthorec-
tified NAIP images from June–July 2011 (Maryland), May 2012 (Virginia), 
September 2013 (Delaware), June 2016 (Virginia), June 2017 (Maryland) 
and July–August 2017 (Delaware) on the Google Earth Engine (GEE) 
platform and developed high-resolution datasets for the study area 

for two time-steps: 2011–2013 and 2016–2017. In addition to the visible 
(red, green and blue) and NIR NAIP spectral bands, we calculated several 
other bands to be used as the inputs to the machine-learning based 
classification scheme. The additional bands include (1) four principal 
component analysis (PCA) bands derived from the four original NAIP 
bands using eigen analysis, (2) one normalized difference vegetation 
index (NDVI) band ((NIR − Red)/(NIR + Red)), (3) one normalized differ-
ence water index band ((Green − NIR)/(Green + NIR)), (4) one shadow 
index band ((256 − Blue) × (256 + Blue)) and (5) four smoothed bands 
derived from the four original NAIP spectral bands smoothed with a 
3 × 3 boxcar kernel43–45. Each input band has a spatial resolution of 1 m. 
The derived bands are used to overcome unique challenges associ-
ated with high-resolution NAIP images used as inputs for land cover 
classifications, such as low spectral resolution, shadows and limited 
acquisition dates46. For example, PCA is a data reduction technique that 
converts correlated variables into a new set of uncorrelated variables 
and in remote sensing can be used to remove redundant information 
and enhance the details47,48. We followed the eigen analysis workflow in 
GEE to create four additional PCA bands by converting the four original 
NAIP bands into a one-dimensional array, calculating a covariance 
matrix, calculating eigenvalues and eigenvectors, using eigenvectors to 
transform the original array and finally normalizing the components49. 
In addition, shadows from tree crowns are a persistent problem and 
were addressed using the shadow index; NDVI and normalized differ-
ence water index aided in differentiating marsh and wetland vegetation 
from other green vegetation; and the smoothed bands reduced the 
speckle effect created by the high-resolution dataset.

NAIP-based classification, however, could only achieve an accuracy 
up to 75%, primarily due to the challenges stemming from its very high 
spatial resolution and the lack of seasonal information since all NAIP 
images are from summer/early autumn. We used moderate-resolution 
satellite images from Landsat to overcome these challenges and incor-
porate additional spectral information. Landsat is a series of satellites 
launched by the National Aeronautics and Space Administration with 
satellite images distributed through the United States Geological Sur-
vey. Landsat data include red, green, blue, NIR, shortwave infrared, aer-
osol, cirrus, panchromatic and thermal bands. All bands are collected at 
a 30 m resolution except the panchromatic band, which is collected at 
a 15 m resolution and the thermal bands which are collected at a 100 m 
resolution. Cloud-masked top-of-atmosphere (TOA) reflectance images 
from Landsat 5 (2011 and 2012), Landsat 7 (2013) and Landsat 8 (2016 
and 2017) were obtained using GEE. To capture seasonal changes in 
vegetation, we derived four seasonal enhanced vegetation index (EVI) 
bands from the TOA images using this formula: 2.5 × ((NIR − Red)/(NI
R + 6 × Red − 7.5 × Blue + 1)) (ref. 50). The coefficients used in the EVI 
equation are sensor-specific, hence we could not use EVI for NAIP 
images. We initially used NDVI for both NAIP and Landsat; however, 
for Landsat, EVI was preferred over NDVI because it yielded a higher 
accuracy. Each of the four EVI bands is a median of a different sea-
son: summer ( June–August), autumn (September–November),  
winter (December–February) and spring (March–May). The EVI bands 
were smoothed with a 3 × 3 boxcar kernel to reduce noise51. These four 
EVI bands capture seasonal differences across spring, summer, autumn 
and winter. Thermal bands from the TOA images were also used to cap-
ture differences between non-vegetated surfaces such as sand, bare soil 
and buildings. Landsat 5 contains one thermal band (B6) while Landsat 
7 and Landsat 8 contain two bands (B10 and B11). Again, a median was 
calculated to create a band for each of the four seasons and the bands 
were smoothed using a 3 × 3 boxcar kernel.

Random Forest classifier
A supervised classification using the RF algorithm was used to clas-
sify land uses/covers across the Delmarva Peninsula52. The input data 
used for the RF are comprised of the four NAIP bands, four PCA bands 
from NAIP, three indices from NAIP, four smoothed NAIP bands, four 
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smoothed seasonal EVI bands from Landsat and four (from Land-
sat 5) or eight (from Landsat 7 and 8) smoothed seasonal thermal 
bands. Landsat images were overlaid on NAIP images, so that the pixel 
values from different Landsat bands can be assigned to all the NAIP 
pixels residing within that particular Landsat pixel. This step ensured 
providing more spectral information to the RF classifier required to 
differentiate between spectrally similar land cover classes, such as 
farmland and residential neighbourhood lawn. The data used to test 
and train the RF were a combination of coordinates from ground data 
collected during summer of 2019 and reference points collected by 
visually assessing the NAIP imagery. In total, 94,240 points were col-
lected spanning over both time-steps (Supplementary Table 1). We split 
these reference data using 70% of the points to train the RF and 30% 
to test the accuracy of the classification. The RF algorithm separates 
the data into eight defined land use/cover classes: forest, marsh, salt 
patch, built, open water, farmland, bare soil and other vegetation. We 
used the GEE platform for running the RF algorithm from the statistical 
machine intelligence and learning engine. The hyperparameters were 
set to 100 for the number of trees and the default values for variables 
per split (4), minimum leaf population (1), bag fraction (0.5) and max 
nodes (no limit). We ran a separate RF classifier for each state–year 
combination to avoid confusing the classifiers with a range of values 
for the same land cover across space and time. This is a widely used 
method for postclassification change detection.

Postprocessing
Due to the high resolution of the input data, there is a considerable 
‘salt-and-pepper effect’ or speckle effect on the classified image. Such 
effects are more visible in the salt patch class and its surroundings com-
pared to other land covers (due to larger sample size, that is number 
of pixels). As a postprocessing step to reduce such speckle effects, we 
applied a majority filter to the classified image using the Focal Statistics 
tool in ArcGIS Pro v.3.0.3 with a 3 × 3 pixel neighbourhood. For example, 
any solitary salt patch pixel was ‘reclassified’ as the majority land cover 
within the immediate neighbourhood. Furthermore, we considered 
only patches of ten or more connected ‘salt patch’ pixels as a valid salt 
patch. We also used a road mask to minimize the confusion between 
impervious streets and salt patches. Figures were created using ArcMap 
10.8.1 and Microsoft PowerPoint 2016.

Accuracy assessment
To determine the accuracy of the classification, we compared about 
30% of points (n = 30,414) withheld from the RF algorithm to the classi-
fied image results. From the resulting confusion matrix, we calculated 
several accuracy estimates: user’s accuracy, producer’s accuracy, over-
all accuracy, kappa statistic and the F-score (Supplementary Table 1).  
User’s accuracy is complement of the error of commission and is cal-
culated as the correctly classified pixels within a class divided by the 
count of pixels that were classified as that class. Producer’s accuracy is 
complement of the error of omission and is calculated as the correctly 
classified pixels within a class divided by the count of pixels that were 
referenced as that class in the training data. Overall accuracy indicates 
how effective the overall classification was and is calculated as the 
total correctly classified pixels divided by all of the training pixels. The 
accuracies range between 0% and 100%, with 100% representing total 
agreement between the training data and the classification.

The kappa analysis is a discrete multivariate technique used in 
accuracy assessment to measure the chance agreement53,54. Kappa 
values over 80% represent strong agreement between the classified 
images and the ground reference information55.

The F-score provides a similar measure to overall accuracy while 
accounting for imbalances in the amount of training data for each class 
and is calculated as56 ((user’s accuracy × producer’s accuracy)/(user’s 
accuracy + producer’s accuracy) × 2). The F-score ranges between 0 
and 1, with 1 meaning complete agreement.

Caveats
While our datasets57 have an overall high accuracy (Supplementary 
Table 1), a few caveats should be considered when using the data for 
other applications. Some salt patches or bare soil that were misclas-
sified as marsh in the classified image may have been an artefact of a 
flooding event immediately before the image acquisition. This would 
result in slight underestimation of salt patch area. Shadows within built 
areas are sometimes classified as water, while shadows on fields are 
sometimes classified as the built class. The classes most often confused 
with one another are crop fields and other vegetation, which typically 
encompasses open fields and lawns. These misclassifications do not 
have any direct implications for salt patch estimates. The algorithm 
used in this work often underpredicted salt patches because the typi-
cal bright white signature of these salt patches can look different when 
those areas become wet, leading these areas to be classified as crop 
fields. Most prominent salt patches appear at elevation <1 m. Some 
of the areas classified as salt patches, especially at higher elevations, 
might be bleached siliceous minerals visible on the soil surface, leading 
to negligible overestimation of salt patch area.

Buffer assessment
Buffers around salt patches were used to assess the impact on farm-
lands surrounding the observed salt patches. Three different buffer 
areas were used: 50, 100 and 200 m. Round buffers on all sides of the 
salt patches were used with a planar distance, excluding the core patch. 
We estimated acreage for both salt patches and farmlands within these 
three buffers, which was then used to calculate the potential losses  
in profit.

Satellite-derived datasets for crop types
To calculate the extent of corn and soybean acreage in salt-affected 
and salt-adjacent lands, we used the USDA-National Agricultural 
Statistics Service (NASS) Cropland Data Layers7 (spatial resolution 
30 m). These are annual crop-specific data layers derived from sat-
ellite imagery. We downloaded the geospatial data layers for the 
three states matched with the NAIP image dates—2013 and 2017 for 
Delaware, 2011 and 2017 for Maryland and 2012 and 2016 for Virginia. 
We reprojected the files in WGS84 using ArcMap 10.8.1 making them 
compatible with our high-resolution data layers, before resampling 
those to 1 m. For corn acreage, we combined the following classes: 
corn, double crop winter wheat/corn, double crop oats/corn, double 
crop barley/corn and double crop corn/soybeans. To calculate soy-
bean acreage, we combined the following classes: soybeans, double 
crop winter wheat/soybeans, double crop soybeans/oats and double 
crop barley/soybeans. We then used our salt patch polygons (derived 
from our 1 m classified images) and buffer polygons to calculate corn 
and soybeans acreage.

Soil EC sampling and analysis
To determine soil EC, a measure of soil salinity, we first identified areas 
of potential SWI using Google Earth to locate white patches on the 
edges of farm fields, along with farm fields regardless of the pres-
ence of visible signs of salt patches. This step was completed without 
consulting our geospatial datasets, to include an independent assess-
ment of our geospatial work. We worked with the Somerset County 
Soil Conservation District Office (Princess Anne, Maryland) to obtain 
permission from landowners to sample on these properties and in 
the summer of 2019 we sampled 36 farm fields where we were able to 
obtain permission. A 3 × 3 m2 plot was established in a salt patch on 
each field and a handheld Garmin GPS was used to record the location 
at the centre of the plot. After soil sample collection, locations of these 
farm sites were used to calculate the nearest distance to a salt patch in 
our geospatial data layer. We collected at least five soil samples from 
within the plot at 0–10 and 10–20 cm depths using a 2 cm push probe. 
Soils were homogenized by depth at the plot-level and transported 
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on ice back to the University of Maryland Lab for processing and EC 
analysis (total of 72 samples). In the laboratory, soils were mixed with 
deionized water in a 2:1 deionized water:soil slurry. The slurries were 
shaken for 1 h and allowed to settle overnight. Samples with a cloudy 
supernatant the next morning were centrifuged for 10 min (4,180g) 
until clear. An Orion three-electrode conductivity cell connected to a 
Versa Star multiparameter benchtop meter (ThermoFisher Scientific) 
was used to measure EC in mS cm−1 of the clear supernatant and the 
values were corrected to saturated paste equivalent measures by mul-
tiplying by the ratio of soil slurry mass to soil mass. EC was measured 
in triplicate on each sample.

Soil EC threshold tolerances for corn, soy and wheat are 1.7, 5.0 and 
6.0 mS cm−1, respectively14. We recorded high EC values (>5 mS cm−1) 
hundreds of metres away from a salt patch (Supplementary Fig. 1). 
Thus, our three buffers of 50, 100 and 200 m from visible salt patches 
provide a range of estimates of at-risk farmlands.

Financial loss estimates
We used the enterprise budget tool available from the University of 
Maryland Extension to estimate potential profit loss for no-till corn 
(Zea mays) and soybean (Glycine max) grain crop production58. The 
University of Maryland enterprise budget tool calculates the profit 
per acre by subtracting fixed and variable costs from the gross profit 
(grain yields × grain price). Fixed costs include equipment costs and 
land rents while variable costs include seed, fertilizer and pesticide 
applications. We estimated profits separately for each county in  
Maryland, Delaware and Virginia using county-specific yields and land 
rental, fertilizer and harvested grain prices. We estimated potential 
profits on the basis of the highest annual yield during 2011–2020 for 
each county, based on survey data from the USDA-NASS21. We used 
these values to represent the yield that could be achieved under ideal 
planting and weather conditions. Thus, we attribute losses in our 
scenarios to soluble salts beyond crop thresholds—as opposed to 
climate or other factors. Due to the large interannual fluctuations in 
input costs and grain prices, we calculated potential profits on the 
basis of average per bushel profits over multiple growing seasons. 
Specifically, annual profits were calculated on the basis of average 
input and crop prices over 10 years (2011–2020). We used cash land 
rental prices for non-irrigated fields21. Fertilizer prices for nitrogen 
(N), phosphorus (P2O5) and potassium (K2O) are based on USDA-NASS 
averages from 2006 to 201421 and numbers from Data Transmission 
Network/Progressive Farmer reports from 2014 to 2020 (https://www.
dtnpf.com/agriculture/web/ag/home). Nitrogen prices are based 
on 28% urea ammonium nitrate (UAN28) prices, which is more com-
monly used on the Delmarva Peninsula, while P2O5 is based on diam-
monium phosphate and K2O in potash (KCl). Harvested grain prices 
for the eastern shore of Maryland and Delaware are from Ag Market 
News published by the Maryland Department of Agriculture (https:// 
agmarketnews.com/), while historical eastern shore Virginia grain 
prices are obtained from the Virginia Department of Agriculture his-
torical grain market reports59. We assumed the grain prices to be 
September cash prices. We did not consider storage, grain marketing 
or crop insurance costs or returns in these budgets. We calculated 
potential profit loss for each county as the area affected by SWI (salt 
patches or salt-impacted farmlands within buffers) times the average 
potential per acre profits for that county.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The high-resolution dataset for salt patches and other land covers 
for 2011–2013 and 2016–2017 are available at https://zenodo.org/
record/6685695#.Y9AiVXbMIdU.

Code availability
Sample GEE code is available along with the high-resolution dataset57.
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