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Estimation of heterogeneous causal effects—that is, how effects of poli-
cies and treatments vary across subjects—is a fundamental task in causal in-
ference. Many methods for estimating conditional average treatment effects
(CATESs) have been proposed in recent years, but questions surrounding op-
timality have remained largely unanswered. In particular, a minimax theory
of optimality has yet to be developed, with the minimax rate of convergence
and construction of rate-optimal estimators remaining open problems. In this
paper, we derive the minimax rate for CATE estimation, in a Holder-smooth
nonparametric model, and present a new local polynomial estimator, giving
high-level conditions under which it is minimax optimal. Our minimax lower
bound is derived via a localized version of the method of fuzzy hypothe-
ses, combining lower bound constructions for nonparametric regression and
functional estimation. Our proposed estimator can be viewed as a local poly-
nomial R-Learner, based on a localized modification of higher-order influ-
ence function methods. The minimax rate we find exhibits several interesting
features, including a nonstandard elbow phenomenon and an unusual inter-
polation between nonparametric regression and functional estimation rates.
The latter quantifies how the CATE, as an estimand, can be viewed as a re-
gression/functional hybrid.

1. Introduction. In this paper, we consider estimating the difference in regression func-
tions

(1.1 ) =EY | X=x,A=1)-EY|X=x,A=0)

from an i.i.d. sample of observations of Z = (X, A, Y). Let Y denote the counterfactual
outcome that would have been observed under treatment level A = a. Then, under the as-
sumptions of consistency (i.e., ¥ = Y¢ if A = a), positivity (i.e., e <P(A=1|X)<1—¢€
with probability one, for some € > 0), and no unmeasured confounding (i.e., A 1L Y¢ | X),
the quantity 7 (x) also equals the conditional average treatment effect (CATE)

E(r'-v%| X =x).

The CATE t(x) gives a more individualized picture of treatment effects compared to the
overall average treatment effect (ATE) E(Y'!' — Y?), and plays a crucial role in many funda-
mental tasks in causal inference, including assessing effect heterogeneity, constructing opti-
mal treatment policies, generalizing treatment effects to new populations, finding subgroups
with enhanced effects, and more. Further, these tasks have far-reaching implications across
the sciences, from personalizing medicine to optimizing voter turnout. We refer to Hernan
and Robins ([13], Chapter 4), Nie and Wager [26], Kennedy [17], and citations therein, for
general discussion and review.
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The simplest approach to CATE estimation would be to assume a low-dimensional para-
metric model for the outcome regression E(Y | X, A); then maximum likelihood estimates
could be easily constructed, and under regularity conditions the resulting plug-in estimator
would be minimax optimal. However, when X has continuous components, it is typically
difficult to specify a correct parametric model, and under misspecification the previously
described approach could lead to substantial bias. This suggests the need for more flexible
methods. Early work in flexible CATE estimation employed semiparametric models, for ex-
ample, partially linear models assuming 7(x) to be constant, or structural nested models in
which t(x) followed some known parametric form, but leaving other parts of the distribution
unspecified [30, 32, 33, 38—40]. An important theme in this work is that the CATE can be
much more structured and simple than the rest of the data-generating process. Specifically, the
individual regression functions u,(x) =E(Y | X = x, A = a) for each a =0, 1 may be very
complex (e.g., nonsmooth or nonsparse), even when the difference 7(x) = u1(x) — po(x) is
very smooth or sparse, or even constant or zero. We refer to Kennedy [17] for some recent
discussion of this point.

More recently, there has been increased emphasis on incorporating nonparametrics and
machine learning tools for CATE estimation. We briefly detail two especially relevant
streams of this recent literature, based on so-called DR-Learner and R-Learner methods,
both of which rely on doubly robust-style estimation. The DR-Learner is a model-free meta-
algorithm first proposed by van der Laan ([38], Section 4.2), which essentially takes the
components of the classic doubly robust estimator of the ATE, and rather than averaging,
instead regresses on covariates. It has since been specialized to particular methods, for exam-
ple, cross-validated ensembles [22], kernel [7, 20, 44] and series methods [34], empirical risk
minimization [8] and linear smoothers [17]. On the other hand, the R-Learner is a flexible
adaptation of the double-residual regression method originally built for partially linear mod-
els [33], with the first nonparametric version proposed by Robins et al. ([27], Section 5.2)
using series methods. The R-Learner has since been adapted to RKHS regression [26], lasso
[6, 43] and local polynomials [17]. Many flexible nondoubly robust methods have also been
proposed in recent years, often based on inverse-weighting or direct regression estimation [1,
9,12, 15, 19, 35, 41].

Despite the wide variety of methods available for flexible CATE estimation, questions of
optimality have remained mostly unsolved. Gao and Han [10] studied minimax optimality,
but in a specialized model where the propensity score has zero smoothness, and covariates are
nonrandom; this model does not reflect the kinds of assumptions typically used in practice,
for example, in the papers cited in the previous paragraph. Some but not all of these papers
derive upper bounds on the error of their proposed CATE estimators; in the best case, these
take the form of an oracle error rate (which would remain even if the potential outcomes
(Y! — ¥9) were observed and regressed on covariates), plus some contribution coming from
having to estimate nuisance functions (i.e., outcome regressions and propensity scores). The
fastest rates we are aware of come from Foster and Syrgkanis [8] and Kennedy [17]. Foster
and Syrgkanis [8] studied global error rates, obtaining an oracle error plus sums of squared
Ly errors in all nuisance components. Kennedy [17] studied pointwise error rates, giving
two main results; in the first, they obtain the oracle error plus a product of nuisance errors,
while in the second, they obtain a faster rate via undersmoothing (described in more detail in
Section 3.3). However, since these are all upper bounds on the errors of particular procedures,
it is unknown whether these rates are optimal in any sense, and if they are not, how they might
be improved upon. In this paper, we resolve these questions (via the minimax framework, in
a nonparametric model that allows components of the data-generating process to be infinite-
dimensional, yet smooth in the Holder sense).

More specifically, in Section 3 we derive a lower bound on the minimax rate of CATE es-
timation, indicating the best possible (worst-case) performance of any estimator, in a model
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where the CATE, regression function and propensity score are Holder-smooth functions. Our
derivation uses an adaptation of the method of fuzzy hypotheses, which is specially local-
ized compared to the constructions previously used for obtaining lower bounds in functional
estimation and hypothesis testing [4, 14, 16, 25, 29, 37]. In Section 4, we confirm that our
minimax lower bound is tight (under some conditions), by proposing and analyzing a new
local polynomial R-Learner, using localized adaptations of higher-order influence function
methodology [27, 28, 31]. In addition to giving a new estimator that is provably optimal (un-
der some conditions, e.g., on how well the covariate density is estimated), our results also
confirm that previously proposed estimators were not generally optimal in this smooth non-
parametric model. Our minimax rate also sheds light on the nature of the CATE as a statistical
quantity, showing how it acts as a regression/functional hybrid, for example, the rate interpo-
lates between nonparametric regression and functional estimation, depending on the relative
smoothness of the CATE and nuisance functions (outcome regression and propensity score).

2. Setup and notation. We consider an i.i.d. sample of n observations of Z = (X, A, Y)
from distribution [P, where X € [0, l]d denotes covariates, A € {0, 1} a treatment or policy
indicator and Y € R an outcome of interest. We let F' denote the distribution function of the
covariate X (with density f as needed), and let

T(x)=P(A=1|X=x),
nx)=EY | X =x),
ma(x)=EX | X =x,A=a)

denote the propensity score, marginal and treatment-specific outcome regressions, respec-
tively. We sometimes omit arguments from functions to ease notation, for example, note that
T = (n — po)/m. We also index quantities by a distribution P when needed, for example,
7(x) under a particular distribution P is written tp(x); depending on context, no indexing
means the quantity is evaluated at the true P, for example, 7 (x) = tp(x).

Our goal is to study estimation of the CATE 7 (x) = 11 (x) — po(x) at a point xg € (0, 1)¢,
with error quantified by mean absolute error

E[T(x0) — T (x0)].

As detailed in subsequent sections, we work in a nonparametric model P whose components
are infinite-dimensional functions but with some smoothness. We say a function is s-smooth
if it belongs to a Holder class with index s; this essentially means it has s — 1 bounded
derivatives, and the highest-order derivative is continuous. To be more precise, let |s| denote
the largest integer strictly smaller than s, and let D% = ﬁ denote the partial derivative
operator. Then the Holder class with index s contains alll fungtions g: X — R that are |s]
times continuously differentiable, with derivatives up to order |s| bounded, that is,

|ID“g(x)| < C <0

for all @ = («q,...,aq) with )_ joj =< |s| and for all x € X, and with |s |-order derivatives
satisyfing the Lipschitz condition

DPg(x) = DPg(x)| < Cllx |1

for some C < oo, for all B = (Bi,...,Ba) with }_; B; = [s] and for all x,x’ € X, where
for a vector v € R? we let |lv|| denote the Euclidean norm. Sometimes Holder classes are
referenced by both the smoothness s and constant C, but we focus our discussion on the
smoothness s and omit the constant, which is assumed finite and independent of 7.
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We write the squared L,(Q) norm of a function as ||g||2Q = [g(2)>d Q(z). The sup-norm
is denoted by || flloc = sup,cz |f(z)|. For a matrix A, we let ||A]| and [|Al]> denote the
operator/spectral and Frobenius norms, respectively, and let Apnin(A) and Apax(A) denote
the minimum and maximum eigenvalues of A, respectively. We write a, < b, if a, < Cb,
for C a positive constant independent of n, and a, < b, if a, < Cb, and b, < Ca, (.e.,
if a, < b, and b, < a,). We write a, ~ b, to mean that a, and b, are proportional, that

is, a, = Cb,, for some C. We also use a V b = max(a, b) and a A b = min(a, b). We use
the shorthand P, (f) =P, {f(Z2)} = 1 "1 f(Z;) to write sample averages, and similarly

n

U, () =0, {f(Z1,2Z2)}= ﬁ Zl-#j f(Zi, Zj) for the U-statistic measure.

3. Fundamental limits. In this section, we derive a lower bound on the minimax rate for
CATE estimation. This result has several crucial implications, both practical and theoretical.
First, it gives a benchmark for the best possible performance of any CATE estimator in the
nonparametric model defined in Theorem 1. In particular, if an estimator is shown to attain
this benchmark, then one can safely conclude the estimator cannot be improved, at least in
terms of worst-case rates, without adding assumptions; conversely, if the benchmark is not
shown to be attained, then one should continue searching for other better estimators (or better
lower or upper risk bounds). Second, a tight minimax lower bound is important in its own
right as a measure of the fundamental limits of CATE estimation, illustrating precisely how
difficult CATE estimation is in a statistical sense. The main result of this section is given in
Theorem 1 below. It is finally proved and discussed in detail in Section 3.3.

THEOREM 1. For xq € (0, 1)?, let P denote the model where:

f(x) is bounded above by a constant,
7 (x) is a-smooth,

wo(x) is B-smooth and

4. t(x) is y-smooth.

W

Let s = (o + B)/2. Then for n larger than a constant depending on («, B, y, d), the minimax
rate is lower bounded as
_ 4 d d/4
p VS g / ’
inf sup Ep|T(xo) — 7p(x0)| 2 1+d/2y

T —1/2+4 .
pep PRRACARZ otherwise.

REMARK 1. In Appendix A of the Supplementary Material [18], we also give results
(both lower and upper bounds) for the model that puts smoothness assumptions on the
marginal regression n(x) = E(Y | X = x), instead of the control regression wo(x) = E(Y |
X = x, A = 0). Interestingly, the minimax rates differ in these two models, but only in
the regime where the regression function is more smooth than the propensity score (i.e.,
B > «a). Specifically, when n is 8-smooth, the minimax rate from Theorem 1 holds but with
s = (o + B)/2 replaced by min(e, s).

Crucially, Condition 4 allows the CATE t(x) to have its own smoothness y, which is
necessarily at least the regression smoothness §, but can also be much larger, as described in
the Introduction. We defer discussion of the details of the overall minimax rate of Theorem 1
to Section 3.3, moving first to a proof of the result.

REMARK 2. For simplicity, the lower bound result in Theorem 1 is given for a large
model in which the covariate density is only bounded. However, as discussed in detail later in
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Section 4 and Remark 11, for the stated rate to be attainable more conditions on the covariate
density are required. In Section B.8 of the Appendix in the Supplementary Material [18], we
give a particular submodel of P under which upper and lower bounds on the minimax rate
match up to constants; it will be important in future work to further elucidate the role of the
covariate density in CATE estimation.

The primary strategy in deriving minimax lower bounds is to construct distributions that
are similar enough that they are statistically indistinguishable, but for which the parameter of
interest is maximally separated; this implies no estimator can have error uniformly smaller
than this separation. More specifically, we derive our lower bound using a localized version
of the method of fuzzy hypotheses [4, 14, 16, 25, 29, 37]. In the classic Le Cam two-point
method, which can be used to derive minimax lower bounds for nonparametric regression
at a point [37], it suffices to consider a pair of distributions that differ locally; however, for
nonlinear functional estimation, such pairs give bounds that are too loose. One instead needs
to construct pairs of mixture distributions, which can be viewed via a prior over distributions
in the model [4, 29, 37]. Our construction combines these two approaches via a localized
mixture, as will be described in detail in the next subsection.

REMARK 3. In what follows, we focus on the lower bound in the low smoothness regime
%. The n~!/+4/¥) Jower bound for the high smoothness regime matches the
classic smooth nonparametric regression rate, and follows from a standard two-point argu-
ment, using the same construction as in Section 2.5 of Tsybakov [37].

where s <

The following lemma, adapted from Section 2.7.4 of Tsybakov [37], provides the founda-
tion for the minimax lower bound result of this section.

LEMMA 1 (Tsybakov [37]). Let P, and Q; denote distributions in P indexed by a vector
A= (A1, ..., Ax), with n-fold products denoted by P;' and QF, respectively. Let w denote a
prior distribution over A. If

H2<f P;’dw(x),/Q’;dw(,\)) <a<?2
and

V(P —¥(Qu)=s>0
for a functional ¥ : P+ R and for all 1, )/, then

(=55)

inf sup Ep{£(| — y(P)|)} = €(s/2) >

¥ PeP

for any monotonic nonnegative loss function £.

Lemma 1 illuminates the three ingredients for deriving a minimax lower bound, and shows
how they interact. The ingredients are: (i) a pair of mixture distributions, (ii) the distance be-
tween their n-fold products, which is ideally small and (iii) the separation of the parameter of
interest under the mixtures, which is ideally large. Finding the right minimax lower bound re-
quires balancing these three ingredients appropriately: with too much distance or not enough
separation, the lower bound will be too loose. In the following subsections, we describe these
three ingredients in detail.
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3.1. Construction. In this subsection, we detail the distributions P, and Q; used to con-
struct the minimax lower bound. The main idea is to mix constructions for nonparametric
regression and functional estimation, by perturbing the CATE with a bump at the point x,
and to also use a mixture of perturbations of the propensity score and regression functions
and o, locally near xg.

For our lower bound results, we work in the setting where Y is binary; this is mostly to
ease notation and calculations. Note, however, that this still yields a valid lower bound in the
general continuous Y case, since a lower bound in the strict submodel where Y is binary is
also a lower bound across the larger model P. Importantly, when Y is binary, the density p of
an observation Z can be indexed via either the quadruple (f, &, wo, i1) or (f, 7, o, t); here,
we make use of the latter parametrization (and in the Appendix we consider the (f, 7, n, T)
parametrization). We first give the construction for the o > § case in the definition below,
and then go on to discuss details (and in Appendix A [18] we give constructions for all other
regimes).

DEFINITION 1 (Distributions Py and Q,). Let:

1. B:R% — R denote a C* function with B(x) = 1 for x € [—1/4, 1/4]% and B(x) =
for x ¢ [—1/2,1/2]¢,
2. Ch(xp) denote the cube centered at xq € (0, 1)? with sides of length h < 1/4,

3. (X1,..., X) denote a partition of Cp(xp) into k cubes of equal size (for k£ an integer
raised to the power d), with midpoints (m1, ..., my), so each cube X; =C, JKk1/d (m ) has side
length h/k'/4.

Then for A; € {—1, 1} define the functions

X — X
T/’l(X) =hVB<70>’

k
_ l/d B
MOX(X) ) h/k X;)"jB<h/k1/d)
j:
l/da £ X —m;
m(x)—E (h/k ZIA,B(h/kW)
j:

fo)=1(xe Shk>/{1 - (4d _ l)hd},

where Sy = {L_Jlj‘-:1 Ch/Zkl/d (m )} U{[0, 119\ Cap(x0)}. Finally, let the distributions P; and
0, be defined via the densities

P = (f,1/2, por — @ /2, ),
g = (f, 7., tox, 0).

REMARK 4. Under the (f, m, n, t) parametrization, since n = wt + (g, the above den-
sities can equivalently be written as py = (f, 1/2, oy, 7n) and g, = (f, 7y, o, 0).

Figure 1 shows an illustration of our construction in the d = 1 case. As mentioned above,
the CATE is perturbed with a bump at xo and the nuisance functions 7 and o with bumps
locally near xg. The regression function g is perturbed under both P, and Q,, since it is
less smooth than the propensity score in the o > § case. The choices of the CATE mimic
those in the two-point proof of the lower bound for nonparametric regression at a point (see,
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Xo—h/2+h/k Xo+h/2-h/k Xo—h/2+h/k Xo+h/2-h/k
| 1 | 1

0.5+(h/k)"

0.5+ (h/k)"

0.5
1
0.5

0.5-(h/k)?

0.5-(h/k)

hY
!

N \

T T T T T T
Xo—h/2 Xo Xo+h/2 Xo—h/2 Xo Xo+h/2

(a) Null Py, (b) Alternative Q
FI1G. 1. Minimax lower bound construction in d =1 case. An example null density p, is displayed in panel

(a) and an alternative density g, in panel (b). The black, red and blue lines denote the CATE, marginal outcome

regression n = T + [L, and propensity score functions, respectively, and the gray line denotes the support of the
covariate density.

e.g., Section 2.5 of Tsybakov [37]), albeit with a particular flat-top bump function, while
the choices of nuisance functions 7 and wy are more similar to those in the lower bound
for functionals such as the expected conditional covariance (cf. Section 4 of Robins et al.
[29]). In this sense, our construction can be viewed as combining those for nonparametric
regression and functional estimation, similar to Shen et al. [36]. In what follows, we remark
on some important details.

REMARK 5. Section 3.2 of Shen et al. [36] used a similar construction for conditional
variance estimation. Some important distinctions are: (i) they focused on the univariate and
low smoothness setting; (ii) in that problem there is only one nuisance function, so the null
can be a point rather than a mixture distribution and (iii) they use a different, arguably more
complicated, approach to bound the distance between distributions. Our work can thus be
used to generalize such variance estimation results to arbitrary dimension and smoothness.

First, we remark on the choice of CATE in the construction. As mentioned above, the
bump construction resembles that of the standard Le Cam lower bound for nonparametric
regression at a point, but differs in that we use a specialized bump function with a flat top.
Crucially, this choice ensures the CATE is constant and equal to #” for all x in the cube
Cn(xo) centered at xo with sides of length 4, and that it is equal to zero for all x ¢ Cy;(x0),
that is, outside the cube centered at xo with side length 2/. The fact that the CATE is constant
across the top of the bump (which will be the only place where observations appear near
xo) eases Hellinger distance calculations substantially. It is straightforward to check that the
CATE t;(x) is y-smooth in this construction (see p. 93 of Tsybakov [37]).

REMARK 6. One example of a bump function B satisfying the conditions above is

g{(4x)? — 1}}-1

B(x) = [1 )

for g(t) = exp(—1/t)1(¢t > 0).
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For the propensity score and regression functions, we similarly have

B(x—m]>: 1 forx Ech/2kl/d(mj),
h/kl/d 0 forx ¢Cp p1/a(m;)

that is, each bump equals one on the half-i1/k'/? cube around m j» and is identically zero
outside the main larger 4/k'/? cube around m j- It is again straightforward to check that
7 (x) and oy (x) are o- and B-smooth, respectively.

The covariate density is chosen to be uniform, but on the set Sy that captures the middle
of all the nuisance bumps {U/j‘.=1 Ch/Zkl/d (m )}, together with the space {[0, 119\ Cop(x0)}
away from xg. Importantly, this choice ensures there is only mass where the nuisance bumps
B(;f/_k—'?/{,) are constant and nonzero (and where 7, (x) = k"), or else far away from xp, where

the densities are the same under P, and Q); . Note that, as 7 — 0, the Lebesgue measure of the
set Sp tends to one, and the covariate density tends toward a standard uniform distribution.

3.2. Hellinger distance. As mentioned previously, deriving a tight minimax lower bound
requires carefully balancing the distance between distributions in our construction. To this
end, in this subsection we bound the Hellinger distance between the n-fold product mixtures
[ Pldw ()) and [ Q% dw (A), for @ a uniform prior distribution, so that (A1,...,A;) are
i.i.d. Rademachers.

In general, these product densities can be complicated, making direct distance calculations
difficult. However, Theorem 2.1 from Robins et al. [29] can be used to relate the distance
between the n-fold products to those of simpler posteriors over a single observation. In the
following lemma, we adapt this result to localized constructions like those in Definition 1.

LEMMA 2. Let P, and Q) denote distributions indexed by a vector A = (A1, ..., Ak),
and let Z = U];:1 Z; denote a partition of the sample space. Assume:

1. Pu(Z)) = Qx(Zj) = pj forall A, and
2. the conditional distributions 1z, dPy/pj and 1z;dQ,/p; (given an observation is in
Z;) do not depend on Ay for £ # j, and only differ on partitions j € S C {1, ..., k}.

For a prior distribution @ over A, let p = [ p dw (1) and q = [ g, dw (1), and define

_ =2
81 = max sup Mdv
jeS 5 Jz;  papj

’

o 2
d2 = max sup Mdv
jes x Jz;  papj

’

= _ )2
43 = maxsup udv
Jjes 1 Jz; papj

for a dominating measure v. If p/p) < b < o0 and npjmax(l,8y,8,) < b for all j, then
H>(f Pldw (), [ Q% dw (L)) is bounded above by

. . 2

Cn(Z pj>{n(jé}l§(pj)(5152 +83) + 83
jes

for a constant C only depending on b.

In the next proposition, we bound the quantities from Lemma 2 and put the results together
to obtain a bound on the desired Hellinger distance between product mixtures.
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PROPOSITION 1. Assume h < 1/4 and h¥ +2(h/ k") < 1 — 4e for some ¢ € (0, 1/4),
and take hY = 4(h/ k"% for s = (a + B)/2. Then for the distributions Py and Q; from
Definition 1, with @ the uniform distribution over {—1, 1}, the quantities 8 from Lemma 2
satisfy

2d+1 B 2 2d+1 B 2
315(7” ”2>(h/k1/d)2‘3, 825(7” ”2)(h/k1/")2"‘, 83 =0,
& &

and p; < 2(h/2)? k. Further, H>([ Pl'dw (), [ Q% dw (X)) is bounded above by

2\2 s ,2p2d
4c<2”B”2) <”Z ){(h/kl/d)4s+(h/k1/")4°‘}

&

for C a constant only depending on ¢.

Before moving to the proof of Proposition 1, we briefly discuss and give some remarks.
Compared to the Hellinger distance arising in the average treatment effect or expected condi-
tional covariance lower bounds [29], there is an extra 29 factor in the numerator. Of course,
one cannot simply repeat those calculations with k/h? bins, since then, for example, the
k=%/4 term would also be inflated to (k/ hd)y=4s/d. our carefully localized construction is
crucial to obtain the right rate in this case. We also note that the choice h¥ = 4(h/ k1/dy2s
is required for ensuring that the averaged densities p(z) and g(z) are equal (implying that
83 = 0); specifically this equalizes the CATE bump under P; with the squared nuisance
bumps under Q.

PROOF. Here, the relevant partition of the sample space X x A x Y =[0, 114 x {0, 1} x
{0,1}is Z; = Ch/Zkl/d(mj) x {0,1} x {0,1}, j =1, ..., k, along with Z}, which partitions
the space [0, 11¢/Cap (x) away from xq into disjoint cubes with side lengths 4 /2k'/¢. Thus
we have

Pu(Z)) = Pi(Z)) = Qu(Z)) = Q1(Z]) = pj,

where p; = [1{x € Ch/Zkl/d (mj)} f(x)dx.In Appendix Section B.1, we show that (h/Z)d/
k<p;j<2nh/ 2)?/k when h < 1/4, and so is proportional to the volume of a cube with side
lengths h /2k1/ 4 Further, the conditional distributions 1 z; dPy/pj and 1 z; dQ;./p;j do not
depend on Ay for £ # j, since A; only changes the dens1ty in Z;. In what follows we focus
on the partitions Z; and not Z; since the distributions are exactly equal on the latter (in
the language of Lemma 1, the set S indexes only the partitions Z;, and note that for this set
we have ZjeS pj=kpj =< 2(h/2)d). Note when (Aq, ..., Ax) are i.i.d. Rademacher random
variables the marginalized densities from Lemma 2 are

(o) = f(x){ +@a— Dy "B (x ;hxo)},

_ l/d £ x—mj\?
q(z) = fx) +(2a—1)(2y D) (h/k Z (h/kl/d) :

The first step is to show that relevant densities and density ratios are appropriately
bounded. We give these details in Appendix Section B.1 [18]. Next, it remains to bound
the quantities 81, §2 and 83.

We begin with §3, the distance between marginalized densities p and g, which is tackled
somewhat differently from 8; and 8,. Because we take (h/k!'/?)> = hY /4, it follows that
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q(z2) — p(2) equals
k

—mi\2 14 —
B B l/d X —mj _h_ (x x()) _
G.D  a—DEy 1)f<x>{h/k ; (h/kl/d) ey 0,

since f(x) =0 for x ¢ Sp; and

X—mj\ X—Xx0\ 4
B(h/kl/d)_B( 2 )_O for x € {[0, 11°\ Can (x0)},
k
X —mj X — X0
B<h/k1/d)=B( 2h )=1 for x € | Gy joprsa (m).

j=1

We note that this result requires a carefully selected relationship between 4 and k, which
guarantees that the squared nuisance bumps under Q, equal the CATE bumps under P;.
This also exploits the flat-top bump functions we use, together with a covariate density that
only puts mass at these tops, so that the squared terms are constant and no observations
occur elsewhere where the bumps are not equal. Without these choices of bump function and
covariate density, the expression in (3.1) would only be bounded by 4, and so §3 would only
be bounded by K27 in that case, the 43 term would dominate the Hellinger bound in Lemma 2,
and the resulting minimax lower bound would reduce to the oracle rate n~1/@+d/Y) \which is
uninformative in the low-smoothness regimes we are considering.

Now we move to the distance 1, which does not end up depending on /4 and is somewhat
easier to handle. For it, we have

2k k o N2
81 < ( )maxsup f(x) k'/4)? Z (x mj) dx
hd Xy AP (Z) = \h/k'd

(3 )G mes [ 32 (h/kw)zdx

24| B3 1/d\28
<(50 )

where the first line follows by definition, and since py > (h/2)?/k, and B(
of the cube Cj, /174 (m j), which implies that

[l -’

the inequality in the second line since p;(z)/f(x) > ¢ and f(x) <2 as in (B.1)and (B.2),
and the last inequality since

2 X —mg\2 hd )
/;QZ (h/kl/d> dx:/;QB(ih/kl/LJ deT/B(u) du

by a change of variables.
For §,, we use a mix of the above logic for 63 and §;. Note that (g, — ‘m)2 equals

x—m,'

h/k—'/d) = 0 outside

k

f(x)[ —1/2) (/K1 N (’,‘l/_k?f;)



MINIMAX RATES FOR HETEROGENEOUS EFFECTS 803

k _ A 2 h? — 2

+(2a—1)(2y—1){ h/kl/d » Z (J;CZ/]:Z) _7B<x 2hxo>}i|
1/dy2 S p(fom)
< (1/2) f(x)*(h/k 2 (h/kl/d)’

where we used the fact that (a + b)% < 2(a® + b?) and X AjB(Z;,ﬁQ)}z > B(;/kT/d
along with the same logic as above with §3 (ensuring the second term in the square equals

zero). Now we have

e (50) o mes [ 20 (50) o

24| BI3 1 /d\2a
S({s/—z)(h/k )

using the exact same logic as for §;. Plugging these bounds on (81, 62, 63) into Lemma 2,
together with the fact that p; <2(h/ 2)4/k and jesPj <2(h/ 2)?, yields the result. [

3.3. Choice of parameters and final rate. Finally, we detail how the parameters /& and k
can be chosen to ensure the Hellinger distance from Proposition 1 remains bounded, and use
the result to finalize the proof of Theorem 1.

PROPOSITION 2. Let

h o (R I/ZS_ 1\ @@y
K1/~ (T) B (C*n2>

for C* = 22d/}’+5C(||B||%/8)2 and C the constant from Proposition 1. Then under the as-
sumptions of Proposition 1 we have

Hz(f Pfdw(x),/diw(x)> <1
and hY = 4(J/Crn)~ MO+ 5+,

The proof of Proposition 2 follows directly from Proposition 1, after plugging in the se-
lected values of & and k. Importantly, it (together with the alternative construction for the
B > o case given in Appendix A) also settles the proof of Theorem 1 via Lemma 1. This
follows since, with the proposed choices of & and k, the Hellinger distance is appropriately
bounded so that the term (1 — /o (1 —a/4))/2 = (1 — /3/4)/2~ 0.067 in Lemma 1 is a
constant (greater than 1/20, e.g.), while the separation in the CATE at x¢, which equals A”, is
proportional to n~1/(+d/2y+d/4s) ypder all P, and Q.. Therefore, this separation is indeed
the minimax rate in the low smoothness regime where s < (d/4)/(1+4d/2y). Note again that,
as discussed in Remark 3, when s > (d/4)/(1 +d/2y) the rate n~1/(1+d/2v+d/4s) iq faster
than the usual nonparametric regression rate n~!/2+4/¥) and so the standard lower bound
construction as in Section 2.5 of Tsybakov [37] indicates that the slower rate n~1/@+d/y) g
the tighter lower bound in that regime.

Figure 2 illustrates the minimax rate from Theorem 1, as a function of the average nuisance
smoothness s/d (scaled by dimension), and the CATE smoothness scaled by dimension y /d.
A number of important features about the rate are worth highlighting.
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FI1G. 2. The minimax rate for CATE estimation, as a function of average nuisance smoothness s and CATE
smoothness y, each scaled by covariate dimension d. The black dotted line denotes a threshold on the nuisance
smoothness s/d, below which the oracle nonparametric regression rate n=V@H/Y) s unachievable (the “el-
bow” phenomenon).

First, of course, the rate never slows with higher nuisance smoothness s/d, for any CATE
smoothness y /d, and vice versa. However, there is an important elbow phenomenon, akin to
that found in functional estimation problems [3, 4, 29, 37]. In particular, the minimax lower
bound shows that when the average nuisance smoothness is low enough that s < %,

the oracle rate n~!/+4/7) (which could be achieved if one actually observed the potential
outcomes) is in fact unachievable. This verifies a conjecture in Kennedy [17].

Notably, though, the elbow phenomenon we find in the problem of CATE estimation differs
quite substantially from that for classic pathwise differentiable functionals. For the latter,
the rate is parametric (i.e., n—1/2) above some threshold, and nonparametric (n—1/(+d/4s))
below. In contrast, in our setting the rate matches that of nonparametric regression above
the threshold, and otherwise is a combination of nonparametric regression and functional
estimation rates. Thus in this problem there are many elbows, with the threshold depending
on the CATE smoothness y . In particular, our minimax rate below the threshold,

d  d
p WO+ 5+,

is a mixture of the nonparametric regression rate n~!/(1+4/2¥) (on the squared scale) and
the classic functional estimation rate n~!/(1+4/4) This means, for example, that in regimes
where the CATE is very smooth, for example, y — 0o, the CATE estimation problem begins
to resemble that of pathwise-differentiable functional estimation, where the elbow occurs at
s > d/4, with rates approaching the parametric rate n~!/? above, and the functional esti-
mation rate n—1/(1+4/45) pelow. At the other extreme, where the CATE does not have any
extra smoothness, so that y — 8 (note we must have y > ), the elbow threshold condition
holds for any o > 0. Thus, at this other extreme, there is no elbow phenomenon, and the
CATE estimation problem resembles that of smooth nonparametric regression, with optimal
rate n~1/2+4/B) For the arguably more realistic setting, where the CATE smoothness y may
take intermediate values between 8 and oo, the minimax rate is a mixture, interpolating be-
tween the two extremes. All of this quantifies the sense in which the CATE can be viewed as
a regression/functional hybrid.
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It is also worth mentioning that no estimator previously proposed in the literature (that
we know of) attains the minimax rate in Theorem 1 in full generality. Some estimators have
been shown to attain the oracle rate n~!/?+4/7) but only under stronger assumptions than the

minimal condition we find here, that is, that s > %. One exception is the undersmoothed

R-learner estimator analyzed in Kennedy [17], which did achieve the rate n~!/?+4/¥) when-
ever s > (d/4)/(1 +d/2y), under some conditions (including that o > 8). However, in the
low-smoothness regime where s < (d/4)/(1+d/2y), that estimator’s rate was n~2*/¢_ which
is slower than the minimax rate we find here. This motivates our work in the following sec-
tion, where we propose and analyze a new estimator, whose error matches the minimax rate
in much greater generality (under some conditions, e.g., on how well the covariate density is
estimated).

REMARK 7. A slightly modified version of our construction also reveals that, when the

. . . . _ d ..
CATE t(x) = t is constant, the classic functional estimation rate n 1/(+35) acts as a mini-
max lower bound. To the best of our knowledge, this result has not been noted elsewhere.

4. Attainability. In this section, we show that the minimax lower bound of Theorem 1
is actually attainable, via a new local polynomial version of the R-Learner [17, 26], based on
an adaptation of higher-order influence functions [27, 28, 31].

4.1. Proposed estimator and decomposition. In this subsection, we first describe our pro-
posed estimator, and then give a preliminary error bound, which motivates the specific bias
and variance calculations in the following subsections. In short, the estimator is a higher-order
influence function-based version of the local polynomial R-learner analyzed in Kennedy [17].
At its core, the R-Learner essentially regresses outcome residuals on treatment residuals to
estimate a weighted average of the CATE. Early versions for a constant or otherwise para-
metric CATE were studied by Chamberlain [5], Robinson [33], and Robins [30], with more
flexible series, RKHS and lasso versions studied more recently by Robins et al. [27], Nie and
Wager [26] and Chernozhukov et al. [6], respectively. None of this previous work obtained
the minimax optimal rates in Theorem 2.

DEFINITION 2 (Higher-order local polynomial R-Learner). Let Kj(x) = hld]l(Hx —
xoll < h/2). For each covariate x;, j = 1,...,d, define p(x;) = {po(x;), p1(x;),...,
Py (x j)}T as the first (|y ] + 1) terms of the Legendre polynomial series (shifted to be or-
thonormal on [0, 1]),

m . ny
pn5) = YD 2 F1(3) ("7 )

Define p(x) to be the corresponding tensor product of all interactions of p(x1), ..., p(xg) up
to order |y |, which has length ¢ = (dJLrij’J) and is orthonormal on [0, 114, and finally define
on(x) =p(/2 4+ (x — xg)/ h). The proposed estimator is then defined as

4.1 2(x0) = pn(x0)" 07" R,
where Q is a ¢ X ¢ matrix and Ra g-vector given by
0= Pl o (X) K (X)Ba1(Z) on(X)"}
+Un{on (XD Kn(XD@a2(Z1, Z2)Kn(X2) pn (X)),
R="P,{on (XD Kn(X1)Py1(Z1)} + Un|on (XD Kn(X1)@2(Z1, Z2) Ki(X2)},
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respectively, and

Pa1(Z) = AlA =7 (X)),
$y1(Z) ={Y — o (O HA -7 (X))},
Pa2(Z1, Z2) = —{ A1 — F(X1) o (X 1) TQ 7 bui (X2) A2,

Py2(Z1, Z2) = —{ A1 — R(X D) b (X 1) Q™ bpie (X2) [ Y2 — o (X2) ),
bpk(x) =b{1/2+ (x — x0)/ h}1(llx — x0ll < h/2),

Q= b)b()TdF (xo +h(v —1/2))
vel0,114
for b : R? > R* a basis of dimension k. The nuisance estimators (f , T, o) are constructed
from a separate training sample D", independent of that on which U,, operates.

The estimator in Definition 2 can be viewed as a localized higher-order estimator, and
depends on two main tuning parameters: the bandwidth /, which controls how locally one
averages near xo, and the dimension k of the basis b, which controls how bias and variance
are balanced in the second-order U-statistic terms in O and R. Specific properties of the basis
b are discussed shortly, for example, just prior to Remark 7 and in (4.4). We also note that
while the basis b will have dimension k growing with sample size, the dimension of the basis
p is fixed depending on the smoothness of the CATE; for the latter, we use the Legendre
series for concreteness, but expect other bases to work as well.

The U-statistic terms are important for debiasing the first-order sample average terms. In
addition, our proposed estimator can be viewed as estimating a locally weighted projection
parameter t(xo) = pn (x0)TH, with coefficients given by

4.2) argéninIE[Kh(x)n(x){l — @) - T o) ]= 07 'R
for

0= /,Oh(X)Kh(X)ﬂ(X){l — ()} on(x) dF(x),

R= /,oh(x)Kh(x)n(x){l —n(x)}r(x)dF(x).

In other words, this projection parameter tj(xg) is a Kj(x)mw(x){1 — w(x)}-weighted least
squares projection of the CATE 7 (x) on the scaled Legendre polynomials pp (x). Crucially,
since pj (x) includes polynomials in x up to order |y |, the projection parameter is within &Y
of the target CATE; this is formalized in the following proposition.

PROPOSITION 3. Let t,(x) = pp(x)T Q™' R denote the Xo-specific projection parameter
from (4.2), and assume:

1. t(x) is y-smooth,
2. the eigenvalues of Q are bounded below away from zero, and
3. [Ullx —xoll <h/2}dF(x) S he.

Then for any x with ||x — xg|| < Ch, we have

ltn(x) — T (x)| Sh”.
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PROOF. This proof follows from a higher-order kernel argument (e.g., Proposition 1.13
of Tsybakov [37], Proposition 4.1.5 of Giné and Nickl [11]), after noting that we can treat
Kn(x)m(x){1 — m(x)} itself as a kernel. A similar result was also proved in Kennedy [17].
A detailed proof is given in Appendix B.3 [18]. O

In Proposition S5 in the Appendix [18], we give simple sufficient conditions under which
the eigenvalues of Q are bounded. In short, this holds under standard boundedness conditions
on the propensity score and covariate density.

As mentioned above, our estlmator (4.1) can be viewed as a modified higher-order esti-
mator. More specifically, S =R — Q06 is closely related to a second-order estimator of the
moment condition

@3)  E[)KCO{A - n(ONY — mo(X) — Ar(X0)}] =R — 00 =0

under the assumption that 7 (x) = pp, (x)T6 (this is not exactly true in our case, but it is enough
that it is approximately true locally near xo, as will be proved shortly). Indeed, letting 0=

P {on (X)Kn(X)@a1 (2)pn(X)T} and Ry = Py{on(X) K (X)Py1(2)} denote the first terms
in Q = Ql + Qz and R = §1 + ﬁz, respectively, we see that S| = Q19 is a usual
first-order influence function-based estimator of the moment condition (4.3). Similarly, the
second terms Q, and R; are akin to the second-order U-statistic corrections that would be
added using the higher-order influence function methodology developed by Robins et al. [27,
28, 31]. However, these terms differ in two important ways, both relating to localization near
xo. First, the U-statistic is localized with respect to both X and X», that is, the product
Kn(X1)Kp(X3) is included, whereas only Kj(X1) would arise if the goal were purely to
estimate the moment condition (4.3) for fixed 4. Second, the basis functions

bk () =b( _’“O)ﬂ(nx —xoll <h/2)

appearing in @42, @y2 and  are localized; they only operate on Xs near xg, stretchmg them
out so as to map the cube [xg — h/2, xo + h/2] 2 around xg to the whole space [0, 1] (e.g.,
bui(xo — h/2) = b(0), by (xg) = b(1/2), etc.). This is the same localization that is used with
the Legendre basis p(x). In this sense, these localized basis terms spend all their approxi-
mation power locally rather than globally away from xg. (Specific approximating properties
we require of b will be detailed shortly, in (4.4)). These somewhat subtle distinctions play a
crucial role in appropriately controlling bias, as will be described in more detail shortly.

REMARK 8. Note again that, as with other higher-order estimators, the estimator (4.1)
depends on an initial estimate of the covariate distribution F (near xg), through Q. Impor-
tantly, we do not take this estimator F to be the empirical distribution, in general, since then
our optimal choices of the tuning parameter k would yield & noninvertible; this occurs with
higher-order estimators of pathwise differentiable functionals as well [23]. As discussed in
Remark 11, and in more detail shortly, we do give conditions under which the estimation
error in § or F does not impact the overall rate of T(xg).

Crucially, Proposition 3 allows us to focus on understanding the estimation error in 7 (x)
with respect to the projection parameter tj (xg), treating £” as a separate approximation bias.
The next result gives a finite-sample bound on this error, showing how it is controlled by the
error in estimating the components of Q and R.

PROPOSITION 4. Let S=R — Q(Q"'R) and S = R — O(Q ' R). The estimator (4.1)
satisfies

#(x0) — mGxo)| < o/ (@7 |+ [0~ = 27" )IS - 5.,
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and ifIIQ_1 || and IIQ\_1 — Q7| are bounded above, then

E[#(x0) — th(x0)| < max \/E{E(ﬁj — 8| D" +var(S; | D)}
J
for D" a separate independent training sample on which (I? , T, o) are estimated.

Thus Proposition 4 tells us that bounding the conditional bias and variance of S =
R — Q(Q_IR) will also yield finite-sample bounds on the error in T(xg), relative to the
projection parameter tj(xg). These bias and variance bounds will be derived in the following
two subsections.

4.2. Bias. In this subsection, we derive bounds on the conditional bias of the estimator
S=R- Q (Q~'R), relative to the components of the projection parameter (4.2), given the
training sample D”. The main ideas behind the approach are to use localized versions of
higher-order influence function arguments, along with a specialized localized basis construc-
tion, which results in smaller bias due to the fact that the bases only need to be used in a
shrinking window around xy.

Here, we rely on the basis b(x) having optimal Holder approximation properties, In par-
ticular, we assume the approximation error of projections in L, norm satisfies

(4.4) |(I = Tp)g | px SKT*/4 for any s-smooth function g,

where Tlpg = argmin,_gr), [(g — €)>dF* is the usual linear projection of g on b, for
dF*(v) =dF(xo + h(v — 1/2)) the distribution in By (xg), the h-ball around x(, mapped
to [0, 1]%. In a slight abuse to ease notation, we omit the dependence of IT,g on F*. The
approximating condition (4.4) holds for numerous bases, including spline, CDV wavelet and
local polynomial partition series (and polynomial and Fourier series, up to log factors); it is
used often in the literature. We refer to Belloni et al. [2] for more discussion and specific
examples (see their Condition A.3 and subsequent discussion in, e.g., their Section 3.2).

PROPOSITION 5. Assume:

Amax (§2) is bounded above,

the basis b satisfies approximating condition (4.4),
T (x) — w(x) is a-smooth,

4. o(x) — pno(x) is B-smooth.

Then

w

[E(S; — S; | D")| < (h/k'4) + hY (h/ K9
+ (b + |Ift0 — poll p=) (17 — il | Q71 = 7).

Before delving into the proof, we give some brief discussion. The bias consists of three
terms; the first two are the main bias terms that would result even if the covariate distribution
F were known, and the third is essentially the contribution from having to estimate F. (In
Lemma S2 of the Appendix, we show how the operator norm error of € is bounded above by
estimation error of the distribution F itself.) We note that the second of the main bias terms
hY (h/k'/4)* will be of smaller order in all regimes we consider. Compared to the main bias
term in a usual higher-order influence function analysis, which is k=2%/¢ (e.g., for the average
treatment effect), our bias term is smaller; this is a result of using the localized basis by (x)
defined in (4.1), which only has to be utilized locally near xg (this smaller bias will be partially
offset by a larger variance, as discussed in the next subsection). As mentioned in Remark 11,
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the contribution from having to estimate F is only a third-order term, since the estimation
error of & (in terms of operator norm) is multiplied by a product of propensity score errors
(in Ly (F*) norm) with the sum of regression errors and smoothing bias 42, which is typically
of smaller order. In Proposition 6, given after the following proof of Proposition 5, we show
how the bias simplifies when F is estimated accurately enough.

PROOF. By iterated expectation, the conditional mean of the first-order term in R, that
is, E{pn(X1)Kn(X1)@y1(Z) | D"} is equal to

R+ f pr () Kn () () — 70 (07 () + po(x) — T} dF (x)

=R+ [ p@)]7" @) = F O} ) @) + 150 - AW} dF ),

where we use the change of variable v = % + x—hﬁ and again define for any function g : R? -

R its corresponding stretched version as g*(v) = g(xg + h(v — 1/2)). To ease notation;\it is
left implicit that any integral over v is only over {v : ||v — 1/2| < 1/2}. Similarly, for Q we
have that E{p;, (X1) K (X1)@a1(Z)pp(X1)T | D"} equals

0+ / pn () Kn ()] () — 7)) () o0 ()T dF (x)

=0+ f p){* ) — F*W)}7* W) p(v) dF* (v)

so that for the first-order term in S (denoted R 1 — Q 16 in discussion of the moment condition
(4.3)) we have

E{on (X)) Kn(X1)@y1(Z) | D"} — E{ pn(X 1) Kn(X1)Pa1 (Z) pn(X1) | D" }6

(4.5) =R - 00 +/ﬂ(v){ﬂ*(v) -7 ) Huo () — Ay} dF*(v)

—|—[,0(v)rr*(v){n*(v) -7 W) Hr* () — 7y (W)} dF*(v).

The conditional mean of the second-order influence function term in R is
E{on(X1)Kn(X1)@y2(Z1, Z2)Kp(X2) | D"}

(4.6) _ . _

== [P0l @) = 7 @0}y (re + i - 75) o) dF*(u),

where we define

Mpg* ) = b(u)TQ! / b(v)g* (v) dF*(v)

as the F*-weighted linear projection of g* on the basis b, and Mpg*(u) as the estimated

version, which simply replaces €2 with 2. Similarly, for Q6 we have
E{on(X1)Kn(X1)@a2(Z1. Z2) K (X2)pr(X2)"60 | D"}

4.7) N

== [ penfr* @) - 7 E0} (e 5) @) dF* 1)

so that the conditional mean (4.6) minus the conditional mean (4.7) equals

4.8) —/p(vo{n*(vl) — A ) Tt (¢ — o) + (1 — A8)) (v1) dF* (01).
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Therefore, adding the first- and second-order expected values in (4.5) and (4.8), the overall
bias relative to S is

[ Pl e) =7 @) = A (" = ) + (15— 7)) ) dF*w)
@9 = [t =Nplplr = FNU = (" = ) + (4 — 7)) dF* @)

(4.10) + / p){7*(v) = F* W)} (M — ) {w*(* — 1) + (1§ — [5) } (v) dF*(v)

by the orthogonality of a projection with its residuals (Lemma S1(i)).

Now we analyze the bias terms (4.9) and (4.10) separately; the first is the main bias term,
which would arise even if the covariate density were known, and the second is the contribu-
tion coming from having to estimate the covariate density.

Crucially, by virtue of using the localized basis by, the projections in these bias terms are
of stretched versions of the nuisance functions (7* — 7*) and (i — fi(), on the standard
nonlocalized basis b, with weights equal to the stretched density d F*. This is important
because stretching a function increases its smoothness; in particular, the stretched and scaled
function g*(v)/h® is a-smooth whenever g is a-smooth. This follows since |D* g*(v) —
D g*(v')| equals

D g(xo+h(v—1/2)) = D' g(x0 + h(v' — 1/2))]
= 1|1 (xo + h(v = 1/2)) = 1D (xo + h (' = 1/2))]

Sh¥lv =0

’

where the second equality follows by the chain rule, and the third since g is «-smooth.
Thus the above implies 2~%| D g*(v) — D g*(v")| < |v — /|, that is, that g*(v)/h® is
a-smooth.

Therefore, if g is a-smooth, then ||( — I13)g*/ h%| p+ < k~%/¢ by the Holder approxima-
tion properties (4.4) of the basis b, and so it follows that

4.11) (I =T " | e Shk™4 = (h/ K

for any «-smooth function g.
Therefore, now consider the bias term (4.9). This term satisfies

1t =) oG = 2 = Ml = ) + (46— 2 )] dF* )
< |t =Tp){p@* =7 LT =T {r* (= = )} ps
+ (I =) (g — 120) [ <]
< (/K R+ (/KNP Y = (K 17 (/R

where the second line follows by Cauchy—Schwarz, and the third by (4.11), since (x — )
and (uo — o) are assumed «- and B-smooth, respectively (note p(v) is a polynomial, so the
smoothness of p(7* — 7*) is the same as (7* — 7*)), along with the fact that

|(I = ) * (e — ) |7 < |7*(c* — 1) | 3=
< f Kn){t) =m0 dF(x) S kY7,

where the first inequality follows by Lemma S1(ii), the second by definition of F* and since
m(x) <1, and the last by Proposition 3.



MINIMAX RATES FOR HETEROGENEOUS EFFECTS 811

Now for the term in (4.10), let 6, ; = Q™! [bgdF* denote the coefficients of the projec-
tion I1,g, and note for any functions g, g» we have

/gl(l'lb — i) (g2) dF* = (91/29b,g,)T91/2(Q_1 . Q—I)QI/Z(Ql/ZQb’gz)

<llgille|2V2(Q7" = 27HQ 2| g2 o
<lgill g2l =l — 7',

where the first equality follows by definition, the second line since the L, norm of the coef-
ficients of a (weighted) projection is no more than the weighted L, (IP) norm of the function
itself (Lemma S1(iii)), and the last by the submultiplicative property of the operator norm,
along with the fact that |Q'/2)|> = ||Q|. O

Several of our results require the eigenvalues of €2 to be bounded above and below away
from zero. Proposition S6 in the Appendix gives simple sufficient conditions for this to hold
(similar to Proposition S5 for the matrix Q, which was mentioned earlier after Proposition 3).

The next result is a refined version of Proposition 5, giving high-level conditions under
which estimation of F itself (rather than the matrix Q1) does not impact the bias. We refer
to Remark 11 for more detailed discussion of these conditions, and note that the result follows
from Proposition 5 together with Lemma S2 in the Appendix.

PROPOSITION 6. Under the assumptions of Proposition 6, and if:

L. Amin($2) is bounded below away from zero,
2. [dF*/dF*|~ is bounded above and below away from zero,

— oy < (h/kl/d)2s
3. M@F/dF™) = oo S =t (o=l 07y

then, when h? < (h/k'/4)P, the bias satisfies |[E(S; — S; | D™)| < (h/ k4.

4.3. Variance. 1In this subsection, we derive bounds on the conditional variance of the
estimators R and Q j¢> given the training sample D". The main tool used here is a localized
version of second order U-statistic variance arguments, recognizing that our higher-order
estimator is, conditionally, a second-order U-statistic over nh? observations.

PROPOSITION 7. Assume:

1. y2, 72, /’I%, and ||ftg — woll p+ are all bounded above, and
2. Amax(R2) is bounded above.

Then

(107 S (14— e -2 ).

We give the proof of Proposition 7 in Appendix B6, and so just make some comments here.
First, the variance here is analogous to that of a higher-order (quadratic) influence function
estimator (cf. Theorem 1 of Robins et al. [28]), except with sample size n deflated to na?. This
is to be expected given the double localization in our proposed estimator. Another important
note is that the contribution to the variance from having to estimate F is relatively minimal,
compared to the bias, as detailed in Proposition 5. For the bias, nontrivial rate conditions are
needed to ensure estimation of F' does not play a role, whereas for the variance one only needs
the operator norm of Q! — Q! to be bounded (under regularity conditions, this amounts
to the estimator F' only having bounded errors, in a relative sense, as noted in the following
remark).
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REMARK 9. By Lemma S2, under the assumptions of Proposition 6, it follows that:
|@7" -7 S| (@F*/dF) — 1]

so estimation of F' will not affect the conditional variances as long as the error of F is
bounded in uniform norm.

4.4. Overall rate. Combining the approximation bias in Proposition 3 with the decom-
position in Proposition 4, and the bias and variance bounds from Proposition 6 and Proposi-
tion 7, respectively, shows that

“.12) Bele0) — tp )| S B+ (/K + [ (14 )
under all the combined assumptions of these results, which are compiled in the statement of
Theorem 2 below. The first two terms in (4.12) are the bias, with 4#Y an oracle bias that would
remain even if one had direct access to the potential outcomes (Y L— Y% (or equivalently,
samples of 7(X) + € for some € with conditional mean zero), and (&/ k1/dy2s analogous to a
squared nuisance bias term, but shrunken due to the stretching induced by the localized basis
bpk. Similarly, 1/ (nh?) is an oracle variance that would remain even if given access to the
potential outcomes, whereas the k/ (nh?) factor is a contribution from nuisance estimation
(akin to the variance of a series regression on k basis terms with nh“ samples).
Balancing bias and variance in (4.12) by taking the tuning parameters to satisfy

o~ p~ U435+ D) =D /A5

and k~n'
ensures the rate matches the minimax lower bound from Theorem 1 (in the low smoothness
regime), proving that lower bound is in fact tight. (In the high smoothness regime where
s > (d/4)/(14d/2y), one can simply take k ~ nh? and h ~ n=1/@v+d)_ This is formalized
in the following theorem.

THEOREM 2. Assume the regularity conditions:

A. The eigenvalues of Q and 2 are bounded above and below away from zero.

B. 7(x) —7(x) is a -smooth and fLo(x) — po(x) is B-smooth.

C. The quantities y2, (72, ,uo) ko — ol F+ and ||Q U'— 071 are all bounded above,
and ||d F* /dF* | is bounded above and below away from zero.

Also assume the basis b satisfies Holder approximating condition (4.4), and:

LV +4 4 fvas by

* *
I@F*[dF*) = Vloo S 2 ol 777
w(x) is o-smooth, and € < w(x) <1 — € for some € > 0,
wo(x) is B-smooth,
4. t(x) is y-smooth.

W

Finally let the tuning parameters satisfy

PR (VATIIES = DR N S Al S )

_—I . . —~~ .
ifs < %, orh ~n~ 2 and k ~ nh? otherwise. Then the estimator T from Definition 2
has error upper bounded as

R p VD e d/4 ’
Ep[T(x0) — tp(x0)| S 1+d/2y

_ d
n 1/G+y) otherwise.
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We refer to Section 3.3 for more detailed discussion and visualization of the rate from The-
orem 2. Here, we give two remarks discussing the regularity conditions A—C and Condition 1
(which ensures the covariate distribution is estimated accurately enough).

REMARK 10. Condition 2 is a standard collinearity restriction used with least squares
estimators; simple sufficient conditions are given in Propositions S5 and S6 in the Appendix.
In Lemma S3 in the Appendix, we also prove that this condition holds for a class of densities
contained in the model P in Theorem 1, ensuring that the upper bound holds over the same
submodel. A sufficient condition for Condition 2 to hold is that the estimators 77 (x) and
Lo (x) match the (known) smoothness of 7 (x) and pg(x); this would be the case for standard
minimax optimal estimators based on series or local polynomial methods. Condition 2 is a
mild boundedness condition on the outcome Y (which could be weakened at the expense of
adding some complexity in the analysis), as well as the nuisance estimators (F*, %, [io), and
even weaker, the errors ||itg — ol 7+ and || Q" — 071 (which would typically not only be
bounded but decreasing to zero).

REMARK 11. First, Condition 1 of Theorem 2 will of course hold if the covariate dis-
tribution is estimated at a rate faster than that of the CATE (i.e., the numerator of the rate
in Condition 1); however, it also holds under substantially weaker conditions, depending on
how accurately 7 and o are estimated. This is because the condition really amounts to a
third-order term (the covariate distribution error multiplied by a product of nuisance errors)
being of smaller order than the CATE rate. Specifically, the result of Theorem 2 can also be
written as

d d d
(413) EP’?(-X()) _ TP(-XO)‘ 5 n_l/(l+ﬂ+ﬂ\/(1+§)) 4 R3,n,
for the third-order error term
Ry =[(dF*/dF*) = 1| (I = xllp+ (IR0 — poll = +h7),

so that Condition 1 simply requires this third-order term to be of smaller order than the
first minimax optimal rate in (4.13) (note in the above that #¥ matches the overall CATE
estimation error, under our tuning parameter choices, which would typically be of smaller
order than the regression error ||f{o — (oll *). Second, we note that we leave the condition
in terms of the Ly (F*) errors |7 — || g+ and || fio — (ol p+ because, although we assume 7
and po are a- and B-smooth, technically, they do not need to be estimated at particular rates
for any of the other results we prove to hold. Of course, under these smoothness assumptions,
there are available minimax optimal estimators for which

—1/Q2+d/a) —l/(2+d//3)‘

17T —wllpe=n and ||t — pollp= < n

If in addition there exists some ¢ for which || (d F*/d F*) — 1||oe x n~V/@+4/0) (e.g., if F has
a density that is ¢-smooth), then Condition 1 reduces to ¢ > d/(1/My g 5.0 — 2), for

1 1 1
1+d/2y +d/4sv (1+d/2y) 2+d/a 2+d/B

Exploring CATE estimation under weaker conditions on the covariate distribution is an in-
teresting avenue for future work; we suspect the minimax rate changes depending on what is
assumed about this distribution, as is the case for average effects (e.g., p. 338 of Robins et al.
[27]) and conditional variance estimation [36, 42].

Ma g y.a =
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5. Discussion. In this paper, we have characterized the minimax rate for estimating het-
erogeneous causal effects in a smooth nonparametric model. We derived a lower bound on the
minimax rate using a localized version of the method of fuzzy hypotheses, and a matching
upper bound via a new local polynomial R-Learner estimator based on higher-order influ-
ence functions. We also characterize how the minimax rate changes depending on whether
the propensity score or regression function is smoother, either when one parametrizes the
control or the marginal regression function. The minimax rate has several important features.
First, it exhibits a so-called elbow phenomenon: when the nuisance functions (regression and
propensity scores) are smooth enough, the rate matches that of standard smooth nonparamet-
ric regression (the same that would be obtained if potential outcomes were actually observed).
On the other hand, when the average nuisance smoothness is below the relevant threshold, the
rate obtained is slower. This leads to a second important feature: in the latter low-smoothness
regime, the minimax rate is a mixture of the minimax rates for nonparametric regression and
functional estimation. This quantifies how the CATE can be viewed as a regression/functional
hybrid.

There are numerous important avenues left for future work. We detail a few briefly here,
based on: different error metrics, inference and testing, adaptivity and practical implementa-
tion. First, we have focused on estimation error at a point, but one could also consider global
rates in Ly or Lo, norm, for example. We expect Lj rates to be the same, and L, rates to
be the same up to log factors, but verifying this would be useful. In addition, it would also
be very important to study the distribution of the proposed estimator, beyond just bias and
variance, for example, for purposes of inference (L, rates could also be useful in this re-
spect). Relatedly, one could consider minimax rates for testing whether the CATE is zero,
for example, versus e-separated in some distance. The goal of the present work is mostly to
further our theoretical understanding of the fundamental limits of CATE estimation, so there
remains lots to do to make the optimal rates obtained here achievable in practice. For exam-
ple, although we have specified particular values of the tuning parameters # and k to confirm
attainability of our minimax lower bound, it would be practically useful to have more data-
driven approaches for selection. In particular, the optimal tuning values depend on underlying
smoothness, and since in practice this is often unknown, a natural next step is to study adap-
tivity. For example, one could study whether approaches based on Lepski’s method could be
used, as in Mukherjee et al. [24] and Liu et al. [21]. There are also potential computational
challenges associated with constructing the tensor products in p (x) when dimension d is not
small, as well as evaluating the U-statistic terms of our estimator, and inverting the matrices
0 and Q. Finally, in this work we have assumed the nuisance functions are Holder-smooth,
a classic infinite-dimensional function class from which important insights can be drawn.
However, it will be important to explore minimax rates in other function classes as well.

Funding. EK gratefully acknowledges support from NSF Grant DMS-1810979, NSF
CAREER Award 2047444 and NIH RO1 Grant LM013361-01A1, and SB and LW from NSF
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