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Abstract—We consider the problem of sequential estimation
of the unknowns of state-space and deep state-space models
that include estimation of functions and latent processes of the
models. The proposed approach relies on Gaussian and deep
Gaussian processes that are implemented via random feature-
based Gaussian processes. In these models, we have two sets
of unknowns, highly nonlinear unknowns (the values of the
latent processes) and conditionally linear unknowns (the constant
parameters of the random feature-based Gaussian processes). We
present a method based on particle filtering where the parameters
of the random feature-based Gaussian processes are integrated
out in obtaining the predictive density of the states and do
not need particles. We also propose an ensemble version of the
method, with each member of the ensemble having its own set
of features. With several experiments, we show that the method
can track the latent processes up to a scale and rotation.

Index Terms—deep state-space models, deep Gaussian pro-
cesses, sparse Gaussian processes, random features, ensembles,
particle filtering, Bayesian linear regression

I. INTRODUCTION

In the last decade, the field of machine learning has
seen an exceptional surge and unthinkable accomplishments
[1], [2]. One might argue that the main reason behind its
major advances has been the much improved capabilities
of deep neural networks over classical machine learning
methods. Enabled by their structures of multiple processing
layers, deep neural networks can learn representations of
data at various levels of abstraction [3], [4], [5]. An area
of machine learning that undergoes continued growth is
Gaussian processes (GPs), which are now routinely employed
in solving hard machine learning problems. The reason for this
is that they provide a principled, practical, and probabilistic
approach to learning [6]. Further, they are flexible, non-
parametric, and computationally rather simple. They are used
within a Bayesian framework that often leads to powerful
methods which also offer valid estimates of uncertainties in
predictions and generic model selection procedures [7]. Their
main drawback of computational scaling has recently been
alleviated by the introduction of generic sparse approximations
[8], [9], [10].

GPs have also been used for building dynamical models
[11]. Because of their beneficial properties, including bias-
variance trade-off and their Bayesian framework, they, too,
have become a tool for system identification [12]. The
GP-based state-space models (GP-SSMs) describe dynamical
systems, where one GP models a state process [13] and
another GP models the function between the states and the
observations [11].

In the literature, there have been various approaches to
inference of GP-SSMs. For example, [14] and [15] discussed
the combination of GP inference with various filters such as
particle filters, extended Kalman filters, and unscented particle
filters. Based on the reported results, the particle filters were
generally the most accurate. However, the estimation of GPs in
[14] and [15] requires the inversion of kernel matrices, which
needs cubic time complexity. A computationally efficient way
of GP-based inference was researched in [16], and it is based
on approximating the GPs in feature spaces with numerous
basis functions. The authors used particle Gibbs samplers for
all the unknowns. In other words, they did not only sample
the particles of the latent states but also the weight vectors
and the hyperparameters, hence increasing the computational
burden. Another family of efficient estimation of GP-SSMs
is based on variational inference. In [17], [18], and [19],
different evidence lower bounds (ELBOs) were designed and
then optimized. These methods, however, are not sequential or
online. In our work we adopted PF for estimating the hidden
processes because this methodology is sequential in nature and
has the capacity to perform estimation in highly nonlinear
and nonstationary settings with any computable probability
distributions. PF has also been used in a framework where
the state-transition function of a model is parameterized using
reproducing kernels [20]. Our approach in this paper can be
adapted to other types of filters.

If the functions are described by deep mappings such
as deep GPs, the resulting model is referred to as a GP-
based deep state-space model (GP-DSSM) [21]. The analytical
filters mentioned above are still applicable in deep state-
space models (DSSMs). Solutions to DSSMs can be based
on Rao-Blackwellized particle filters [22], [23] and mixture
Kalman filters [24]. A subclass of DSSMs can be built by
extending variational autoencoders (VAEs) as in [25]. The
building blocks for these models are recurrent neural networks
(RNNs) and VAEs.

Recently, methods for probabilistic forecasting of time
series based on RNNs have been proposed [26]. The objective
was to learn complex patterns from raw data by an RNN
combined with a parameterized per-time-series linear state-
space model. Additional efforts with similar objectives and
methodologies were reported in [27]. In [28], a global-local
method based on deep factor models with random effects was
explored. DSSMs were also used to construct deep GPs by
hierarchically putting transformed GP priors on the length
scales and magnitudes of the next level of GPs in the hierarchy
[29]. All these methods are different from the ones we propose
here.
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One way of broadening the function space of a GP is by
introducing an ensemble of GPs [30], [31], [32], [33]. Each
GP may rely on all or on a subset of training samples and may
use a unique kernel to make predictions. Ensembles of GPs
have also been used for combining global approximants with
local GPs [9], [34]. In [35], an ensemble of GPs was used for
online interactive learning.

We address the problem of constructing dynamic deep
probabilistic latent variable models. The underlying idea
is that, unlike standard state-space models, we work with
DSSMs, where the variables in the intermediate layers are
independently conditioned on the states from the deeper layers,
and the dynamics are generated by the process from the
deepest layer, the root process. An important task of inference
is the estimation of the unknowns of the model, which include
the underlying parameters of the GPs and the state (latent)
processes of the model.

The contributions of the paper are as follows:

• a novel kernel-based method that identifies non-linear
state-space systems without any information about the
functions that govern the latent and observation processes,

• extension of the state-space models to deep structures to
improve the model capacity and reveal more information
about the studied phenomena, and

• ensemble learning to reduce the variances of the estimates
of the latent processes and the predictions of the
observations.

II. BACKGROUND

In this section, for a self-sustained presentation, we provide
some background on the methodologies that are the main
ingredients of the proposed solutions in this paper.

A. Gaussian Processes

A GP, written as GP (m(·), κ(·, ·|λ)), is, in essence, a
distribution over functions, where m(·) is a mean function,
κ(·, ·) is a kernel or covariance function, and λ is a vector of
hyperparameters that parameterize the kernel. To simplify the
notation, we express a GP as GP(m,κ) or as GP(m,κ(λ)),
if λ is emphasized. For any set of inputs X = [xj ]

J
j=1 :=

[x1, . . . , xJ ]⊤ in the domain of a real-valued function f ∼
GP(m,κ), the function values f = [f(xj)]Jj=1 are Gaussian
distributed, i.e.,

p(f|X) = N (f|mX,KXX), (1)

where mX = [m(xj)]Jj=1 is the mean and KXX :=
κ(X,X|λ) = [κ(xi, xj)]i,j . Given the observations f on X,
the predictive distribution of f∗ at new inputs X∗ is given by
[6]

p(f∗|X∗, f,X) = N (f∗|µµµ∗,ΣΣΣ∗), (2)

with a predictive mean and covariance obtained by

µµµ∗ = mX∗ + KX∗XK−1
XX(f − mX),

ΣΣΣ∗ = KX∗X∗ − KX∗XK−1
XXKXX∗ .

(3)

B. Random Feature-Based Gaussian Processes

GPs do not scale up well with N , the number of input-
output pairs. We observe that in (3), one has to invert the
N ×N matrix KXX, which for large values of N becomes an
issue. To ameliorate the problem, we resort to approximations
by exploiting the concept of sparsity.

Compared with approximations in a function space, a GP
with a shift-invariant kernel has another way of approximation,
one that focuses on a feature space [36]. By utilizing feature
spaces, the computations do not require matrix decompositions
but only matrix multiplications. The vector of random features
is comprised of trigonometric functions that are defined by

ϕϕϕ(x) =
1√
J
[sin(x⊤ω1), cos(x⊤ω1), ...,

sin(x⊤ωJ), cos(x⊤ωJ)]⊤, (4)

where Ω = {ωj}Jj=1 is a set of samples randomly drawn
from the power spectral density of the kernel of the GP.
Then the kernel function k(x, x′) can be approximated by
ϕϕϕ(x)⊤ϕϕϕ(x′) if the kernel is shift-invariant. It brings a type
of GP approximation according to

f ≈ ϕϕϕ(x)⊤θθθ, (5)

where θθθ are parameters of the approximating model.

C. Bayesian Linear Regression

In view of the model given by (5), we provide a brief review
of Bayesian linear regression. Consider the following model:

y = ϕϕϕ⊤θθθ + ϵ, (6)

where y is a scalar observation, ϵ is a zero-mean Gaussian
random noise, i.e., ϵ ∼ N (0, σ2), with σ2 being unknown,
ϕϕϕ ∈ Rdθ×1 is a known feature vector, and θ ∈ Rdθ is an
unknown parameter vector. We assume that θ and σ2 have a
joint prior given by the multivariate normal–inverted Gamma
distribution, i.e.,

p(θ, σ2) ∝ 1

σa0+1
e−

1
2σ2 (b0+(θθθ−θθθ0)

⊤Σ−1
0 (θθθ−θθθ0)), (7)

where a0, b0, θθθ0, and Σ0 are parameters of the prior
probability density function (pdf), and where a0 > dθ and
b0 > 0. One can show that the predictive distribution of y is
given by a Student’s t-distribution [37], that is,

p(y|ϕϕϕ, a0, b0, θθθ0,Σ0) ∝
(
1 +

1

φ1
(y −ϕϕϕ⊤θθθ0)

2

)− ν1+1
2

, (8)

where

ν1 = a0 − dθ, (9)

φ1 =
b0

1−ϕϕϕ⊤Σ1ϕϕϕ
, (10)

Σ1 =
(
Σ−1

0 +ϕϕϕϕϕϕ⊤
)−1

. (11)

Thus, for the linear model in (6), when the prior of θθθ and
σ2 is given by (7), we have an analytical expression for the
predictive distribution of y.
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For the posterior of θθθ and σ2 we have

p(θθθ, σ2|y,ϕϕϕ, a0, b0, θθθ0,Σ0)

∝ 1

σa1+1
e−

1
2σ2 (b1+(θθθ−θ̂θθ1)

⊤Σ−1
1 (θθθ−θ̂θθ1)), (12)

where

a1 = a0 + 1, (13)

b1 = b0 + y2 + θ⊤
0 Σ

−1
0 θ0 − θ̂

⊤
1 Σ

−1
1 θ̂1, (14)

θ̂θθ1 = Σ1

(
Σ−1

0 θθθ0 +ϕϕϕy
)
. (15)

Clearly, the posterior pdf is also a multivariate normal–inverse
Gamma pdf with parameters a1, b1, θθθ1, and Σ1, which are
updated from a0, b0, θθθ0 and Σ0 using (13), (14), (15) and (11),
respectively.

D. Particle Filtering

In the proposed approach, we will use concepts from
particle filtering theory, and in this subsection, we provide
the basics of it. Particle filters have the capacity to work
sequentially with highly nonlinear models. In many signal
processing problems, we aim at tracking a latent process
xt ∈ Rdx of a state-space model given by

transition pdf : p(xt|xt−1), (16)
likelihood of xt : p(yt|xt), (17)

where t is a discrete-time index, and yt ∈ R is an observation
process. Typically, the main objective of PF is to obtain the
filtering pdf p(xt|y1:t) from p(xt−1|y1:t−1).

In brief, particle filters approximate the pdfs of interest
by discrete random measures, where the support of a pdf is
given by a set of particles and where each particle is given a
weight following fundamental principles. PF is implemented
as follows [38], [39], [40]. Suppose that at time t − 1 the
filtering density p(xt−1|y1:t−1) is approximated by

pM (xt−1|y1:t−1) =
1

M

M∑
m=1

δ(xt−1 − x(m)
t−1), (18)

where the symbol x(m)
t−1 represents the mth particle (sample)

of xt−1, δ(·) is the Dirac delta function, and M is the
number of particles. Then we can obtain pM (xt|y1:t) from
pM (xt−1|y1:t−1) by implementing three steps:

1) Generate particles x(m)
t from the predictive pdf of xt,

i.e.,

x(m)
t ∼ p(xt|x(m)

t−1). (19)

2) Compute the weights of the particles x(m)
t according to

the likelihood of xt, or

w
(m)
t ∝ p(yt|x(m)

t ), (20)

and where
M∑

m=1

w
(m)
t = 1. (21)

x0 x1

y1

. . .

. . .

xT

yT

Fig. 1. A generic diagram of an SSM.

The approximation of p(xt|y1:t) is then given by

pM (xt|y1:t) =
M∑

m=1

w
(m)
t δ(xt − x(m)

t ). (22)

3) Resample the particles using their weights w
(m)
t and

construct a posterior of xt with equal weights and where
some of the particles are replicated [41].

III. GAUSSIAN PROCESS STATE SPACE MODEL

Now we introduce the GP-based state space model. Suppose
the observation process yt ∈ Rdy is produced by a state-space
model defined by

xt = f(xt−1) + ut, (23)
yt = g(xt) + vt, (24)

where (23) represents the latent state transition equation with
the state vector xt ∈ Rdx at time instant t, and (24) is
the observation equation with yt ∈ Rdy being the vector of
observations at time instant t. The symbols ut ∼ N (0, σ2

uI)
and vt ∼ N (0, σ2

vI) represent Gaussian distributed errors
(noises). A generic graphical representation of an SSM is
shown in Fig. 1.

Next, we express the above two equations using random
feature-based GPs. In that case, we write them according to

xt = H⊤ϕϕϕx(xt−1) + ut, (25)

yt = Θ⊤ϕϕϕy(xt) + vt, (26)

where the parameters are given by the elements of the
matrices H ∈ R2Jx×dx , H = [η[1],η[2], . . . ,η[dx]], and
Θ ∈ R2Jy×dy , Θ = [θ[1],θ[2], . . . ,θ[dy ]]. The parameters
η[i] and θ[j] are initialized by Gaussian priors and updated
by following Bayesian rules. Thus, each dimension of xt

and yt is modeled by its own set of parameters. Further,
note that the feature vectors ϕϕϕx ∈ R2Jx and ϕϕϕy ∈ R2Jy

in (25) and (26) are different because they are defined
by different sets of samples, Ωx and Ωy , respectively.
To simplify the notation, we use ϕϕϕx(xt−1) =: ϕϕϕxt−1 and
ϕϕϕy(xt) =: ϕϕϕyt . We assume that the parameter variables
are all independent, i.e., the columns of H and Θ are
independent of the remaining columns. The noises ut and vt

are i.i.d. zero-mean Gaussians, where ut ∼ N (0,Σu) and
vt ∼ N (0,Σv), with Σu = diag(σ

2[1]
u , σ

2[2]
u , . . . , σ

2[dx]
u ) and

Σv = diag(σ
2[1]
v , σ

2[2]
v , . . . , σ

2[dy ]
u ).

The model described by (25) and (26) contains many
unknowns, that is, the vector processes xt, t = 1, 2, . . ., the
parameter matrices H and Θ, and the noise variances σ2[d]

u ,
d = 1, 2, . . . .dx and σ

2[d]
v , d = 1, 2, . . . .dy . Conditioned

on xt, the model is of the same form as the one in (6),
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whereas conditioned on H and Θ, the model given by (25)
and (26) is very nonlinear in xt. On account of the intractable
analytical inference, we resort to PF to estimate sequentially
the latent states. Given the estimated states, we update the joint
distributions of H and Σu and of Θ and Σv , respectively. For
these updates, we apply Bayesian linear regressions, where
we use multivariate normal–inverse Gamma pdfs for the joint
priors of (η[d], σ

2[d]
u ) and (θ[d], σ

2[d]
v ), respectively.

Next, we explain how we implement the following:

1) the propagation of xt,
2) the updating of the joint posteriors of η(m),[d] and

σ
(m),[d]2

u , for d = 1, 2, . . . , dx, m = 1, 2, . . . ,M ,
3) the updating of the joint posteriors of θθθ(m),[d] and

σ
(m),[d]2

v , for d = 1, 2, . . . , dy , m = 1, 2, . . . ,M , and
4) the weight computation of the particles and the

estimation of xt.

Suppose that before propagating the samples of the latent
process at time t − 1, we have M particles of xt−1, x

(m)
t−1,

m = 1, 2, . . . ,M . Assume also that for each stream of
particles m at t − 1 we have the joint posterior of η[d] and
σ
2[d]
u , which is a multivariate normal–inverted Gamma pdf

with parameters axt−1, b
(m),[d]
t−1 ,η

(m),[d]
t−1 and Ψ

(m),[d]
t−1 . Further,

we have the joint posterior of θθθ[d] and σ
2[d]
v , which is also a

multivariate normal–inverted Gamma pdf and with parameters
ayt−1, c

(m),[d]
t−1 , θθθ

(m),[d]
t−1 and Υ

(m),[d]
t−1 .

A. Propagation of the particles

We generate the elements of the particles x(m)
t , x(m),[d]

t ,
from respective univariate Student’s t-distributions given by
(see also (8))

p(x
(m),[d]
t |x(m)

t−1,Yt−1)

∝

(
1 +

1

ψ
(m),[d]
t

(
x
(m),[d]
t − α

(m),[d]
t

)2)−
νx
t−1+1

2

, (27)

where d = 1, 2, . . . , dx, m = 1, 2, . . . ,M, and

νxt−1 = axt−1 − 2Jx, (28)

α
(m),[d]
t = ϕϕϕx

(m)⊤

t−1 η
(m),[d]
t−1 , (29)

ψ
(m),[d]
t =

b
(m),[d]
t−1

1−ϕϕϕx
(m)⊤

t−1 Ψ
(m),[d]
t ϕϕϕx

(m)

t−1

, (30)

Ψ
(m),[d]
t =

(
Ψ

(m),[d]−1

t−1 +ϕϕϕx
(m)

t ϕϕϕx
(m)⊤

t

)−1

. (31)

Thus, the propagation includes generating particles xt by (27).
For each dimension of xt, we sample M particles (thus, we
have a total of Mdx particles), and they represent the support
of xt.

B. Updating of the joint posteriors of (η(m),[d], σ
(m),[d]2

u )

The joint posterior of (η(m),[d], σ
(m),[d]2

u ) is a mul-
tivariate normal–inverted Gamma pdf with parameters

axt , b
(m),[d]
t ,η

(m),[d]
t , and Ψ

(m),[d]
t . We update Ψ

(m),[d]
t−1 by

(31), and we find the remaining parameters recursively by

axt = axt−1 + 1, (32)

b
(m),[d]
t = b

(m),[d]
t−1 +

(
x
(m),[d]
t

)2
+ η

(m),[d]⊤

t−1 Ψ
(m),[d]−1

t−1 η
(m),[d]
t−1

− η
(m),[d]⊤

t Ψ
(m),[d]−1

t η
(m),[d]⊤

t , (33)

η
(m),[d]
t = Ψ

(m),[d]
t

(
Ψ

(m),[d]−1

t−1 η
(m),[d]
t−1 +ϕϕϕx

(m)

t x
(m),[d]
t

)
.

(34)

C. Updating of the joint posteriors of (θθθ(m),[d], σ
(m),[d]2

v )

The proposed method also requires updating of the joint
posteriors of θθθ(m),[d] and σ(m),[d]2

v for m = 1, 2, . . . ,M , and
d = 1, 2, . . . , dy . The joint posterior of (η(m),[d], σ

(m),[d]2

u ) is
a multivariate normal–inverted Gamma pdf with parameters
ayt , c

(m),[d]
t ,η

(m),[d]
t , and Υ

(m),[d]
t . Upon receiving yt, these

parameters are updated by

ayt = ayt−1 + 1, (35)

c
(m),[d]
t = c

(m),[d]
t−1 +

(
y
[d]
t

)2
+ θθθ

(m),[d]⊤

t−1 Υ
(m),[d]−1

t−1 θθθ
(m),[d]
t−1

− θθθ
(m),[d]⊤

t Υ
(m),[d]−1

t θθθ
(m),[d]⊤

t , (36)

θθθ
(m),[d]
t = Υ

(m),[d]
t

(
Υ

(m),[d]−1

t−1 θθθ
(m),[d]
t−1 +ϕϕϕy

(m)

t y
[d]
t

)
, (37)

Υ
(m),[d]
t =

(
Υ

(m),[d]−1

t−1 +ϕϕϕy
(m)

t ϕϕϕy
(m)⊤

t

)−1

. (38)

D. Weight computation of particles and estimation of xt

We need to assign weights to each particle x(m)
t according

to the likelihood of x(m)
t . The computation proceeds according

to

w̃
(m)
t = p(yt|x

(m)
t ,X(m)

t−1,Yt−1), (39)

where p(yt|x
(m)
t ,X(m)

t−1,Yt−1) is the likelihood of x(m)
t given

yt, X(m)
t−1, and Yt−1, and where X(m)

t−1 represents all the
particles generated in the mth stream up to time instant t− 1,
Yt−1 stands for all the vector observations up to time instant
t− 1, and w̃(m)

t is the non-normalized weight of x(m)
t .

We obtain the likelihood by exploiting (26), where we
use the made assumption that vt is Gaussian. We find
that p(yt|x

(m)
t ,X(m)

t−1,Yt−1) is a product of dy Student’s t-
distributions, i.e.,

p(yt|x
(m)
t ,X(m)

t−1,Yt−1)

∝
dy∏
d=1

(
1 +

1

υ
(m),[d]
t

(
y
[d]
t − β

(m),[d]
t

)2)−
ν
y
t−1

+1

2

, (40)
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where d = 1, 2, . . . , dy , m = 1, 2, . . . ,M, and

νyt−1 = ayt−1 − 2Jy, (41)

β
(m),[d]
t = ϕϕϕy

(m)⊤

t θθθ
(m),[d]
t−1 , (42)

υ
(m),[d]
t =

c
(m),[d]
t−1

1−ϕϕϕy
(m)⊤

t Υ
(m),[d]
t ϕϕϕy

(m)

t

. (43)

Once we compute the non-normalized weights by (39), we
normalize them according to

w
(m)
t =

w̃
(m)
t∑M

k=1 w̃
(k)
t

. (44)

After normalizing the weights, the minimum mean square
estimate (MMSE) of xt is obtained by

x̂t =
M∑

m=1

w
(m)
t x(m)

t . (45)

The approximation of the posterior p(xt|Yt) is then given by

pM (xt|Yt) =

M∑
m=1

w
(m)
t δ

(
xt − x(m)

t

)
. (46)

Finally, we resample M particles x(m)
t from pM (xt|Yt) to

obtain the particles that will be used for propagation in the
next time instant t+ 1.

The complete procedure is summarized by Algorithm 1. We
point out that an alternative algorithm can be applied where
all the particles share the same parameters H and Θ.

Algorithm 1: Single Sequential GP-SSM

for m = 1 to M do
Sample x(m)

1 ∼ p(x1);
Initialize the weights of x(m)

1 as w(m)
1 = 1/M , ∀m;

for t = 2 to T do
Propagation of the states:
Sample x(m)

t according to (27);
Updating the parameters of the joint posterior
of (η(m),[d], σ

(m),[d]2

u ):
Update axt , b

(m),[d]
t ,η

(m),[d]
t , and Ψ

(m),[d]
t via (32),

(33), (34), and (31), ∀d and m;
Updating the parameters of the joint posterior
of (θθθ(m),[d], σ

(m),[d]2

v ):
Update ayt , c

(m),[d]
t , θθθ

(m),[d]
t , and Υ

(m),[d]
t via (35),

(36), (37), and (38), ∀d and m;
Weight computation and normalization:
Compute the weights of x(m)

t according to (39)
and normalize them by (44).

Estimation of the state:
Estimate xt by (45).
Resampling:
Resample x(m)

t based on their weights.

IV. ENSEMBLE LEARNING

The use of only a single set of random samples, Ω,
might not be sufficiently accurate. In order to mitigate the
problem, we introduce an ensemble of different sets of Ω
and then combine the results obtained by each set. Let κs

be a shift-invariant kernel from a known kernel dictionary
K := {κ1, ..., κS}. Ideally, K should be built as large as
computational resources allow. We create the sets Ωs by
sampling from the power spectral density of each kernel
candidate κs. For estimating the latent state, we use these sets
as follows. If Ωs is the sth set, the posterior contribution or
weight of the GP based on the sth set to the estimate of the
latent state at time t is ws

t ∝ p(s|Yt). Then, the predictive
density of yt at time t is obtained from

p(yt|Yt−1) =
S∑

s=1

p(s|Yt−1)p(yt|s,Yt−1)

=
S∑

s=1

ws
t−1p(yt|s,Yt−1),

(47)

where S is the total number of sets and where the posterior
weight is updated by

ws
t =

p(s|Yt−1)p(yt|s,Yt−1)

p(yt|Yt−1)
∝ ws

t−1p(yt|s,Yt−1). (48)

A. Ensemble Estimates of the States

The ensemble estimate of the latent states is given by the
mixture

p(x̂t|Yt) =

S∑
s=1

ws
t p(x̂t|s,Yt). (49)

We point out that the estimates of the latent states by random
feature-based methods are identifiable up to a scale, shift, and
rotation [42]. Thus, to fuse the state estimates, we have to
force the estimators of all the ensemble members into the same
coordinate base. To that end, we arbitrarily fix the rotation
of X ∈ RT×dx by taking the singular value decomposition
(SVD) of the MMSE estimate, X̂ = USV⊤, and setting the
new estimated X̂ ∈ RT×dx as the columns of the left singular
vectors U with dx largest singular values. Then we mirror and
rotate all the candidate latent states so that they have the same
pattern. First, we set a guidance point x̃t with respect to a
specific time t. Then we rotate all the latent states X̃

(s)
to

make sure that x̃(s)t is “overlapped” with x̃t. Finally, we take
the weighted average of X̃

(s)
as the ensemble estimate of X̃.

B. Keep and Drop

We use the individual estimates of the ensemble members
to improve on their respective estimates. In practice, if we do
not take precautionary measures, only a small portion of them
would remain with significant weights. For this reason, we
remove the members with small weights using the principle
of resampling and replace them with members that perform
much better. With replacements, we reduce the diversity of
features in the ensemble but increase the number of particles
that explore the spaces of the latent processes with the features
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xL,t−1

yt−1

x1,t

...
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x1,t+1

...

xL,t+1

yt+1

Fig.2. AgenericdiagramofadeepSSMwithLlayers.

ofthereplicated members.Further, wenotethatcandidate
modelsneedtobetrainedatthebeginning.Forthisstage,we
ixtheweightstows

t≡1/Satthebeginninguntilt=T0.

V. GAUSSIANPROCESS-BASEDDEEPSTATE-SPACE

MODELS

Oneoftheadvantagesofdeepstructuresistouseoneor
afewsimplenonlinearactivationfunctionstoimprovethe
approximationofunknownhighlynonlineartargetfunctions.
Inthe ieldofsignalprocessing,theadvantageofdeep
structuresofstate-spacemodelsisthatwithmorehiddenlayers
wecanimprovethemodelingcapacityofthemodel.Typically,
thestateprocessesofthehiddenlayers willbeofdifferent
dimensions,andinsomesettings,thedeep modelscanbe
justiiedusingargumentsthatrelectourunderstandingofthe
phenomenawemodel.AgenericdiagramofadeepSSMwith
LlayersisshowninFig.2.

Borrowingfromconceptsofdeeplearning,weintroducea
Gaussianprocess-baseddeepstate-space model(GP-DSSM).
This modelusesonesimplekernelthatiscombined with
adeepstructuretoapproximatetheunknowntargetkernel.
Formally, weexpressa GP-DSSM withLhiddenlayersas
follows:

x1,t=H⊤
1ϕϕϕx

1,t−1+u1,t, (50)

xl,t=H⊤
lϕϕϕx

l−1,t+ul,t,l=2...,L, (51)

yt=Θ⊤ϕϕϕy
t+vt, (52)

where xl,t ∈ Rdl
x,l= 1,2,...,Larelatentprocesses,

yt∈Rdy isavectorofobservations,ϕϕϕx
l,t=ϕϕϕ(xl,t)arethe

featurefunctionsembeddedwithdifferentΩlforeverylayer,
ϕϕϕy

thasthesamemeaningasbefore,HlandΘ areparameter
variables,andul,tandvtareperturbations. Werefertothe
deepestlatentprocess(deinedby(50))astherootprocess
ofthe model. Here weassumethatthedimensionsofthe
latentprocessesarepredeined.Theobjectiveofinferenceis
toestimateallthelatentprocessesxl,t,l=1,...,Landall
theparametersofthemodelHandΘl,l=1,2,...,L,.

Theinference methodandproceduresareverysimilarto
themethodwedescribedfortheordinaryGP-SSM.

A.Propagationoftheparticlesinalllayers

Attime t,irst wepropagatetheparticlesfromx
(m)
1,t−1 to

x
(m)
1,t andthentheparticlesoftheremaininglatentprocesses

{x
(m)
l,t }L

l=2.Inpropagatingtheseparticles,weapplyanalogous
Student’st-distributionsasin(8),i.e.,

p(x
(m),[d]
l,t |X

(m)
t−1,Yt−1)

∝ 1+
1

ψ
(m),[d]
l,t

x
(m),[d]
l,t −α

(m),[d]
l,t

2
−

νx
l,t−1+1

2

, (53)

whereX
(m)
t−1representsthelatentstatesinallthelayersupto

timet−1,andwheretheparametersνl,t,ψl,t,andαl,tare
deinedsimilarlyasin(28)–(31).

B. Updatingofthejointposteriorsof(η
(m),[d]
l ,σ

(m),[d]2

l,v )and

(θθθ(m),[d],σ
(m),[d]2

v )

Theseupdatesfollowtheschemesdescribedby(32)–(34)
and(35)–(38),respectively. Wenotethattheseupdatescanbe
performedinparalleloncealltheparticlesinallthelayers
havebeenpropagated.

C. Weightcomputationofparticlesandestimationofthe
latentprocesses

Weassign weightstotheparticles x
(m)
L,t accordingtothe

likelihoodsoftheparticles,thatis,weuse

w
(m)
L,t =p(yt|x

(m)
L,t ,X

(m)
t−1,Yt−1), (54)

wherep(yt|x
(m)
L,t ,X

(m)
t−1,Yt−1)isthelikelihoodofx

(m)
L,t given

yt,X
(m)
t−1,Yt−1,andw

(m)
L,t isthenon-normalized weightof

x
(m)
L,t .Thecomputationofthis weightiscarriedoutviaa

Student’st-distributionoftheformasin(40)and whose
parametersarefromexpressionsanalogousto(41)–(43).Upon
thecomputationoftheweights,wenormalizethemasper(44).

Clearly,theseweights directlydependonx
(m)
L,t onlyandnot

ontheparticlesfromthepreviouslayers.Finally,theminimum
meansquareestimate(MMSE)of xL,t iscomputedby(45)
andtheapproximationoftheposteriorp(xL,t|Yt)isgivenby
(46).

Theestimatesoftheremainingprocessesiscarriedout
by irst computingthe weights ofthe particles ofthe
correspondingprocesses. Forexample,forcomputingthe

weightsofx
(m)
L−1,t,weuse

w
(m)
L−1,t=p xL,t|x

(m)
L−1,t , (55)

wherexL,t istheestimateofxL,t.Fromtheparticlesx
(m)
L−1,t

andtheircorrespondingweights,wethencomputexL−1,t. We
continueinthesameveinbyestimatingoneprocessvalueat
atimeuntilwecompletethesestepswithestimatingthevalue
oftherootprocess.

Before weproceedtoprocessthenextobservation, we

resampletheM streamsusingtheirrespectiveweightsw
(m)
t .
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One approach to computing these weights ise based on the
following expression:

w̃
(m)
t = p

(
yt|x

(m)
L,t ,Yt−1

) L−1∏
l=1

p
(

xl+1,t|x(m)
l,t

)
. (56)

For the unknown xl+1,t in this equation, we could use their
respective MMSE estimates x̂l,t. Another approach is based
on approximating the factors p

(
xl+1,t|x(m)

l,t

)
in (56) with the

average likelihood, that is, with

p
(

xl+1,t|x(m)
l,t

)
≈

M∑
m′=1

w
(m′)
l+1,t p

(
x(m

′)
l+1,t|x

(m)
l,t

)
, (57)

where w
(m)
l+1,t are the weights associated with the particles

x
(m)
l+1,t. By combining equation (56) and (57), we obtain

w̃
(m)
t ≈ p

(
yt|x

(m)
L,t ,Yt−1

) L−1∏
l=1

[
M∑

m′=1

w
(m′)
l+1,t p

(
x(m

′)
l+1,t|x

(m)
l,t

)]
.

(58)

VI. EXPERIMENTS

We tested the performance of the proposed method with
several experiments. In all the experiments, we applied the
ensemble method with S = 100 members. Specifically, the
elements of the sets {Ωs}100s=1 were randomly sampled from
the power spectral density of RBF kernels κs(λ) with prior
length scale vectors lllsλ and prior variances σ2

λ = 1, where the
elements of lllsλ were independently sampled from the discrete
set {10−4, 10−3, . . . , 103, 104}. Note that λ represents the
hyperparameters and λ = {lllλ, σ2

λ} includes the length scale
vector and the prior variances.

A. A test with dx = 2 and dy = 1

In the first experiment, we tested the inference of a GP-SSM
when dx > dy . More specifically, we generated data from an
SSM with dx = 2 and dy = 1 according to the following
model:

latent layer : x
[1]
t = 0.9x

[1]
t−1 + 0.5 sin(x

[2]
t−1) + u

[1]
t ,

x
[2]
t = 0.5 cos(x

[1]
t−1) + 0.9x

[2]
t−1 + u

[2]
t ,

observations : yt = 0.3 sin(x
[1]
t )− 0.3x

[1]
t + 0.2x

[2]
t

+0.25x
[1]
t x

[2]
t + (0.05x

[1]
t )2 + 0.01(x

[1]
t )3

−0.25x
[1]
t /(1 + (x

[2]
t )2) + vt.

The generated data set contained 2,000 samples with σ2
u =

σ2
v = 0.001, and for initializing the estimation, we used
T0 = 1, 000 samples. For drawing random vectors needed in
the construction of the random features ϕϕϕ(x) in (4), we used
Jx = Jy = 50. For comparison purposes, all the signals were
normalized from T0 = 1, 000 to T = 2, 000. We emphasize
again that the functions in the state and observation equations
are unknown. Figure 3 shows the last 100 samples of the actual
latent process x[1]t in red line, its estimate x̂[1]t in grey line,
and the 95% confidence interval depicted by the blue region.

Figure 4 exhibits the estimates of the latent states x̂[2]t under
20 runs with different seeds. The results suggest that with
our approach we can provide accurate estimates of the latent
states and thus can capture their dynamics. Further, we can
quantify the uncertainties of the estimates. Recall from Section
IV-A that we use the SVD to standardize both the actual and
estimated states. Figure 5 illustrates the true pairs (x

[1]
t , x

[2]
t )

and estimated pairs (x̂
[1]
t , x̂

[2]
t ) before applying SVD. The

scaled actual and estimated states after SVD are shown in
Fig. 6.

To assess the performance of our method further, in
Fig. 7 we present the results of the first 100 samples,
demonstrating the consistent performance of our method. It
is important to note that the samples from T0 to the end
have been standardized simultaneously, ensuring a consistent
standardization approach across the entire test set. Thus,
the first and last 100 samples have not been separately
standardized. In addition, in Fig. 8 we show the root mean
square errors (RMSEs) of the estimated latent states.

Here we provide motivation and insights for using Student’s
t-distributions rather than Gaussian ones. In our previous work,
[43], we considered the variances of the Gaussians σ2 as
vectors that are optimized by gradient descent algorithms.
However, bad initial values of variances would incur huge
bias because of the risk of not converging. Therefore, we used
Student’s t-distributions to account for the uncertainty of the
variances σ2. Further, the Student’s t-distribution allows for a
closed form formulation of the variance updates. To make a
comparison between the models with Student’s t and Gaussian
distributions, we conducted the following experiment. We
assumed that the prior information provides initial values of
Gaussian variances with 0.1, while the actual variances were
σ2
u = σ2

v = 0.001. The model with Gaussians had a much
worse performance in accuracy and had increased computing
time compared to the model with Student’s t distributions. The
results are shown in Figs. 9 and 10. The red lines show the
RMSEs and MNLLs under the model with Gaussians, whereas
the grey lines represent our proposed model with Student’s
t distributions. We reiterate that the model with Gaussians
requires more time to run for the same number of samples.

B. A test with dx = 5 and dy = 100

In the next experiment, we tested the GP-SSM when
dx < dy . We wanted to demonstrate the ability of our model
to learn lower dimensional processes from high dimensional
observation signals. Our generative model had dx = 5 and
dy = 100 and was of the form

Latent Layer : x
[i]
t = ϕϕϕ⊤x (xt−1)η

[i] + u
[i]
t ,

Observations : y
[j]
t = ϕϕϕ⊤y (xt)θ

[j] + v
[j]
t ,

where i = 1, . . . , 5, j = 1, . . . , 100, ϕϕϕ⊤x (x) =
[sin(ω⊤

x x) cos(ω⊤
x x)] and ϕϕϕ⊤y (x) = [sin(ω⊤

y x) cos(ω⊤
y x)].

The elements of ωx ∈ R50 and ωy ∈ R50 were randomly
generated from −10 to 10, and the entries of η ∈ R100 and
θ ∈ R100 were also randomly drawn from −0.01 to 0.01.
The hyperparameters were set to be the same as in the above
section. Figure 11 shows xt and x̂t of the last 100 samples. The
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Fig. 3. Point estimates and 95% confidence region of x̂[1]
t and its true values

x
[1]
t for the last 100 samples.

0 20 40 60 80 100
−2

−1

0

1

2

Second dimension of the latent process

Estimated latent process Actual latent process

Fig. 4. Estimates of x̂[2]
t under 20 runs and its true values x

[2]
t .
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Fig. 5. Pairs of estimated (x̂t) and actual (xt) latent states before SVD.
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Fig. 6. Pairs of standardized x̂t and xt after SVD.

Fig. 7. Point estimates of x̂
[1]
t with 95% confidence region and the

true x
[1]
t from T0 to T0 + 100.
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Fig. 8. RMSEs of the estimated latent states from T0 to the end.
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Fig. 9. RMSEs after T0. The x-axis represents time (seconds).
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Fig. 10. MNLLs after T0. The x-axis represents time (seconds).

results indicate that even for the signals with high frequency
and dimensions, our model can adjust quickly.

C. The need for a deep model

Do we need GP-DSSMs? This experiment shows that
the answer is positive, especially when the selected kernel
for the GP may not have enough capacity to learn. We
validated this by an experiment where dx = 10 and dy =
1. We generated the observation process as a GP whose
kernel was a superposition of a dot-product and a Matérn
kernel. The dot-product kernel was a non-stationary kernel
with a hyperparameter σ2

dp = 20, and the Matérn kernel
was set with hyperparameters ν = 1.5 and length scales
lll = [10−5, 10−4, . . . , 103, 104]. The outputs were normalized
before being used by our model. In mathematical terms, the
transition and observation processes were obtained by

x
[i]
t = 0.9x

[i]
t−1 + gi(x

[i+1]
t )/2 + u

[i]
t , (59)

yt = f(xt) + vt, (60)

where i = 1, . . . , 10, and x[11]t actually denotes x[1]t to simplify
the notation. The function f is the GP with a dot-product
kernel adding a Matérn kernel, and gi is a sine function when
i is odd while a cosine when i is even. The noises u[i]t and
vt had the same variances σ2

u = σ2
v = 0.1. The remaining

parameters were Jx = Jy = 100 and M = 104.
We implemented four models, from one-hidden layer to

four-hidden layers. Figure 12 shows the RMSEs of the four
models. The model with two-hidden layers achieves the
minimum RMSEs. Note that the behavior of the RMSEs
relative to the number of hidden layers is similar to a concave
function, consistent with the conclusion from [44], i.e., that
the RMSEs decrease and then increase with the number of
hidden layers increasing. From the conclusion in [45], we
might expect that deeper models would be better when we
increase the number of parameters such as J and M .

D. Testing the performance of GP-DSSM

We generated data from a DSS model with two hidden
layers, with dx1

= 2, dx2
= 3, and dy = 4. The model is

given by the following two layers of latent processes:

Layer 1 : x
[1]
1,t = 0.9x

[1]
1,t−1 + 0.5 sin(x

[1]
1,t−1) + u

[1]
1,t,

x
[2]
1,t = 0.5 sin(x

[1]
1,t−1) + 0.9x

[2]
1,t−1] + u

[1]
1,t,

Layer 2 : x
[1]
2,t = 1.8 cos(x

[1]
1,t)− 0.7 sin(x

[1]
1,t) + u

[1]
2,t,

x
[2]
2,t = 0.5x

[1]
1,t − 1.3 sin(x

[2]
1,t) + u

[1]
2,t,

x
[3]
2,t = 2x

[1]
1,t − 0.4x

[2]
1,t + u

[2]
2,t,

(61)
and four observation processes given by

y
[1]
t = 0.01(x

[1]
2,t)

2 + 1.2x
[3]
2,t + v

[1]
t ,

y
[2]
t = 1.2 sin(x

[1]
2,t)− 0.5x

[2]
2,t + 0.7x

[3]
2,t + v

[2]
t ,

y
[3]
t = x

[1]
2,tx

[2]
2,t + v

[3]
t ,

y
[4]
t = 5x

[2]
2,t/(1 + x

[2]2

2,t ) + v
[4]
t .

(62)

This model is identical to the one from Sec. V-B of [43],
except that we changed the first equation in [43]

x
[1]
1,t = 0.9x

[1]
1,t−1 + 0.5 sin(x

[2]
1,t−1) + u

[1]
1,t, (63)

to
x
[1]
1,t = 0.9x

[1]
1,t−1 + 0.5 sin(x

[1]
1,t−1) + u

[1]
1,t. (64)

We made this change to force the latent process to become
less smooth, thus making it harder for estimation. The results
are shown in Fig. 13. Evidently, they show that the proposed
method is capable of accurately estimating all the latent
processes even though the latent processes are much more
jagged. Further, compared with the results in [43] which had
persistent lags in the estimated processes, the results from the
method presented here showed almost no lags.
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Fig. 11. Estimated latent processes x̂t and actual latent processes xt for all five dimensions.

E. Testing on real world data sets

We also assessed the performance of our model on five
real-world data sets [46] and compared it to six state-of-the-
art models. The suite of reference methods is composed of
(1) two one-step ahead autoregressive GP models: GP-NARX
[13] and NIGP [47], (2) three multi-step-ahead autoregressive
and recurrent GP models in latent spaces: REVARB with one

and two hidden layers [48] and MSGP [49], and (3) two GP-
SSMs, based on a full Markovian state: SS-GP-SSM [50] and
PR-SSM [46]. Specifically, the REVARB is a deep state-space
model based on RNNs. Note that these benchmark methods
are learned in an offline mode or in a batch mode, which
means that they are trained on sets multiple times and then
applied to test sets.
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TABLE I
RMSES AND STANDARD DEVIATIONS

ONE-STEP-AHEAD, MULTI-STEP-AHEAD, LATENT MARKOVIAN STATE-SPACE
AUTOREGRESSIVE SPACE AUTOREGRESSIVE MODELS

TASK GP-NARX NIGP REVARB 1 REVARB 2 MSGP SS-GP-SSM PR-SSM RF-SSM

ACTUATOR 0.627 0.599 0.438 0.613 0.771 0.696 0.502 0.295
(0.005) (0) (0.049) (0.190) (0.098) (0.034) (0.031) (0.037)

BALLBEAM 0.284 0.087 0.139 0.209 0.124 411.6 0.073 0.107
(0.222) (0) (0.007) (0.012) (0.034) (273.0) (0.007) (0.010)

DRIVE 0.701 0.373 0.828 0.868 0.451 0.718 0.492 0.417
(0.015) (0) (0.025) (0.113) (0.021) (0.009) (0.038) (0.030)

FURNACE 1.201 1.205 1.195 1.188 1.277 1.318 1.249 0.410
(0.000) (0) (0.002) (0.001) (0.127) (0.027) (0.029) (0.032)

DRYER 0.310 0.268 0.851 0.355 0.146 0.152 0.140 0.273
(0.044) (0) (0.011) (0.027) (0.004) (0.006) (0.018) (0.021)

0 2000 4000 6000 8000
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0.6
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RMSE

One-hidden-layer GPSSM
Two-hidden-layer GPSSM

Three-hidden-layer GPSSM
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Fig. 12. RMSEs obtained from a single-hidden-layer GP-SSM to a four-
hidden-layer GP-DSSM.

The settings of all the methods were the same, where
the number of inducing points P or the number of random
features J was 20. The latent dimension dx was set to four.
All the observations were normalized. The results of the best
performer in terms of the Welch t-test are presented in bold
numbers. Further information about our model including run
time is provided in Table II. The training times were collected
from a server with 12G RAM. The training time of our
ensemble model depends on the number of candidate models,
which was S = 100 in our experiments, and these models
were trained separately. If they are deployed in a distributed
manner, the training time in Table II can be reduced by around
100 times. The benchmark methods, however, can only be
implemented by multiple iterations and cannot be conducted
in a distributed way. The training and test times of the other
methods are not provided in the corresponding papers and are
affected by the used number of iterations in the computations.

As benchmarks, we have chosen to use batch methods due
to lack of other sequential methods that operate under the
assumption of unknown transition and observation functions,

as described in our paper. In order to ensure a fair comparison,
we utilized a test set with a small number of samples,
specifically ranging from 100 to 500 samples. Opting for a
smaller test set allows for a more gradual and less rapid change
in the sequential method. The batch methods undergo multiple
training iterations on the training set to ensure convergence of
their parameters. By contrast, our method only exploited the
training set once and thus, may have not achieved complete
convergence by the end of the training process due to the small
number of training samples. Even so, our method, RF-SSM,
achieved the best performance on two data sets (Actuator
and Furnace). It also was the second best performer on the
data set Drive and the third best performer on the data set
Ballbeam. All the results are shown in Table I. The numbers in
parentheses are the standard deviations of the RMSEs among
five runs with different seeds.

TABLE II
DATA INFORMATION

Task Ntrain Ntest Ttrain(seconds) Ttest(seconds)
ACTUATOR 512 512 701.0 (3.847) 13.8 (0.748)
BALLBEAM 500 500 689.6 (15.318) 20.6 (1.744)

DRIVE 250 250 307.6 (3.2) 4.2 (0.400)
FURNACE 148 148 160.4 (0.490) 3.8 (0.400)

DRYER 500 500 686.0 (6.841) 8.0 (0.00)

VII. CONCLUSIONS

In this paper, we addressed the problem of sequential
estimation of state-space models and deep state-space
models using Gaussian process-based state-space modeling
and Gaussian process-based deep state-space modeling. An
important advantage of the considered methodology is that
it relaxes the assumption of knowing the functions in the
observation and state equations. We implemented the Gaussian
processes by using random feature-based Gaussian processes.
The inference method is based on the combination of particle
filtering and Bayesian linear regression. We also proposed
an ensemble of filters for tracking the latent processes. With
several experiments, we demonstrated the performance of
the proposed method in different settings including synthetic
examples and five real data sets. Further, we compared the
performance of our method with 6 other state-of-the art
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Fig. 13. On the left are the true values and estimates of x1,t, and on the right, the true values and estimates of x2,t.

methods. A limitation of our approach is that for too deep
models, the method requires many more particles and a larger
number of features. In future work, we will address the use
of variational Bayes approach to acquire better set of random
feature candidates so that we can reduce the number of features
and number of particles. We will also consider applying more
efficient sampling approaches.
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