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Abstract

Single-molecule fluorescence microscopy enables the direct observation of individual reaction
events at the surface of a catalyst. It has become a powerful tool to image in real time both intra-
and interparticle heterogeneity among different nanoscale catalyst particles. Single-molecule
fluorescence microscopy of heterogeneous catalysts relies on the detection of chemically activated
fluorogenic probes that are converted from a non-fluorescent state into a highly fluorescent state
through a reaction mediated at the catalyst surface. This review article describes challenges and
opportunities in using such fluorogenic probes as proxies to develop structure—activity
relationships in nanoscale electrocatalysts and photocatalysts. We compare single-molecule
fluorescence microscopy to other microscopies for imaging catalysis in situ to highlight the distinct
advantages and limitations of this technique. We describe correlative imaging between super-
resolution activity maps obtained from multiple fluorogenic probes to understand the chemical
origins behind spatial variations in activity that are frequently observed for nanoscale catalysts.
Novel fluorogenic probes, originally developed for biological imaging, are introduced that can
detect products such as carbon monoxide, nitrite, and ammonia, which are generated by electro-
and photocatalysts for fuel production and environmental remediation. We conclude by describing
how single-molecule imaging can provide mechanistic insights for a broader scope of catalytic

systems, such as single-atom catalysts.
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Vocabulary

Fluorogenic probe: A molecule that is initially non-fluorescent or weakly fluorescent but becomes
highly fluorescent after undergoing a chemical or physical change.

Total internal reflection fluorescence (TIRF) microscopy: a form of fluorescence microscopy in
which the incident angle for laser excitation is such that the illumination is totally internally
reflected between the top and bottom surfaces of a microscope coverslip. An evanescent field is
created that only excites fluorescent molecules near the surface of the coverslip.
Super-localization: Fitting the emission profile or point spread function of a single fluorophore to
localize its position below the diffraction-limited resolution of an optical microscope.

Correlative imaging: Imaging the same region of a sample using two different microscopy
techniques, such as single-molecule fluorescence microscopy and electron microscopy and
correlating information gained from each technique.

Nanoscale catalyst: Catalyst particles with in which at least one dimension is in the range of 1 to
100 nanometers. Nanoscale catalysts can be composed of metals, metal oxides, metal
chalcogenides as well as combinations of these materials and include spherical nanoparticles,
nanorods, nanowires, and nanoplates.

Single-atom catalyst: A catalyst in which the active sites consist of individually dispersed atoms
(typically metal atoms but can also be nonmetals) that are bound to the surface of a support.! The
support could be another metal, a metal oxide, or a conductive form of carbon; the type of the
support and how the dispersed atoms are coordinated to it strongly influence the electronic

structure, activity, and stability of the active sites.



Introduction

Nanoscale catalysts are being developed for a wide range of important reactions in energy
conversion and storage, environmental remediation, and the production of commodity chemicals.>
7 In these heterogeneous catalysts, the chemical reaction takes place on the surface of the material.
Thus, individual steps along the reaction pathway, such as adsorption, surface diffusion, electron
transfer, bond breaking, bond formation, and product desorption are highly sensitive to the surface
structure of the catalyst. Different facets of a nanocrystal have different surface structures leading
to different activation energies for these steps. Surface sites with a high degree of
undercoordination (i.e., a lower coordination number that the same atom would possess in the
interior of the crystal) often serve as preferential reaction sites for catalysis. For example, in
electrocatalysts with a layered crystal structure, such as transition metal chalcogenides, the edge
atoms around the perimeter of the crystals are undercoordinated and act as preferential sites in
electrocatalytic reactions, including the hydrogen evolution reaction and oxygen evolution
reaction.?®32 Crystal defects in nanoscale catalysts can also have a profound impact on their
activity. For example, oxygen vacancies (i.e., the absence of an oxygen atom where it would
normally be located in the crystal lattice) in semiconductor metal oxides can both enhance the
concentration of photoexcited charge carriers needed for photocatalytic redox reactions and expose
metal atoms at the surface that act as preferential sites for interfacial charge transfer.33-3

To understand the features that produce high activity and stability in nanoscale catalysts (or
the lack of activity/stability), analytical methods are needed to detect reaction products and
correlate the generation of those products with the structure of the catalyst. Common techniques
to analyze the products of catalytic reactions include nuclear magnetic resonance spectroscopy,

infrared spectroscopy, gas chromatography, and mass spectrometry. Combined with techniques



for structural and morphological characterization, such as electron microscopy, X-ray diffraction,
X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray absorption spectroscopy, these
methods can provide an ensemble picture of structure—activity trends that averages over all the
particles in the sample. Using these techniques, many reports have demonstrated the ability to tune
the activity, selectivity, and stability of nanoscale materials for photocatalytic and electrocatalytic

29-30, 40-48

reactions through systematic control over the average particle morphology and/or defect

concentration, !3-16 33-39,49-51

However, nanoscale catalysts exhibit interparticle variations that affect their activity and
stability, such as differences in size, shape, surface structure, and defect concentration, even for
particles synthesized within the same batch. Each particle also contains different potential reaction
sites including different crystal facets and edge sites as well as surface defects (e.g., vacancies,
step edges, twin boundaries, etc.). Such heterogeneity makes it challenging to identify the actual
surface sites responsible for catalytic turnovers; this critical information is averaged over when
measurements are made on a large number (e.g., on the order of a mole) of catalyst particles. For
example, a sub-population of catalyst particles could be dominant in the observed ensemble
activity while other particles in the batch are relatively inactive.’*>> To make matters more
complicated, the surface structures of many catalysts change when they are in their active state
(i.e., catalyzing the reaction of interest).’¢>® Therefore, conventional ex-situ measurements
performed before or after the reaction may not reflect the true chemical properties of the active
catalyst. In-situ methods are needed to map the distribution of active regions across the surfaces
of catalyst particles under conditions where they are undergoing catalytic turnovers.

Single-molecule fluorescence (SMF) microscopy provides the unique capability to probe

individual chemical reactions with millisecond time resolution and nanoscale spatial resolution.’*



53, 60-106 Tt has been used to measure both differences among the reactivity of catalyst particles
prepared within the same batch and to image nanoscale variations in activity across individual
particles. However, the technique relies on chemically activated fluorogenic probes that serve as
proxies for the reaction of interest. The focus of this article is to describe challenges and
opportunities in applying SMF imaging to understand the chemical and physical behavior of
nanoscale catalysts. The examples provided in this article pertain mostly to metal and
semiconductor electro- and photocatalysts that are candidates for generating useful chemical fuels
through catalyzing reactions such as water splitting to produce hydrogen, the reduction of carbon
dioxide into alcohols, and the reduction of nitrogen to ammonia. The article will start with a
comparison of various techniques for imaging heterogeneous catalysts in their active state. We
will outline the limitations of using fluorogenic probes for imaging catalytic activity via SMF
microscopy and provide possible methods to overcome these limitations. Based on the current
challenges and opportunities in using single-molecule fluorescence imaging, we will provide
examples of catalytic systems in which this technique has the potential to provide new mechanistic

insights.

A comparison of techniques for in situ imaging of heterogeneous catalysis

The ideal imaging technique for revealing structure—activity trends in nanoscale catalysts
would 1) determine the identities and amounts of chemical products, 2) provide atomic-level
resolution of the active sites on the surface of the catalyst while it is in operation and image changes
in those sites over time, 3) operate under conditions that are similar to the catalytic reaction of
interest, 4) be compatible with a wide range of different catalysts and environments (e.g., in

solution or the gas phase and at different temperatures and pressures), and 5) allow high-



throughput screening of different catalyst compositions and structures. No current method meets

all these requirements. To put the advantages (and disadvantages) of single-molecule fluorescence

into context, several techniques for imaging the active regions of heterogeneous catalysts at

different length scales are described below. A comparison of these different techniques is provided

in Table 1.

Table 1. Comparison of techniques for in situ imaging of heterogeneous catalysis
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* The spatial resolutions and acquisition rates provided are based on representative examples.

The resolution and either scan rate (for STM, SECM, and STXM) or frame rate (for TEM and

SMF) will depend on the specific sample, reaction conditions, and instrument used.




Scanning tunneling microscopy (STM) uses a sharp tip to probe the structure of surfaces. It
provides atomic resolution of catalyst surfaces and can monitor changes in their structure in situ
after the introduction of gaseous species or under an applied electrochemical potential.!?’-10
Differences in the adsorption, dissociation, and reactivity of molecular adsorbates such as carbon
monoxide, hydrogen, and water on crystal terraces vs. step edges and vacancies can be imaged.!!!-
14 Conformational changes in redox active molecules can also be imaged at different applied
potentials using electrochemical STM.!!'>-!1¥ Moreover, when the tip of the microscope is coated
with a plasmonic metal, such as Ag or Au, chemical information with nanoscale resolution can be
obtained through tip-enhanced Raman spectroscopy (TERS).!'%-124 So far, TERS imaging has

119, 121, 124 such

focused on self-assembled monolayers of molecules adsorbed on metal surfaces,
that the technique is limited to one catalytic turnover at each surface site unless the reactant can be
regenerated in situ.'??"!23 Furthermore, STM generally requires clean and nearly atomically flat
surfaces (i.e., single crystals, which can be modified with clusters of metals, metal oxides, or
molecular adsorbates). This restriction limits the types of catalytic systems and chemical reactions
that can be studied.

While STM is well suited for imaging single-crystal surfaces, transmission electron
microscopy (TEM) is better matched for imaging nanoscale catalyst particles (e.g., spherical
nanoparticles, nanorods, and nanowires). The development of in-situ holders for TEM in which
gas and liquids can be introduced has enabled atomic-level visualization of the changes in
nanoscale catalysts after reactive chemical species (e.g., Hz, Oz, or CO) are introduced into the
cell.!?>-129 In-situ holders designed for introducing gases are particularly useful for studying

structural changes at elevated temperatures (e.g., 150 to 800°C) during vapor-phase reactions such

as methane oxidation,!3 CO oxidation,'*!"!3* and other reactions.'**!3% In-situ liquid-cell holders



with the ability to apply an electrical bias can be used to monitor morphological changes during

136-139 and, more

electrochemical processes such as lithiation/delithiation, metal dendrite formation,
recently, electrochemical reactions including water oxidation and oxygen reduction.!#%-14! Changes
in the surface structure of photocatalyst particles, such as titanium dioxide (TiOz), under UV
irradiation and in the presence of H>O have also been imaged.!4*-14* While transmission electron
microscopes can be coupled with instrumentation for detecting reaction products through mass
spectrometry (MS) or electron energy loss spectroscopy (EELS),!31-132 144-146 there is currently no
way to correlate a specific region of the catalyst with the number of turnovers at that site nor how
the observed structural changes affect its relative activity. So far, mapping the relative reactivity
of different regions has been limited to reactions that produce gaseous products (e.g., water
splitting to produce H, and O» gas) by imaging the formation of gas bubbles in liquid cells.!43- 146-
147 However, the gas bubbles are significantly larger (i.e., tens to hundreds of nanometers) than the
reaction sites producing the bubbles. While scanning electron microscopy (SEM) does not have
the atomic resolution of TEM, it can be used to image thicker samples that are not electron
transparent. Gas adsorption on metal surfaces leads to changes in the work function of the metal
and corresponding changes in the brightness of the surface when imaged by SEM. This contrast
mechanism has enabled observation of oscillatory dynamics for gas-phase catalytic reactions on
the surface of polycrystalline metals over much larger field of views (i.e., 500 x 500 um?) than can
be imaged by TEM. !4

Scanning electrochemical microscopy (SECM) maps the rates of heterogeneous charge
transfer across electrode surfaces.!*-1°* An ultramicroelectrode (UME) with a diameter typically

ranging from several hundred nanometers to a few micrometers is scanned across the

electrochemically active surface to measure current under an applied potential. The advantage of



this technique is that it directly measures the rate of the electrochemical reaction of interest at a
specific region (as the Faradaic current is proportional to reaction rate). Combining SECM with
an illumination source, which may be coupled with the UME for localized illumination, enables

scanning photoelectrochemical measurements at semiconductor electrodes.! 18

The spatial
resolution of SECM depends primarily on the diameter of the UME. While typical resolutions for
this technique are hundreds of nanometers to microns, recent advances in using smaller
nanoelectrodes for SECM have provided spatial resolutions of 15 to 55 nm,!7 139160 which is
comparable to that obtainable by single-molecule fluorescence imaging. A variant of SECM is
scanning electrochemical cell microscopy (SECCM) where instead of immersing the entire sample
in an electrolyte solution, a pipet probe containing both the counter and reference electrodes is
scanned across the sample surface with a drop of electrolyte between the scanning probe and the
sample. 156 161-164 Ty this case the resolution is determined by the size of the liquid droplet and can
vary from hundreds of nanometers to microns. As will be discussed in more detail for the case of
SMF imaging below, understanding structure—activity relationships in catalysts using SECM often
requires correlating the resulting current maps with other techniques such as electron microscopy
or Raman microscopy to examine the morphology and/or structure of the area imaged.!>* 138 165

167

Scanning transmission X-ray microscopy (STXM) uses a focused and coherent X-ray beam
from a synchrotron source to image the transmission of X-rays through the catalyst sample.!68-170
By tuning the X-ray energy to match the absorption edge of a specific electronic transition for an
element, this technique enables nanoscale chemical mapping of the local oxidation state of that

element in the catalyst.!”!"178 The distribution of different elements in the sample can be obtained

by imaging with multiple X-ray energies. Typical spatial resolutions for in situ STXM are 40 to

10



100 nm, although resolutions below 10 nm have been obtained for ex situ STXM.!” STXM
enables the acquisition of highly multiplexed datasets where the evolution of the oxidation states
of different elements and their distribution can be mapped as a function of electrochemical
potential, temperature, or reactive gas pressure.!’!"!”7 Thus, differences in the local chemical
composition of the catalyst can compared when it is in its active vs. inactive states. Similar to in
situ TEM, STXM cannot measure the local activity of the catalyst. For electrocatalysts, STXM
images have be correlated with SECM images to understand how the local oxidation state of
elements in the sample mediate the resulting electrocatalytic current.!”!

Imaging catalysis at the nanoscale with single-molecule fluorescence relies on chemically
activated fluorogenic probes. These probes are initially non-fluorescent but are converted into a
highly fluorescent state through a reaction catalyzed at the catalyst surface. Figure 1 provides
examples of common fluorogenic probes used for imaging reduction, oxidation, and acid-catalyzed
reactions. As this review focuses on heterogeneous catalysis, we will primarily discuss probes that
undergo irreversible chemical reactions that activate them into their fluorescent state. Fluorogenic
probes that reversibly interconvert between their non-fluorescent and fluorescent states through

180-182 or an applied electrical bias!®3-1%* are used in other SMF

changes in pH and/or temperature
imaging techniques. Once activated, individual fluorescent probes can be detected using
fluorescence microscopy allowing single-turnover counting of the reaction events that occur on
the catalyst surface.

Different illumination geometries can be used for exciting the activated probes. A common
geometry depicted in Figure 2a is objective-based total internal reflection fluorescence (TIRF)

microscopy in which laser illumination enters a microscope objective at an angle. The critical

angle, 8., for total internal reflection of incident light within the microscope coverslip is given by

11



sin (6;) = e /n ,» Where n, is the refractive index of the coverslip and n, is the refractive index

of the solution above it. For an aqueous solution in which n, = 1.33 and n, = 1.5 for the glass
coverslip, then 8, = 62.5°. When the angle is adjusted to be greater than 6., the incident laser
light is totally internally reflected within the glass coverslip on which the catalyst sample has been
deposited, and an evanescent excitation field is created. The evanescent field created by TIRF
excitation extends several hundred nanometers into the sample volume above the coverslip and
can be tuned with the wavelength and incident angle of the laser excitation.!3>-186

The chemical transformation that activates the fluorogenic probe at the surface of the catalyst
occurs much faster (i.e., sub-picosecond timescale) than the typical camera exposure times of 15
to 100 milliseconds used for SMF imaging. Thus, the activated probe molecule appears as a sudden
increase in fluorescence intensity between imaging frames and has a diffraction-limited emission
profile (Figure 2b). The activated probe can turn off through different mechanisms including
desorption from the surface, photobleaching, or undergoing further reaction to produce a non-
fluorescent product. When a fluorescent probe leaves the surface of the catalyst, it is no longer
observed as its diffusion in solution is much faster than the typical exposure times of the camera.
Thus, each reaction event appears as a fluorescence burst during imaging. Since the bulk imaging
solution is not excited by the evanescent field, TIRF excitation significantly reduces solution
background fluorescence relative to epifluorescence excitation (from either activated probe
molecules once they diffuse into the bulk solution or from probes that are weakly fluorescent in
their initial inactive state). The microscope objective collects photons emitted from activated
probes, and an electron-multiplying charge-coupled device (EM-CCD) camera with high quantum

efficiency is typically used for imaging.
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Figure 1. Fluorogenic probes used for SMF imaging of nanoscale catalysts. (a) Reductive N-
deoxygenation of resazurin produces fluorescent resorufin. (b) The reduction of the para-nitro
group of 8-(3,4-dinitrophenyl)-1,3,5,7-tetramethyl-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene
(DN-BODIPY) into a hydroxylamino group produces the fluorescent HN-BODIPY'. (¢) Oxidative
N-deacetylation of Amplex red produces resorufin. (d) Oxidative cleavage of the aminophenyl
group of 3’-(p-aminophenyl) fluorescein (APF) produces fluorescein. Both Amplex red and APF
can either be directly oxidized by the catalyst to produce the fluorescent product, or they can be
activated by reactive oxygen species generated at the catalyst surface. (e¢) The acid-catalyzed
condensation of furfuryl alcohol produces fluorescent oligomers. All probes except the one shown
in panel (b) are commercially available. The synthesis of the DN-BODIPY probe is described in

reference 187.

Detecting individual fluorescence bursts from activated probes provides the ability to perform
super-resolution imaging to observe variations in catalytic activity below the diffraction-limited

resolution of an optical fluorescence microscope. Localizing the centroid position of each
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fluorescence burst (i.e., reaction event) relies on fitting the emission profile of the probe, which
spreads over several pixels of the EM-CCD camera (see the inset in Figure 3a for an example). A
Gaussian function is typically used for fitting the emission profile of a single fluorophore.
However, for fluorescent molecules coupled to plasmonic metal nanostructures (which can serve
as photocatalysts), other fitting functions may be necessary.!3-1°! The localization precision in
SMF imaging increases with the signal-to-noise ratio of the number of photons emitted by the
fluorophore over the background photons and is typically in the range of 10 to 50 nm for SMF
imaging of nanoscale catalysts. For example, our research group typically achieves a localization
precision between 25 and 30 nm when applying this technique to semiconductor photocatalysts,
such as tungsten oxide and bismuth oxybromide.>> 8!-83 This spatial resolution is comparable to
that obtained by other SMF techniques used for biological specimens such as photoactivated
localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM).!%*
196 By counting reaction events one-by-one, super-resolution activity maps are generated which
quantify how the number of catalytic turnovers varies at the nanoscale across the surface of the
catalyst (Figure 2b). Because the imaging technique uses widefield optical microscopy, many
particles can be imaged simultaneously enabling quantification of heterogeneity in the reactivity

of different catalyst particles synthesized within the same batch.3% 197198
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Image reaction events over time

» Activity map

Figure 2. Single-molecule fluorescence imaging of fluorogenic probes on nanoscale catalysts. (a)

TQ

‘_,4_

Schematic of objective-based TIRF microscopy in which a laser is sent through a TIRF microscope
objective at an angle such that it is internally reflected by the glass coverslip. The catalyst converts
an initially non-fluorescent substrate molecule (S) into a fluorescent product (P). The evanescent
field from the TIRF illumination excites the fluorescent product, and photons emitted by the
activated probe are collected by the objective. For semiconductor photocatalysts, dual excitation
may be used in which one laser with a photon energy greater than the band gap of the
semiconductor (e.g., 405 or 450 nm) excites electrons into the conduction band of the
semiconductor, and a lower-energy laser (e.g., 488, 532, or 567 nm) excites the activated probe.
(b) Schematic for super-localization of activated probe molecules (red circles) on a faceted catalyst
particle (shown in yellow). The emission profile for each fluorescent molecule is diffraction-
limited, but the center position of the fluorophore can be localized with nanoscale precision given
a sufficient number of photons are collected over the background and as long as two molecules
within a diffraction-limited region are not emitting at the same time. By localizing the positions of
many activated probes over time, super-resolution activity maps can be produced which show how

the activity varies at the nanoscale across the catalyst surface (right image in panel b).
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In addition to nanoscale spatial resolution, SMF microscopy can quantify reaction kinetics on
individual catalyst particles through statistical analysis of the fluorescence bursts. The individual
off times, 7,77, between fluorescence bursts and on times, 7,,, for fluorescence bursts are
stochastic. However, the inverse of the average values of these parameters, (7, ¢ f)_l and (7,,,) "%,
can be related to kinetic and thermodynamic parameters such as the rate constant for product
formation, the equilibrium constant for adsorption of the probe on the surface of the catalyst, and
the rate constant for dissociation of the activated probe.’* Determining these parameters for
different catalyst particles requires an appropriate model for the reaction. The most common model
used in SMF imaging is the Langmuir—Hinshelwood mechanism for surface reactions in which the
adsorption of the fluorogenic probe is fast relative to its subsequent conversion into the activated

product‘53’ 65, 73, 82-83, 85-87, 90, 99

1 YerrKaalS]
= 1= " -
v=_Torr) T =T K 4[S]

In this equation, v is the turnover rate, y, is the effective rate constant for activation of the probe,
K, is the equilibrium constant for adsorption of the probe onto the surface of the catalyst, and [S]
is the concentration of the fluorogenic probe in solution. Fitting this equation is normally done on
a per particle basis such that y,. s combines all reaction sites on the catalyst particle. Differences
in Y5y for different catalyst particles indicate differences in either the number of active sites or
their intrinsic activity. It is common in the literature of SMF imaging of heterogeneous catalysts
to either use the inverse of the average off time, (7, ff)_l, to calculate the turnover rate, v, or to
count the number of fluorescence bursts observed over a given time period. When v is divided by
the surface area of the catalyst, it gives the specific activity. The dependence of the inverse of the

average on time, (T,,) !, on the concentration of the probe provides information on how the probe
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desorbs from the surface of the catalyst.>® When (7,,) ! is independent of [S], it indicates that the
activated probe undergoes self-dissociation from the catalyst surface. On the other hand, when
(Ton) ™! depends on [S], it indicates that self-dissociation competes with substrate-assisted
dissociation.

SMF microscopy can also be used to image changes in the activity of the catalyst in situ. While
the time resolution for imaging a single burst is milliseconds (based on the exposure time of the
camera), many reaction events need to be detected to perform statistical analysis of the on and off
times of fluorescence bursts or to compare activity maps collected over different time periods.
While the types of dynamic processes that can be observed depend on the specific catalyst, the
probe used, and the reaction conditions, we describe some representative examples. When
monitoring the activity of catalyst particles that are smaller than the localization precision of
individual fluorophores, such as metal nanoparticles with diameters less than 20 nm, the
concentration of the fluorogenic probe needs to be low enough such that one activation event
occurs at a time on each particle (i.e., one probe turns off before the next one turns on). By imaging
hundreds of fluorescence bursts for the reduction of resazurin or the oxidation of Amplex red on
individual Au, Pt, or Pd nanoparticles over periods of hundreds to thousands of seconds,
fluctuations in the frequency of reaction events are frequently observed.> 93-%6:°2 These variations
have been attributed to a combination of catalysis-induced restructuring of the surface of the metal
nanoparticles as well as spontaneous surface restructuring.

For spatial mapping of the activity of larger catalyst particles (e.g., microcrystals, nanoplates,
and nanorods), the separation between activated probes in each frame should be larger than their
diffraction-limited emission profiles. For example, we imaged changes in the photocatalytic

activity of bismuth oxybromide (BiOBr) nanoplates for the reduction of resazurin.®? We compared
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activity maps acquired for 2500 frames with a 50 ms exposure time (i.e., 2.08 minutes) over a
period of 32 minutes. Photoinduced increases in the concentrations of crystal defects in the BiOBr
nanoplates (i.e., Bi ions in a reduced oxidation state and oxygen vacancies) led to increased activity
in individual nanoplates during the first 5 minutes followed by a slow decrease in activity.
Alivisatos and coworkers mapped the activity of a single antimony-doped TiO2 nanorod for the
photocatalytic oxidation of Amplex red.?* Over a period of 13 hours, they detected ~10,000
reaction events on the surface of the nanorod. By creating a series of activity maps that each
included ~2000 events, they observed time-dependent spatial variations in activity. During the first
3 hours of observation, the majority of reaction events occurred near the middle of the TiO»
nanorod; at later times, the fluorescence bursts transitioned to occur primarily near the ends of the
nanorod.

Comparing the different microscopy techniques discussed above (STM, TEM, SECM, STXM,
and SMF), STM and TEM provide the highest resolution for imaging structural changes in
nanostructured catalysts when they are in their catalytically active state. However, the requirement
for a high vacuum chamber (even if the sample itself is in a liquid cell inside the vacuum chamber)
restricts the types of samples that can be imaged by these techniques and makes them relatively
low throughput. Furthermore, TEM and STM do not measure variations in catalytic turnovers
across different regions of the sample. STXM has lower resolution than STM or TEM, but it can
measure the spatial distribution of elements and their oxidations states at the nanoscale when the
catalyst is in its active state. Furthermore, due to the higher penetration depth of X-rays relative to
electrons, thicker samples (i.e., thicknesses > 1 pm) can be imaged using STXM compared with
TEM. Both in situ TEM and STXM require specialized reactor cells that are electron or X-ray

transparent, respectively. Furthermore, STXM requires a synchrotron facility to generate the X-
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rays. While SECM and SMF do not provide atomic resolution of the catalyst structure, they can
quantify reaction kinetics at the nano/microscale across the surface of the catalyst. They can be
performed under conditions relevant to electrochemical and photochemical energy conversion
(e.g., with the sample in aqueous solution open to air). SECM and single-molecule fluorescence
are also well suited for observing changes in the response of a catalyst under different chemical
conditions (e.g., pH or concentration of the reactant) and physical stimuli (e.g., light intensity or
applied potential). In comparing SECM to SMF, the main advantage of SECM is that it directly
provides rates for electrocatalytic reactions of interest (e.g., the hydrogen evolution reaction or
oxygen evolution reaction), whereas SMF relies on chemically activated fluorogenic probes as
proxies for catalytic activity. A significant difference between the two techniques is that SECM
measures the products of the electrochemical reaction at a distance that is determined by the
separation between the UME and the sample surface. Thus, the measured current convolves the
generation of chemical products with their diffusion, which can make analysis more difficult (i.e.,
a model is needed to relate time-dependent concentration profiles to the measured current). In
single-molecule fluorescence using TIRF microscopy, activated fluorogenic probes are detected at
the catalyst surface and are no longer observed once they diffuse away. The main advantage of
SMF microscopy over SECM is the higher spatial resolution. While sub-100 nm resolution can be
achieved by SECM, the resolution is typically much lower (i.e., several hundred nanometers to
several microns). SMF imaging can routinely achieve a resolution of 10 to 50 nm. This higher
spatial resolution is critical to achieve the super-resolution activity maps described in the next

section.
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Challenges and potential solutions in applying single-molecule fluorescence to heterogeneous
catalysis

Pioneering studies in SMF imaging of heterogeneous catalysis focused on model systems

60-63 53, 64-66

including zeolite microcrystals, gold and platinum nanoparticles, and the photocatalytic
generation of reactive oxygen species by TiO, microcrystals.®”-% Over the last 18 years, this
technique has expanded to more complex catalytic systems and has enabled visualization of
nanoconfinement in porous catalysts,’*7?> photoexcited charge flow in semiconductor—

73-79

semiconductor and semiconductor—metal heterostructures, and non-uniform activity in metal

and semiconductor catalysts due to nanoscale spatial variations in their defect concentration.>*>>
80-84 Many of these papers use the fluorogenic probes shown in Figure 1. Resazurin (Figure 1a)>*
33, 64-66,76,79-80, 82, 85, 88-90, 92-94, 97, 99-100 g 8-(3,4-dinitrophenyl)-1,3,5,7-tetramethyl-4,4-difluoro-4-
bora-3a,4a-diaza-s-indacene (DN-BODIPY) (Figure 1b)’37% 87 can be used to image reduction
reactions while Amplex red (Figure 1¢) 66, 70-72, 75-79, 86, 88-89, 93,96-97, 100 gpd 3°-(p-aminophenyl)
fluorescein (APF) (Figure 1d)>> %% 81, 83-84. 186 can be used to image oxidation reactions. Furfuryl
alcohol condenses in the presence of acid to form fluorescent oligomers (Figure 1e), which can
be catalyzed by solid acid catalysts such as zeolites or tungsten oxide.!-62 81,83

It is important to consider the compatibility of these probes with the reaction conditions
employed for heterogeneous catalysis. For example, the photocatalytic reduction of resazurin to
resorufin has been shown to be inhibited by oxygen.”® ° Furthermore, the fluorescence intensity
of resorufin has a strong pH dependence. The pKa of resorufin in near 6, and the fluorescence

intensity rapidly rises of above this pH.2% Resazurin is typically used in aqueous solutions but can

also be activated to resorufin in organic solvents including ethanol, acetone, and dimethylsulfoxide
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(DMSO0).2°! While the initial reduction of resazurin to resorufin is irreversible, resorufin can be
reversibly reduced to dihydroresorufin, which is colorless and non-fluorescent. Thus, additional
control experiments are needed when using resazurin as a probe for reduction reactions to
determine whether the turn-off events for individual fluorescent bursts are due to the desorption of
resorufin from the surface of the catalyst or its further reduction to dihydroresorufin.?? #°

Similar to resazurin, the initial reduction of the para-nitro group of DN-DODIPY to a
hydroxylamino group produces highly fluorescent HN-BODIPY (Figure 1b). Further reduction
of the hydroxylamino group to an amine makes the probe weakly fluorescent.'®” While SMF
imaging of TiO> photocatalysts with DN-BODIPY was done in methanol as this probe is not
soluble in water, Majima and coworkers also synthesized a sulfonated version of the probe that is
water soluble.” In general, BODIPY dyes can be designed to be soluble in solvents spanning a
wide range of polarities from water to non-polar organic solvents. As described further below,
Chang and coworkers developed a BODIPY -based probe for detecting carbon monoxide that they
tested in both methylene dichloride and buffered aqueous solutions (pH 7.4).2> Blum and
coworkers have developed BODIPY-based fluorescent tags for single-molecule imaging of
polymerization reactions that are soluble in organic solvents commonly used for polymerization
(e.g., toluene and heptane),3? 104, 203-205

Amplex red, which can be oxidized to fluorescent resorufin (Figure 1c), exhibits only partial
solubility in water. When used in biological assays to detect hydrogen peroxide (H205), it is first
dissolved in DMSO and then diluted with water.?%%-29¢ While Amplex red is more commonly used
for the detection of H20z, the presence of DMSO would inhibit its activation by catalysts that
generate hydroxyl radicals (*OH) as DMSO is a scavenger for *OH. Amplex red slowly degrades

in the presence of oxygen, and it is unstable at pH values above ~8.5.29% 297 Combining the pH
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dependence of the fluorescence intensity of resorufin and the stability of Amplex red, the usable
pH range for this probe is approximately between 7 and 8.5. Finally, following the oxidation of
Amplex red to resorufin, it can be further oxidized to non-fluorescent resazurin, which again
necessitates control experiments to determine the mechanism of turn-off events during SMF
imaging.

We have found APF to be more stable than Amplex red against oxidative degradation during
long-term storage of the probes. We typically store Amplex red as a dry powder at —20°C and APF
as a solution in dimethylformamide (DMF) at 0°C. APF also exhibits higher selectivity for
activation by more reactive oxygen species. It can be activated into its fluorescent state (i.e.,
fluorescein) by *OH and hypochlorite (OCI"), but unlike Amplex red, it is not activated by H.O»
or superoxide anion radicals (#0>").2® Similar to Amplex red, APF is typically first dissolved in
DMF (rather than DMSO) and then diluted with water. For SMF imaging of semiconductor
photocatalysts including TiO., tungsten oxide, and indium selenide, APF has been used in aqueous
phosphate buffer solutions at pH 7.4, 81, 83-84, 186

Whereas nanomolar to micromolar concentrations are typically used for the other fluorogenic
probes described above, SMF imaging with furfuryl alcohol has been performed in a 10% solution
(by volume) of furfuryl alcohol in either water or dioxane.5!-62-81-83 At the ensemble level, the rate
of the condensation reaction exhibits a strong solvent dependence; solvents that inhibit the
formation of a carbocation intermediate lead to lower reaction rates.?”” The condensation of
furfuryl alcohol also produces a variety of different fluorescent oligomers.?!%-2!! Using water as
the solvent, we found that these products become insoluble as the chain lengths of the oligomers
increase. The oligomers eventually stick to the surface of the catalyst, which limits SMF imaging

with furfuryl alcohol to a few minutes.
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When using the probes described above (Figure 1), many reports have observed variations in
activity across the surface of individual particles.>#->360-63,73-76, 78-84, 87, 89,93,96-97, 100 However, SMF
imaging does not directly report on the structural or chemical features that lead to these variations
in activity. As described further below, corner atoms in faceted metal nanocrystals, oxygen
vacancies in metal oxide semiconductors, and individually dispersed metal atoms in single-atom
catalysts can all serve as preferential reaction sites for catalysis. The nanoscale resolution (e.g., 10
to 50 nm) provided by this technique is larger than the atomic scale of these individual reaction
sites. Thus, correlating activity maps obtained from SMF imaging with the nature of active sites
remains a critical challenge. Based on these limitations, two fundamental questions that we are
frequently asked are 1) What can imaging fluorogenic probes tell you about the chemical nature
of active sites in the catalyst? and 2) How well do the probes predict activity trends for industrially
relevant catalytic reactions (e.g., for the production of fuels or commodity chemicals)? In the rest
of this section, we try to answer these questions and propose solutions to overcome the limitations
described above.

Performing correlative SMF imaging with other microscopies (e.g., optical or electron
microscopy) on the same catalyst particles has been used to connect morphological features with
observed variations in activity. Majima and coworkers correlated SMF images of TiO»
microcrystals for the photocatalytic reduction of DN-BODIPY to HN-BODIPY with optical
transmission images of the same microcrystals (Figure 3a, b). They demonstrated that the
reduction of DN-BODIPY occurs preferentially at {101} facets of the TiO» microcrystals
compared with the {001} facets.?”> '¥7 They proposed that photoexcited electrons, whether
generated at the {001} or {101} facets are preferentially extracted from {101} facets due to a lower

conduction band energy (i.e., further from the vacuum level) for the {101} facets.

23



Figure 3. Correlating SMF activity maps with optical and electron microscopy images. (a) Frame
from SMF imaging showing a fluorescence burst (indicated by the white arrow) due to the
photocatalytic reduction of DN-BODIPY on the surface of a TiO, microcrystal. The color scale
represents the fluorescence intensity counts. The inset shows an expanded view of the fluorescence
burst, whose emission profile spreads over several pixels of the EM-CCD camera. (b) Optical
transmission microscopy image of the same TiO> microcrystal. The red dots indicate activated
HN-BODIPY probes localized on the {101} facets around the perimeter of the microcrystal while
the blue dots indicate activated probe molecules localized on the basal {001} facet. The scale bars
below each image are 4 um. Panels (a) and (b) adapted with permission from 87. Copyright 2011
American Chemical Society. (c) Activity map for the reduction of resazurin to resorufin on a
triangular Au nanoplate overlaid on an SEM image of the same nanoplate. 2325 fluorescence
bursts were localized to generate the activity map. The fluorescence bursts are color-coded to

indicate different regions of the nanoplate with bursts from the flat {111} facet in red, bursts near
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the edges of the nanoplate in blue, and bursts near the corners in green. The dashed black line
outlines the perimeter of the Au nanoplate, and the solid black line outlines the mesoporous silica
shell coating the Au nanoplate. (d) Same as (c) but for a different hexagonal Au nanoplate with
1579 fluorescence bursts detected. The scale bars below each image are 200 nm. Panels (c) and

(d) adapted with permission from 80. Copyright 2013 American Chemical Society.

Chen and coworkers correlated SMF activity maps of Au nanoplates coated with a mesoporous
silica shell with scanning electron microscopy (SEM) images of the same particles (Figure 3c,
d).3° The Au nanoplates exhibited the highest specific activity (as determined by counting the
number of activated probes per unit time and per lateral area) for catalyzing the reduction of
resazurin to resorufin (using hydroxylamine as the reductant) at nanoscale regions near the corners
of the nanoplates. The activity was lower near the edges and lowest within the {111} facets that
make up the basal surfaces of the nanoplates. These morphological differences in activity can be
rationalized by the different coordination numbers of Au atoms at corners, edges, and the basal
facets. Au atoms within the interior of a face-centered cubic crystal have a coordination number
of 12. At a perfectly flat {111} facet, the coordination number will be 9. The coordination number
of Au atoms is lower at edges of the crystal where two facets meet and even lower at corners where
three or more facets meet. A lower coordination number for atoms at the surface of a metal catalyst
can strengthen interactions with adsorbed substrate molecules, which explains the observed
activity trend. Interestingly, even within the {111} basal facet, a radial gradient in activity was
observed; the activity was higher near the center of the nanoplate and lower near the periphery.

The authors proposed that within a {111} facet, there is a radial gradient in the density of surface
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defects that is highest at the center of the Au nanoplate where nucleation and growth of the
colloidal particle initiate.

As the example above shows, surface defects within a single facet can act as preferential
reaction sites. However, SEM is not capable of resolving such surface defects in nanoscale catalyst
particles. Thus, methods are needed to correlate the locations of these defects with SMF activity
maps. Ideally, high-angle annular dark-field scanning transmission electron microscopy (HAADF-
STEM) could be used to image individual point defects in the crystals and correlate the locations
of those defects with SMF activity maps. So far, correlative studies between SMF images and
TEM images have been limited.?!2 One persisting challenge is finding a substrate that is compatible
with both imaging techniques (i.e., electron transparent and that will not lead to fluorescence
quenching of the fluorogenic probes).

While a single fluorogenic probe does not provide direct chemical information on the nature
of active regions, performing SMF imaging using two complimentary probes that are activated by
different mechanisms can narrow down the potential surface sites responsible for the observed
activity maps. Several reports have compared how the same catalyst can exhibit different activities
for the reduction of resazurin and oxidation of Amplex red.®® %% In semiconductors like TiO
and bismuth vanadate (BiVOs), these probes are activated at different regions of the particle (e.g.,
different crystal facets) indicating different surface sites are responsible for the extraction of
photogenerated electrons and holes.’”® 7% 97> 109 Tailoring the structure of the fluorogenic probe can
also provide information on how it interacts with the surface of the catalyst. For example, Hofkens
and coworkers compared different fluorescein derivatives that were activated by transesterification
on the surface of a lithium aluminum layered double hydroxide microcrystal.®® Adding a

negatively charged carboxylate group to the fluorescein derivative increased the rate of its
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activation due to stronger adsorption of the probe on the surface of the positively charged
microcrystal.

We have used the spatial correlation between different fluorogenic probes to understand how
the non-uniform distribution of oxygen vacancies, a common defect in metal oxide
semiconductors, controls spatial variations in their photocatalytic activity.>> 3!-83 In collaboration
with Lew and coworkers, we developed a coordinate-based colocalization algorithm to quantify
the spatial correlation between two datasets of single-molecule localizations.®! For example,
tungsten oxide with the WigOs9 monoclinic phase is a semiconductor that is active for the
photocatalytic oxidation of water to oxygen. Under illumination, photoexcited holes first oxidize
water to generate hydroxyl radicals as an intermediate towards further oxidation to O>. We used
APF to image the photocatalytic generation of *OH radicals on the surface of W1gO49 nanowires
(in which potassium iodate was used as a scavenger for photoexcited electrons to maintain charge
balance). We observed that the nanowires exhibited significant variations in activity along their
lengths with hot spots of high specific activity interspersed with inactive regions (Figure 4a). As
metal ions exposed by surface oxygen vacancies can act as preferential reaction sites for water
oxidation to generate *OH,*’-** we hypothesized that the variations in activity were related to
variations in the concentration of oxygen vacancies along the nanowires. We then imaged the same
Wi8049 nanowires using furfuryl alcohol (FA) to map the distribution of acidic sites along their
lengths (Figure 4b). While both surface hydroxyl groups (i.e., Bronsted acid sites) and oxygen
vacancies (i.e., Lewis acid sites) can catalyze the condensation of FA to produce fluorescent
oligomers, we performed SMF imaging at a pH of 7.4 such that the surface hydroxyl groups would
be deprotonated for this metal oxide (which has a point of zero charge near a pH of 0.43). Thus,

oxygen vacancies are the primary surface site on W13O49 nanowires responsible for the activation
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of FA. Using the coordinate-based colocalization (CBC) algorithm, each fluorescence burst is

assigned a score based on its spatial proximity to bursts from the other probe reaction. In the

colocalization maps in Figure 4¢, d, red regions indicate segments of the nanowire where the

activation of both APF and FA take place. Only APF activation occurs in blue-green regions in

the colocalization map in Figure 4¢, while only FA activation occurs in blue-green regions in the

colocalization map in Figure 4d. As oxygen vacancies are the only surface site that can activate

both fluorogenic probes, the high spatial correlation between the two reactions (Figure 4e) in

which most segments along the nanowires either are active for both reactions or are completely

inactive revealed that the distribution of oxygen vacancies is non-uniform along the nanowires.

Colocalization analysis indicates that nanoscale regions containing high concentrations of oxygen

vacancies serve as the active sites for photocatalysis in this metal oxide.
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Figure 4. Spatial colocalization of different fluorogenic probes during SMF imaging. (a, b) Super-
resolution activity maps of the same W13O49 nanowire for (a) the photocatalytic oxidation of APF
and (b) the acid-catalyzed condensation of furfuryl alcohol (FA). The color scale provides the
number of fluorescence bursts per 120 nm x 120 nm bin. The insets show the diffraction-limited
image prior to localization of individual fluorescent bursts. (c, d) Coordinate-based colocalization
(CBC) maps for fluorescence bursts using (¢c) APF and (d) FA. The color scale provides the median
colocalization score of the bin, which ranges from —1 for anticorrelated to +1 for perfectly
correlated. Scale bars are 2 um. (e) Distributions of CBC scores for individual fluorescence bursts
on the nanowire from the activation of APF (green) and FA (orange). Panels (a) through (e)
adapted with permission from 81. Copyright 2020 American Chemical Society. (f, g) Distributions
of the number of photons detected per localization during (f) the photocatalytic oxidation of APF
and (g) the photocatalytic reduction of resazurin during SMF imaging of BiOBr nanoplates. The
blue histograms in panels (f) and (g) are localizations that had CBC scores greater than 0.9, which
indicate that the oxidation and reduction reactions were colocalized in that region of the nanoplate.
The red histograms in panels (f) and (g) are localizations that had CBC scores between —0.5 and
0.5, which indicate spatially uncorrelated activity for the two probe reactions. Panels (f) and (g)

adapted with permission from 55. Copyright 2021 American Chemical Society.

Introducing species that block active sites on the surface of the catalyst or compete with the
fluorogenic probe for catalytic turnovers can also provide knowledge on the chemical nature of
active regions. For example, we coated the surface of the W13O49 nanowires described above with
polyvinylpyrrolidone, PVP, a polymer commonly used in the synthesis and processing of metal

and metal oxide nanocrystals. PVP both reduced the activity of the nanowires for the activation of
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APF and reduced the spatial colocalization of regions that activated both APF and FA.3! The
changes in activity maps indicated that the polymer blocked catalytic sites where the generation of
*OH radicals occurred. Calculations using density functional theory suggested that PVP
coordinates to surface tungsten ions exposed by oxygen vacancies, which would prevent these sites
from binding hydroxide ions to produce *OH radicals via transfer of photogenerated holes from
the semiconductor. Thus, understanding how PVP interacted with the surface of WisO49 provided
further support that surface oxygen vacancies were the active sites in the initial, uncoated
nanowires.

Chen and coworkers demonstrated how surface processes involving non-fluorescent species
could be evaluated during SMF imaging through their competition with the activation of a

fluorogenic probe.”® 8

They imaged the photoelectrochemical oxidation of Amplex red to
resorufin on the surface of faceted BiVO4 microcrystals.”® By titrating increasing amounts of a
reducing agent, hydroquinone (which is oxidized to 1,4-benzoquinone), they quantified how the
adsorption of hydroquinone on different facets of the BiVO4 microcrystals affected the number of
turnovers imaged for the oxidation Amplex red. A more significant drop in reaction events on the
basal {010} facets indicated that hydroquinone adsorbed more strongly to these facets relative to
the {110} facets around the perimeter of the microcrystals.

Differences in the intensities of fluorescence bursts can also provide information on the
chemical nature of active sites. When performing SMF imaging of semiconductor photocatalysts,
our group has employed fluorogenic probes that emit at a lower energy (i.e., longer wavelength)
than the band gap energy of the semiconductor. For example, fluorescein generated by the

oxidation of APF has an emission maximum near 517 nm, while resorufin generated by the

reduction of resazurin or oxidation of Amplex red has an emission maximum near 583 nm.
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Samples of tungsten oxide and bismuth oxybromide with low concentrations of crystal defects
have band gaps between 2.8 and 2.9 eV and therefore do not absorb photons emitted by fluorescein
or resorufin. However, in both tungsten oxide and bismuth oxybromide, the metal ions (i.e., W and
Bi) can adopt different oxidation states. In such metal oxides and metal oxyhalides, the insertion
of additional cations (e.g., H", Li" or Na") into the crystal lattice or the removal of oxygen anions
(i.e., the creation of oxygen vacancies) leads to reduction of metal ions in the crystal for charge
compensation (e.g., the reduction of W to W>" or W*'. Note that both WisO49 and WO3 are
discussed in this article, which are different crystalline phases of tungsten oxide). These structural
changes lead to sub-band gap absorption by the semiconductor at longer wavelengths. For
example, Sambur and coworkers monitored the change in optical density of individual WO3
nanorods during the electrochemical insertion of Li* ions and correlated the changes in
transmission with the dynamics of ion insertion into different binding sites of the WOs lattice.!
Following this work, we correlated the photon counts of fluorescence bursts during SMF
imaging of BiOBr nanoplates with the relative density of defects, including oxygen vacancies and
Bi ions in a reduced oxidation state, in different nanoscale regions.>® In the geometry for SMF
imaging shown in Figure 2a, photons emitted from the activated probe must pass through the
catalyst in order to be collected by the objective (this may not be the case in other geometries used
for SMF imaging such as prism-based TIRF). We observed two populations among the BiOBr
nanoplates using the coordinate-based colocalization algorithm described above for WigOu9
nanowires.> The majority of BiOBr nanoplates exhibited a broad distribution of colocalization
scores peaked near 0 for the photocatalytic oxidation of APF and reduction of resazurin indicating
the extraction of photogenerated holes and electrons were spatially uncorrelated. However, a sub-

population of particles contained a significantly greater number of spatially correlated events
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between the two probe reactions with colocalization scores greater than 0.9. The fluorescence
bursts in colocalized regions of activity also exhibited higher photon counts relative to regions in
which only oxidation or reduction occurred. The blue histograms in Figure 4f, g show photon
counts from fluorescence bursts with colocalized activity (colocalization scores > 0.9), while the
red histograms show photon counts from bursts with uncorrelated activity (colocalization scores
between —0.5 and 0.5). These observations indicate that nanoscale regions with preferential activity
for either oxidation or reduction (i.e., low colocalization scores) contain a higher concentration of
mid-gap defect states that selectively trap photogenerated holes or electrons, respectively.
Nanoscale regions of the BiOBr nanoplates containing a higher defect density will lead to greater
absorption of photons emitted by the activated probe consistent with the lower photon counts for
fluorescence bursts in these regions. Furthermore, regions with colocalized activity for both
oxidation and reduction also displayed higher activity for the photocatalytic oxidation of APF
suggesting that the defects that lead to preferential activity for oxidation lower activity by
mediating faster relaxation of photogenerated holes. The concentration and distribution of these
defects vary both from particle to particle and across the surface of individual BiOBr nanoplates.
While the intensity burst is the primary indicator of a reaction event when using fluorogenic
probes, the polarization and lifetime of emission from the activated probe can also be affected by
its local environment.”! 203-204, 214218 For example, Fang and coworkers performed SMF imaging
of the oxidation of Amplex red to resorufin using a nanoporous catalyst.”! The catalyst consisted
of a solid silica (SiO2) core decorated with platinum nanoparticles and then coated with a
mesoporous SiO; shell containing tunnel-like pores (with diameters between 2.2 and 3.3 nm) that
radiate out from the center of the core (Figure 5a). To show that the motion of reactant and product

molecules was restricted within the pores, they used linearly polarized light to excite the resorufin

32



molecules generated within the pores of the catalyst. The elliptical distribution of localized
fluorescence bursts under linearly polarized light (from multiple resorufin molecules) indicated
that resorufin molecules were aligned within the tunnels of the mesoporous shell; this anisotropy
is due to selective excitation of fluorophores that have their absorption dipole aligned with the
polarization direction of the incident light (Figure 5b-f). Blum and coworkers designed a
fluorescent BODIPY tag that is incorporated into polymer chains during the ring-opening
metathesis polymerization (ROMP) of norbornene or dicyclopentadiene (Figure 5g).2* They
observed that the fluorescence lifetime of this tag increased as the polymer particles grew (Figure
5h), which indicated changes in the microenvironment of the fluorophore (possibly due to an
increase in the local viscosity as the polymer chain length increased or, in the case of
polydicyclopentadiene, as the number of crosslinks in the polymer network increased).?** While
these examples were not done at the single-molecule level, advances in the ability to measure the

three-dimensional orientation and fluorescence lifetime of single emitters?!°-22

could provide new
insights into how the confinement of solvent and substrate molecules in mesoporous catalysts (e.g.,

zeolites, metal organic frameworks, and layered transition metal chalcogenides) affects critical

processes during heterogeneous catalysis including mass transport, solvation, and adsorption.??!-

222
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Figure 5. Measuring the polarization and lifetime of fluorophores in different microenvironments.
(a) TEM image of a catalyst particle consisting of a solid SiO» core decorated with Pt nanoparticles
and then coated with a mesoporous SiO: shell. (b) Schematic showing the preferred orientation of
Amplex red (blue platelets) and resorufin (red platelet) within the tunnel-like pores of the
mesoporous SiOa shell. The white arrow indicates the dipole moment of a resorufin molecule. (c,
d) Schematics showing the excitation of resorufin molecules (red squares) generated from the
oxidation of Amplex red (black triangles) by Pt nanoparticles (gold spheres) on a SiO; core (dark
gray sphere) within the pores (light gray cylinders) of the mesoporous SiO; shell. (¢) Linearly
polarized light will selectively excite resorufin molecules whose dipole moments align with the
polarization direction (green arrows) of the incident laser excitation during SMF imaging. (d)

Circularly polarized light (green spiral) will not lead to selective excitation. (e¢) Under linearly
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polarized light, an elliptical distribution of localizations was observed for resorufin molecules
indicating they are aligned within the tunnels of the mesoporous SiO; shell. (f) Under circularly
polarized light, a circular distribution of localizations was observed. Panels (a) through (f) adapted
from 71 under a Creative Commons license.??? (g) Schematic for the incorporation of a fluorescent
BODIPY tag into either polynorbornene (R = H) or polydicyclopentadiene (R = polymer branches,
crosslinks, or the other half of the dicyclopentadiene monomer) through ring-opening metathesis
polymerization using a third-generation ruthenium Grubbs catalyst. Approximately 1 in 10’
monomer units incorporate the fluorescent label. (h) Fluorescence lifetime images during growth
of polydicyclopentadiene particles before the Ru catalyst was added (left panel) and at different
times after addition of the catalyst. The time after catalyst addition is given above each image. The
molecular weight of the polymer determined by fluorescence lifetime imaging microscopy (Mw
ruiv), and the intensity averaged fluorescence lifetime (t) are given below each image. The
fluorescence lifetime increases as the polymer particles grow. Panels (g) and (h) adapted with

permission from 203. Copyright 2022 American Chemical Society.

The next fundamental question underlying the robustness of SMF microscopy is whether a
catalyst with high activity for activating a fluorogenic probe will also exhibit high activity for
other, more industrially relevant catalytic reactions. Performing ensemble catalytic measurements
on the same samples used for single-molecule imaging is critical in determining the extent to which
SMF imaging provides useful structure—activity trends. This type of correlation is not routine but
is becoming more common in the SMF literature. In an early example, Chen and coworkers
showed that the single-molecule activity of Au nanoparticles for activating fluorogenic probes was

linearly correlated with their ensemble catalytic activity for similar reactions.®® They studied two
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model reactions commonly used to evaluate the activity of metal nanoparticles at the ensemble
level as they can be monitored by both absorption and Raman spectroscopy — the reduction of 4-
nitrophenol and the oxidation of hydroquinone. They observed that larger spherical Au
nanoparticles exhibited higher per-particle activities for both the reduction of resazurin at the
single-molecule level (determined by counting the number of fluorescence bursts imaged per
particle per second) and for the reduction of 4-nitrophenol to 4-aminophenol at the ensemble level.
A similar correlation was observed for the oxidation of Amplex red at the single-molecule level
and the oxidation of hydroquinone to 1,4-benzoquinone at the ensemble level.

Zhang and coworkers measured the photocatalytic activity of cadmium sulfide nanorods
supported on graphitic carbon nitride (g-C3N4) nanosheets.” CdS/g-C3N4 heterostructures
annealed at 300°C exhibited higher activity for the photocatalytic reduction of protons to generate
hydrogen at the ensemble level compared to samples prepared at room temperature. Through SMF
imaging, they observed that resazurin was activated preferentially at the CdS nanorods for the
sample annealed at 300°C. On the other hand, this probe was activated at the edges of the g-C3Ny4
nanosheets for the sample prepared at room temperature. Thus, directing the flow of
photogenerated electrons into the CdS nanorods made the CdS/g-C;N4 heterostructures more

active for hydrogen evolution.
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Figure 6. SMF microscopy using AFP to image photocatalytic *OH generation on individual
WisO49 nanowires before and after surface functionalization. (a, c¢) Diffraction-limited
fluorescence images prior to the localization of fluorescence bursts for (a) an as-synthesized
nanowire and (c) a nanowire functionalized with ascorbic acid (AA). (b, d) Super-resolution
activity maps of the same (b) as-synthesized nanowire and (d) ascorbic acid-functionalized
nanowire. The functionalized nanowire shows more uniform activity for this reaction along its

length. Color scale: number of fluorescence bursts detected per 120 nm x 120 nm bin. Scale bars:

1 um. Adapted with permission from 83. Copyright 2022 American Chemical Society.

We propose that when a fluorogenic probe is activated by a chemical intermediate that is also

produced during the reaction of interest, then the single-molecule activity should correlate well
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with the ensemble activity. For example, both Amplex red and APF can be activated into their
fluorescence states by hydroxyl radicals, *OH. Hydroxyl radicals are a key intermediate during the
oxidation of water to oxygen, which is the oxidative half of water splitting to generate hydrogen
fuel 81224 As described above, when we used APF to image the photocatalytic generation of *OH
by WigO49 nanowires, we observed variations in activity along the lengths of the nanowires
(Figures 4a and 6a, b).3! The nanowires were synthesized via a hydrothermal method that did not
use ligands that bind to their surface. We then used ascorbic acid as a ligand to functionalize the
W 13049 nanowires and incorporate more oxygen vacancies through a photochemical process.®?
Under photoexcitation, the functionalized W13O49 nanowires extract electrons from surface-bound
ascorbic acid molecules, which reduces tungsten ions and introduces additional oxygen vacancies
for charge balance. Using SMF imaging, this photochemical process produced individual
nanowires with higher and more uniform activity along their lengths compared to the initial
nanowires (Figure 6¢, d). Simultaneously, the ensemble production rate of oxygen during
photocatalytic water oxidation nearly doubled after treating the nanowires with ascorbic acid. The
combination of SMF imaging, surface characterization by X-ray photoelectron spectroscopy to
identify changes in the average concentration of oxygen vacancies, and ensemble measurements
of activity for photocatalytic water oxidation enabled us to conclude that the distribution of oxygen
vacancies increased and became more uniform along the lengths of the nanowires after the
photochemical treatment, which led to higher activity at both the single-molecule and ensemble
levels.

In the above case of tungsten oxide, several pieces of evidence indicated that *OH radicals
generated on the surface of the nanowires were the intermediate that activated APF.8! DMSO,

which is a scavenger for *OH radicals, quenched the activation of APF when it was added to the
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solution used for SMF imaging. At the ensemble level, the Wi3O49 nanowires could convert
coumarin into 7-hydroxycoumarin, a reaction known to be mediated by *OH radicals.?*> Similarly,
Sambur and Chen developed a kinetic model for the photoelectrochemical oxidation of Amplex
red by individual TiO> nanorods that demonstrated the process was also mediated by *OH
radicals.?** While Amplex red was originally designed to detect H2O> and APF to detect *OH
radicals in biological samples,?* it is important to note that both of these probes can also be directly
oxidized by photogenerated holes in a photocatalyst. For example, our results indicate that BiOBr
directly oxidizes APF using photogenerated holes rather than by generating *OH radicals.> For
this photocatalyst, the reaction is not quenched by DMSO, and BiOBr is not active for the oxidation
of coumarin to 7-hydroxycoumarin. Furthermore, there is the possibility that the fluorogenic probe
can photosensitize the semiconductor photocatalyst. For example, TiO> nanocrystals can degrade
Rhodamine B and other dye molecules using light that is absorbed by the dye molecule but not by
TiO: (as the photon energy of the incident light is below the band gap of Ti0»).2?® In this case, the
degradation of the dye occurs by photosensitization in which an electron transfers from the
photoexcited dye molecule to the conduction band of TiO (similar to a dye-sensitized solar cell)
rather than by photocatalysis. As most commercially available fluorogenic probes also absorb
visible light,?7 they could be photoexcited by the laser excitation used in SMF imaging and
converted into their fluorescent form by transferring an electron to the semiconductor
photocatalyst. Thus, to develop useful structure—activity trends through SMF imaging, it is critical
to understand the chemical mechanism by which the fluorogenic probe is activated by the catalyst.

The above examples describe the challenges of using fluorogenic probes as proxies for
catalytic activity and emerging techniques to extract additional information from these probes. The

majority of fluorogenic probes we have described so far are commercially available (apart from
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the BODIPY derivatives shown in Figure 1b and Figure 5g, h). In the next section, we provide
examples of new fluorogenic probes that could be applied to heterogeneous catalysis to image

intermediates such as carbon monoxide, nitrite, and ammonia.

Opportunities for using new fluorogenic probes to image photo- and electrocatalysis

We believe that the application of new fluorogenic probes in SMF imaging of nanoscale
catalysts has significant potential to open new avenues for understanding the selectivity of these
catalysts for generating specific chemical intermediates and/or selective bond activation. A variety
of fluorogenic probes have been developed in the context of imaging small molecules, such as
nitric oxide, carbon monoxide, hydrogen sulfide, nitrite, and reactive oxygen species that act as
chemical signaling agents and/or toxins in the human body.??”?* Fluorogenic probes have also
been developed for detecting contaminants in drinking water and food.?*° These probes could be
applied to SMF microscopy of electro- and photocatalysts for fuel production and environmental
remediation to image reaction events in situ and develop structure—activity relationships for these
catalysts. Here we give representative examples of chemically activated fluorogenic probes for
detecting CO, NO-~, and NH3. There are review articles that discuss a wider range of molecular

probes for detecting these species and other small molecules.?07- 227-230
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Figure 7. Potential fluorogenic probes for detecting reaction intermediates and products during
SMF imaging of nanoscale catalysts. (a) COP-1 reacts with carbon monoxide to generate a
fluorescent BODIPY derivative.?? (b) RCO reacts with CO and protons to produce Rhodamine
B.2*! (¢) AC-NO; reacts with nitrite to form a fluorescent anthracene derivative.?*? (d) BZCO reacts
with ammonia and other amines to form a fluorescent 7-hydroxycoumarin derivative.?*? (e)

Pentafluoro-BODIPY reacts with NH3 vapor to form a fluorescent BODIPY derivative.?**

Electrocatalysts and photocatalysts that can reduce carbon dioxide into formic acid, methanol,
ethanol, propanol, ethylene, and other products containing C—C bonds could provide a way to
remove this greenhouse gas from the atmosphere and convert it into useful chemical feedstocks.!"-
4 Carbon monoxide can be either an intermediate or the product in electro/photocatalytic CO»

reduction. In the case where CO is the end product, other catalysts can be used to further reduce it

to the feedstocks above.?*> The probes shown in Figure7a, b were developed for detecting CO in
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live cells due to its toxicity to animals and the role it plays (in small quantities) in the body as a
neurotransmitter. For the probe COP-1 shown in Figure 7a, the bound palladium initially quenches
the fluorescence of the BODIPY derivative.?’? Binding CO releases Pd(0), which activates the
probe into its fluorescent state. The fluorescence quantum yield of COP-1 increases from 1% to
449% after activation. COP-1 can detect micromolar concentrations of CO and is highly selective
for being activated by CO relative to other potential analytes present in living cells (e.g., H2Oa,
NaOCl, «O;7, NO, and H»S). Similarly, the RCO fluorogenic probe shown in Figure 7b was
synthesized using Rhodamine B as the starting material.*! It is activated in the presence of CO
and protons to reform Rhodamine B. RCO can detect CO in nanomolar concentrations, exhibits
high selectivity for CO, and unlike many probes developed for CO detection, does not require Pd
for activation.

In both the cases of COP-1 and RCO, the ruthenium complex [Ru(CO);Cl(glycinate)] was used
as the CO source to titrate the increase in fluorescence intensity of the probe with known
concentrations of CO. Testing the activation of these probes by electro/photocatalysts that generate
CO would first be necessary, using fluorescence spectroscopy at the ensemble level, before
determining if their activated forms can be detected at the single-molecule level. The pH
dependence of these CO probes would also need to be tested. Both COP-1 and RCO were tested
in aqueous phosphate buffer with pH 7.4 (i.e., the buffer solution typically used for fluorescence
imaging of live cells). The quantum yield of the RCO probe did not change significantly over a
pH range of 6.0 to 8.5. However, solutions saturated with CO> are often used for testing electro-
and photocatalysts for CO reduction, which will have a pH near 3.9. Furthermore, these probes
were used in micromolar concentrations to detect CO, whereas nanomolar concentrations of

fluorogenic probes are often used for SMF imaging. Finally, while the selectivity of COP-1, RCO,
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and similar probes for CO are often tested in the presence of species that could interfere with their
activation in living cells (e.g., H2O2, *O>~, NO, NO», HS),202- 229,231,236 the potential for activation
by other intermediates and products generated during electro/photocatalytic CO» reduction would
need to be evaluated. For example, the hydrogen evolution reaction (i.e., the reduction of protons
or water to H») is a competing process during CO> reduction as it occurs at a similar
thermodynamic potential. To test for activation by H,, SMF imaging with the probe could be
performed first in a solution with CO; excluded. The possibility for products of further reduction
of CO, such as formate, to activate these probes would also need to be determined. If these probes
are indeed selective for CO over other potential products, a useful comparison would be to image
the same catalyst sample with both resazurin and the CO-selective fluorogenic probe. The
colocalization analysis described above could be used to evaluate whether the same sites that
activate resazurin through direct electro/photocatalytic reduction are also responsible for
generating CO.

Electrocatalysts and photocatalysts are also being developed for environmental remediation.
For example, nitrate, NO3~, is found in water sources as a byproduct of fertilizers used in
agriculture and from industrial runoff. As high concentrations of NOs™ in drinking water are
harmful, catalysts are needed to reduce NO;~ to nitrogen, N>, and/or ammonia, NH3.!%-2!,
Simultaneously, fluorogenic probes have been developed to detect nitrite, NO>~, a common
additive in meat products, as NO>~ can degrade to produce carcinogenic compounds.?3? 232237 Ag
NO;™ is an intermediate in the reduction of NOs™, these fluorogenic probes could be employed in
SMF imaging of electro/photocatalysts for NOs;~ reduction. For example, the probe AC-NO>

shown in Figure 7c¢ is an anthracene carboxyimide derivative designed for the detection of NO>~

232 Emission from the probe is initially quenched due to photoinduced electron transfer (PET)
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from the aryl diamine. When this group reacts with NO>™ to form a triazole, PET is quenched, and
the probe becomes fluorescent. The fluorescence quantum yield of AC-NO; increases from 0.3%
to 42% after activation. The probe has a detection limit of 84 nM for NO,™ and good selectivity
for activation by NO>™ relative to reactive oxygen species such as H>O; and CIO™. The probe was
tested in aqueous solutions containing ethanol and hydrochloric acid, and its response exhibits a
strong pH dependence. The increase in fluorescence intensity upon exposure to NO;™ is greatest at
pH 1, but the response drops with increasing pH until there is no fluorescence enhancement at pH
5.

In addition to catalysts that can degrade the byproducts of fertilizers such as nitrate, electro-
and photocatalysts are also needed to convert nitrogen gas into ammonia (i.e., the primary
component of fertilizers). The Haber—Bosch process combines H» from natural gas and N> to make
NH3 at elevated temperatures and pressures. Developing low-temperature methods to produce NH3
using renewable energy sources would significantly reduce the energy consumption and carbon
emissions that result from the Haber—Bosch process.'!: 1>18 Similar to CO and NO,", fluorogenic
probes have been developed to detect NH3 and other amines in water sources and food.230 233-234
238 For example, in the BZCO probe shown in Figure 7d, the benzoxazole group inhibits internal
charge transfer in the molecule, which initially leads to a low fluorescence quantum yield.
Cleavage of the benzoxazole group by an amine produces a fluorescent 7-hydroxycoumarin
derivative.?> The probe is soluble in common organic solvents including acetonitrile,
dichloromethane, DMSO, ethyl acetate, and toluene. In addition to NH3, BZCO can be activated
by a variety of primary and secondary amines, such as propylamine, dimethylamine, diethylamine,
and cyclohexylamine. This lack of selectivity may be undesirable in cases where the nanoscale

catalyst is passivated with alkyl amine ligands as the ligands may also activate this probe. When
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the BZCO dye was evaporated onto filter paper to make a paper-based sensor, the detection limit
for propylamine vapor was 3.8 parts per million. While BZCO can be activated by NH3 as well as
various alkylamines, the pentafluoro-BODIPY probe shown in Figure 7e was found to be selective
for NH3 relative to other amines.?** Nucleophilic substitution of one of the bromines by NH3 leads
to activation of the probe. The detection limit was between 15 and 18 parts per billion for NH3
vapor. The probe is compatible with a variety of polar organic solvents, including acetonitrile,
DMSO, methanol, and tetrahydrofuran. However, the contrast between the initial and activated
states is lower for this probe relative to the other fluorogenic probes discussed in both Figure 1
and Figure 7. The quantum yield is 45% in the initial form and then increases to 61% after
exposure to NHi. Further modifications of the substituents around such BODIPY dyes may
increase the fluorescence contrast for the detection of NHs.

In cases where the source of nitrogen for NH3 production could potentially come from residual
nitrogen-containing species on the surface of the catalyst or from the degradation of a nitrogen-
containing catalyst (e.g., g-C3N4),23%24 in-situ imaging by SMF microscopy during the generation
of NH3 using probes such as those shown in Figure 7d, e would be valuable to monitor changes
in the activity of different nanoscale regions. Decreases in activity over time would indicate the
nitrogen came from adventitious surface species or from catalyst degradation. For catalysts that
can reduce NOs™ all the way to NHs, probes such as those shown in Figure 7¢ and 7d could be
used in sequence to compare the regions of the catalyst that are active for generating NO>™ vs.

NHs.
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Opportunities to image novel catalysts with single-molecule fluorescence microscopy

Based on the challenges and opportunities in SMF imaging discussed above, we provide an
example of a nanoscale catalytic system that is, so far, underexplored in SMF imaging and describe
how this technique could provide new insights into these materials. We believe that SMF imaging
has significant potential to understand heterogeneity in the catalytic activity of single-atom
catalysts. The deposition of metal and metal oxide nanoparticles, such as Pt, Ni, Ag, Au, and IrO»
onto semiconductor photocatalysts is a common strategy to enhance charge separation and provide
reaction sites that lower the kinetic barrier for the reaction of interest (e.g., water oxidation or CO»
reduction).?#!-246¢ SMF imaging of Au nanoparticles deposited on TiO>’* and CdS” photocatalysts
has shown that fluorogenic probes are selectively activated at the nanoparticle catalysts deposited
on these semiconductors. On the other hand, single-atom catalysts (SACs) are typically comprised
of individually dispersed metal atoms stabilized on a support such as graphene, g-C3Na, or a metal
oxide. They offer several advantages over nanoparticle catalysts including more efficient use of
expensive metals (as in principle every metal atom is exposed at the surface and serves as a reaction
site) and the ability to tune the ligand field of the metal centers based on how the metal atoms are
coordinated to the support in a manner analogous to homogeneous coordination complexes. !> 247
250 SACs have been reported to be more active and stable relative to nanoparticles composed of
the same metal for a variety of photocatalytic and electrocatalytic reactions, including hydrogen

evolution,*!** CO; reduction,**

and the reduction of nitrogen to ammonia.?é%-2! For example,
Figure 8d shows the activity for photocatalytic hydrogen evolution normalized per Pt atom in
which SACs of Pt dispersed on g-C3N4 show higher activity than Pt nanoparticles.?!

SACs have been primarily characterized using ex-situ techniques, with a focus on their atomic-

level structure: aberration-corrected STEM, X-ray diffraction (XRD), X-ray photoelectron
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spectroscopy (XPS), and X-ray absorption spectroscopy (XAS) are widely used to evidence the
single-atom nature of SACs. While these techniques yield useful structural information, it is
important to recognize their inherent limitations. HAADF-STEM imaging can identify dispersed
metal atoms based on contrast introduced by differences in atomic number (i.e., Z contrast). In
many SACs, the metal atoms have a higher atomic number than the support (Figure 8a).2>!: 253254
256-260, 262 This technique can also differentiate between single atoms and clusters or nanoparticles
based on mass contrast. However, STEM imaging is typically only performed on small regions of
the catalyst (< 25 x 25 nm?). Thus, the area imaged may not always be representative of the entire
sample. XRD has been used to indicate the lack of crystalline metal nanoparticles (suggesting the

presence of dispersed atoms),?31-233,256,239-261 jyyt jg

insensitive to small quantities of nanoparticles.
XPS provides information on the oxidation state of the metal atoms in the SAC,?3* 236-259, 261-262
which can potentially rule out metal-metal bonding, but XPS averages over the heterogeneous
coordination environments of the metal atoms and/or clusters. The extended X-ray absorption fine
structure (EXAFS) from XAS is the primary technique that is used to rule out metal-metal bonding
and provide evidence against the formation of clusters or nanoparticles.?>!234 256-261 The first peak
in a Fourier-transformed (FT) EXAFS spectrum indicates the first coordination shell, while the
second peak indicates the second coordination shell. The idea is that the second peak should be
missing for dispersed metals that are truly single atoms but will be present in metal clusters and
nanoparticles. However, like XPS, EXAFS also averages over the different coordination
environments of metal atoms in the sample. The second peak (i.e., the marker of clusters and
nanoparticles) may not be observable when the sample contains a mixture of single atoms and

clusters. For example, Feng et al. showed that a sample containing both individually dispersed Ni

atoms (Figure 8a) and Ni nanoparticles (Figure 8b) on a g-C3N4 support lacked the second peak
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in its FT-EXAFS spectrum (Figure 8c¢) and thus could be interpreted as only possessing

individually dispersed Ni atoms.?6?

In this sample and others like it, the relative contributions of
single atoms, clusters, and nanoparticles to the observed catalytic activity would be averaged over
using ensemble measurements. Recent studies have shown that clusters and nanoparticles can form
when SACs are in their catalytically active state and contribute significantly to the observed
activity.’® Thus, several questions regarding structure—activity relationships in SACs remain
unanswered. How do different coordination geometries for binding the dispersed metal atoms on
the support and their proximity to other active sites affect the local activity? What are the
relationships between the activity of single metal atoms and the microenvironment of the support
(e.g., from local strain in two-dimensional supports like graphene and g-C3Ny4 or from defects in

the support)? Are the active sites stable over time or do their activities fluctuate (e.g., due to

agglomeration of the atoms or changes in their interaction with the support)?
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Figure 8. Characterization of SACs. (a) STEM image of dispersed Ni atoms and (b) TEM image
of Ni nanoparticles supported on g-C3Ny in different regions of the same sample. (c) FT-EXAFS
spectra of a metallic nickel foil (black trace), nickel oxide (red trace) and the Ni/g-C3N4 catalyst
sample shown in panels (a) and (b). The first peak in the Ni foil corresponds to the average Ni—Ni
distance. The first peak in the NiO sample corresponds to the Ni—O distance while the second peak
corresponds to the Ni—Ni distance. The first peak in the Ni/g-C3N4 sample corresponds to Ni—C
and Ni-N distances. Panels (a-c) adapted from 263, with the permission of AIP publishing. (d)
Comparison of photocatalytic activity for hydrogen evolution using different samples of Pt on
g-C3Ny4 normalized per Pt atom. The insets show STEM images of representative samples
containing either single Pt atoms, a mixture of single Pt atoms and clusters, or Pt nanoparticles as
the loading of Pt on the g-C3N4 support increases. Panel (d) adapted with permission from 251.
Copyright John Wiley and Sons 2016. (e, f) STEM imaging of the same region of a Pt SAC on a
carbon support (e) before and (f) after electrochemical cycling between 0.6 and 1.5 V vs. the
reversible hydrogen electrode in 0.1 M HCIO4 for 1000 cycles. Panels (e) and (f) adapted with
permission from 262. Further permissions related to panels (e) and (f) should be directed to the

ACS.

In an initial application of SMF microscopy of SACs, Xu and coworkers studied single Pt
atoms on ceria (CeO») nanocrystals for the reduction of resazurin using H» as a reductant.”® They
observed higher activity per Pt atom for the Pt/CeO, SAC compared with Pt nanoparticles.
Through analyzing the dependence of the average on and off times of fluorescence bursts on the
concentrations of resazurin and H> combined with calculations using density functional theory,

they proposed that both resazurin and resorufin bind more strongly to Pt atoms of the SAC
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compared to Pt nanoparticles. Furthermore, individual Pt atoms interact more strongly with the
CeO; support relative to surface Pt atoms on a Pt nanoparticle, which could inhibit surface
restructuring for the SAC. However, in this study, each CeO> nanocrystal contained on average
only one Pt atom. Thus, agglomeration of Pt atoms into clusters would not be observed. So far,
SMF imaging has not been used to create super-resolution activity maps of SACs.

The role of single-atom sites in enhancing photocatalytic activity has many parallels to the role
of oxygen vacancies in metal oxide semiconductors. Experimental and theoretical studies have

shown that both oxygen vacancies and SACs can enhance activity by increasing light absorption,**

35, 37, 82 33, 35-36, 251-254, 260

increasing charge separation between photoexcited electrons and holes,
and/or acting as preferential adsorption sites for reactant molecules.?>37- 255 260 However, these
studies typically treat the active sites individually and have not yet looked at interactions and
cooperativity between neighboring sites. Based on the work described above for SMF imaging of
tungsten oxide nanowires containing oxygen vacancies, we expect that SACs will show similar
nanoscale variations in which their activity is concentrated in “hot spots™ across the catalyst
surface. These variations could arise from differences in the local concentration of the dispersed
metal atoms, their coordination to the support, or the presence of clusters or nanoparticles in
specific regions of the catalyst. Conclusive identification of the structure of individual catalytic
hot spots in SACs imaged by SMF microscopy would require correlative imaging with HAADF-
STEM. However, with SMF microscopy alone, analysis of the fluorescence bursts would provide
evidence on whether the active regions contain single atoms or nanoparticles. As described above,
Xu and coworkers observed different dependencies for (Toff>_1 and (7,,,)" ! of fluorescence
bursts for single Pt atoms supported on CeO> and Pt nanoparticles.” Thus, for particles containing

both of these types of active sites, they could be distinguished by fitting their concentration
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dependence to a Langmuir—Hinshelwood model. While correlative imaging between SMF and
either STXM or TERS has not yet been reported, their spatial resolutions are comparable.
Combining SMF imaging with either of these techniques would be a powerful way to connect
differences in nanoscale activity with chemical information on the coordination environment of
the metal atoms on the support.

The new fluorogenic probes described in the previous section would be advantageous for
studying single-atom catalysts that are being developed for reduction of CO; to CO and the
reduction of N> to NH3.2°5-26! Using a probe activated by CO such as COP-1 or RCO (Figure 7a,
b) in correlation with a typical probe for reduction reactions such as resazurin could clarify the
catalytic mechanism of CO» reduction on the SAC. For instance, colocalization of activity maps
for the activation of resazurin and COP-1 could determine whether the sites where the extraction
of photoexcited electrons occurs are also preferential sites for the reduction of CO». Since many
SACs are being developed for these industrially relevant reactions, the new probes would enable
SMF imaging to be applied to these reactions directly, rather than using proxy reactions.

Evidence that SACs remain stable as dispersed single atoms after catalysis is typically done by
ex-situ EXAFS and STEM. Due to the limitation of these techniques discussed above, SMF
imaging could be used as an in-situ technique to map local changes in the catalytic activity of
SACs due to restructuring when they are in their active state. For example, Speck et al., used ex
situ STEM to image the same region of a Pt SAC before and after electrochemical cycling (Figure
8¢, 1).262 They observed dissolution of Pt atoms, the redeposition of Pt in regions of the carbon
support that did not initially contain it, and agglomeration of the single atoms to form clusters.
SMF imaging is well suited to observe how the different time scales of these processes affect

activity. Changes in the spatial distribution of active regions over time would indicate
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reorganization of the active sites. Dissolution of dispersed metal atoms in the SAC would lead to
a decrease in the activity of a specific nanoscale region, while their redeposition in a new area
would lead to an increase. Agglomeration of metal atoms could lead to either an increase or
decrease in activity. Analysis of the on and off times of fluorescence bursts could help to
distinguish these processes. The power of SMF microscopy in this case relative to other imaging
techniques described at the beginning of this article would be to monitor in real time changes in
activity of different nanoscale regions during catalytic turnovers and potential restructuring and/or

degradation processes that occur during catalysis.

Conclusions

Beyond just localizing fluorescence intensity bursts during SMF microscopy of nanoscale
catalysts, correlation with other microscopies or between multiple fluorogenic probes is critical to
connect the observed variations in activity with structural, chemical, and/or morphological features
of the catalyst. Quantifying the orientation and fluorescence lifetime of fluorophores within porous
catalysts can provide information on their local environment. In the future, correlation with other
microscopies, such as Kelvin force probe microscopy (KPFM) and TERS, will be beneficial in
developing structure—activity relationships in nanoscale catalysts. KPFM could be used to image
the local surface potential across semiconductor photocatalysts.?642% TERS could measure
changes in the coverage of ligand-passivated nanoparticles in situ during catalysis.?*6-267 To ensure
that fluorogenic probes provide valuable structure—activity trends, it is important to measure both
the single-molecule/single-particle activity and the ensemble activity for the same sample, and
when possible, to use fluorogenic probes that are activated through similar chemical mechanisms

as industrially relevant catalytic reactions. The application of fluorogenic probes that can detect
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CO, NO;, NHs, and other intermediates will help in monitoring the selectivity of nanoscale
electro- and photocatalysts for the generating the desired products during fuel production and
environmental remediation. Together, novel fluorogenic probes and correlative imaging can
expand SMF imaging to a wider range of nanoscale catalysts such as single-atom catalysts and
semiconductors with surface-attached molecular catalysts.?®3-2’0 As SMF imaging of nanoscale
catalysts is primarily done in aqueous solution, there is also the need to expand this technique to
new chemical environments, such as nanoparticle catalysts and inorganic coordination complexes

embedded in polymers matrices for photo- and electrocatalytic fuel production.?3-27-271-273
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