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COMPACT MODULI OF K3 SURFACES

VALERY ALEXEEV AND PHILIP ENGEL

ABSTRACT. We construct geometric compactifications of the moduli space Fy4 of polarized K3
surfaces, in any degree 2d. Our construction is via KSBA theory, by considering canonical
choices of divisor R € |nL| on each polarized K3 surface (X, L) € Fy4. The main new notion is
that of a recognizable divisor R, a choice which can be consistently extended to all central fibers
of Kulikov models. We prove that any choice of recognizable divisor leads to a semitoroidal
compactification of the period space, at least up to normalization. Finally, we prove that the
rational curve divisor is recognizable for all degrees.
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1. INTRODUCTION

Let Fbg be the coarse moduli space of complex K3 surfaces X having ADE singularities with an
ample line bundle L of degree L? = 2d. A well known corollary of the Torelli theorem [PSS71] is
that Fpg = D/T is the quotient of a 19-dimensional symmetric type IV domain D by an arithmetic
group I' C 0O(2,19). In this capacity, Fay admits a Baily-Borel F?f [BB66] and infinitely many
toroidal ng [AMRT75] compactifications. An admissible fan § consists of polyhedral decompo-
sitions of the positive cones of finitely many hyperbolic signature lattices (Def. 5.9). Looijenga
[Loo03] simultaneously generalized the Baily-Borel and toroidal compactifications to the semi-
toroidal compactifications, where § may only be locally rational polyhedral (Def. 5.11).

Toroidal compactifications enjoy a number of geometric properties by virtue of the fact that
they are analytically-locally modeled at the boundary by finite quotients of toric varieties. But
there are infinitely many, with seemingly no one being distinguished. An old and deep question
is whether any toroidal, or semitoroidal, compactifications can be understood as moduli spaces
parameterizing geometric objects—some generalized “stable” K3 surfaces, similar to the Deligne-
Mumford’s compactifications M ,, of stable curves.

For the moduli space A, of principally polarized abelian varieties (PPAVs) the answer is yes
by [Ale02]. A PPAV (A, \) € A, determines uniquely an abelian torsor A ~ X together with a
theta divisor © C X. For pairs (X, ©) or, even better (X, €0), there is a generalization of M, .
It is the moduli space of KSBA stable pairs (X, €©) with slc singularities [KSB88, Kol23], [Ale96,

Ale06]. This moduli space is projective, and gives a geometrically meaningful compactification A,

7@ J—
Furthermore, the normalization of A/ is the toroidal compactification Ag associated to the 2nd

Voronoi fan, and so admits a purely period-theoretic definition. Thus, among the infinitely many
toroidal compactifications, this one has a clear geometric meaning.

To extend this construction to polarized K3 surfaces (X, L), first one needs a canonical choice
of polarizing divisor (Def. 6.1), an effective divisor R € |nL| in a fixed multiple of the polarization.

Given this choice, the general theory produces a modular compactification F?d (Def. 6.11) via slc
stable pairs (X, eR), see [KX20, Kol23], [AET19, Sec. 3]. The divisor is needed because for the
general theory to work, the divisor Kx 4+ €R must be ample. One can work with all divisors in
|L|, without making a canonical choice, e.g. [Laz16], but that gives a larger moduli space Paq of
dimension 20 + d.

At least two canonical choices for ample divisors on polarized K3 surfaces have been identified.
About 15 years ago, Sean Keel proposed to consider, for a general polarized K3 surface (X, L), the
sum R™ = Y C; of rational curves in |L|. We call this the rational curve divisor (Def. 10.3). One
has R € |ng4L|, where the multiple ng is given by the Yau-Zaslow formula. For instance ny = 324,
ny = 3200, etc. The second choice, suggested to the authors by Claire Voisin, is called the flex
divisor R1* [AE21]. It generalizes to all degrees the fixed locus R € |3L| of the involution on a
K3 surface of degree 2.
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By the Kulikov-Persson-Pinkham theorem [Kul77, PP81], any one-parameter degeneration of
K3 surfaces X — (C,0) admits a Kulikov model: a K-trivial model with smooth total space and
reduced normal crossings central fiber X (Def. 3.1). The key notion of this paper is a recognizable
divisor (Def. 6.2). Heuristically, it is a canonical choice of polarizing divisor which can be extended
to any such Xy. More precisely: Given any Kulikov surface Xy appearing as a one-parameter
degeneration of polarized K3 surfaces (X¢, L), the limit of the canonically chosen divisors R; C X4,
R; € |nL¢| is a unique curve Ry = lim_,o Ry C Xp. Such a limit Ry exists on any fixed Kulikov
model, but recognizability additionally states that Ry is independent of how Xy gets smoothed.

Our two main theorems are:

Theorem 1 (Thm. 9.1). Suppose that R is a recognizable choice of polarizing divisor. There is a

unique semifan §r for which F§§ is the normalization of FZ.
Theorem 2 (Thm. 10.11). The rational curve divisor R™ is recognizable for Faq.

Theorem 1 holds more generally for moduli of lattice-polarized K3 surfaces. Combined, Theo-
rems 1 and 2 give an affirmative answer to the existence of a compactification of K3 moduli which
is simultaneously geometric and period-theoretic:

Corollary 3. For all degrees 2d, there is a KSBA compactification of Foq by slc stable pairs, whose
normalization is semitoroidal.

Theorem 1 is proven as follows: Kulikov models X — (C,0) with a given Picard-Lefschetz
transformation, encoded by a lattice vector A, can be packaged into a 19-dimensional family of
polarized surfaces X — Sy we call A\-families (Def. 7.14). The general fiber is smooth, and the
discriminant Ay C Sy is a smooth divisor, isomorphic to (C*)!® for Type III Kulikov models. The
discriminant parameterizes the equisingular, quasipolarized, smoothable deformations of Xj.

Recognizability implies that the divisor R extends over the boundary Ay to give a family of
pairs (X,R) — Sy (Prop. 8.1). We modify X until R C X is relatively nef and contains no
singular strata of any fiber (Prop. 8.8, Sec. 7C). Taking the relative canonical model shows that
all degenerations with a given Picard-Lefschetz transformation limit to stable pairs (Xo, eRg) of
a fixed combinatorial type (Cor. 8.13). This fact, together with an argument involving resolution
of indeterminacy (Lem. 9.18) and quasi-affineness of the strata of the KSBA compactification
(Thm. 9.16), imply that there is a toroidal compactification

F Sd = (F 5(1)”
dominating the normalization of the KSBA compactification. The proof concludes with a new
characterization: semitoroidal compactifications are exactly those normal compactifications of Fyq
that are dominated by a toroidal compactification, and dominating Baily-Borel (Thm. 5.14).

Theorem 2 is proven by borrowing ideas from Gromov-Witten theory and degenerations of
stable maps. R' is recognizable because any limit R; o C Xy of a family of rational curves
R;; C R}° C X, in a Kulikov model X — (C,0) enjoys a geometric property which ensures its
rigidity: R; o is the image of an admissible stable genus zero map f : T' — Xo. Using K-triviality
of Xy and adjunction, we prove that f(T) is locally constant on the Kontsevich space of admissible
stable maps (Lem. 10.14).

Relation to earlier work. The notion of a recognizable divisor presented here arose from gener-
alizing certain specific examples, for moduli of degree 2 [AET19] and elliptic K3 surfaces [ABE22].
In both of these papers, Kulikov models with divisor are constructed explicitly for all possible A,
providing the necessary input for the general theory to work.

Every degree 2 K3 surface (X, L) with ADE singularities admits an involution, and the fixed
locus R € |3L| can be taken as a canonical choice of polarizing divisor. Every elliptic K3 surface
admits the polarizing divisor R := s + Z?il fi € |s+ 24f| formed from the section, plus the sum
of the singular fibers counted with appropriate multiplicity.

Using the theory of integral-affine structures on the two-sphere S? [Engl8, EF21], one can, in
both of these cases, explicitly construct a family of Kulikov surfaces Xy — Ay which smooths to
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a A-family (X, R) — S\ with R relatively big and nef, and not containing strata of any fiber.
This is achieved by building a continuously varying family of “polarized integral-affine spheres”
(B, Rirop) — C;' over a cone associated to an appropriate hyperbolic lattice (Def. 5.8). The cone
C; contains all possible A. Once triangulated, the integral-affine sphere By = I'(Xjy) can be
identified with the dual complex of Xy for some Kulikov model X — (C,0) with monodromy A.
The tropical divisor Riyop,x C Bx describes the dual complex I'(Ry) of Ry C Xj.

The upshot of these constructions is that recognizability is verified explicitly, and all degenera-
tions with a fixed Picard-Lefschetz transformation admit a stable model of a fixed combinatorial
type. Furthermore, the family (B, Rop) — Cgr determines which monodromy invariants A\ give
rise to degenerations into a specified stratum of slc stable pairs—it is those A on which the family
(B, Rirop) is combinatorially constant. In the above examples, these loci of combinatorial con-
stancy in C’;r are the cones of a semifan §r. The semifan of Theorem 1 is exactly this one. In fact,
we prove here that for any recognizable divisor, the cones of §r are the loci on which a well-defined

“stratum” function S: Cy — {slc strata of ng} is constant (Thm. 9.3).

For degree 2 K3 surfaces with ramification divisor, §g is a semifan but not a fan. It is a
coarsening of the Coxeter fan. For elliptic K3 surfaces with divisor s + Zfil fi it is a fan which
refines the maximal cone of the Coxeter fan into 9 subcones. Theorems 1 and 2 imply the existence
of a semifan §* for all degrees 2d. But unlike for A, and the 2nd Voronoi fan, or the above two
examples, we have no explicit description, because the structure of a hypothetical “tropical K3-
rational curves pair” (B,Ri;,,) is unknown. Such a description is an interesting open question.
Integral-affine structures make no appearance in this paper because we do not explicitly construct
S r for any given R—we prove a general existence result.

After this work appeared, the authors, with Han [AEH21], proved recognizability for fixed
curves of non-symplectic automorphisms. Explicit semifans §gr for the fixed divisor R were given
in [AE22], for moduli spaces of K3 surfaces with nonsymplectic involution.

Summary of contents. In Section 2, we recall different notions of moduli of K3 surfaces, such
as smooth analytic, M-quasipolarized, and polarized with ADE singularities. In Section 3 we
study one-parameter degenerations: Kulikov models, as well as nef, divisor, and stable models, by
adding nef line bundles, effective nef divisors, and by taking the canonical models of the latter,
respectively. In Section 4 we define the periods of Kulikov surfaces. These sections compile known
results about K3 moduli, giving a unified treatment of Type II and III degenerations.

Section 5 recalls the combinatorially defined, period-theoretic compactifications of arithmetic
quotients: Baily-Borel, toroidal, and semitoroidal. A major result is Theorem 5.14 which states
that, for Type IV arithmetic quotients, a semitoroidal compactification is precisely a normal com-
pactification which is sandwiched between the Baily-Borel and some toroidal compactification.
Section 6 discusses the compactifications of Fyy via stable pairs, associated to a canonical choice
of divisor R. Here, we introduce the critical notion of recognizable divisors (Def. 6.2).

In Section 7, we construct the A-families which appear in the proof of Theorem 1. A new result
(Theorem 7.19) globalizes the main result of Friedman-Scattone [FS86]: Any two A-families with
the same values of A2 and imprimitivity of A are connected by a series of birational modifications
falling into three special forms. In Section 8, we prove the main properties of recognizable divisors
with respect to A-families. Theorem 8.11 summarizes equivalent formulations of recognizability.

Sections 9 and 10 contain the proofs of Theorems 1 and 2, respectively.

2. MobpuLI OF K3 SURFACES

2A. Analytic moduli. We begin by setting notation and reviewing fundamental results about
K3 surfaces. For general references, see [Huy16] or [ast85].

Definition 2.1. A K3 surface X is a compact, complex surface with h'(X) =0 and Kx = Ox.

Definition 2.2. Let Lgs := II319 = H? & E§92 be a fixed copy of the unique even unimodular
lattice of signature (3, 19).



Endowed with the cup product, H?(X,Z) is isometric to Lg3z for any K3 surface X. Let
Kx C HY'(X,R) denote the Kihler cone of X. It is a fundamental chamber for the group
Wx = (rg) C O(H?*(X,Z)) generated by reflections in the roots 3 € NS(X), 3? = —2 acting on
the positive cone of H1!(X,R).

Theorem 2.3 ([PSS71, LP81]). Two K3 surfaces X, X' are isomorphic if and only if they are
Hodge-isometric: there is an isometryi : H*(X',Z) — H*(X,Z) for whichi(H?°(X")) = H*°(X).
Furthermore, i = f* for a unique isomorphism f: X — X' if and only if i(Kx/) = Kx.

Note that +1 and g € Wx act by Hodge isometries on H?(X,Z). For any Hodge isometry i
between X’ and X, there is a unique sign and unique element g € Wx such that +goi(Kx/) = Kx.
Thus, the group of Hodge isometries of X fits into a split exact sequence of groups

0 — {1} x Wx — Hodgelsom(X) — Aut(X) — 0.

Definition 2.4. Let 7: X — S be a family of smooth analytic K3 surfaces over an analytic space
S. A marking is an isometry of local systems o: R*m.Z — L.

Definition 2.5. The period domain of analytic K3 surfaces is
D:=P{z€Lxzs®Claz-z=0,z-T>0}.

It is an analytic open subset of a 20-dimensional quadric in P2, Let (X — S, 0) be a marked
family of K3 surfaces. The period map P: S — D is defined by s — o(H?%(X})).

By [ast85, Exp. XIII], there is a non-Hausdorff complex manifold M of dimension 20, forming
a fine moduli space of marked K3 surfaces, together with a period map P: M — D. For x € D
a period, let W, be the group generated by reflections in roots of 2+ N Lgs. Then P~1(x) is a
torsor over {+1} x W, with action given by (X,0) — (X,go0).

2B. Quasipolarized moduli. We now give analogous definitions to Section 2A in the polarized
case. The standard reference is [Dol96]. However, Thm. 3.1 in 4bid is incorrect. We modify the
definition in a way that this theorem remains true.

Let J: M — Lks be a primitive hyperbolic sublattice of signature (1,7 — 1) with » < 20. A
vector h € M ® R is very irrational if h ¢ M’ ® R for any proper sublattice M’ C M. We will
henceforth fix one such, of positive norm h? > 0.

Definition 2.6. An M -quasipolarized K3 surface (X,j) is a K3 surface X, and a primitive lattice
embedding j: M < NS(X) for which j(h) € Kx is big and nef. Two such (X, j), (X', ;') are
isomorphic if there is an isomorphism f : X — X’ of K3 surfaces for which j = f* o j'.
Definition 2.7. A marking of (X, ) is an isometry o : H?(X,Z) — L3 for which J = o o j.
The M-quasipolarized period domain is
Dy ::P{mEMlQ@C’m-x:O, x-T >0}

Define the Weyl group of a point z € Dy to be W, (M=) := (rg: 8 € xt N M1). Note that now
W, (M) is finite because z+ N M+~ is negative-definite.

Theorem 2.8. There is a non-Hausdorff complex manifold My C M of dimension 20 — r,
admitting a universal family of marked M -quasipolarized K3 surfaces. The fiber P~1(z) of the
period map P: Myr — Dy is a torsor over W (M>).

Proof. The proof follows that of [Dol96, Thm. 3.1], which now works because of the modified
Definition 2.6 for an M-quasipolarization. ]

Let Fj; denote the moduli stack of (unmarked) M-quasipolarized K3 surfaces.
Corollary 2.9. There is an isomorphism of stacks Fy; = [Mys : T] where
I':= {’7 S O(LKg): ’y’]M = ldM}

is the group of changes-of-marking. The quotiented period map M /T — Das /T is a bijection.
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2C. ADE moduli. We now modify the above moduli problems to produce a Hausdorff moduli
space. Theorem 2.11 below is well-known.

Definition 2.10. An M-polarized K3 surface (X, j) is a surface X with at worst rational double
point (ADE) singularities whose minimal resolution X — X is a smooth K3 surface, together with
an isometric embedding j : M < Pic(X) for which j(h) is ample.

Theorem 2.11. The coarse moduli space of M -polarized K8 surfaces is Fyy = Dpg/T. The moduli
stack Fpr is the separated quotient of the stack [Mys : T).

Remark 2.12. The stack Fj; and the quotient stack [Dys : I'] are not equal. In the latter stack,
the inertia group at = € Dy, is the stabilizer I';. In the former stack, the Torelli Theorem 2.3
implies the inertia group is rather T'y /W, (M=*) = Aut(X, 7).

Consider an open neighborhood U, > x in Dy preserved by I',.. First, quotient U, by W, (M™1).
Since W,(M=) C T, is normal, the quotient group acts on the coarse space U, /W, (M=), which
is a smooth complex manifold. The stack quotient [U,/W, (M=) : T,/W,(M=)] defines orbifold
charts for the smooth DM stack F);.

3. ONE-PARAMETER DEGENERATIONS

3A. Kulikov models. We now examine degenerations of K3 surfaces over a curve. Let (C,0)
denote the analytic germ of a smooth curve at a point 0 € C' and let C* = C'\ 0. Let X* — C*
be a family of smooth analytic K3 surfaces.

Definition 3.1. A Kulikov model X — (C,0) is an extension of X* — C* for which X is smooth,
Kx ~¢ 0, and Xg has reduced normal crossings with all components Kahler. We say X is Type I,
11, or III, respectively, depending on whether X is smooth, has double curves but no triple points,
or has triple points, respectively.

A key result is the theorem of Kulikov [Kul77] and Persson-Pinkham [PP81]:

Theorem 3.2. Let Y* — C* be a family of analytic K3 surfaces admitting an extensionY — (C,0)
for which every component of Yy is Kdhler. There is a base change (C',0) — (C,0) and a sequence
of bimeromorphic modifications Y’ --+ X of the pullback, such that X is a Kulikov model.

Assume for notational convenience that the strata of Xy are globally normal crossings. Let
Vi € Xo denote the irreducible components, D;; = V; NV, and T35, = V; N V; NV, the double
curves and triple points, respectively. By convention, we write D;; C V; and Dj; C V;.

Proposition 3.3. Let X — (C,0) be a Kulikov model. Let D; = Zj D;; be the part of the double
locus of Xg lying on V;. Then:
(1) D; € |— Ky,| is an anticanonical cycle of rational curves in Type III, and an elliptic curve
or the disjoint union of two elliptic curves in Type II.
(2) DZ-QJ- + DJQ-i = —2 + 2g where g is the arithmetic genus of D;; in Xo.
(3) The dual complex T'(Xy) is a triangulation of S* in Type III, and a segment decomposed
into subsegments in Type II.

Definition 3.4. A reduced normal crossings surface Xy satisfying (1), (2), (3) is a Kulikov surface.
There is a converse to Proposition 3.3 due to Friedman [Fri83b]:

Theorem 3.5. Let Xg be a Kulikov surface. Then, Xy deforms to a smooth K3 surface if and
only if it satisfies an additional property called d-semistability:

5$t1(QXov OXO) = O(Xo)sing'

The components V; in Type III are rational surfaces with a nodal anticanonical cycle as the
double locus. The two ends of a Type II degeneration are rational surfaces with a smooth elliptic
anticanonical double curve, and the intermediate components are elliptic ruled surfaces with double
locus an anticanonical disjoint union of two elliptic sections.
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Definition 3.6. An anticanonical pair or simply pair (V, D) is a smooth surface V' with a reduced,
at worst nodal, anticanonical divisor D € | — Ky|. A toric pair (V, D) is a smooth toric surface V
with D € | — Ky7| the toric boundary.

The topologically trivial deformations of X consist of deforming the moduli of the pairs (V;, D;),
and regluing the double curves by an element of C* (in Type III) or by a translation of the elliptic
double curve E (in Type II). Only some of these regluings are smoothable by Theorem 3.5.

Definition 3.7. The charge of an anticanonical pair (V, D) is xiop(V \ D). If D =>" D;,

12+43(-3— D?) if D is nodal with at least two components,
Q(V,D):=¢ 11— D? if D is nodal and irreducible,
12x(Oy) — D? if D is smooth.

Proposition 3.8 (Conservation of Charge, [FM83a, Prop. 3.7]). Let X = J(V;, D;) be a Kulikov
surface. Then > Q(V;, D;) = 24.

Definition 3.9. A corner blow-up of (V, D) is the blow-up at a node of D. An internal blow-up
is the blow-up at a smooth point of D.

Both the corner and internal blow-ups V = V are naturally anticanonical palrs (V D) For
a corner blow-up, D is the reduced inverse image of D. For an internal blow-up, D is the strict
transform of D. The formula for charge easily implies Q(V, D) = Q(V, D) for a corner blowup,
while Q(f/, l~)) = Q(V, D) +1 for an internal blow-up.

Any toric pair satisfies Q(V, D) = 0. When V is rational and D has nodes, as is the case for
any component in Type III, [GHK15, Prop. 1.3] proves the existence of a diagram

(V,D) «+ (V D)% (V,D)

where f is a sequence of corner blow-ups, g is a sequence of internal blow-downs, and (V, D)
is a toric pair. We call this data a toric model of (V,D). By the existence of a toric model,
Q(V,D) > 0 for all (V,D) in Type III, with Q(V, D) = 0 if and only if (V, D) is toric. So the
conservation-of-charge formula (3.8) says that Xy is “24 steps from being toric.”

When (V, D) is an elliptic ruled component of a Type II Kulikov surface, we have Q(V, D) =0
if and only if V 2 P (O ® L) with D the disjoint union of the zero and infinity sections. Otherwise
Q(V, D) measures the number of steps from being a smooth P!-bundle over an elliptic curve E.

Finally, we discuss base change, following [Fri83a]. Consider an order k base change X’ — X of
a Kulikov model along a branched cover (C’,0) — (C,0). Let ¢ be an analytic coordinate on (C,0).
The smoothing of X is locally xy =t or xyz = ¢ near a double curve or triple point, respectively.
So the base change is locally zy = t* or xyz = tk. There is a locally toric, SNC resolution
X[k] = X’ near the singular locus of X, corresponding to the standard order k subdivision of
the simplices of the dual complex I'(Xy). Each triangle decomposes into k? triangles, and each
segment into k subsegments. All components of Xj[k] not appearing in X satisfy @ = 0.

3B. Nef, divisor, and stable models. We now describe some additional structures on a Kulikov
model in the presence of a quasipolarization.

Definition 3.10. Let L* be a line bundle on X*, relatively nef and big over C*. A relatively nef
extension L to a Kulikov model X over C' is called a nef model.

Definition 3.11. Let R* C X* be the vanishing locus of a section of L* as above, containing no
vertical components. A divisor model is an extension R C X to a relatively nef divisor R € |L| for
which R( contains no strata of Xj.

Definition 3.12. The stable model of (X*, R*) is
(Ya E) = PI‘OjC ®n20 HO(X7 O(TLR))

for some divisor model. It is unique and independent of “the choice of divisor model (X, R) by the
theory of canonical models, since for 0 < € <1 the pair (X, Xo+e€R) has log canonical singularities
and the divisor K+ + €R is relatively ample.



By adjunction, the central fiber (X0, €Rp) has semi log canonical (slc) singularities and the
divisor Ky + €Ry is ample.

The existence of a nef model is due to Shepherd-Barron [SB83], and the existence of a divisor
model is proved in [Laz16, Thm. 2.11], [AET19, Thm. 3.12].

Now suppose one starts with a family (Y*,R*) — C™* of K3 surfaces with ADE singularities.
After a finite base change it admits a simultaneous resolution of singularities f: X* — X", Let
R* = f*(ﬁ*). After a further finite base change, by the above we get a divisor model, whose
stable model (X, R) is the stable extension of (Y*,R*) over C. It is unique and stable under base
changes by a standard argument, see e.g. [Kol23, Thm. 2.47].

3C. Topology of Kulikov models. The primary reference for this section is [FS86]. Let X —
(C,0) be a Kulikov model. For convenience, denote integral singular cohomology by H*(—). Let
T : H?(X;) — H?(X;) be the Picard-Lefschetz transformation along an oriented simple loop in C*
enclosing 0. Since X is reduced normal crossings, T is unipotent. Let N := logT be its logarithm.

Theorem 3.13 ([F'S86, Fri84]). Let X — (C,0) be a Kulikov model. We have that

if X is Type I, then N =0,

if X is Type II, then N? =0 but N # 0,

if X is Type III, then N3 =0 but N2 # 0.
Furthermore, N is integral, and of the form Nz = (z - \)§ — (x - )\ for § € H?*(X;) a prim-
itive isotropic vector, and X € d+/§ satisfying \* = #{triple points of Xo}. When \?> = 0, its
imprimitivity is the number of double curves of Xg.

Thus, the Types I, II, III of Kulikov model are distinguished by the behavior of the monodromy
invariant \: either A = 0, A2 = 0 but A # 0, or A\? # 0 respectively.

Remark 3.14. If X* — C* admits a quasipolarization M < Pic(X*) then T € O(H?(X;)) lies
in the subgroup T fixing M. In particular, 6 € M+ and we can consider the lattice of monodromy
invariants A € §1/§ as valued in a subquotient of M+,

Definition 3.15. Let I C H?(X;) denote the primitive isotropic lattice Z& in Type III or the
saturation of Zd @ ZX in Type II.

As a simple normal crossings degeneration, there is a deformation-retraction ¢ : X x [0, 1] — X
called the Clemens collapse [Cle69]. So we have H*(Xy) = H*(X). In particular, the map
¢ H*(Xo) — H*(X}) coincides with restriction from X to X;.

The integral cohomology of a Type III Kulikov surface X is computed in [FS86, Sec. 1] by the
Mayer-Vietoris spectral sequence, associated to the exact sequence of sheaves

0= 2Zyx, =D, Zyv, > Bic; Zp,, = Dicj<r Lr,, — 0
It follows that there is an exact sequence

0 — Z — H*(Xy) = A — 0, where

Definition 3.16. The numerically Cartier classes on a Kulikov model X
A = A(Xo) := ker (@i H2(V;) = @, HQ(Dij))
are collections of classes («;) for which n;; := «; - D;; = o - Dj; for all double curves.

The lefthand term Z arises in the spectral sequence from the second simplicial cohomology
H?(T'(Xp)) of the dual complex. Choosing an orientation on I'(Xy) gives a generator 1 € Z which
satisfies ¢} (1) = ¢.

Mayer-Vietoris for a Type II Kulikov surface Xo implies that there is an analogous exact se-
quence 0 — Z* — H?*(Xo) — A(Xo) — 0 with the Z? arising from H'(D; ;1) for some double
curve D; ;11. Here the image ¢} (Z?) is identified with the rank two lattice I.
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Definition 3.17. Let Iy denote the sublattice Z = H?*(I'(Xo)) C H?(Xy) in Type III or Z? =
HY(D; 11) C H*(Xy) in Type II arising from Mayer-Vietoris.

So for both Type II and I11, ¢} (I) = I and H2(X,)/Ip = A
Definition 3.18. Define the intersection form - on A by (o) - (8;) = > B

Definition 3.19. Define &; := Cl(OX(V»‘XO € H2(X,) and let & € A be the image of &;. Then
& =2_;(Dji — Dyj) and 3, § = 0. Define = := Z-span{;} C A and declare A := A/Z.

It is easy to check directly from property (2) of Proposition 3.3 that = C A is contained in the
null sublattice of the intersection form.

Proposition 3.20. The map ¢;: H2(Xo) — H2(X,) induces a surjection A — {8, \}* /I sending
= to zero, which thus descends to A. Furthermore, = = A™U 45 the null sublattice. Hence = is
saturated, A is torsion-free and the induced map A — {5, \}*+ /I is an isometry of lattices.

Proof. [FS86, 4.13] gives an exact sequence

0 & = H*(Xg) <5 ker(N) = {5, A} = 0

where 2 := Z-span{&; }. Noting that ¢;(Iy) = I, we can quotient the second and third factors in
the above exact sequence to get an exact sequence

02— A= {6/ —=0.

Since the third term is torsion-free, the kernel = must be the saturated. It is exactly the null
lattice because the target {d, A} /I is nondegenerate and ¢} preserves the intersection form. [

4. THE PERIOD MAP

4A. The period of a Kulikov surface. Let X, be a Kulikov surface, not necessarily d-semistable.
The period map is a homomorphism v from K(XO) (see Def. 3.16) to C* in Type III or the ellip-
tic double curve E in Type II, which measures the obstruction to a class being represented by a
Cartier divisor. First, we consider the Type III case.

A resolution of the sheaf of non-vanishing holomorphic functions is given by

* * * *
1— 0%, — D, Oy, — ®i§j OD”, — @igjgk OTW — 1.

Computing Pic(Xo) = H' (X, 0%, ) via the Mayer-Vietoris spectral sequence [FS86, Sec. 3] shows
that Pic(Xy) is the kernel of a homomorphism

ker (eai Pic(V;) = @, Pic(Dij)) s HA(D(X,),C*) = C*
where the latter space is identified with C* by choosing an orientation on the dual complex. Note
that since V; and D;; are rational, we have Pic(V;) = H%(V;) and Pic(D;;) = H*(D;;) so the first
term is nothing more than the lattice A of (3.16).

Definition 4.1. The period point of a Type III Kulikov surface Xy is Jxo € Hom(K7 C*).

Construction 4.2. Unwinding the maps in the spectral sequence, one can explicitly construct
the homomorphism ¢ x,- Let a = (o) € A be a numerically Cartier divisor. Then a; determines
a unique line bundle L; € Pic(V;) for all i. We have

Li|DU = LJ’|Dﬂ = Op1(nij)

so we can extend a line bundle L; — V; by L; — V; to a line bundle on V; UV;. We may continue
successively until only one component Vi remains. The result is a line bundle L — X\ V7 and
we may consider the line bundle

L\D1®L‘

1 p, = La € Pic®(Dy).
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We have Pic’(D;) = C* because the cycle D; is oriented by the choice of orientation on the dual
complex I'(Xp). So « determines a period ¢¥x, (o) = L, € C*. Tt is independent of the choice of
component V; and clearly obstructs « being represented by a Cartier divisor.

Construction 4.3. In analogy to Construction 4.2, we now construct a period map JXO ‘A E
in Type II. Orient the segment I'(X) so that Xg = Vo U --- UV} with indices increasing with
respect to the orientation. Let o = (a;) € A. Then ag € H2(V) and oy, € H2(V;) define line
bundles Ly and Ly because the end surfaces are rational elliptic. On the other hand, the lifts of
an element o; € H%(V;), i # 0,k to an element L; € Pic(V;) form a torsor over E = PiCODLHl.
So there is a unique lift Ly of oy for which Lo|, = Li[,, . Take this lift to extend Lo to Vo UV;

by L;. Continuing inductively gives a unique line bundle L — Xj \ Vj. Then define

Ux, (@) == Llp, , ®Lp, , , €Pi’(Di-rp) = E.

The period map can also be defined from the exponential long exact sequence
= HY(Xg) = H' (X0, 0) — Pic(Xo) = H?(Xo) - H*(Xo,0) = H2(X0,0%) = --- .

Note that H?(Xg,0) = H(Xg,wx,)* = C is one-dimensional. Quotienting by the image of
Iy C H?(Xy), we reproduce the period homomorphism

Uxo: N — C/U(Iy).

In Type III, we have C/¥(Iy) = C* while in Type IT we have C/¥(Iy) = E for an elliptic curve
E. In both cases, Pic(Xp) is the kernel because H!(Xp, O) = 0.

Proposition 4.4. The surface Xq is smoothable if and only if the period point JXO € Hom(K7 C*)
or Hom(A, E) descends to a period point ¢x, € Hom(A,C*) or Hom(A, E).

Proof. By Theorem 3.5, X is smoothable if and only if it is d-semistable. But Xy is d-semistable
if and only if ¢x, (&) = 1 for all ¢, i.e. ¥x, descends to A = A/E. a

4B. Markings of Kulikov surfaces. In this section, we define the analogues of markings for
Kulikov surfaces X to properly formulate results on the period map. Let Ag = Ag(t, k) denote
a model for {§,A\}*/I in Lgs. It depends only on the even integer A2 = t giving the number of
triple points of Xy and the imprimitivity k& of A € 6+ /5. We suppress (, k) in the notation.

Definition 4.5. Let X a d-semistable Kulikov surface. A marking (o,b) consists of:

(1) An isometry o: A(Xo) = Ao (see Def. 3.16) and
(2) An ordered basis b of Iy C H%(Xj) (see Def. 3.17).

The notion of a marking naturally extends to equisingular families X — S of Kulikov surfaces
using local systems. We can now define the period map:

Definition 4.6. Let (X — S, 0) be a family of marked d-semistable Kulikov surfaces. The period
map is defined by

S — Hom(Ap, C*) or Hom(Ay, &), s+ BoW,o0 L.

Here ¥, comes from the exponential exact sequence as in Section 4A, E>C \ R is the universal
marked elliptic curve C/Z @ Z7 — {7 € C\ R}, and B is the quotient map

B: H*(X,,0x,) =+ C/Z=C* or B:H?*X,,0x,) = C/Z®Zr
induced by the ordered basis b of Iy (the first element by of the basis is sent to 1 € C).

Remark 4.7. In the Type II case, we could also require that b is an oriented basis, in the sense
that 7 € H. Then the period map can be defined with target £ := 5|H instead.
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4C. Partial markings of K3 surfaces. Let X — (C,0) be a Kulikov model. We determine
what information a marking of X, induces on the general fiber X; = Y. In this subsection, we
denote an analytic K3 surface by Y to distinguish it from the Kulikov model X.

Definition 4.8. A partial marking of Y is a distinguished primitive isotropic class § € H2(Y), a
distinguished vector A € §+/§ of non-negative norm, and an isometry o: {3, \}*/I — Ay. We say
the partial marking is Type II or III depending on whether A2 = 0 or A% > 0, respectively.

Proposition 4.9. Let X — (C,0) be a Kulikov model. A partial marking of X; whose distinguished
classes §, \ are the monodromy invariants determines uniquely a marking of Xo.

Proof. Proposition 3.20 gives an isometry ¢ : A(Xg) — {0, A\}*/I. So a partial marking of X,
induces an isometry A(Xy) — Ag by composing with ¢;. The class § (and A in Type II) determines
a basis of Iy C H%(X,) via c}. 0

Definition 4.10. The parabolic stabilizer of an isotropic lattice I C L g3 fits into an exact sequence
0 — Ur — Stabo(r,4)(I) = I'r = 0 where Uy is the unipotent radical: the normal subgroup acting
trivially on the graded pieces I and I+/I. In Type III, U; is isomorphic to the additive group
Hom(I+/I, I). In Type II, Uy is a central Z-extension of Hom(I+/I, I). The quotient has the
structure I'y = O(I+/I) x GL(I). These exact sequences play an important role in the toroidal
compactifications (Sec. 5B).

Definition 4.11. A partially marked K3 surface (Y, o) is admissible if [Q]: I ® R — C sending
i+~ [Q] - i is injective for any non-zero two-form Q on Y. Similarly, define

D' :={z € D|I®R -5 C is injective}.

Note that D! C D is an open subset. The period maps described in Sec. 4A can be understood
as Carlson’s extension class [Car85] for the limit mixed Hodge structure of Xy and D! is the domain
of Hodge structures on L3 for which I happens to also define a mixed Hodge structure.

Proposition 4.12. There is a fine moduli space of admissible, partially marked, analytic K3
surfaces, admitting a period map to D' /U;.

Proof. The partial markings of a K3 surface Y are identified with Uj-orbits of the set of markings
of Y. The fine moduli space M of marked analytic K3 surfaces admits a period map P: M — D,
and if the partial marking associated to a marked K3 surface (Y, o) is admissible, then its image
under the period map lies in D!. The action of U; by post-composition on ¢ is free on P~1(D)
(as it is free on D!). The quotient is a non-Hausdorff complex manifold. By the Torelli theorem,
the universal family descends to a universal family of partially marked K3 surfaces. ]

Proposition 4.13. In Type III, there is an open embedding D! /U; — I+/I @ C* into a 20-
dimensional algebraic torus. In Type II, there is an open embedding D' /U; — Ar where A; —
I/ ® & is a punctured holomorphic disk bundle.

Sketch. Though the period domain D of analytic K3s is not Hermitian symmetric, these embed-
dings are defined in exactly the same way as the “torus embeddings” of the unipotent quotients
of Hermitian symmetric domains [AMRT75]. In Type III, one realizes D! as a tube domain inside
C?°, The translation group U; = Hom(I+/I,I) acts by translations by Z?° on C?° and so the
quotient D! /U; embeds into (C*)2°.

In Type II, D! is contained in an upper half-plane bundle, fibered over the total space of a
C'-bundle over C\R. The central Z acts on the upper-half plane bundle by fiberwise translation.
Quotienting gives a punctured holomorphic disk bundle over the C*¥-bundle. Then Hom(I+/I,I)
further acts on the C'8-fiber over 7 € C \ R by translation by (Z @ Z7)'®. So the quotient D! /U;
embeds into a punctured holomorphic disk bundle A; — I+ /I ® E. O

The unipotent quotient of Dy, embeds into D! /U; for all M. Let D(I) := D! /Uj.
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Definition 4.14. Define an enlargement D(1) < D(I)* as follows: In Type III, it is the closure
of D(I) in the toric variety Ty extending the torus I+ /I ® C* whose fan consists of the unique ray
R>oA. In Type I, it is the holomorphic disk bundle A; extending the punctured disk bundle A;.

In Type III, the boundary divisor in D(I)* is isomorphic to 6+ /{5, \}** @ C*. Since §*/J is
unimodular, this torus can be identified with Hom(A, C*). Similarly, the added boundary divisor
in Type II is naturally isomorphic to the base I/l ® & of the disk bundle, which is identified with
Hom(A, &) again because I+ /I is unimodular.

Definition 4.15. Let X — S be a family of d-semistable Kulikov surfaces of Types I + II or I
+ III over a smooth base S. Suppose furthermore that the discriminant locus A C S is a smooth
divisor. A mized marking o is a partial marking of the family X* — S\ A of smooth fibers together
with a compatible (Prop. 4.9) marking of the equisingular family Xy — A of Kulikov surfaces.

Theorem 4.16. Let (X — S,0) be a mized marked family of admissible surfaces as in Definition
4.15. The period map ¢¥: S\ A — D(I) extends to a morphism

P S — DA

sending the discriminant A to the boundary divisor Hom(A, C*) or Hom(A, E). Furthermore, @|A
is the period map for the family of marked Kulikov surfaces Xo — A, as in Definition /.6.

Proof. This theorem is essentially the same as [FS86, Thm. 5.3]. The primary tool is the nilpotent
orbit theorem [Sch73, Thm. 4.9]. O

For an M-quasipolarized d-semistable Kulikov surface Xy, we fix an embedding M < ker(¢x,) C
A(Xp). In the M-quasipolarized case, the period point Hom(A, C* or E) descends to a period
point in Hom(A/M, C* or E) which we will also denote tx, by abuse of notation. More pre-
cisely, a primitive sublattice M C A @ I is the same as a not necessarily primitive sublattice
M C A plus a homomorphism ¥: Tors(A/M) — C* or E. The period point belongs to the coset
of Hom(A/M®**,C* or E) of points with 9 x,|tors(a/ar) = V. The discussion of the period map
in the above sections holds, replacing everywhere H?(X;) with j(M)*, Lgs with M+, D! with
D, := DI N Dy, Ur with Uy NT, I+ with I3, A with A/jo(M), Ag with Ag/M. Recall that T'
is the subgroup of O(Lk3) acting by the identity on M.

Proposition 4.17. D{, =Dy, for any M.

Proof. An z € Dy, \ D!, would satisfy z - i = 0 for some nonzero isotropic vector i € I ® R. But
then Re(x), Im(z) span a positive definite 2-plane in i1,, ® R which is impossible since M+ has
signature (2,20 — 7). O

The moduli space of partially marked, M-quasipolarized K3 surfaces admits a period map to
the torsion translate of a subtorus Dp;(I) := D, /Uy NT C D(I) which is generically one-to-one.
A mixed marked M-quasipolarized family admits a period map to the toroidal extension

Dy (1) =Dy (1) C D).

Notation 4.18. We henceforth write 1 JJQ . simply as I+ whenever it is clear from context that we
are working with M-quasipolarized surfaces.

5. COMPACTIFICATIONS OF ARITHMETIC QUOTIENTS

5A. Baily-Borel compactification. By Theorem 2.11, the coarse space of M-polarized (ADE)
K3 surfaces Fs is the quotient of the period domain

Dy ::P{xEML®(C’m-x:0,m-E>O}

by the arithmetic group I'. In this capacity, the space Fj; = Dy /T has a Baily-Borel compactifi-
cation [BB66], which we now describe.
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Remark 5.1. Note that Dy, = D}, UD?, has two connected components and so Fj; may have
either 1 or 2 connected components, depending on whether or not I' contains an element inter-
changing the two components. To simplify (but abuse) notation, we refer to D}, and its stabilizer
I'' ¢ T as Dy and T, respectively.

Definition 5.2. The compact dual is D, := P{x € M+ @ C|z -2 = 0}. It is the compact
hermitian symmetric domain containing D, as an open subdomain.

Definition 5.3. A boundary component of Dy, is a maximal connected complex submanifold of
the boundary 0Dy C D§,. The rational boundary components B; are in bijection with primitive
isotropic lattices I ¢ M~ via

Bj = {z € 9Dy | span{Rez,Imz} = I @ R}.

We have By = H when rkI = 2. We have By = {pt} when rk = 1. We call these Type II and
IIT boundary components, respectively. The rational closure of Dy is ID)L = Dy Uy Br C DY,
topologized at the boundary points using horoballs as a neighborhood base.

Theorem 5.4 ([BBG66]). The quotient F];B := D}, /T is compact and has the structure of a
projective variety, and the projective coordinate ring is the ring of modular forms for T.

The image of a boundary component B in FijB is isomorphic to By/Stabr(I) and so is either
a point when rk I = 1 or a modular curve when rk I = 2.

—BB
Definition 5.5. The 0- and 1-cusps of F'), are the zero- and one-dimensional boundary com-
ponents, respectively. They are, respectively, in bijection with I'-orbits of rank 1 and 2 primitive
isotropic lattices I ¢ M.

Proposition 5.6. Let X — (C,0) be an M-quasipolarized Kulikov model. The extension of the
period map C* — Fyy to the Baily-Borel compactification sends 0 into the cusp associated to
the monodromy lattice I. In Type II, the j-invariant j(D;1+1) of a double curve agrees with the
j-invariant j : By /Stabr(I) — H/SLy(Z) = A} of the corresponding image point.

Proof. This well-known fact follows directly from the asymptotics of the period map and the
nilpotent orbit theorem, as in Theorem 4.16. ]

5B. Toroidal compactification. The original source on this subject is [AMRT75]. The reference
[Nam80] in the case of Siegel space I = H,, is particularly clear. The following well-known theorem
is key to constructing toroidal compactifications:

Theorem 5.7. Let By be a rational boundary component of Das. There exists a horoball neigh-
borhood N D By preserved by Stabr(I) and an embedding

N]/Stabr(l) — ID)M/F where Ny :N[\B[.

So a punctured neighborhood of a Baily-Borel cusp can be constructed locally as a quotient
by the parabolic stabilizer Stabr(I). Let 0 — Uy — Stabr(I) — I't — 0 be the exact sequence
associated to the unipotent radical Uy (4.10). Then N;/U; < Dp(I) = Dy /Ur has an open
embedding into the unipotent quotient. The Levi group I'; has a residual action on both.

Definition 5.8. Let [ = Zd be a rank 1 isotropic lattice. Let Cs C 6+ /5 ® R denote a connected
component of the positive norm vectors and let C’;‘ be its rational closure: the union of Cs with
all rational rays on its boundary.

Definition 5.9. A T'-admissible collection of fans § (or for short, fan) is, for each I = Z4, a fan Fs
with support C;', such that the collection {Fs} is T-invariant, with finitely many orbits of cones.

By “fan” §s we mean a decomposition into rational polyhedral cones, closed under taking
faces and intersections, and locally finite in the positive cone Cjs. Infinitely many cones meet
at rational rays on the boundary of C’gr. Recall, when rk I = 1, there is a “torus embedding”
DJW(I) — (SJ'/(S ®C* (413)
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Construction 5.10. The toroidal compactification F]SW associated to a fan § is built as follows:
Take the closure N;/U; < N;/Ur C X (Js) in the toric variety containing 6+ /§ ® C* associated
to the fan Fs. Then quotient by I'; to get an analytic space Vi := (N;/Ur)/T';. This is possible
by T'-invariance of §. Note that V; contains an open subset

(N[/UI)/F[ = N[/StabF(I) — ]DM/F
Define the Type III extension to be the gluing of Fy; = Dy, /T to V; along this open set, ranging
over all I'-orbits of rank 1 isotropic I.

If I = 76 @ Z) is isotropic of rank 2, take the closure N;/U; C Dy (I)* in the projective line
bundle over I+ /I ® £ (4.13) and define V; as above. The Type II extension is the gluing of Fi
with V along their common open subset (N;/Uy)/T'; = N;/Stabr(I).

The toroidal compactification F‘L := Fyy Ur V7 is the gluing of the Type II and III extensions.

Let § € I = Z6 @ Z\. The analytic structure where the corresponding Type III and II loci meet
is described by the Mumford construction [Mum72] applied to a periodic, rational polyhedral tiling
Js.1 of I+/I ® R. The polyhedral tiles are defined as follows: Quotient the cones of Fs passing
through RT\ C C;', viewing I+/I as the subquotient A*/\ of 6+ /5. Geometrically, I+/I @ R
is identified with a small horosphere through A (minus \) in the hyperbolic space PCs. The
projectivized cones of Fs decompose this horosphere in a Stabr;(A)-invariant manner.

5C. Semitoroidal compactification. The papers [Loo85, Loo03] are the only references for
this section. Semitoroidal compactifications are determined combinatorially, unify the toroidal
and Baily-Borel compactifications, and form the smallest class of compactifications closed under
taking normal images of toroidal compactifications (proven in Theorem 5.14 below).

The combinatorial input is similar to toroidal compactifications, with two differences:

Definition 5.11 ([Loo03, Def. 6.1]). A semifan § requires the same data as a fan (Def. 5.9), but
we allow the cones in §5 to be only locally polyhedral in Cjy.

We additionally require “compatibility” at each 1-cusp: Let § € I be a primitive integral vector
in a rank 2 isotropic lattice and let Fs5 denote the corresponding polyhedral tiling of I+/I ® R.
The tiles of §5,1 are of the form B x (Hrs; ® R) for bounded polytopes B and Hrs C IL/I a
primitive sublattice. We require that H; s = H; is independent of choice of §.

Example 5.12. Any fan is a semifan. The tiles of §5  are bounded polytopes, so Hy = {0} for all

I. At the other extreme, the semifan § for which §5 = {C;} is locally finite and the compatibility
condition holds: Hy s = I*/I for all § € I. The resulting compactification is Fﬁ/l = F?MB.

‘We now compile the key results we need about semitoroidal compactifications:

Theorem 5.13. There is a normal compactification Fﬁ whose boundary strata are in bijection
with T-orbits of cones of § [Loo03, Thm. 6.7]. The stratum Str, corresponding to a cone o C Fs
is finite quotient of 5+ /{5,0} @ C* in Type III, and a finite quotient of I+ /{I, H;} ® & in Type II
[Loo03, p. 552]. For any semifan & which refines §, there is a morphism

76 J—

Fy =TS,
mapping strata to strata [Loo03, Lem. 6.6]. Given an inclusion of cones o C oz the map of
corresponding strata is induced by the natural quotient map on tori.

Unlike for fans, a Type III cone o of a semifan may have an infinite stabilizer Stabp,o. Still,
the corresponding stratum is a finite quotient of a torus.
A simple way to visualize a semifan or fan § is as follows: For each I'-orbit of isotropic vector
§, associate a cusped, real-hyperbolic orbifold My := H9~™*M /T's where H'9~*™*M = PCj is real-
hyperbolic space. The cusps of My correspond to I's-orbits of isotropic rays in C;r. A semifan
§s gives rise to a finite decomposition of My (for all §) into metrically convex, rational, locally
polyhedral cells, compatible with the hyperbolic cusps. For a fan, these cells are polyhedra, while
for a semifan, they may have nontrivial topology.
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We now prove a key theorem characterizing semitoroidal compactifications:

Theorem 5.14. Let F be a Type IV arithmetic quotient and let F be a normal compactification
of F'. The following are equivalent:

(1) F sits between some toroidal and the Baily-Borel compactification: PNy N
(2) There exists a semifan § for which F = .

7P

Proof. The implication (2) = (1) follows from refining § to some fan &.

Now we prove (1) = (2). Define an equivalence relation o, ~ o2 on maximal cones of &
generated by: o1 ~ o9 if 07 and o9 share a codimension one face 7 such that the corresponding
1-dimensional boundary stratum Str, is contracted by m. Our strategy is to show that the curves

contracted by any birational morphism m: F® & F over B0 are algebraically equivalent to a
union of 1-dimensional torus orbits. So the “toroidally definable” equivalence relation ~ captures
everything one needs to know about the contracting morphism m.

Define a decomposition of C into a collection of maximal dimensional sets

0] := Ugno, @
We claim that the [og] form the maximal cones of some semifan §. The I-invariance is automatic,
so it suffices to show that [og] satisfy the semifan axioms, including the compatibility condition
(Def. 5.11) over the 1-cusps.

Begin with a Type III cone 7 € &5. The stratum Str, C ¥ is the Stabr, (7)-quotient of the
toric variety X (®s/7) associated to the quotient fan. Consider the Stein factorization X (&s/7) —
Z. — m(Str,). It is proved in [BMSZ18, Lem. 2.3.4] that the target of a morphism from a proper
toric variety to a normal variety (Z, here) is automatically toric and with the morphism also toric.

Since the maps Z, — m(Str,) and X (&;/7) — Str, are finite, the curves contracted by Str, —
m(Str,) are exactly those that lift to curves contracted by X(®s/7) — Z.. So the equivalence
relation ~ on the maximal cones containing 7 is induced by the morphism of fans corresponding
to the toric morphism X(®s;/7) — Z,. Thus the cones [og] locally form a fan in a tubular
neighborhood of 7 C C’gr. In particular, they are locally polyhedral and convex at their boundary.
So the [o¢] define a semifan within Cj.

Next, we examine the Type II locus. Since F has a morphism to FBB, we conclude that m
induces a fiberwise morphism over the modular curve 1-cusp. Let j be a point in the 1-cusp of
F°P. The fiber over j in any toroidal compactification is a finite quotient of I+/I ® E; so there
is a morphism I+ /I ® E; — Fj induced by m. In analogy with the Type III case, take the Stein
factorization of this morphism I+/I ® E; — Z; — Fj. Since the normal image of an abelian
variety is an abelian variety, this map is the quotient by a sub-abelian variety H; ® Ej.

The contracted curves are generated, up to algebraic equivalence, by h ® E; for h € Hy. Taking
the limit

j — the 0-cusp of 7P associated to 9,

the elliptic curve h ® E; breaks in the Type III locus to a cycle of rational curves, according to the
Mumford degeneration discussed after Construction 5.10.

Applying the torus action to the cycle of rational curves lim; h ® E; we can break it further into
a cycle of contracted 1-dimensional boundary strata connecting 0-dimensional boundary strata of
Type III. So the equivalence relation ~ on maximal cones induces a polyhedral decomposition of
I+ /I ®@ R whose tiles are fixed under translation by h, and in turn by H;. Conversely, consider an
h € I't/I fixing all tiles in the polyhedral decomposition H; s of I*/I induced by the cones [oy).
This h corresponds to a contracted cycle of rational curves, which deforms to a contracted elliptic
curve h @ E;. Hence h € Hy. Thus Hy = Hj; is independent of §. So there exists a semifan §
whose maximal cones are [og].

Since § is a coarsening of &, there is a morphism F® RN FS and the above arguments prove
that the curves contracted by n are exactly those contracted by m. We conclude by Zariski’s main

theorem that I = fg, because F is normal. O
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6. MODULI OF STABLE SLC PAIRS

6A. Canonical choices of polarizing divisor. Let Fy; be the moduli stack of M-quasipolarized
K3 surfaces. Fix a class L € M, not necessarily primitive, which defines a relatively big and nef
line bundle £ — X — Fj; on the universal family, canonical up to twisting by line bundles pulled
back from F};. Since £ is big and nef on every fiber, h*(X,, L;) = 0 for i > 0 for all s € Fj,;. By
Cohomology and Base Change, the pushforward of £ from the universal family defines a vector
bundle of rank 2 + $L? on Fj;, canonical up to twisting by line bundles, cf. [Kol23, Cor. 2.69).
Let P, denote its projectivization, a P9-bundle over the stack, where g = d + 1.

Definition 6.1. A canonical choice of polarizing divisor is a rational section R of the projective
bundle P.. Alternatively, it is an ample divisor R on the generic K3 surface.

Let U be the regular locus of this rational section. The key definition of the paper is:

Definition 6.2. A canonical choice of polarizing divisor R is recognizable for Fys if every M-
quasipolarized Kulikov surface Xy of Type I, II, or III contains a divisor Ry C X which, for any
M-quasipolarized smoothing X — (C,0) with C* C U, has the property that Ry is the flat limit
of Ry C Xy, t # 0, up to the action of Aut®(Xp).

Here Aut’ (Xo) is the connected component of the identity of the automorphism group, which is
always trivial in Type III, and is isomorphic to (C*)*~1 where k — 1 is the number of intermediate
elliptic ruled components, in Type II.

We use the term “smoothing” to mean specifically a Kulikov model X — (C,0). Roughly,
Definition 6.2 amounts to saying that the canonical choice R can also be made on any Kulikov
surface, including smooth K3s, at least up to Aut”(Xp).

Proposition 6.3. Let (X*,R*) — U be the universal family of pairs. If R is recognizable, it
extends to a flat family of pairs (X, R) — Fy;. That is, R defines a regular section of Py — Fy,.

Proof. Let 0 € Fy; be in the complement of U. Choose any curve C' C Fj, containing 0 for
which C* = C\ 0 C U. Then X — C is a Type I Kulikov model, for which X, is a smooth
M-quasipolarized K3 surface. By assumption, there is a divisor Ry € |L| on Xy which is the flat
limit of the curves R; for ¢ # 0. We may extend the section R* : U — ]P)g‘U set-theoretically by
declaring R(0) = Ry. This extension is algebraic when restricted to any curve in U U {0}. Since
Fj; is normal, we conclude that the rational section R* extends over 0. O

This proposition only concerns Type I Kulikov models. The properties of recognizability in
Types IT and III is discussed in Section 8.

6B. Compact moduli of stable pairs. We refer the reader to [Kol23] for a definitive account.
An sle (or KSBA) stable pair (X, B =Y b; B;) consists of a projective variety and a Q-divisor which
has semi log canonical (slc) singularities such that the divisor Kx + B is ample. A particular case
is a log Calabi-Yau pair (X, A + €R) such that A is reduced and log canonical, 0 < ¢ < 1,
Kx + A ~g 0 and R is ample, not containing any log centers of A. In our notations, R is a
polarizing divisor. By [KX20], in any dimension the irreducible components of the moduli of log
Calabi-Yau pairs with a polarizing divisor are projective. Sections 6.4 and 8.3 of [Kol23] are closely
related to our setup.

The situation for K3 surfaces (note A = 0) is easier because if (X, eRp) is the stable limit of
a one-parameter family of K3 pairs (X¢, €eR;) then the divisor Ry is, perhaps surprisingly, Cartier
and not merely Q-Cartier. Indeed, the pair (Xo, eRp) is the central fiber of the stable model of a
divisor model we defined and discussed in Section 3B. We state the main theorem for the moduli
functor we need in this paper. The details are in given in [AET19, Sec. 3].

Definition 6.4. For a fixed degree e € N and fixed rational number 0 < € < 1, a stable K -trivial
pair of type (e, €) is a pair (X, eR) such that
(1) X is a Gorenstein surface with wx ~ Ox,
(2) The divisor R is an effective, ample Cartier divisor of degree R? = e.
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(3) The pair (X, eR) has semi log canonical singularities.

Definition 6.5. A family of stable K-trivial pairs of type (e, €) is a flat morphism f: (X,eR) — S
such that wy ;g >~ Oy locally on S, the divisor R is a relative Cartier divisor, such that every fiber
is a stable K-trivial pair of type (e, e€).

By [AET19, Lem. 3.6], for a fixed degree e there exists an ey(e) > 0 such that for any 0 < € < ¢
the moduli stacks M®'(e, €g) and M®(e, €) coincide.

Definition 6.6. A family of stable K-trivial pairs of degree e is a family of type (e, €p), with
€o(e) chosen as above. We will denote the corresponding moduli functor by MS'. For a scheme S,
MEle(8) = {families of type (e, eo(e)) over S}, with the equivalence relation being S-isomorphisms
of the family X — S preserving R.

Proposition 6.7 ([AET19, Prop. 3.8]). M& is a Deligne-Mumford stack of stable K -trivial pairs.
We denote the coarse moduli space by Mz,

Definition 6.8. Let N € N. The moduli stack Py 24 parameterizes proper flat families of pairs
(X, R) such that (X, L) is a polarized K3 surface with ADE singularities and a primitive ample
line bundle L, L? = 2d, and R € [NL| is an arbitrary divisor. One has R? = 2dN2. In particular,
one defines Paq := P 24.

If we take eg(e) as above then the pair (X, e R) is stable. Obviously, the stack P . is fibered

over the stack Faq with fibers isomorphic to P4V *+1. The automorphism groups of stable pairs are
finite, and it is easy to see that Py 24 is coarsely represented by a scheme Py o4.

Definition 6.9. One defines Py 24 (resp. Pp.24) to be the closure of the coarse moduli space
Py 24 (resp. stack Py.aq) in MS' (vesp. MS€) for e = 2dN2.

For K3 surfaces polarized by a lattice M C Pic X, choose a primitive vector L € M with L% > 0.
Then the substack Fy; C Foq parameterizing M-polarized K3 surfaces inside of ZL-polarized K3
surfaces has dimension 20 — rank M. A canonical choice R of polarizing divisor over a Zariski
open subset U C Fys (or equivalently Fy, as in Def. 6.1) defines an embedding of U C Py 24 if
Re|NL|.

Remark 6.10. We should choose U to avoid the non-separated locus of Fj, to ensure that
U C Pn,24- This embedding exists on the stack level. For instance, on the stack F3 of degree
2 K3 surfaces, there is a nontrivial generic inertia group Zs. Then R must be preserved by the
involution, and defines an embedding of stacks U C P 24.

i —R N —=R .
Definition 6.11. Let F,; denote the closure of U in Py 24 and let F'); be its coarse space.

ops . . —=R .
Proposition 6.12. If R is recognizable, F; contains Far as an open substack.

Proof. By Proposition 6.3, the choice of divisor R extends to all of Fj, when R is recognizable.
Taking the relative stable model of the universal family of pairs (X, R) — F}; gives a classifying

. —=R . . .
morphism Fy, — F; which necessarily factors through the separated quotient Fyy. O

Theorem 6.13 ([AET19, Thm. 3.11]). Py 24 and thus also Ff/[ are projective.

7. A-FAMILIES

The goal of this section is to construct “A-families” of Kulikov models, both unpolarized and
M-quasipolarized, of a fixed combinatorial type, and to describe the birational modifications which
relate them. These are families of Kulikov models, which complete any one-parameter degeneration
with monodromy invariant A and play a critical role in the main theorem of [FS86]: two Kulikov
models with the same \ are related by Atiyah flops and topologically trivial deformations.

Some improvements on loc.cit. are made: We construct families for which the boundary period
mapping is an isomorphism onto the period torus Hom(A,C* or &), as opposed to simply an
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isogeny. Also, we globalize the main theorem of [FS86]: two A-families are related by certain
global birational modifications (Thm. 7.19, Thm. 7.28). These global modifications are key to
proving that different formulations of recognizability are equivalent (Sec. 8).

Unlike Kulikov models, which depend on continuous parameters, the A-families depend only on
combinatorial parameters, and thus are countable in number. Similar families of Kulikov surfaces
previously appear in work of Olsson [Ols04]. See Remark 7.35 for a comparison with our version.

7A. Deformation spaces of Kulikov models. We recall the description of the universal de-
formation of a d-semistable Kulikov surface Xy given in [Fri83b, Thm. 5.10], when (Xo)sing is
connected. The deformation space S U T has two smooth components. The component S is
smooth and 20-dimensional, with a smooth, divisorial discriminant locus A. The general fiber over
s € S is a smooth K3 surface. The other component 7" has large dimension rk K(XO), and consists
of the topologically trivial deformations of Xy. These result from deforming the gluings of double
curves or the moduli of anticanonical pairs (V;, D;) and are generally not d-semistable. A =SNT
consists of the d-semistable, topologically trivial deformations of Xy. The universal family X — S
is topologically a product X ~gix A x X with a fixed Kulikov model X — (C,0), and has smooth
total space. In particular, X — S admits a mixed marking (4.15) over a contractible S.

As for deformations of smooth K3 surfaces, the local period map on S is understood:

Theorem 7.1. Let X be a d-semistable Kulikov surface. Supposet >0, ort =0, k =1 (Sec. 4B).
The period map S — D(I)* is an order k cyclic cover, branched along the boundary divisor.

Proof. In Type III, this is [FS86, Thm. 5.3]. The Type II case is similar [Fri84]. |

By Theorem 7.1 we can ensure that X — S is universal at all s € S: A topologically trivial
family Xy — A of d-semistable Kulikov surfaces is a fiberwise universal deformation if and only if

the period map to the boundary divisor Hom(A, C* or £) € D(I)? is a local isomorphism.

Remark 7.2. In the remaining case ¢t = 0, k > 1 the singular locus of Xy is disconnected, making
it possible to independently smooth each double curve. The d-semistable deformations of X, have
dimension 19 + k and fiber over C*, with each coordinate hyperplane parameterizing deformations
which do not smooth a given double curve of Xj.

In this case, we define S as the inverse image of the line C(1,...,1) C CF. It gives a slice
transverse to the natural action of Aut’(X,) = (C*)*~'. The discriminant locus A C S is the
inverse image of 0 € CF and is still the universal d-semistable topologically trivial deformation,
while the general fiber is a K3 surface that simultaneously smooths all & double curves.

Proposition 7.3. Let Xo — Ay be a topologically trivial family of marked Kulikov surfaces for
which the period map Ay — Hom(A, C* or £) C D(I)* is an isomorphism. There is a smoothing

X()*}X

L

A/\4>5/\

for which the mized period map Sy — D(I)* defines an order k cyclic branched cover to an open
neighborhood of the boundary divisor. The analytic germ of the family along Ay C Sy is unique.

Sketch. The construction parallels that of [ast85, Exp. XIII]. When ¢t > 0, or t =0 and k = 1, we
glue together the 20-dimensional bases of everywhere-universal deformations of the fibers Xy C Aj.
With the mixed markings, these bases either glue uniquely (when k = 1) or uniquely up to the
order k cyclic action permuting the sheets of the period mapping (Thm. 7.1). Taking care to
ensure that the glued base is Hausdorff, the resulting family X — S, smooths Xy — A, and the
germ is unique by local universality. The ¢ = 0, k > 1 case is proven in the same way, by instead
gluing the slices S of the Aut’(Xy) action, see Remark 7.2. O
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7B. The gluing and period complexes. We now explicitly construct families of Kulikov sur-
faces Xy — A, satisfying the hypotheses of Proposition 7.3, developing ideas in [FS86, Sec. 4].
We assume here that X = J(V;, D;) is Type III. For notational convenience, we drop the index
i when analyzing an individual component.

Each component (V, D) admits a toric model (V, D) L (V,D) % (V,D) where f is a sequence
of corner blow-ups and g is a sequence of internal blow-ups (3.9). Note that f has no moduli
whereas g can be varied by moving the non-nodal points blown up on the ﬁj. Note that unless
(V, D) is itself toric, the toric model is non-unique.

Definition 7.4. An ordered toric model of (V,D) is an orientation of the cycle D and a toric
model f,g as above, together with a factorization ¢ = 79 o --- o 7 into internal blow-ups. Here
Q = Q(V, D) is the charge (3.7). An ordered toric model of X is an orientation of I'(Xj), a toric
model of each component (V;, D;), and a total ordering of the 24 internal blow-ups.

An ordered toric model of X orients each cycle D; C V; and thus gives a way to label the nodes
on the component D;; C D; as 0 and oo. But on the double curve D;; C D; the corresponding
nodes have the opposite label, so the non-nodal points of D;; and Dj; are inverse torsors for C*.

Construction 7.5. Fix an ogiered toric model of X and fix copies of the toric surfaces (V;, D;).
For a given toric surface (V, D), construct a family

V,D) % ... I (V, D) x (C)°

of anticanonical pairs over (C*)@ by freely varying the points blown up by 7. There exists a
simultaneous contraction (V,D) — (C*)? which contracts the corner blowdowns of f fiberwise.
So we have families (V;, D;) — (C*)% for all 4.

Now, for each i, choose some fiber (V;, D;) of this family and glue D;; C D; to D;; C D; by a
map identifying the appropriate nodes of D; and D;. The set of such gluings is a torsor over C*.
Varying all such gluings, we get a family of Kulikov surfaces

AFE = TL(CH)% x (C)7 = (€77

whose fibers are not necessarily d-semistable. Here E is the number of double curves of Xy. We
call this the gigantic gluing family of Kulikov surfaces associated to the ordered toric model of Xj.
It is globally topologically trivial by construction.

Choose an origin of the open torus orbit in the fixed toric surface (V;, D;). This choice defines
a distinguished origin point of any toric boundary component and thus defines an isomorphism
of the C*-torsor associated to any internal blow-up or any edge-gluing with C*. So such a choice
identifies the base of the gigantic gluing family with Hom(Gy, C*) where

24
Go = Dj—1 ZEiji & @Kj LDy

is a free Z-module encoding the blow-up points of the 7, and the gluing maps. Here the index ijk
indicates that F;;; meets the component D;; and is the kth internal blow-up in the ordered toric
model. Note that D;; range only over the curves corresponding to actual double curves appearing
in Xy and not to boundary components blown down in (171, 51)

Consider now automorphisms. Define G, := @, M; with each M, = 72 the character lattice of
the toric surface (V;, D;). The set of choices of origin points in the open torus orbit of (V;, D;) is
naturally a torsor over Hom(G;,C*). Fixing the family X&® but varying the chosen origin point
defines an equivariant action of Hom(G;, C*) on Xogig — Hom(Gy, C*) by isomorphisms. On the
base, this action is determined by a map of Z-modules Gy — G .

Definition 7.6. The gluing complex G is the two-step complex G a—g> Ggi.

We describe the map dg explicitly. An orientation of the cycle D; (and thus of D;) gives a
canonical identification w; : M; — N; sending v — det(v, —).
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Proposition 7.7. We have
9g(Bijk) = w;i ' (vij),  9g(Dyg) = wy  (vig) +wj " (vgy).

Here vij € N; in the cocharacter lattice of (Vi, D;) is the primitive integral vector in the fan of
(Vi, D;) corresponding to the component D;;.

Proof. The action of a change-of-origin ¢; € Hom(M;,C*) on the induced origin point of D;; is
given by ¢;(w; 1(7)”)). This factor scales either the gluing parameter between D;; and Dj; or the
position of any blow-up FEj; on the edge ﬁij. O

Given Proposition 7.7, it is convenient to identify G; = €, N; using the isomorphisms w; L on
each summand, so that dg(E; ;) = vi; and 0g(D;;) = vij + vji.

Definition 7.8. The period compler P of a Kulikov model is the two-step complex Py Or, P
where Py = @, H*(V;), P1 = @, H*(Di;), and p is the signed restriction map with respect to
an orientation of the edges of I'(Xy).

Theorem 7.9. Let Xy be a Type Il Kulikov surface with an ordered toric model. The gluing
and period complexes are quasi-isomorphic as complexes of Z-modules. In particular H°(G) =

HY(P) = A and K := H'(G) = H'(P).

Proof. We first record some exact sequences of Picard groups arising from the basic results on
smooth projective toric surfaces:

Lemma 7.10. Write (V;,D; = Ej D;;) as (V,D = >>D;). For each component, one has the
following exact sequences:

0 — PicV — @ZD; - N — 0, L— > (L-D;)D;
0— PicV = @®ZD,; ® ZEjy = N =0, L~ S(L-D;)D,; + (L - Ejx)Ejp
0— PicV = @®ZD,; ® ZEjy - N =0, L~ S(L-D;)D,; + (L - Ejx)Ejp
where
(1 L,Ef are the line bundles on V,fﬂv, and L = g*Z.

)
(2) In the last line we take L = f*L
(3) ﬁL the last line the sum goes only over D; such that D; = f.D; # 0.
(4) Dj = Uj and Ejk = ;.

Notationally reincorporating the dependence on i, and summing these exact sequences, we get
a short exact sequence of two-term complexes:

0 0
0 —— @PicV; ———— ®i<;ZD;; —— 0

| |

0—— @i,jZEij @iil ZEijk e EBiSjZDij EB.N; — 0

| |

0 —— 8N, ®N; 0
| |
0 0

Note that:
(1) The first column is a direct sum of sequences from the previous lemma.
(2) In the first line Op: L; — £ (L; - D;;j)D;; is the signed restriction map.
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(3) In the second column, the first map sends Dij — Dyj; + vyj.
4) In the second line, D;; — D;; + v;; and Dj; — —D;; + vj; if the corresponding edge is
J J J J J j
oriented from ¢ to j. Also, for all ¢ and j, E;ji — vy;.

The commutativity of the diagram follows from D; = fr(D)->2 ik Eigie Since the last complex

7
is acyclic, the complex P is quasi-isomorphic to the second complex . There also is a quasi-
isomorphism G — G. On Gy it maps D;; — D;; + Dj; and E;;; — E;j, and on G it is (0, id). O

Proposition 7.11. The gigantic gluing family Xogig — Hom(Gy, C*) descends along the canonical
surjection Hom(Go, C*) — Hom(H(G),C*). Furthermore, the isomorphism Hom(H(G),C*) =
Hom(A, C*) induced by Theorem 7.9 is the period map of the descended family.

Proof. As noted, Hom(G;, C*) acts by automorphisms on Xé’rig, The action is free and the quotient
can be constructed, for instance, by restricting Xogig to a subtorus of Hom(Gy, C*) which intersects
each orbit of Hom(G;, C*) exactly once.

For the second statement, it suffices to show that the action of regluing on periods is described
by the isomorphism H°(G) — A. By Construction 4.2, regluing D;; or moving the blow-up point
of Ej;i by ¢ € C* can be computed by gluing in V; as the last component. The action is

Uxe(7) = Pk (v) and  x, (7) = FIYFkyx (v) for v € A

This exactly corresponds to the first chain map Py — Q~0 in Theorem 7.9. Thus the map Py — QNO
in Lemma 7.10 is the natural one, H°(P) = H%(G) canonically, and the proposition follows. O

Definition 7.12. Let X be a Type III Kulikov surface with ordered toric model. Define the big
gluing family to be the descended family X} — Hom(A, C*) from Proposition 7.11, for which the
period map is an isomorphism.

Now observe that Hom(A, C*) is the subtorus of Hom(A, C*) corresponding to the d-semistable
Kulikov surfaces. So we define:

Definition 7.13. The gluing family associated to the ordered toric model of Xy is the restriction
of Xé”g to the subtorus Xy — Hom(A, C*) = A. The period map is an isomorphism.

Definition 7.14. The \-family of a Type III Kulikov surface Xy with ordered toric model is the
unique germ X — S of the universal smoothing (Prop. 7.3) of the gluing family Xy — A,.

We delay the construction of A-families in Type II, as some complications arise from the non-
existence of toric models.

7C. The global Friedman-Scattone theorem. We now discuss birational modifications. Let
X — (C,0) be a Kulikov model of Type I, 11, or III.

Definition 7.15. An (M0), (M1), or (M2) modification of X is the flop along a curve E = P! in the
central fiber X. The cases are distinguished by when E N (X¢)sing = 0, when E N (Xo)sing = {pt},
or when E C (Xo)sing, respectively.

We describe the effect of each modification on the central fiber Xj:

(MO0) flops a smooth (—2)-curve in Xy which does not deform to the general fiber. It leaves the
isomorphism type of Xy invariant.

(M1) flops an internal exceptional (—1)-curve E on a component V; C Xy. The effect on the
central fiber is to contract £ C V; and blow up the intersection point £ N D;; on Vj.

(M2) flops a double curve D;; which is exceptional on both components on which it lies. The
effect on Xy is to contract D;; on both V;, V; and to make corner blow-ups on the two
remaining components V;, V. which F intersects.

Notation 7.16. In the book [FM83b], M0, M1, M2 modifications are called Type 0, 1, 2 modifi-
cations, but we find this to conflict with the already existing usage of the word “Type.”
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[FS86, Thm. 0.6] states that any two Kulikov models with the same (k,t) are related by MO,
M1, and M2 modifications and topologically trivial deformations. We require an analogue of this
statement on the level of the entire A-family.

Definition 7.17. Let X — S be the A-family associated to some ordered toric model of Xj. Let
B C S, be a smooth divisor and let £ — B be a smooth P!-fibration for which the normal bundle
to & restricts to O(—1) @ O(—1) on every fiber. We call the relative flop along &:

(GMO) if B is the closure in Sy of a Noether-Lefschetz divisor of K3 surfaces with a (—2)-curve,
and £ is the family of (—2)-curves.

(GM1) if B = A, is the discriminant, and £ is a family of internal exceptional curves meeting a
relative double curve D;;.

(GM2) B = A, is the discriminant, and & is a family of relative double curves D;; which is, on
each fiber, exceptional on both components.

In all three cases, the divisor B C S is smooth. Indeed in the GM1, GM2 cases, B is the
(smooth) discriminant divisor A, and in the GMO case it is the closure of Noether-Lefschetz
divisor, a hypersurface subtorus, in the divisorial toroidal extension S .

The relative flop X --» X’ along &£ exists. Indeed, let X — X be the blowup along £. The
exceptional divisor & is a (P! x P!)-fibration over B and £ -0 = —1 for the lines of either ruling.
By [Nak71] there exists the contraction X=X along the second ruling so that X is the blowup
along &' C X', a P'-fibration over B.

Example 7.18. Fix a Kulikov surface Xo = |J V; in the A-family X — S and consider a boundary
divisor D;; C V; of some ordered toric model which receives two internal blow-ups E; and Fs.
On the sublocus of Ay where the two blow-up points coincide, the first (—1)-curve E; breaks into
the union of the (—1)-curve E5 and a (—2)-curve with class Ey; — F5. But the second exceptional
curve Fy never breaks, and thus satisfies the conditions of Definition 7.17(GM1).

Theorem 7.19. Any two \-families X — Sy and X' — S\ with the same (k,t) are related by a
series of GMO, GM1, and GM2 modifications.

Proof. Choose an arc (C,0) intersecting Ay C Sy transversely, mapping C* generically into a
locus of K3 surfaces with Picard group ZL, L? = 2d. Consider the two Kulikov models X — (C, 0)
and X’ — (C,0). Then the punctured families X*, (X’)* — (C,0) are isomorphic as families of
(partially marked) K3 surfaces, and admit polarizations. So by [SB83, Cor. 3.1] there exists a
sequence of M1 and M2 modifications X --» X’ connecting them. Requiring ker¢x, = ZL, no
modification of X supports a (—2)-curve, eliminating the need for M0 modifications.

We now seek to globalize these modifications to a sequence of GM0, GM1, GM2 modifications.
There is no obstruction to globalizing an M2 modification to GM2, since the relative double curve
D;; never breaks. For GM0 and GM1 modifications, it suffices to work component-wise.

Lemma 7.20. Let (V,D) — (C*)? and (V',D') — (C*)? be families of anticanonical pairs (see
7.5) associated to two ordered toric models of a given pair (V, D). Then, there is an isomorphism
in Sg of the bases and a sequence of GMO modifications connecting ¥V and V'.

Here SES is the signed symmetric group, acting on (C*)¥ by permuting and inverting coordinates.

Proof. First, note that M0 and GMO modifications also make sense for anticanonical pairs, by flop-
ping (—2)-curves in the complement V' \ D. Since we will only be making birational modifications
in the complement of the anticanonical cycle, and V' \ D = 1% \ l~), we may as well assume that
(V,D) = (V, D) i.e. there are no corner blow-ups in the toric model.

Fix (V, D) very general, in the sense that it has no (—2)-curves disjoint from D. An ordered
toric model is given by an ordered collection (E4,. .., Eqg) of @ disjoint internal exceptional curves.
It follows from a theorem of Blanc [Blal3, Thm. 1] describing the birational automorphism group
of ((C*)2, 4z A ‘?—;’)—see [HK20, Prop. 3.27] for the interpretation we employ—that any two such
tuples are related by a series of two moves:
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Definition 7.21. An elementary mutation replaces the first exceptional curve (Ey, Es, ..., Eg) —
(E{, Ea,...,Eq) where F; + E} is the pullback of a fiber of a toric ruling on (V, D).

Definition 7.22. An order switch sends (En,...,E;,Eit1,...,EQ) — (E1,...,Eix1, By, ..., EQ).

An elementary mutation of the ordered toric model gives rise to an isomorphism (V,D) —
(V',D’) of the corresponding families: The construction of the family by successive blow-ups

(V,D) % -+ 2 (Y1, D) ™ (Vo, Do) = (V, D) x (C*)@

is unaltered when the blow-up 71 is replaced with the blow-up 7{. The bases B = (C*)? = B’
of the two families of varying blow-ups g = 79 o---omo7 and ¢ = 7g o+ 079 0 7] can thus
be canonically identified. But with respect to this canonical identification, the point blown up
by 7 lives in the inverse C*-torsor to the point blown up by 7. We require the coordinates on
B’ = (C*)? to be compatible with the orientation, so we must invert the first coordinate.

An order switch gives an isomorphism of the families whenever F; and FE;;; meet distinct
components—r; and 7;41 commute. But when F; and F;;; meet the same component, the families
are only canonically isomorphic over the locus where F; and F;;; meet distinct points. Then
(Vit1,Diy1) and the family (V] ,,Dj, ;) constructed with the reverse ordering are related by a
flop along the relative (—2)-curve &1 — & C Vig1 ‘ I fibering over the locus L where the blow-up
points coincide. The remaining blow-ups 7; for j > ¢ + 1 do not interfere with the flop because
Ei+1 — &; is disjoint from the boundary. The order switch permutes two C* coordinates of B.

Thus, we can connect any two families (V, D) and (V', D’) by a series of isomorphisms and GMO0
modifications. The sequence of elementary mutations and order switches connecting (E1, ..., Eq)
to (EY,..., Eg) induces an isomorphism B — B’ valued in 55. O

By Lemma 7.20, two families (V;, D;) of anticanonical pairs associated to ordered toric models
of a given component (V;, D;) C X, are connected by GMO modifications. To globalize an M1
modification along £ C V; we apply Lemma 7.20 to find a sequence of isomorphisms and GMO
modifications until £ = Eg is the last exceptional curve in the ordered toric model. Then £g never
breaks in the gluing family Xy as it is the last blow-up performed on any given fiber. So £g can
be flopped in X. The GMO modifications on the discriminant family Xy extend to the smoothing
X because the relative (—2)-curve &1 — &; deforms over the Noether-Lefschetz divisor B C Sy.

This proves that there exists a series of GM0, GM1, GM2 modifications of X — Sy to a new A-
family X" — S, for which the sequence of modifications restricts to the given sequence of birational
modifications X --+ X'. Again applying Lemma 7.20, perform a sequence of GM0 modifications
until the ordered toric models defining X" and X’ are the same. The theorem follows. O

7D. Type 11 A-families. We construct topologically trivial families of Type II Kulikov surfaces
for which the period map is an isomorphism. It is simplest to construct a family for a single
combinatorial type with (k,t) = (k,0), then just apply GMO0 and GM1 modifications to it.

Proposition 7.23. For each k, there exists a family of Type I Kulikov models Xy — Hom(A, &)
for which the period map is the identity.

Proof. Tt suffices restrict to the kK = 1 as we may otherwise insert k¥ — 1 intermediate components
which are P!-bundles over elliptic curves.

Let D C P? be an arbitrary smooth cubic. Take 18 points p1,...,pg,q1,...,qe € D satisfying
the single condition Ox(6) = Ox(>.p; + Y. ¢). Let D; denote the strict transform of D in
Vi = Bly, . p,P? and let Dy denote the strict transform of D in Vo := Bl,, . ,P? Then
Xo := (V1,D1) U (Va, Ds) is a d-semistable Type II Kulikov surface, even when D; and D, are
glued via an arbitrary translation. This construction produces a 1+ (18 —1) + 1 = 19-dimensional
space of Kulikov surfaces. Respectively, the parameters are the j-invariant of D, the 18 points
Di, q; subject to the single condition, and the translation to glue by.

There is a projective linear automorphism acting by translation on D and sending one 9-tuple
to another (pi1,...,p9) — (P},...,pp) if and only if p, — p; are all equal to a fixed element of
Pic’(D)[3] = Z3. Thus the family of Kulikov surfaces Xy — S gotten by varying the data of D, p;,
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¢;, and the gluing descends to a quotient Xy — S = S /(Z3 x Z3). A straightforward computation
of the period map on S using Construction 4.3 shows that in fact, the fibers of the period mapping
S — Hom(A, &) are exactly the orbits of the Z% x Z3-action. So Xy — S is the desired family. [

Corollary 7.24. In Type II, there is a family X — Sy of mized marked surfaces for which the
period map is an order k branched cover of a tubular neighborhood of the boundary divisor of D(I)*.

Proof. This follows from Proposition 7.3 and Proposition 7.23. ([

Definition 7.25. A Type II A-family is a family of surfaces which arises from a series of GMO,
GM1 modifications of the family X — Sy in Corollary 7.24.

Using techniques of Theorem 7.19, replacing toric models with minimal models, we can construct
a Type II A-family for any fixed combinatorial type of surface Xy via a series of GM0, GM1
modifications of the one in Corollary 7.24.

7E. Quasipolarized A-families.

Definition 7.26. An M -quasipolarized A-family is the restriction of a A-family X — Sy to the
Noether-Lefschetz locus Dy (1)* NSy € D(I)*, such that the embedding M — Pic(X;) induced by
the marking defines an M-quasipolarization on a generic fiber X;.

Notation 7.27. When the context is clear, we reuse symbols Sy, Ay and X, &} for the intersections
Das(1)* N Sy, Das(1)* N Ay and the restrictions of the unpolarized A-families X', Xj to them.

The elements L € M extend to line bundles £ — X which are unique up to twisting by the
relative components Ox (V;) and line bundles pulled back from the base Sy.

Theorem 7.28. Any two M -quasipolarized \-families are related by a series of GM0, GM1, GM2
modifications.

Proof. By Theorem 7.19, the two unpolarized A-families from which they are restricted (see
Def. 7.26) are related by GMO0, GM1, GM2 modifications. These modifications specialize to bira-
tional modifications of the restricted family in all cases, except for a GMO modification associated
to a (—2)-curve S € M. But in this case, the two restricted families are isomorphic before and
after the modification so we simply replace the GM0 modification with this isomorphism. |

We now define analogues of nef and divisor models.

Definition 7.29. A nef A-family is an M-quasipolarized A-family X — S, together with an
extension of L € M to a relatively big and nef line bundle £ — X.

Definition 7.30. A divisor A-family (X, R) — Sy is an M-quasipolarized nef A-family and a
relatively big and nef divisor R € |£| which contains no stratum of any fiber.

Proposition 7.31. Given a nef model L — X of a Type III M -quasipolarized Kulikov model
X — (C,0), there is an ordered toric model of Xq for which L defines a nef A-family L — X — S).

Proof. Write L|XO = (L;) with each L; € Pic(V;). Note that L; is nef for all ¢ and at least one L;
is big. It follows from [EF21, Prop. 1.5] that there exists a toric model of V; for which

fiLi =Y ai;Dij + 3 bijiEijp.
with a;j,b;55 > 0. We order this toric model so that b;jr, > bijk, implies that E;ji, is blown

up after E;;i,. Then L; defines a relatively nef line bundle on the family (V;,D;) because the
only irreducible curves which L; could possibly intersect negatively are (—2)-curves of the form

8= (fi)«(Eijk, — Eijr,) but
Li- B = fiLi- (Eijk, = Eijr,) = bijiy = bij, > 0.
Definition 7.32. An clement (o;) € A is numerically nef if a; is the class of a nef line bundle on

each component V.
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We have that L; defines a numerically nef class on every fiber of the unpolarized gluing family
over Hom(A, C* or £). On the sublocus of the discriminant Ay, where (L;) actually defines a
Cartier divisor, in particular over the locus where ¥ x,(M) = 1, we get a relatively big and nef line
bundle £y — Xy. On the smoothing X — S, the line bundle £; extends to a relatively big and

nef line bundle £, because big and nefness is an open condition. |

Proposition 7.33. Given a nef model L — X of a Type II M-quasipolarized Kulikov model
X — (C,0), there is a nef A-family L — X — Sy extending it.

Sketch. The proof is roughly the same as Proposition 7.31, the key point being to order the
exceptional curves one must successively blow down to get a minimal model of each component
V; C Xo. This ordering comes from the intersection numbers of L; with each exceptional curve. [J

Definition 7.34. A stable A-family (X,eR) — Sy is defined as Projg, @p>0mO(nR) for a divisor
A-family.

Cohomology and Base Change theorem [Har77, I111.12.11] implies that the fibers of a stable
A-family are stable pairs (X, eR).

Remark 7.35. Olsson defined a moduli space closely related to A-families in [Ols04]. The functor
is defined by families of Kulikov surfaces together with a line bundle £ extending a polarization,
such that L™ for some n > 0 gives a morphism fiberwise contracting only finitely many curves.
(Olsson uses the language of stacks and log schemes, so this description is approximate, see [Ols04]
for complete details.) Our A-families are different in a number of ways: our primary focus is
a divisor R, and the corresponding nef line bundle £* = O(nR) usually contracts irreducible
components of the fibers.

8. RECOGNIZABLE DIVISORS

When a canonical choice of polarizing divisor (6.1) is recognizable (6.2), Proposition 6.3 allows
us to extended R* to the whole quasipolarized moduli space Fj;. We now generalize this to A-
families X — Sy. Recall that Aut’(X,) is non-trivial only when t = 0, k > 1, i.e. Xq is of Type II
with intermediate elliptic ruled components. This case for A has a number of subtleties not present
in the general case, and we delay its treatment to Proposition 8.10.

Proposition 8.1. Let X — Sy be an M -quasipolarized \-family. If R is recognizable, then the
Zariski closure of R* is a flat family of curves in X. Conversely, if the canonical choice of divisor
R extends to a flat family of divisors R* on Fy;, then the existence of a further flat extension of
R* over any A-family X implies that R is recognizable.

Proof. Note that R* extends to a flat family of curves in X if and only if the Zariski closure
R := R* C X defines a relative curve, even over the discriminant Ay. Equivalently, R contains
no component of any singular fiber Xy. By recognizability, there is a “candidate curve” Ry C X
which enjoys the following property: if we take any curve (C,0) transverse to Ay at 0, then the
Zariski closure of R*|C* C X|C intersects Xg at Ry. We say that Ry is the flat limit of R* along
the arc C. This follows from recognizability because X ‘ ¢ 1s Kulikov.

More generally, suppose that (C,0) is an arc passing through 0 which has intersection multi-
plicity k& with Ay. This arc defines a degenerating family X — (C*,0) with monodromy invariant
k. Letting ¢t be a local parameter at 0 € C", the local analytic equation of the smoothing is of
the form zy = t* and zyz = t* near the double curves and triple points of Xj.

Such a family admits a standard resolution (Sec. 3A) to a new Kulikov model X[k] — (C¥,0)
whose dual complex I'(Xg[k]) is gotten by subdividing the triangles and segments of I'(X() into
k? triangles and k segments. Then X [k] defines a map (C¥,0) — Sk which is transverse to Ayy.
Here the Kulikov surfaces over the discriminant have the same combinatorial type as Xg[k]. The
boundary divisors Agy = Ay are naturally isomorphic and the arcs (C¥,0) in both Sy and Sk
limit to the same point under this isomorphism.
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Then Xj[k] contains a distinguished curve Ry[k] which is the flat limit of the canonically chosen
divisors over any arc transverse to Agy. So the image Ro[k] under the morphism Xo[k] — X is
equal to the flat limit of the restriction of R* to any arc with tangency k£ to Ay. So the flat limit
of R* over any arc (C,0) not fully contained in Ay lies in the countable union of curves

Uks1 Rolk] € Xo.

Supposing for the sake of contradiction R N X contained a component V;, there would be some
point p € RNV, avoiding the above countable union. Choose some irreducible curve contained in
R passing through p whose projection is not contained in Ay. Taking the image in Sy gives an
arc C passing through 0, possibly singular, which intersects Ay with some finite multiplicity %k for
which the restriction R* o contains p in its Zariski closure. Contradiction.

To prove the converse is easy: Every M-quasipolarized smoothing of X, corresponds to a
transverse arc (C,0) in the base of the A-family X — Sy and so the flat extension R N X defines
a curve Ry satisfying the recognizability property. O

Intuitively, recognizability implies that the limits of canonically chosen curves over arcs (C,0)
approaching the discriminant with tangency k are rigid, for all k. On the other hand, if the closure
of R* contained a surface in Xy, there would have to be some finite tangency order k for which
these limit curves moved.

Remark 8.2. Proposition 8.1 implies that any of the images Ro[k] must in fact equal Ry. In
particular, the divisor Ry C Xy is compatible with base change plus standard resolution.

Definition 8.3. We say that R is (resp. weakly) A-recognizable if R* extends to a flat family of
curves in X — Sy for any (resp. some) ordered toric model of any (resp. some) Kulikov model
with monodromy invariant .

Remark 8.4. The existence of an extension of R* to Fy; can be considered as A-recognizability in
the A = 0 case. Then Proposition 8.1 states that R is recognizable if and only if it is A-recognizable
for all possible A, including A = 0.

We now show equivalence with weak recognizability:
Proposition 8.5. R is A-recognizable if and only if it is weakly \-recognizable.

Proof. A-recognizability clearly implies weak A-recognizability. To show the converse, apply Theo-
rem 7.28: There exists a sequence of GM0, GM1, GM2 modifications connecting any two A-families.
The condition that the closure of R* in a A-family X — S contain no fiber component is a prop-
erty invariant under all three types of modifications, because the center of any such modification
contains no fiber component. Hence weak A-recognizability implies A-recognizability. O

Proposition 8.5 shows that recognizability can be certified by finding some A-family X for which
R* extends, for all A\. The following is a key statement:

Proposition 8.6. Suppose R is recognizable, and let X — (C,0) be a Kulikov model for which Rg
contains no strata of Xo. Then all fibers of the flat extension (X, R) — Sx (Prop. 8.1) enjoy the
same property: R N X, contains no strata of X,.

Proof. We show the Type III case; Type IT works the same but easier. Assume the opposite: for
some p € A the divisor RN X, contains a triple point. Following the argument in [AET19, Claim
3.13], there is an order k base change and (possibly non-standard) simultaneous toric resolution
producing a kA-family X’ — Sy for which the closure of R”C* in X”(C‘p) contains no strata. Here
(C,p) is an arc intersecting Ay transversely at p and R’ C X’ extends (Prop. 8.1) the canonical
choice of polarizing divisor.

The discriminant family A] — Ay is topologically trivial. The divisor R’ intersects some
irreducible component Vp' C XI’, lying over the triple points of X, but it is disjoint from the
corresponding component Vi C X{. The divisor R’ is a section of a line bundle £ = Ox/(R’). It
restricts to line bundles Lj, resp. Lg on V) resp. Vy, with R}, € [L}| and Rj € [Lg|.
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But since Lj restricts to the trivial bundle on V{, the topological triviality implies that L, is
the trivial bundle on V. So R, contains V;f if it intersects it. Contradiction. An alternative
contradiction avoiding reference to the line bundles is that R{, C X[ is a flat family of curves
intersecting Vp’ but not intersecting the corresponding component for a generic nearby fiber. This
would only possible if R; contained a triple point, which is does not. ([l

Next, we study when we have the freedom to multiply A by an integer:

Proposition 8.7. Suppose R is mA-recognizable and the fibers of the flat extension R C X — Sy
contain no strata of any fiber. Then R is n\-recognizable for all n. Conversely, if R is n\-
recognizable for all n € N, then there is an m € N for which the flat extension R C X contains no
strata of fibers.

Proof. First we prove the forward direction, i.e. we have a flat family of curves R C X — S, not
containing strata of any fiber. Let n = mk, and consider the standard resolution X[k] of the global
base change. On any fiber, the map u : Xo[k] — X satisfies the property that the inverse image
Ro[k] := u=*(Rp) is still a divisor. This divisor certifies recognizability for Xo[k]. This would be
false if Rg contained a singular stratum of Xy, as then u=!(Ry) would contain a component.

Hence R is weakly nA-recognizable for all m | n. By Proposition 8.5, we conclude that R is nA-
recognizable whenever m | n. So consider the case m { n. Supposing R were not nA-recognizable,
the limiting divisor Ry would vary depending on the chosen arc (C,0) — S,). But taking a
standard resolution and base change of order r, we would conclude that R is not rnA-recognizable
for an r € N as the base-changed arcs would also produce different limiting divisors. Taking r = m
gives a contradiction.

The reverse direction follows from the existence of divisor models: There exists some Kulikov
model X — (C,0) with monodromy mA for which the limit Ry contains no strata of X,. Taking a
A-family, Proposition 8.6 shows we get a flat extension R C X’ containing no strata of fibers. [

Proposition 8.8. R is nA-recognizable for alln € N if and only if there exists a divisor mA-family
(X,R) = Smx for some m € N.

Proof. The existence of a divisor mA-family (X', R) implies that R is (weakly) mA-recognizable with
R containing no strata of fibers, so Proposition 8.7 implies that R is nA-recognizable for all n € N.
Conversely, choose a divisor model (X, R) — C with monodromy invariant mA. Then Proposition
7.31 (or Proposition 7.33 for Type II) implies that we may choose an ordered toric model of Xy
for which the line bundle Ox,(Ro) extends to a relatively big and nef line bundle £ — X on the
corresponding A-family. By recognizability and Proposition 8.6, the closure R = R* is a section of
L which doesn’t contain strata. We conclude that (X, R) it is a divisor mA-family. O

We also show equivalence with a weaker condition:

Proposition 8.9. Let X — (C,0) x B be a family of Kulikov models over a curve B for which
the discriminant family Xy = Xo X B is constant, and the restriction of X to (C,0) x {bg} gives
a divisor model. Then R is recognizable if and only if Rop := lim¢_o R s independent of b, i.e.
Rop = Rop, C Xo for any such X — (C,0) x B.

Proof. Certainly if R is recognizable, then Ry ; will equal the divisor Ry C Xy certifying recogniz-
ability for any b. Conversely, suppose R is not recognizable. Following the proof of Proposition 8.1,
there must be a one-parameter family of Kulikov models X — (C,0) x B for which Ry varies. It
remains to show that we may assume these Kulikov models are divisor models. To do so, we per-
form a series of GM0, GM1, GM2 modifications (possibly after a global base change and standard
resolution) until the restriction of the modified family X’ to a fixed arc (C’,0) x {bo} is a divisor
model. These modifications do not affect the triviality of the discriminant family Xj = X x B
and the limit curves Ry, still vary on X{ because they cover some component. O

Proposition 8.10. Suppose thatt =0 and k > 1. That is, Xg is a Type II Kulikov surface with
intermediate elliptic ruled components. Then, there exist A-families X — Sy for which Propositions
8.1, 8.5, 8.6, 8.7, 8.8, 8.9 hold.
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Proof. Recall that the smoothing component of such a Kulikov surface X has dimension 19+ and
is fibered over CF, with the kth coordinate axis corresponding to the deformations which smooth
the kth double curve. Imposing an M-quasipolarization reduces the dimension to 19 + k£ — rk M.
Given any smooth arc (C,0) — (C19+F=rkM () —: (S 0) whose tangent direction TpC is transverse
to all the coordinate axes under the projection to (C*,0), the restriction of the universal family to
(C,0) is a Kulikov model, simultaneously smoothing all of the double curves.

The closure R = R* over the full (19 + k — rk M)-dimensional smoothing component of such
an X, could contain an entire intermediate elliptic ruled component. In fact, this does occur:
Applying g € Aut’(Xp) = (C*)¥~! to the arc (C,0) in the deformation space will translate the flat
limit Ry C Xo by g. But a recognizable divisor Ry need not be AutO(Xo)—invariant, see the KU
case in [AET19, Construction 9.27].

Fixing one arc (C,0) < (S,0) gives a flat limit Ry C X, and assuming R is recognizable, the
flat limit R along any other arc (C”,0) < (,0) differs from Ry by an element g € Aut’(X), i.e.
g(R}) = Rp. But then, the flat limit along ¢g*(C’,0) equals Ry. So for any arc transverse to the
coordinate axes of (C¥,0), there is a representative of its Aut®(X)-orbit for which the flat limit
is equal to Ry. Thus, there exists a slice of the Aut®(Xy)-action on (S,0) for which the flat limit
along the slice is always Ry.

This procedure can be performed analytically-locally along the fibers over the equisingular locus
A C S. We call such a slice well-chosen. Summarizing, a well-chosen slice gives a local A-family
over an open set U C Sy around 0 € A for which R* extends to a flat family of divisors R.

Now consider a collection {U;} of well-chosen slices for which U; N A cover the equisingular
deformation space Ay. On the double overlaps U; N U; these well-chosen slices are isomorphic,
by a unique isomorphism preserving the mixed marking, because the isomorphisms on the smooth
smooth fibers are unique (Prop. 4.12). Thus, when R is recognizable, we can glue to form a A-
family (X, R) — Sy on which R extends to a flat family of divisors. The arguments of the above
propositions apply verbatim to such a well-chosen slice. O

We summarize the results proven above:

Theorem 8.11. Let R be a canonical choice of polarizing divisor, defining a divisor R* on the
universal K3 surface over a Zariski open subset U C Fy;. Then the following are equivalent:

(1) Any one-parameter deformation of a divisor model (X, R) — (C,0) keeping Xo constant
in moduli gives rise to a constant limiting curve Ry, up to Aut®(Xp).

(2) R is recognizable.

(3) For all primitive isotropic § and all X € Cf N1/, there is some A-family for which R*
extends a flat divisor R C X.

(4) R* extends to a flat divisor R C X in every A-family.

(5) For every projective class [N, there exists some k € N for which R* extends to a divisor
A-family (X, R) — Skx-

Ift =0, k> 1, the above equivalences hold when the \-family is a well-chosen slice.

Proof. Note that we are allowing the case A = 0, which in conditions (3), (4), (5) amounts to
saying that R* extends to a section of the projective bundle P, — Fj;. Then (2) <= (4) by
Proposition 8.1, (3) <= (4) by Proposition 8.5, and (4) <= (5) by Proposition 8.8. Finally,
(1) <= (2) by Proposition 8.9. O

The conditions in Theorem 8.11 are roughly in increasing order of strength. As such, we use
condition (5) in the proof of Theorem 1, but use condition (1) in the proof of Theorem 2.

Definition 8.12. Let (X,eR) = |J,(V;, D;,€R;) be a stable degeneration of K3 pairs. The slc
combinatorial type is the data of:

(1) The deformation types of the quasipolarized minimal resolutions (V;, D;, L;) of each com-
ponent, where L; = Oy, (R;), and
(2) the combinatorics I'(X) of the singular strata.
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Corollary 8.13. Suppose R is recognizable and let (Y*,eﬁ*) — C*, e < 1 be a family of stable
K3 pairs over a punctured curve C* = C'\ 0. The slc combinatorial type of the unique stable limit
(Xo,€Ro) depends only on the projective class [A] of the monodromy invariant.

Proof. Consider the divisor A-family as in Theorem 8.11(5). The family of canonical models
(X,€R), where X = Proj ®,>0m.0Ox(nR), and R = im R, is the corresponding family of stable slc
pairs. Every one-parameter degeneration with monodromy invariant A has a unique limit in this
family. The combinatorial type of the discriminant family (Xy, Rg) is fixed, with the line bundles
Lo = Ox,(Ro) on every fiber identified by the Gauss-Manin connection because Xj is topologically
trivial. Since the contraction Xy — X is defined only by the line bundle Lo, the combinatorial
type of the stable models is also fixed. O

9. MAIN THEOREM FOR RECOGNIZABLE DIVISORS

9A. Proof of Theorem 1. We have proven in Corollary 8.13 that whenever R is recognizable,
the slc combinatorial type of an M-polarized degeneration depends only on the projective class
[A] of the monodromy invariant. This is the key input which recognizability gives us: from here
we have an essentially birational-geometric argument to show that the KSBA compactifications
associated to recognizable divisors are (up to normalization) semitoroidal.

Theorem 9.1. If R is recognizable, there exists a unique semifan §r for which F?V? — F'y is the
normalization.

Proof. Recall that Fﬁ is, by Definition 6.11, the coarse space of the closure (in Py 24) of the stack
of pairs parameterized by U C Fy,.

We define the interior of Ff/f to be the locus in this closure parameterizing M-polarized ADE
K3 surface pairs (X, eR). Proposition 6.12 implies that this locus is isomorphic to Fyy.

Let ® be some regular fan (cones are standard affine) and let u: FJG\Z --» Fﬁ be the birational
map which is isomorphism on the interiors. Let ¢ = span{\1, ..., Aq} be a Type I1I standard affine
cone of & of maximal dimension. Associated to this cone is an analytic, finite morphism from a
tubular neighborhood N (o) of the toric boundary of

X(o)=C'=C\ & - ®C)y

. —=6 .. . . .
to a neighborhood of the boundary strata of F';,; containing the 0-dimensional stratum associated
o. The finiteness arises from quotienting by the Stabr; (o) action on this toric chart.
—R . . .

Let u(o): N(o) --» F; denote the corresponding meromorphic map. Consider an arc germ
(C,0) C (C%,0) with C* C (C*)¢ contained in the open torus orbit. Since Ff/[ is proper, u(o)
extends uniquely over C* to the origin 0. By Corollary 8.13, the combinatorial type of the stable
model depends only on the orders 7; of tangency of (C,0) with the coordinate hyperplanes of C¢,
since this determines the monodromy invariant of (C,0) to be A = riA; + -+ + rgAq.

The meromorphic map u(o): N(o) --» fﬁ thus satisfies the following conditions:

(1) There is a stratification (by slc combinatorial type) of Fﬁ, for which the extension of u(co)
over any arc (C,0) with fixed tangency orders r; to the coordinate hyperplanes of C? lies
in a fixed slc stratum.

(2) The indeterminacy locus lies in the coordinate hyperplanes, which map by u(c) into the
union of Type III slc strata.

No Type III slc stratum contains a complete curve by Corollary 9.17. We conclude by Lemma
9.18 that there exists a toric blow-up of X (o) eliminating the indeterminacy of u(c). Further
refining, we may assume this toric blow-up is given by a Stabr, (o)-invariant fan. Thus, we may
refine & so that u defines a morphism over the refinement of o. Applying this argument to all
T-orbits of maximal cones ¢ € &, we may as well have assumed that u : Fi --» F; has no
indeterminacy over the Type III extension of Fjy.
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In fact, there is no indeterminacy in the Type II (A2 = 0) locus either: By Theorem 8.11, there
is a divisor A-family (X, R) — Sx. Consider the resulting stable A-family (X,eR) — Sx. The
base S is an order k branched cover of a tubular neighborhood of the boundary divisor in the

. . . . —=6 .
unipotent quotient Dy, (). There is a natural quotient map v: Sy — F; by the action of T';y.

The classifying morphism Sy — Fﬁf for the stable A-family must factor through v because the
fibers of v not lying in the boundary give isomorphic ADE K3 surfaces with divisor. Ranging over
all I = 7Z & Z\, the maps v surject onto the Type II locus, so u extends to a morphism over the
Type II extension of F)y;.

Since the Type II and IIT extensions of Fj; cover all of Fz, we conclude that there is a morphism
Fz — Fﬁ—on the intersection of the closure of the Type II locus with the Type III locus, it is
a morphism as opposed to just a set-theoretic map because Ff/f is normal.

By Lemma 9.19, we also have a morphism (FZ)V — F?JB. So by Theorem 5.14, the normaliza-

. —=R . . . . .
tion of F'y, is semitoroidal for a unique semifan Fr. O

Corollary 9.2. Suppose R is recognizable. The normalization map Fﬁf — FI;I sends semitoroidal
strata to slc strata.

Proof. Let o € §gr be any cone and choose ) in the relative interior int(¢). By Corollary 8.13, the
stable limit of any degeneration with monodromy invariant A lies in a fixed slc stratum. Since the
natural map 6+ /{5, \} — 0+ /{9, o} is surjective, every point in Str, is the limit of some arc with
monodromy invariant A. So the combinatorial type of the slc stable model at any point in Str, is
the same. |

Corollary 9.2 implies that there is a well-defined function

combinatorial types of slc
S: {cones of Fr mod I'} —

. . =R
strata which appear in F'),

Note that S may not be injective. For instance, S(c) = S(7) if the corresponding strata are
unglued by normalizing. By abuse, let S(A) := S(o) where X € int(o).

Theorem 9.3. Let R be a recognizable divisor for Fas. Let D be the decomposition of monodromy
invariants into loci {\ € [I5Cy Nd+/8 | S(A) is constant}. Then mazimal cones of Fr and D
are the same.

A mazimal cone of D is a top-dimensional, convex cone in C’;’ whose integral interior points lie
in a single element of D, and which is maximal for this property.

Proof. S is constant on cones of Fr by Corollary 9.2, so it suffices to show that S cannot take the
same value on two maximal dimensional cones 01,02 € Fr and a codimension 1 face 7 C o1 N oo
they share. If this were the case, the closed boundary stratum Str, would map to a fixed slc stratum
S(o1) = S(o2) = S(7). But the Type III slc strata contain no complete curve by Corollary 9.17. So

o . C . . . . =R
Str; would be contracted to a point, contradicting finiteness of the normalization F’ if — Fy. O

Theorem 9.3 gives a method to compute the semifan §r. Up to taking faces, its cones are sets
of monodromy invariants A which produce a fixed combinatorial slc type. This is how §r was
computed in Examples 9.20, 9.21 below.

The semifan §p is also functorial under restriction to Type IV subdomains of F};, i.e. Noether-
Lefschetz loci. Let M C M’ C Lks be primitive hyperbolic sublattices. Then there is a natural
map of moduli stacks Fy;, — Fy; sending (X, j) — (X, j|,,). Let L € M.

Proposition 9.4. Suppose R € |L| is recognizable for Fy,;. Then its restriction to Fy; is also
recognizable. Furthermore, §r(M') is the restriction of the semifan Fr(M) to the appropriate
linear subspaces of C§ C 61, /5.
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More precisely, if § € M ' c Mt s an isotropic vector corresponding to some 0-cusp of Fy,
we restrict the decomposition §Fr s(M) to the subspace (5@&/(5.

Proof. Proposition 9.4 follows from the the fact that any M’-quasipolarized Kulikov model is also
M-quasipolarized, plus the functoriality of the stable pair and semitoroidal constructions under
restriction to Noether-Lefschetz subdomains. g

9B. Moduli of anticanonical pairs. We prove here that Type III slc strata contain no complete
curve by considering the periods of anticanonical pairs. A useful general reference is [Fril5].

Definition 9.5. Let (V, D) be an anticanonical pair with D = D; + - - - + D,, an oriented, labeled
cycle of rational curves. Define Ay, py := {Dy,... , D}t C H?(V) and define the period point

Yv,p) € Hom(A(y,p), C*) to be the restriction map ~ 'y|D e Pic’(D) = C*.

Definition 9.6 ([Fril5, Def. 5.4]). The generic ample cone Agen C H?(V') is the ample cone of a
very general topologically trivial deformation of (V, D).

It suffices to take a deformation for which ker(¢(v,py) = 0. This is possible because there is
a local universal deformation (V,D) — S of pairs for which the assignment s — ¥y, p,) is an
isomorphism to an open subset of Hom(A v, py, C*).

Definition 9.7 ([Fril5, Def. 6.5]). A Looijenga root B € A(y,py is a class of square B? = —2 which
represents a smooth (—2)-curve on some topologically trivial deformation of (V| D), and for which

Yv,py(B) = 1.

Reflections in Looijenga roots act on Agen. The ample cone A of (V,D) is a fundamental
chamber for the action of the group Wy py := (rg: 8 a Looijenga root) on Age,. We can now
recall the Torelli theorem for anticanonical pairs:

Theorem 9.8 ([Fril5, Thm. 8.7]). Two pairs (V,D) and (V',D’) (with oriented, labeled cycle)
are isomorphic if and only if there exists an isometry ¢: H*(V) — H*(V') for which ¢(D;) = Dy,
P(Agen) = Agen, and Y(v,py = Vv, pry © ¢. Furthermore, ¢ = f* is induced by an isomorphism
f:(V', D" = (V,D) if and only if p(A) = ¢(A’). This isomorphism is unique up to the action of

continuous automorphisms Aut®(V, D).

So the analogue of the Torelli Theorem 2.3 holds nearly verbatim, replacing C with Age, (which
is notably not the positive cone), K with A (which is the Kahler cone), and Wx with Wy, p).

Definition 9.9. Fix a reference lattice Ly, p) isomorphic to H?*(V). Fix classes (D;)° € L(v,p)
and fix a cone A, C L(y,p) ®R. A marking of (V, D) is an isometry o : H*(V) = Ly, p) sending
o(Dj) = (D;)° and 0(Agen) = Ao Let Ty, py C O(L(v,p)) be the subgroup fixing all this data.

Theorem 9.10 ([Fril5, Thm. 8.13]). Assume Aut®(V, D) is trivial. There is a fine moduli space
Mv,py of marked anticanonical pairs deformation-equivalent to (V, D). It has a period map

M(V,D) — HOIII(L(V’D), (C*)

which is generically one-to-one, and whose fibers are torsors over a group isomorphic to Wy, p)
with the action on a fiber given by (X,0) — (X,go o).

When AutO(V, D) is non-trivial, there is still a space My, py admitting a family which defines
at every point a universal deformation, and for which every isomorphism type is represented, but
it is not a fine moduli space.

Definition 9.11. A quasi-polarized triple (V, D, L) is an anticanonical pair (V, D) and a big and
nef line bundle L € Pic(V). A polarized ADE triple is an image (V, D, L) of such under the linear
system ¢, 1|, n > 0 (we must add the condition that ¢y, py(L) =1 when L € A). A divisor triple
(V,D, R) is the extra data of an element R € |L| such that R contains no nodes of D. A stable
triple (V, D, €R) is an image of a divisor triple (V, D, eR) under Glnr|, 1> 0.
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The map (V, D) — (V, D) contracts the components of D for which L - D; = 0, together with
some negative-definite ADE configuration of (—2)-curves whose classes lie in Ay, py.

Theorem 9.12. The coarse moduli space of polarized ADE triples F(Vﬁ,f) of a fized deformation
type is the quotient of Hom(L(v,p), C*) by the finite group Iy p 1) := Stabr, ., (L).

Proof. The result is analogous to Theorem 2.11. If L ¢ A, take the sublocus My, p 1) C Mv,p)
where L defines a big and nef divisor—this surjects onto the period torus with fibers a torsor
over the reflection subgroup Wy, p 1y := Stabw,,, ,,, (L). When L € A, we restrict to the sublocus
Y, py(L) = 1. Now take the relative linear system of nL, which simultaneously contracts the
ADE configuration in Ay, py N L+ and some components of D.

The fibers of the period map M, p ) — Hom(L,p), C*) (or Hom(Ly,p)/ZL, C*) when
L € A) are identified with distinct resolutions of the contraction, and the moduli functor factors
through the separated quotient of My p ry. Since we have included L as part of the data, our
change-of-markings in I'(y, py must preserve L. The result follows.

We can even identify (when Aut®(V, D) is trivial) the moduli stack as the separated quotient of
Mev,p,ry: Tv,p,y]- Like in the K3 case (Rem. 2.12), its only difference with the quotient stack
[Hom(Lv,py, C*): 'y, p,ry] is that the inertia groups are locally quotiented by Wy, p,r)-. O

Let F° (V.D.R) denote the coarse moduli space of stable triples (V, D, eR) with a fixed deformation
type of minimal resolution. Here € is a fixed small number.

Lemma 9.13. F(V,EE) is a (possibly non-flat) family of affine varieties over the coarse moduli
space F (VD)

Proof. On a given polarized ADE triple (V, D, L), we may choose R € |L| arbitrarily, subject
to the condition that R not contain any nodes of D. This condition is either not satisfied by
any element of |L|, or is the complement of a non-zero number of hyperplanes, corresponding to
sections which go through some node. Thus, the set of choices of R on a fixed ADE triple forms
an affine variety.

The automorphism group of (V, D, L) acts on the set of such choices R. So when this auto-
morphism group is finite, the choices form an affine variety. If the automorphism group contains a
continuous part of dimension 1 or 2, we may rigidify by requiring R to go through 1 or 2 generically
chosen points of V' '\ D. Then, the coarse moduli space is a finite image of the rigidified moduli
space, which is again affine by the reasoning of the first paragraph. O

Corollary 9.14. The coarse moduli space F(V,E,E) contains no complete curves.
Proof. This follows immediately from Lemma 9.13 and F, (v, D,T) being affine. ]

Let F(y R) denote the coarse moduli space of stable slc pairs of a fixed combinatorial type, as
in Definition 8.12.

Remark 9.15. Semi log canonical singularities are seminormal. The seminormality implies that
the scheme-theoretic structure of a O-stratum of X is unique, since X is the direct limit of the
diagram of strata, partially ordered by inclusion. So moduli is uniquely determined by the moduli
of components and gluings of double curves.

Theorem 9.16. Let Fix 3 be a coarse moduli space of glued seminormal stable pairs containing
a Type III stable pair degeneration of K3 surfaces. Then F(Y,E) contains no complete curve.

Proof. We can construct the coarse moduli space as follows: First, take the product of the coarse
moduli spaces of each component [], Fv, 5. r,)- Let {1i;} € C* be the (possibly empty, but
always finite) set of gluings of Eij to Ejl- which identify the nodes of D; and Ej and for which
R;ND;; = R;NDj;. The space G x ) of such glued pairs is [[; Fiy7, 5, 7,) X [1; j{ni;} which has
a finite map to [, F(Vi D, R So by Corollary 9.14, G(y R) contains no complete curves.
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The space G (X.R) parameterizes seminormal pairs (X, eR) together with a combinatorial labeling

of the dual complex I'(X). Consider the finite group of combinatorial self-maps of I'(X) preserving
the combinatorial types of all stable triples. The coarse moduli space F(yﬁ) is the quotient of
G(yﬁ) by this finite group. Since G(yﬁ) contains no complete curve, neither does F(yﬁ). O

Corollary 9.17. No Type III stratum of Fﬁ contains a complete curve.

Proof. A Type III stratum of Fﬁ[ is a sublocus of the coarse moduli space of pairs (X, €R) as in
Theorem 9.16. The corollary follows. ]

9C. Other lemmas. We prove the remaining lemmas used in Theorem 9.1. Let (C", B) denote
the analytic germ of B := {z - -z, = 0}, the union of the coordinate hyperplanes, in C™.

Lemma 9.18. Let V' be an analytic variety stratified by sub-varieties V;. Consider a meromorphic
map ¢: (C", B) --» V with locus of indeterminacy contained in B. Assume that the image of the
indeterminacy locus is contained in U;c1V; and that no V; for i € I contains a complete curve.
Assume that for any arc germ f: (C,0) — (C",0) with f(C \ 0) C (C*)", there exists an
extension g: (C,0) = V of ¢ o f. Moreover, assume that for any such f, the stratum V; 3 g(0)
depends only on the orders of tangency of C to the coordinate hyperplanes.
Then the indeterminacy of ¢ can be resolved by toric blow-ups.

Proof. Fix the standard torus action of T'= (C*)™ on C". By Hironaka (see Wlodarczyk [Wto09]
for a careful treatment of analytic spaces), there exists a sequence of blowups at smooth centers
in the indeterminacy loci that resolves ¢. Let H be the first center which is not T-invariant.

Let O be the largest T-orbit with O N H # (). By restricting to an open subset, we can assume
that H C O. Consider the toric cross-sections normal to O. These cross-sections satisfy the con-
ditions of the Lemma, and so applying an inductive hypothesis in n, we resolve the indeterminacy
of ¢ generically along O, by a series of toric blowups.

So we get a rational map ¢’: (X', B') --» V from a toric variety, a torus orbit O’, and a nontoric
center of indeterminacy H' C O’ such that ¢’ is regular on an open set U C X’ intersecting O'.
Then ¢'(U N Q') is contained in a single stratum V;. The stratum containing the limit of an arc in
X’ again depends only on the orders of tangency with the components of B’.

Let X’ < Z — V be a resolution of singularities. Then there exists p € O’ N H' such that for
the fiber Z, of Z — X’ the morphism Z, — V is non-constant. Since Z,, is proper and the strata
Vi contain no complete curve, there exist two arcs with f1(0) = f2(0) = p and with g1(0), g2(0)
lying in different strata V;. But shifts of these arcs by the torus action have the same tangency
conditions with the coordinate hyperplanes and satisfy f(0) € U. So for them g(0) lie in the same
stratum of V. Contradiction. |

Lemma 9.19. There is a morphism (Fﬁ)” — F]I?/[B for any canonical choice of polarizing divisor
R (recognizable or not).

This is proved in [AET19, Thm. 3.15] and amounts to the observation that in Type II, the
—BB
j-invariant of the corresponding point in the 1-cusp of F';; can be recovered from the stable slc
pair (X, eR). Indeed, either X is nonnormal and every connected component of the double locus
is an elliptic curve E with this j-invariant, or X has an elliptic singularity corresponding to F.

9D. Examples. Previously known examples of recognizable divisors come from [AET19], [ABE22].

Example 9.20 (Degree 2 K3s). Let (X, L) be a quasipolarized K3 surface of degree L? = 2. Let
X denote the corresponding polarized ADE K3 surface. Then ¢|1| defines a branched double cover
X — P2 or X — FY (the contraction of the Hirzebruch surface F4 along its negative section).
Define R € |3L] to be the pullback of the ramification locus R C X.
There is only one I'-orbit of primitive isotropic vector § € L+, and so a semitoroidal compact-
ification is determined by a single I's-invariant semifan § = §s in the positive cone of C’;‘. Then
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[AET19] verifies Theorem 8.11(5) directly, by constructing for each monodromy invariant A, a
divisor A-family with monodromy invariant in the projective class [A].

These divisor models are constructed by ensuring the involution on the general fiber X; of
Kulikov model X — (C,0) extends to the central fiber Xy. Then the fixed locus Ry C Xy is the
canonical choice of divisor certifying recognizability. The resulting semifan §g is not a fan. The
lattice 61 /4§ is a hyperbolic root lattice with a finite covolume Coxeter chamber £. There is an
infinite subgroup W C I's for which §g is the I's-orbit of a single chamber £ := W - &.

Thus, Theorem 9.1 cannot be strengthened by replacing “semifan” with “fan.”

Example 9.21 (Elliptic K3s). Let (X, j) be an H-quasipolarized K3 surface, i.e. an elliptic K3
surface, with fiber class f and section s (so h lies in cone spanned by f, s+2f). Let R =s+m>_ f;
be the section plus the sum of the singular fibers, with multiplicity, and weighted by m. Here
L =s+24mf € H is the relevant big and nef class. Fﬁ is the same for all m > %

As in the previous example, [ABE22] find Kulikov models X — (C,0) for any monodromy
invariant which preserve the existing structures on the general fiber: Xy admits a fibration by
genus 1 curves mg: Xg — Bg over a chain of rational curves By, with a section sg. Finitely many
fibers fi 0 =y 1(bi) not contained in the double locus of Xy have more nodes than all analytically
nearby fibers. Counting f; o with the correct multiplicity, the recognizable divisor on Xj is

Ry = s +m2fi,0~

There is a unique I'-orbit of primitive isotropic 6 € H+ = 115 15 and ot/6 =11 1,17 is a hyperbolic
root lattice with a finite covolume Coxeter chamber K. Then Fg is the I's-orbit of a subdivision
of £ into 9 subchambers. So §r is a fan.

Example 9.22. Any choice of divisor R when dim Dy, = 1 is recognizable: There exists a divisor
model in the neighborhood of any point p € Fj; in the unique toroidal compactification, which
also equals the Baily-Borel compactification.

Remark 9.23. The necessity of normalizing FJ}\Z to get a semitoroidal compactification is apparent
in both Examples 9.20, 9.21. [AET19, ABE22] compute the normalization map explicitly.

10. THE RATIONAL CURVE DIVISOR

Our goal is to now make a canonical choice of divisor for Fyy for any d > 0, then prove its
recognizability. From this, we can conclude Corollary 3: there are KSBA compactifications of Fpy
whose normalizations are semitoroidal, for all degrees. Our divisor is roughly the sum of all rational
curves in |L|. Its recognizability is proven below, by showing that the image of a predeformable,
stable, genus zero map to any Kulikov surface is rigid.

10A. Definition of R™. Consider the moduli space F,}; of quasipolarized K3 surfaces of degree
2d. Let (X,L) € F3),.

Definition 10.1. We say that G € |L| is a rational curve if the normalization of every irreducible
component of G is P*.

Theorem 10.2 (Yau-Zaslow formula [YZ96, Bea99, Che99, Che02]). There is a Zariski open
subset U C Fy, for which any rational curve G € |L| for (X,L) € U is irreducible, nodal, and for
which the number of such rational curves is exactly

1 1 1
d d
nai=10) [T s = % 57
q 5 (1—=d°) A(q)
where A(q) is the modular discriminant, and [q%] denotes the q%-coefficient.
The integer ng is the number of 24-colored partitions of d + 1.

Definition 10.3. The rational curve divisor is the canonical choice of polarizing divisor R™ :=
>_Ge|L| rational G € [naL| defined over the open subset U C F3,.
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We now outline an alternative definition using Gromov-Witten invariants.

Definition 10.4. Let X be a smooth complete variety and let 8 € Ho(X,Z). The Kontsevich
space My(X, ) is the moduli space of stable maps f : T'— X from a genus g nodal curve T, for
which f.[T] = 5.

The Kontsevich space is a proper Deligne-Mumford stack. For a surface, Ha(X,Z) and H?(X,Z)
are canonically identified by Poincaré duality, so we make no distinction. We will take L = .

There is a virtual fundamental cycle [My(X, B)]"'" € Acxp.aim(My(X,3)) where exp.dim =
(dim X —3)(1—g)+c1(Tx)- B is the expected dimension of the moduli space [BF97]. In particular,
for stable genus 0 maps to a K3 surface, exp.dim = —1 so [My(X, L)]'¥ = 0. Geometrically, this
can be explained by the fact that GW invariants are deformation-invariant, but that a generic
deformation of X has no nontrivial line bundles, so 8 cannot represent an algebraic curve.

For polarized K3 surfaces (X, L), there is a reduced virtual fundamental cycle [My(X, L)]Vi"red €
Ao(Mo(X, L)), see [KT14]. Roughly, it is built to be invariant only under the deformations of X
which stay in Fj,. This decreases dimension of the obstruction space by one, increasing the
expected dimension by one.

Lemma 10.5. Let (T, f) be a stable map f : T — X with T a nodal curve of arithmetic genus
0 and X a smooth K3 surface. Under any deformation of the stable map (T, f) € My(X, L), the
image divisor f. T is constant.

Proof. If the image divisor f,T moves under a deformation of (7, f), a restriction of f gives a
dominant map S = B x P! 5 X, for some (possibly incomplete) curve B. Letting Ram C S
be the ramification divisor of the map S — X, the Riemann-Hurwitz formula gives Kg = Ram.
This contradicts the adjunction formula, because restricting to a general fiber F' = {b} x P! gives
—2=2g(F)—2=F-(F+Ram)=F-Ram > 0. O

Replicating this argument for a Kulikov surface is the key to proving that R™ is recognizable.

Definition 10.6. Let G € |L| be a rational curve. Define Mg (X) to be the union of the connected
components of My(X, L) for which f,T = G. This is well-defined because f.T is constant on any
connected component by Lemma 10.5. Define

ng = degMG(X) [MO (X, L)]Vir’red c Q
This quantity a priori only lies in Q because of stack-theoretic issues.

Proposition 10.7. For any smooth quasipolarized K3 surface (X, L), we have

rc __
R = ZG€|L\ rational ngG.
Furthermore, ng is a non-negative integer for all rational curves G € |L|.

Proof. Chen’s theorem [Che02] implies that for a sufficiently general (X, L) € U, we have ng =1
for all rational curves G. Fix an (X, Lg) € F3, not in U and consider a 1-parameter deformation
(X,L) — (C,0) over an analytic disc C' for which X; € U for all t € C*. Consider the moduli
space of relative stable maps My (X, 8) where § is the class of Ly pushed forward to X.

There is a proper morphism My(X,3) — C sending a curve to the fiber it is supported on,
but the fibers of this family are in general poorly behaved. For instance, the dimension can and
often does suddenly jump at ¢t = 0. But by assumption, the fiber over any point t € C* is a
reduced zero-dimensional scheme consisting of exactly ng points. The proposition follows if we
can prove that the scheme-theoretic intersection My(X*, 8) N Mo(Xo, Lo) represents the reduced
virtual fundamental class, in homology.

The constancy of the reduced Gromov-Witten invariants ng = degyy, (x, ) [Mo(X, B)]virred ag
one varies ¢ follows from the existence of a relative perfect obstruction theory [BF97, Sec. 7], [KT14,
Rem. 3.1]. Without going into the details, this is a perfect two-term complex with a morphism to
the relative cotangent complex, satisfying various axioms.
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Now let W C My(X, 8) be a connected component. The restriction of the axioms of a (relative)
perfect obstruction theory still hold under restricting this two-term complex to W. Hence the
constancy of reduced GW invariants still holds, i.e. degy, [Mg(Xo, Lo)]"***4 will equal the number
of sheets of My(X¢, L:) whose closures over ¢ = 0 lie in W. This implies the first statement.

Summing these integrals over the components W for which the image curve f,T = G, we also
see that ng is a non-negative integer. O

Remark 10.8. A priori, the contribution ng could equal zero. Perhaps no genus 0 stable map with
image G deforms to the general fiber X;. Notably, this cannot occur when there is a component
W C Mg(X) of dimension dim W = 0, see [Huy16, Ch. 13.2.3] and references therein.

Proposition 10.7 provides us with a definition of R* on all (X, L) € F3},.

Definition 10.9. A quasipolarized K3 surface (X, L) of degree 2d is unigonal if it is elliptic, with
section and fiber classes s, f and L =s+ (d + 1) f.

As a Noether-Lefschetz locus of Picard rank 2, the unigonal locus forms a divisor in F}}, iso-
morphic to the moduli space Fj of elliptic K3s.

Proposition 10.10. On a unigonal K3 surface (X, L), the rational curve divisor is
R :=ng(s + G 3 fi)
where f; are the 24 singular fibers in |f|, counted with multiplicity.

Proof. The proposition follows immediately from Proposition 10.7 and the main result of [BL0O],
though historically [Che02] relies on [BLOO]. O

10B. Proof of Theorem 2. We now prove our second main result:
Theorem 10.11. The rational curve divisor R™ is recognizable for Fyy for all d > 0.

Proof. Take a divisor model (X, R) — (C,0). We verify Theorem 8.11(1) by showing that the
limiting curve Ry C Xy satisfies some geometric property ensuring its rigidity on Xy even as we
deform the smoothing of Xy. Take a base change and standard resolution of (X, R) — (C,0) so
that the irreducible components G; of R; are not permuted by monodromy. Then, Lemmas 10.12
and 10.14 imply that the limit of any individual rational curve G; is rigid. ]

Lemma 10.12. Let X — (C,0) be a Kulikov model and let G C X be a flat family of curves for
which Gy is an irreducible rational curve for t # 0, and Gy contains no strata. Then, after a finite
base change and resolution of X — (C,0), there is a stable map f : T — Xo from a nodal, genus
0 curve (a tree of Pts) for which f.T = Gy and (T, f) is predeformable (see Def. 10.13).

Definition 10.13. We say that (T, f) is predeformable [Li01, Def. 2.5] if no component of T is
contracted into the double locus, and for each node p € T with f(p) € D;;, the two arcs (T%,p),
(Te,p) with f(T}) C V; and f(Ty) C V; satisty

the tangency order of f(T},p) to D;; = the tangency order of f(1},p) to Dj;.

Proof of Lemma 10.12. Because G contains no strata, it maps into the complement of the triple
points of X, i.e. the union of the non-singular locus and the double locus. Then, the result follows
from the properness over (C,0) of the space of predeformable stable maps [Li01, Thm. 3.10] to
varieties with only double crossings. |

Lemma 10.14. Let f: T — Xg x B be a family of stable maps over a local curve B, such that T,
is a tree of P's of fived combinatorial type for all b € B, and for which (Ty, f3) is predeformable.
Then the image curves f.(Ty) = Go are constant.

Proof. Let T = U T}, be the components of 7. We have T}, = P! x B. Let Ny, = T} N Ty be the
relative nodes over B. We label the vertices T'(T)% of the dual complex T'(T) as follows:
(V0) Ty is contracted to a point inside a component.
(V1b) Ty is contracted along multisections to a curve inside a component.
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Vo V1ib Vif V2
VO | v0 v0 — v0
Vib v0/v1/d0 vl v0/v1/d0
Vif vl vl
V2 all

TABLE 1. Allowable adjacencies for the labeled dual complex I'(T).

(V1f) T} is contracted along fibers of T, — B to a curve inside a component.
(V2) T maps generically finitely to a component.

These are the only possibilities, by noting that Ty — B is proper and that the image of f contains
no triple points. Next, we label the edges I'(T)[! of the dual complex I'(T) as follows:

(v0) Nge maps to a point in the interior of a component.
(vl) Nie maps to a curve in the interior of a component.
(d0) Nge maps to a point in a double curve.
(d1) Ng¢ maps to a curve in a double curve.

Table 1 records the allowable adjacencies for the labeled dual complex I'(T'), which can be
verified from predeformability by straightforward geometric arguments.

Let ' C I'(T') be a maximal subtree consisting of only V2-vertices and d1-edges. Let Tr C T be
the sub-family of curves with dual complex I'. Consider the restricted family fr : Tr — Xg X B.

The fibers Tt may only fail to map in a predeformable way to X, at the leaves of I" which
are not leaves of I'(T"). Consider the edges emanating from such a V2 leaf which are connected to
the rest of I'(T"). Disconnecting I'(T") at a v-edge does not interfere with the condition of being
predeformable, so consider only the d-edges. By Table 1 and maximality of I', such a V2 leaf of T’
must connect by a d0-edge.

So fix one V2 leaf of T, associated to a component T}, = P! x B C Tr attached to the rest of
I(T) by dO-edges. The further restriction fi : Ty — V; is now a map of smooth surfaces.

Each outgoing d0-edge corresponds to a relative node Ny, of T' which maps under f to a single
point pe € D;;. There is at most one remaining relative node N C T}, which attaches T}, to the
rest of Tt and for which f(N) is a curve in one boundary component of V;. Make an interior
blow-up \72 — V; at each fixed attaching point pge. Taking the strict transforms of the images of
fibers of T, — B, we can lift f; to a map fi: Tp — ‘N/Z If f; still sends any Niy to a point in the
new anticanonical boundary Eij, we continue to blow up at the fixed attaching points, until the
lifted map satisfies the property fk_l(lw)l) = N.

Since both N and D; are divisors with coefficient 1, we have by Riemann-Hurwitz that

wr, (N) = fii(wp, (D)) © O(Ram) ® O(3 a; ;).

Here Ram C T}, is the interior ramification divisor, i.e. the ramification away from the boundary
D;, and E; C T}, are the contracted curves of f;. Note that a; > 0 because V; is smooth. Since
wi (D;) = O we conclude wyy, (N) is effective, implying —1 = wr, (N) - P* > 0. Contradiction. [

In analogy with Proposition 10.7, Lemma 10.14 allows us to define R for Kulikov surfaces
inherently, in terms of logarithmic Gromov-Witten invariants [Chel4, AC14, AMW14].

10C. The rational curve semifan. We first give some general results concerning the Baily-Borel
compactification of Fyg, following [Sca87].

The number of 0-cusps of FQB,? is exactly |22 | where d = N2d, for a square-free integer do.
As discussed in Section 5A, they are in bijection with the I-orbits of primitive isotropic lattices
I =70 in the lattice

Log := (—2d) ® H®? @ E$? = vt C Lgs.
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The T'-orbit of a generator § € I is determined by the following invariant: §* = p%@) € Agy :=
L3,/ Lagq, where p* is by definition the imprimitivity in L3,. Then ¢* is an isotropic vector for the
quadratic form on Asg valued in == 5qL/27 C Q/2Z. Identifying the source Agy = Z/2dZ and the
target with Z/4dZ, the quadratic form is given by o — x2. We must have * = 2qNdy € Z/2dZ

for ¢ € Z/NZ. So I = Z6 is determined by {+¢} and we have

5/ = (=) @ H ® EJ.

A semitoroidal compactification of Fyy is determined by a collection of I's-invariant semifans §s
decomposing the rational closures C’+ of the positive cones of each lattice 6+ /J as above, as one
ranges over the |22 | possible Values of {£4*}. By Theorems 1 and 2, we may define:

rc

ops . . =38 =R . .
Definition 10.15. Let §*¢ be the semifan for which v: ng — Fy,; is the normalization map.

Some facts about the combinatorics of §° can be deduced from Proposition 10.10 and [ABE22],
by restricting to the locus of elliptic K3 surfaces.

Theorem 10.16. Consider a cone Cgr with invariant p*(0) = 1, that is, where ¢ is primitive in
L3, (all such § are equivalent under T'). The restriction of § to (—2d)* = H & E$?, or any
['s-orbit of it, is a fan. Furthermore, (—2d)* N Cg“ is a union of cones of §i°.

We call such hyperplanes unigonal. The last statement in the theorem implies that §™° refines
the unigonal hyperplane arrangement in C’;’.

Proof. Suppose (X, L) is in the unigonal locus, so that L = s + (d + 1) f. The inclusion ZL — H
induces an inclusion of moduli spaces Flg — Fb4. So the restriction of R™ to Fy is recognizable.
Suppose that § € H* is primitive isotropic. There is a unique isometry orbit of such and § is
primitive in (L*)*. So 07, /6 includes into the lattice 67, /6 corresponding an isotropic vector
with invariant 6* = 0. Concretely, it is the summand inclusion H @ E$? — (-2d) ® H @ E$>.
By Proposition 9.4, the restriction of Src to Ho E@2 is the bemlfan § whose corresponding

semitoroidal compactification normalizes F g - By Proposition 10.10, the rational curve divisor,
as in Definition 10.3, when extended to the unigonal locus, is a multiple of R = s + m > f; for
m = %. [ABE22, Thm. 1.2] gives an explicit description of the fan F}$ modulo the following
caveat: The divisor models described in [ABE22, Sec. 7B] require a threshold value of m > 1 for
the divisors Ry C Xy constructed therein to be nef. The threshold is achieved when I'(Xj) has a
so-called X3 end singularity. So it is automatic that loc.cit describes the restriction of § to the
unigonal hyperplane when d > 7. For m < % or d < 7, the stable models only differ from those
in loc.cit. in a minor way—one might contract the section on one or both end surfaces. But the
stratum function S has the same level sets and so §% is the same (Prop. 9.3).

The fan §%5 consists of six orbits of maximal cones [ABE22 Sec. 4C]. To prove the final statement
of the theorem, we must show that all six of the 18-dimensional cones oy € §} are themselves
cones of §'° and not simply slices of the interior of some 19-dimensional cone o € §*°.

A maximal cone og corresponds to a 0-stratum of the stable pair compactification of elliptic
K3s and hence to unique Type III elliptic stable K3 pair (Xg, Ry). If (X¢, Ry) deforms out of the
unigonal locus as rational curve K3 pair, keeping the combinatorial type constant, then og must
be a cone of F*. But if the elliptic stable K3 pair (X, Ry) is, as a rational curve K3 pair, rigid in
its combinatorial type, then oy must be the slice of a larger dimensional cone of §™.

Let (Xo, Ro) be a Type III divisor model whose stable model is (Xg, €Ry), see [ABE22, Sec. TA]
for an explicit description. Let Ly = Ox,(Ry). We can deform (Xg, Lg) to a non-elliptic, d-
semistable Kulikov model (Xj, L) by regluing double curves so that 1x;(f) # 1. Concretely,
comparing to [ABE22, Def. 7.10], it corresponds to when a connected chain of fibers of vertical
rulings fails to glue to a closed cycle, destroying the elliptic fibration and the Cartierness of f.

Since R™ is recognizable, the rational curve divisor on such a deformed Kulikov model is nec-
essarily a deformation of the curve ngy(s + 4 Z fio) (see 9.21) living in the linear system |Lj].



So the resulting stable model has the same combinatorial type as the elliptic one
— = o
(XO> 6RO) = U::l(viv D, eR;)
for r = 18, 19, 20 depending on the cone o . -
In the elliptic case, the intermediate components V; for i # 1,7 are the result of gluing two
sections of P! x P! via the isomorphism provided by the vertical fibration. But when we deform

X out of the elliptic locus to the Kulikov surface X}, the surface V; also deforms: The gluing
map between the two sections includes a shift exactly equal to ¢y, (f)-

Hence (Xg,€eRyp) is not rigid in Ffd within its slc combinatorial type. Even forgetting the
divisor, the underlying surface X is not rigid. We conclude that op is a cone of §*°. O

Remark 10.17. The results of this section hold for the imprimitive rational curve divisor

R*(m) = Z neG

Ge|mL)| rational

where the coefficients no are defined using reduced GW invariants as in Definition 10.6. A naive
version of Chen’s theorem (that generically all rational curves are nodal) is false: For instance
one can take mG for G € |L| rational. It is not clear whether one can recover Chen’s theorem by
subtracting out these and other obvious non-reduced and non-irreducible contributions to get a

divisor Ry, (m). Regardless, the above serves as a definition of R™(m) and produces a canonical
choice of polarizing divisor. The proof of recognizability, Theorem 10.11 applies verbatim because
the normalization of any irreducible component of R™(m) is PL.

Thus, there are semifans §*°(m) for all m > 1 which give the normalization of the KSBA

compactification associated to R*(m).
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