
COMPACT MODULI OF K3 SURFACES

VALERY ALEXEEV AND PHILIP ENGEL

Abstract. We construct geometric compactifications of the moduli space F2d of polarized K3
surfaces, in any degree 2d. Our construction is via KSBA theory, by considering canonical
choices of divisor R 2 |nL| on each polarized K3 surface (X,L) 2 F2d. The main new notion is
that of a recognizable divisor R, a choice which can be consistently extended to all central fibers
of Kulikov models. We prove that any choice of recognizable divisor leads to a semitoroidal
compactification of the period space, at least up to normalization. Finally, we prove that the
rational curve divisor is recognizable for all degrees.
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1. Introduction

Let F2d be the coarse moduli space of complex K3 surfaces X having ADE singularities with an
ample line bundle L of degree L2 = 2d. A well known corollary of the Torelli theorem [PSS71] is
that F2d = D/� is the quotient of a 19-dimensional symmetric type IV domain D by an arithmetic

group � ⇢ O(2, 19). In this capacity, F2d admits a Baily-Borel F
BB
2d [BB66] and infinitely many

toroidal F
F
2d [AMRT75] compactifications. An admissible fan F consists of polyhedral decompo-

sitions of the positive cones of finitely many hyperbolic signature lattices (Def. 5.9). Looijenga
[Loo03] simultaneously generalized the Baily-Borel and toroidal compactifications to the semi-
toroidal compactifications, where F may only be locally rational polyhedral (Def. 5.11).

Toroidal compactifications enjoy a number of geometric properties by virtue of the fact that
they are analytically-locally modeled at the boundary by finite quotients of toric varieties. But
there are infinitely many, with seemingly no one being distinguished. An old and deep question
is whether any toroidal, or semitoroidal, compactifications can be understood as moduli spaces
parameterizing geometric objects—some generalized “stable” K3 surfaces, similar to the Deligne-
Mumford’s compactifications Mg,n of stable curves.

For the moduli space Ag of principally polarized abelian varieties (PPAVs) the answer is yes
by [Ale02]. A PPAV (A,�) 2 Ag determines uniquely an abelian torsor A y X together with a
theta divisor ⇥ ⇢ X. For pairs (X,⇥) or, even better (X, ✏⇥), there is a generalization of Mg,n.
It is the moduli space of KSBA stable pairs (X, ✏⇥) with slc singularities [KSB88, Kol23], [Ale96,

Ale06]. This moduli space is projective, and gives a geometrically meaningful compactification A
⇥
g .

Furthermore, the normalization of A
⇥
g is the toroidal compactification A

F
g associated to the 2nd

Voronoi fan, and so admits a purely period-theoretic definition. Thus, among the infinitely many
toroidal compactifications, this one has a clear geometric meaning.

To extend this construction to polarized K3 surfaces (X,L), first one needs a canonical choice
of polarizing divisor (Def. 6.1), an e↵ective divisor R 2 |nL| in a fixed multiple of the polarization.

Given this choice, the general theory produces a modular compactification F
R
2d (Def. 6.11) via slc

stable pairs (X, ✏R), see [KX20, Kol23], [AET19, Sec. 3]. The divisor is needed because for the
general theory to work, the divisor KX + ✏R must be ample. One can work with all divisors in
|L|, without making a canonical choice, e.g. [Laz16], but that gives a larger moduli space P2d of
dimension 20 + d.

At least two canonical choices for ample divisors on polarized K3 surfaces have been identified.
About 15 years ago, Sean Keel proposed to consider, for a general polarized K3 surface (X,L), the
sum Rrc =

P
Ci of rational curves in |L|. We call this the rational curve divisor (Def. 10.3). One

has Rrc 2 |ndL|, where the multiple nd is given by the Yau-Zaslow formula. For instance n1 = 324,
n2 = 3200, etc. The second choice, suggested to the authors by Claire Voisin, is called the flex
divisor Rflex [AE21]. It generalizes to all degrees the fixed locus R 2 |3L| of the involution on a
K3 surface of degree 2.
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By the Kulikov-Persson-Pinkham theorem [Kul77, PP81], any one-parameter degeneration of
K3 surfaces X ! (C, 0) admits a Kulikov model: a K-trivial model with smooth total space and
reduced normal crossings central fiber X0 (Def. 3.1). The key notion of this paper is a recognizable
divisor (Def. 6.2). Heuristically, it is a canonical choice of polarizing divisor which can be extended
to any such X0. More precisely: Given any Kulikov surface X0 appearing as a one-parameter
degeneration of polarized K3 surfaces (Xt, Lt), the limit of the canonically chosen divisors Rt ⇢ Xt,
Rt 2 |nLt| is a unique curve R0 = limt!0 Rt ⇢ X0. Such a limit R0 exists on any fixed Kulikov
model, but recognizability additionally states that R0 is independent of how X0 gets smoothed.

Our two main theorems are:

Theorem 1 (Thm. 9.1). Suppose that R is a recognizable choice of polarizing divisor. There is a

unique semifan FR for which F
FR

2d is the normalization of F
R
2d.

Theorem 2 (Thm. 10.11). The rational curve divisor Rrc is recognizable for F2d.

Theorem 1 holds more generally for moduli of lattice-polarized K3 surfaces. Combined, Theo-
rems 1 and 2 give an a�rmative answer to the existence of a compactification of K3 moduli which
is simultaneously geometric and period-theoretic:

Corollary 3. For all degrees 2d, there is a KSBA compactification of F2d by slc stable pairs, whose
normalization is semitoroidal.

Theorem 1 is proven as follows: Kulikov models X ! (C, 0) with a given Picard-Lefschetz
transformation, encoded by a lattice vector �, can be packaged into a 19-dimensional family of
polarized surfaces X ! S� we call �-families (Def. 7.14). The general fiber is smooth, and the
discriminant �� ⇢ S� is a smooth divisor, isomorphic to (C⇤)18 for Type III Kulikov models. The
discriminant parameterizes the equisingular, quasipolarized, smoothable deformations of X0.

Recognizability implies that the divisor R extends over the boundary �� to give a family of
pairs (X ,R) ! S� (Prop. 8.1). We modify X until R ⇢ X is relatively nef and contains no
singular strata of any fiber (Prop. 8.8, Sec. 7C). Taking the relative canonical model shows that
all degenerations with a given Picard-Lefschetz transformation limit to stable pairs (X0, ✏R0) of
a fixed combinatorial type (Cor. 8.13). This fact, together with an argument involving resolution
of indeterminacy (Lem. 9.18) and quasi-a�neness of the strata of the KSBA compactification
(Thm. 9.16), imply that there is a toroidal compactification

F
G
2d ! (F

R
2d)

⌫

dominating the normalization of the KSBA compactification. The proof concludes with a new
characterization: semitoroidal compactifications are exactly those normal compactifications of F2d

that are dominated by a toroidal compactification, and dominating Baily-Borel (Thm. 5.14).
Theorem 2 is proven by borrowing ideas from Gromov-Witten theory and degenerations of

stable maps. Rrc is recognizable because any limit Ri,0 ⇢ X0 of a family of rational curves
Ri,t ⇢ Rrc

t ⇢ Xt in a Kulikov model X ! (C, 0) enjoys a geometric property which ensures its
rigidity: Ri,0 is the image of an admissible stable genus zero map f : T ! X0. Using K-triviality
of X0 and adjunction, we prove that f(T ) is locally constant on the Kontsevich space of admissible
stable maps (Lem. 10.14).

Relation to earlier work. The notion of a recognizable divisor presented here arose from gener-
alizing certain specific examples, for moduli of degree 2 [AET19] and elliptic K3 surfaces [ABE22].
In both of these papers, Kulikov models with divisor are constructed explicitly for all possible �,
providing the necessary input for the general theory to work.

Every degree 2 K3 surface (X,L) with ADE singularities admits an involution, and the fixed
locus R 2 |3L| can be taken as a canonical choice of polarizing divisor. Every elliptic K3 surface
admits the polarizing divisor R := s+

P24
i=1 fi 2 |s+ 24f | formed from the section, plus the sum

of the singular fibers counted with appropriate multiplicity.
Using the theory of integral-a�ne structures on the two-sphere S2 [Eng18, EF21], one can, in

both of these cases, explicitly construct a family of Kulikov surfaces X0 ! �� which smooths to
3



a �-family (X ,R) ! S� with R relatively big and nef, and not containing strata of any fiber.
This is achieved by building a continuously varying family of “polarized integral-a�ne spheres”
(B,Rtrop)! C+

� over a cone associated to an appropriate hyperbolic lattice (Def. 5.8). The cone
C+

� contains all possible �. Once triangulated, the integral-a�ne sphere B� = �(X0) can be
identified with the dual complex of X0 for some Kulikov model X ! (C, 0) with monodromy �.
The tropical divisor Rtrop,� ⇢ B� describes the dual complex �(R0) of R0 ⇢ X0.

The upshot of these constructions is that recognizability is verified explicitly, and all degenera-
tions with a fixed Picard-Lefschetz transformation admit a stable model of a fixed combinatorial
type. Furthermore, the family (B,Rtrop) ! C+

� determines which monodromy invariants � give
rise to degenerations into a specified stratum of slc stable pairs—it is those � on which the family
(B,Rtrop) is combinatorially constant. In the above examples, these loci of combinatorial con-
stancy in C+

� are the cones of a semifan FR. The semifan of Theorem 1 is exactly this one. In fact,
we prove here that for any recognizable divisor, the cones of FR are the loci on which a well-defined

“stratum” function S : C+
� ! {slc strata of F

R
2d} is constant (Thm. 9.3).

For degree 2 K3 surfaces with ramification divisor, FR is a semifan but not a fan. It is a
coarsening of the Coxeter fan. For elliptic K3 surfaces with divisor s +

P24
i=1 fi it is a fan which

refines the maximal cone of the Coxeter fan into 9 subcones. Theorems 1 and 2 imply the existence
of a semifan Frc for all degrees 2d. But unlike for Ag and the 2nd Voronoi fan, or the above two
examples, we have no explicit description, because the structure of a hypothetical “tropical K3-
rational curves pair” (B,Rrc

trop) is unknown. Such a description is an interesting open question.
Integral-a�ne structures make no appearance in this paper because we do not explicitly construct
FR for any given R—we prove a general existence result.

After this work appeared, the authors, with Han [AEH21], proved recognizability for fixed
curves of non-symplectic automorphisms. Explicit semifans FR for the fixed divisor R were given
in [AE22], for moduli spaces of K3 surfaces with nonsymplectic involution.

Summary of contents. In Section 2, we recall di↵erent notions of moduli of K3 surfaces, such
as smooth analytic, M -quasipolarized, and polarized with ADE singularities. In Section 3 we
study one-parameter degenerations: Kulikov models, as well as nef, divisor, and stable models, by
adding nef line bundles, e↵ective nef divisors, and by taking the canonical models of the latter,
respectively. In Section 4 we define the periods of Kulikov surfaces. These sections compile known
results about K3 moduli, giving a unified treatment of Type II and III degenerations.

Section 5 recalls the combinatorially defined, period-theoretic compactifications of arithmetic
quotients: Baily-Borel, toroidal, and semitoroidal. A major result is Theorem 5.14 which states
that, for Type IV arithmetic quotients, a semitoroidal compactification is precisely a normal com-
pactification which is sandwiched between the Baily-Borel and some toroidal compactification.
Section 6 discusses the compactifications of F2d via stable pairs, associated to a canonical choice
of divisor R. Here, we introduce the critical notion of recognizable divisors (Def. 6.2).

In Section 7, we construct the �-families which appear in the proof of Theorem 1. A new result
(Theorem 7.19) globalizes the main result of Friedman-Scattone [FS86]: Any two �-families with
the same values of �2 and imprimitivity of � are connected by a series of birational modifications
falling into three special forms. In Section 8, we prove the main properties of recognizable divisors
with respect to �-families. Theorem 8.11 summarizes equivalent formulations of recognizability.

Sections 9 and 10 contain the proofs of Theorems 1 and 2, respectively.

2. Moduli of K3 surfaces

2A. Analytic moduli. We begin by setting notation and reviewing fundamental results about
K3 surfaces. For general references, see [Huy16] or [ast85].

Definition 2.1. A K3 surface X is a compact, complex surface with h1(X) = 0 and KX = OX .

Definition 2.2. Let LK3 := II3,19 = H�3 � E�2
8 be a fixed copy of the unique even unimodular

lattice of signature (3, 19).
4



Endowed with the cup product, H2(X,Z) is isometric to LK3 for any K3 surface X. Let
KX ⇢ H1,1(X,R) denote the Kähler cone of X. It is a fundamental chamber for the group
WX = hr�i ⇢ O(H2(X,Z)) generated by reflections in the roots � 2 NS(X), �2 = �2 acting on
the positive cone of H1,1(X,R).

Theorem 2.3 ([PSS71, LP81]). Two K3 surfaces X, X 0 are isomorphic if and only if they are
Hodge-isometric: there is an isometry i : H2(X 0,Z)! H2(X,Z) for which i(H2,0(X 0)) = H2,0(X).
Furthermore, i = f⇤ for a unique isomorphism f : X ! X 0 if and only if i(KX0) = KX .

Note that ±1 and g 2 WX act by Hodge isometries on H2(X,Z). For any Hodge isometry i
between X 0 and X, there is a unique sign and unique element g 2WX such that ±g�i(KX0) = KX .
Thus, the group of Hodge isometries of X fits into a split exact sequence of groups

0! {±1}⇥WX ! HodgeIsom(X)! Aut(X)! 0.

Definition 2.4. Let ⇡ : X ! S be a family of smooth analytic K3 surfaces over an analytic space
S. A marking is an isometry of local systems � : R2⇡⇤Z! LK3.

Definition 2.5. The period domain of analytic K3 surfaces is

D := P{x 2 LK3 ⌦ C
��x · x = 0, x · x > 0}.

It is an analytic open subset of a 20-dimensional quadric in P
21. Let (X ! S, �) be a marked

family of K3 surfaces. The period map P : S ! D is defined by s 7! �(H2,0(Xs)).

By [ast85, Exp. XIII], there is a non-Hausdor↵ complex manifold M of dimension 20, forming
a fine moduli space of marked K3 surfaces, together with a period map P : M ! D. For x 2 D

a period, let Wx be the group generated by reflections in roots of x? \ LK3. Then P�1(x) is a
torsor over {±1}⇥Wx with action given by (X,�) 7! (X, g � �).

2B. Quasipolarized moduli. We now give analogous definitions to Section 2A in the polarized
case. The standard reference is [Dol96]. However, Thm. 3.1 in ibid is incorrect. We modify the
definition in a way that this theorem remains true.

Let J : M ,! LK3 be a primitive hyperbolic sublattice of signature (1, r � 1) with r  20. A
vector h 2 M ⌦ R is very irrational if h /2 M 0 ⌦ R for any proper sublattice M 0

( M . We will
henceforth fix one such, of positive norm h2 > 0.

Definition 2.6. An M -quasipolarized K3 surface (X, j) is a K3 surface X, and a primitive lattice
embedding j : M ,! NS(X) for which j(h) 2 KX is big and nef. Two such (X, j), (X 0, j0) are
isomorphic if there is an isomorphism f : X ! X 0 of K3 surfaces for which j = f⇤ � j0.

Definition 2.7. A marking of (X, j) is an isometry � : H2(X,Z)! LK3 for which J = � � j.

The M -quasipolarized period domain is

DM := P{x 2M? ⌦ C
��x · x = 0, x · x > 0}.

Define the Weyl group of a point x 2 DM to be Wx(M?) := hr� : � 2 x? \M?i. Note that now
Wx(M?) is finite because x? \M? is negative-definite.

Theorem 2.8. There is a non-Hausdor↵ complex manifold MM ⇢ M of dimension 20 � r,
admitting a universal family of marked M -quasipolarized K3 surfaces. The fiber P�1(x) of the
period map P : MM ! DM is a torsor over Wx(M?).

Proof. The proof follows that of [Dol96, Thm. 3.1], which now works because of the modified
Definition 2.6 for an M -quasipolarization. ⇤

Let Fq
M denote the moduli stack of (unmarked) M -quasipolarized K3 surfaces.

Corollary 2.9. There is an isomorphism of stacks Fq
M = [MM : �] where

� := {� 2 O(LK3) : �
��
M

= idM}
is the group of changes-of-marking. The quotiented period map MM/�! DM/� is a bijection.
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2C. ADE moduli. We now modify the above moduli problems to produce a Hausdor↵ moduli
space. Theorem 2.11 below is well-known.

Definition 2.10. An M -polarized K3 surface (X, j) is a surface X with at worst rational double
point (ADE) singularities whose minimal resolution X ! X is a smooth K3 surface, together with
an isometric embedding j : M ,! Pic(X) for which j(h) is ample.

Theorem 2.11. The coarse moduli space of M -polarized K3 surfaces is FM = DM/�. The moduli
stack FM is the separated quotient of the stack [MM : �].

Remark 2.12. The stack FM and the quotient stack [DM : �] are not equal. In the latter stack,
the inertia group at x 2 DM is the stabilizer �x. In the former stack, the Torelli Theorem 2.3
implies the inertia group is rather �x/Wx(M?) = Aut(X, j).

Consider an open neighborhood Ux 3 x in DM preserved by �x. First, quotient Ux by Wx(M?).
Since Wx(M?) ⇢ �x is normal, the quotient group acts on the coarse space Ux/Wx(M?), which
is a smooth complex manifold. The stack quotient [Ux/Wx(M?) : �x/Wx(M?)] defines orbifold
charts for the smooth DM stack FM .

3. One-parameter degenerations

3A. Kulikov models. We now examine degenerations of K3 surfaces over a curve. Let (C, 0)
denote the analytic germ of a smooth curve at a point 0 2 C and let C⇤ = C \ 0. Let X⇤ ! C⇤

be a family of smooth analytic K3 surfaces.

Definition 3.1. A Kulikov model X ! (C, 0) is an extension of X⇤ ! C⇤ for which X is smooth,
KX ⇠C 0, and X0 has reduced normal crossings with all components Kähler. We say X is Type I,
II, or III, respectively, depending on whether X0 is smooth, has double curves but no triple points,
or has triple points, respectively.

A key result is the theorem of Kulikov [Kul77] and Persson-Pinkham [PP81]:

Theorem 3.2. Let Y ⇤ ! C⇤ be a family of analytic K3 surfaces admitting an extension Y ! (C, 0)
for which every component of Y0 is Kähler. There is a base change (C 0, 0)! (C, 0) and a sequence
of bimeromorphic modifications Y 0 99K X of the pullback, such that X is a Kulikov model.

Assume for notational convenience that the strata of X0 are globally normal crossings. Let
Vi ⇢ X0 denote the irreducible components, Dij = Vi \ Vj and Tijk = Vi \ Vj \ Vk the double
curves and triple points, respectively. By convention, we write Dij ⇢ Vi and Dji ⇢ Vj .

Proposition 3.3. Let X ! (C, 0) be a Kulikov model. Let Di =
P

j Dij be the part of the double
locus of X0 lying on Vi. Then:

(1) Di 2 |�KVi | is an anticanonical cycle of rational curves in Type III, and an elliptic curve
or the disjoint union of two elliptic curves in Type II.

(2) D2
ij +D2

ji = �2 + 2g where g is the arithmetic genus of Dij in X0.
(3) The dual complex �(X0) is a triangulation of S2 in Type III, and a segment decomposed

into subsegments in Type II.

Definition 3.4. A reduced normal crossings surface X0 satisfying (1), (2), (3) is a Kulikov surface.

There is a converse to Proposition 3.3 due to Friedman [Fri83b]:

Theorem 3.5. Let X0 be a Kulikov surface. Then, X0 deforms to a smooth K3 surface if and
only if it satisfies an additional property called d-semistability:

Ext1(⌦X0 , OX0) ⇠= O(X0)sing .

The components Vi in Type III are rational surfaces with a nodal anticanonical cycle as the
double locus. The two ends of a Type II degeneration are rational surfaces with a smooth elliptic
anticanonical double curve, and the intermediate components are elliptic ruled surfaces with double
locus an anticanonical disjoint union of two elliptic sections.
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Definition 3.6. An anticanonical pair or simply pair (V,D) is a smooth surface V with a reduced,
at worst nodal, anticanonical divisor D 2 |�KV |. A toric pair (V ,D) is a smooth toric surface V
with D 2 |�KV | the toric boundary.

The topologically trivial deformations ofX0 consist of deforming the moduli of the pairs (Vi, Di),
and regluing the double curves by an element of C⇤ (in Type III) or by a translation of the elliptic
double curve E (in Type II). Only some of these regluings are smoothable by Theorem 3.5.

Definition 3.7. The charge of an anticanonical pair (V,D) is �top(V \D). If D =
P

Dj ,

Q(V,D) :=

8
<

:

12 +
P

(�3�D2
j ) if D is nodal with at least two components,

11�D2 if D is nodal and irreducible,
12�(OV )�D2 if D is smooth.

Proposition 3.8 (Conservation of Charge, [FM83a, Prop. 3.7]). Let X =
S
(Vi, Di) be a Kulikov

surface. Then
P

Q(Vi, Di) = 24.

Definition 3.9. A corner blow-up of (V,D) is the blow-up at a node of D. An internal blow-up
is the blow-up at a smooth point of D.

Both the corner and internal blow-ups eV ! V are naturally anticanonical pairs (eV , eD). For
a corner blow-up, eD is the reduced inverse image of D. For an internal blow-up, eD is the strict
transform of D. The formula for charge easily implies Q(eV , eD) = Q(V,D) for a corner blowup,
while Q(eV , eD) = Q(V,D) + 1 for an internal blow-up.

Any toric pair satisfies Q(V ,D) = 0. When V is rational and D has nodes, as is the case for
any component in Type III, [GHK15, Prop. 1.3] proves the existence of a diagram

(V,D)
f � (eV , eD)

g�! (V ,D)

where f is a sequence of corner blow-ups, g is a sequence of internal blow-downs, and (V ,D)
is a toric pair. We call this data a toric model of (V,D). By the existence of a toric model,
Q(V,D) � 0 for all (V,D) in Type III, with Q(V,D) = 0 if and only if (V,D) is toric. So the
conservation-of-charge formula (3.8) says that X0 is “24 steps from being toric.”

When (V,D) is an elliptic ruled component of a Type II Kulikov surface, we have Q(V,D) = 0
if and only if V ⇠= PE(O�L) with D the disjoint union of the zero and infinity sections. Otherwise
Q(V,D) measures the number of steps from being a smooth P

1-bundle over an elliptic curve E.
Finally, we discuss base change, following [Fri83a]. Consider an order k base change X 0 ! X of

a Kulikov model along a branched cover (C 0, 0)! (C, 0). Let t be an analytic coordinate on (C, 0).
The smoothing of X0 is locally xy = t or xyz = t near a double curve or triple point, respectively.
So the base change is locally xy = tk or xyz = tk. There is a locally toric, SNC resolution
X[k] ! X 0 near the singular locus of X0 corresponding to the standard order k subdivision of
the simplices of the dual complex �(X0). Each triangle decomposes into k2 triangles, and each
segment into k subsegments. All components of X0[k] not appearing in X0 satisfy Q = 0.

3B. Nef, divisor, and stable models. We now describe some additional structures on a Kulikov
model in the presence of a quasipolarization.

Definition 3.10. Let L⇤ be a line bundle on X⇤, relatively nef and big over C⇤. A relatively nef
extension L to a Kulikov model X over C is called a nef model.

Definition 3.11. Let R⇤ ⇢ X⇤ be the vanishing locus of a section of L⇤ as above, containing no
vertical components. A divisor model is an extension R ⇢ X to a relatively nef divisor R 2 |L| for
which R0 contains no strata of X0.

Definition 3.12. The stable model of (X⇤, R⇤) is

(X,R) := ProjC
L

n�0 H
0(X,O(nR))

for some divisor model. It is unique and independent of the choice of divisor model (X,R) by the
theory of canonical models, since for 0 < ✏⌧ 1 the pair (X,X0+✏R) has log canonical singularities
and the divisor KX + ✏R is relatively ample.
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By adjunction, the central fiber (X0, ✏R0) has semi log canonical (slc) singularities and the
divisor KX0

+ ✏R0 is ample.

The existence of a nef model is due to Shepherd-Barron [SB83], and the existence of a divisor
model is proved in [Laz16, Thm. 2.11], [AET19, Thm. 3.12].

Now suppose one starts with a family (X
⇤
, R

⇤
) ! C⇤ of K3 surfaces with ADE singularities.

After a finite base change it admits a simultaneous resolution of singularities f : X⇤ ! X
⇤
. Let

R⇤ = f⇤(R
⇤
). After a further finite base change, by the above we get a divisor model, whose

stable model (X,R) is the stable extension of (X
⇤
, R

⇤
) over C. It is unique and stable under base

changes by a standard argument, see e.g. [Kol23, Thm. 2.47].

3C. Topology of Kulikov models. The primary reference for this section is [FS86]. Let X !
(C, 0) be a Kulikov model. For convenience, denote integral singular cohomology by Hi(�). Let
T : H2(Xt)! H2(Xt) be the Picard-Lefschetz transformation along an oriented simple loop in C⇤

enclosing 0. Since X0 is reduced normal crossings, T is unipotent. Let N := log T be its logarithm.

Theorem 3.13 ([FS86, Fri84]). Let X ! (C, 0) be a Kulikov model. We have that

if X is Type I, then N = 0,
if X is Type II, then N2 = 0 but N 6= 0,
if X is Type III, then N3 = 0 but N2 6= 0.

Furthermore, N is integral, and of the form Nx = (x · �)� � (x · �)� for � 2 H2(Xt) a prim-
itive isotropic vector, and � 2 �?/� satisfying �2 = #{triple points of X0}. When �2 = 0, its
imprimitivity is the number of double curves of X0.

Thus, the Types I, II, III of Kulikov model are distinguished by the behavior of the monodromy
invariant �: either � = 0, �2 = 0 but � 6= 0, or �2 6= 0 respectively.

Remark 3.14. If X⇤ ! C⇤ admits a quasipolarization M ,! Pic(X⇤) then T 2 O(H2(Xt)) lies
in the subgroup � fixing M . In particular, � 2M? and we can consider the lattice of monodromy
invariants � 2 �?/� as valued in a subquotient of M?.

Definition 3.15. Let I ⇢ H2(Xt) denote the primitive isotropic lattice Z� in Type III or the
saturation of Z� � Z� in Type II.

As a simple normal crossings degeneration, there is a deformation-retraction c : X⇥ [0, 1]! X0

called the Clemens collapse [Cle69]. So we have H⇤(X0) = H⇤(X). In particular, the map
c⇤t : H

⇤(X0)! H⇤(Xt) coincides with restriction from X to Xt.
The integral cohomology of a Type III Kulikov surface X0 is computed in [FS86, Sec. 1] by the

Mayer-Vietoris spectral sequence, associated to the exact sequence of sheaves

0! ZX0
!

L
i ZVi

!
L

ij ZDij
!

L
ijk ZTijk

! 0.

It follows that there is an exact sequence

0! Z! H2(X0)! e⇤! 0, where

Definition 3.16. The numerically Cartier classes on a Kulikov model X0

e⇤ = e⇤(X0) := ker
⇣L

i H
2(Vi)!

L
ij H

2(Dij)
⌘

are collections of classes (↵i) for which nij := ↵i ·Dij = ↵j ·Dji for all double curves.

The lefthand term Z arises in the spectral sequence from the second simplicial cohomology
H2(�(X0)) of the dual complex. Choosing an orientation on �(X0) gives a generator 1 2 Z which
satisfies c⇤t (1) = �.

Mayer-Vietoris for a Type II Kulikov surface X0 implies that there is an analogous exact se-
quence 0 ! Z

2 ! H2(X0) ! e⇤(X0) ! 0 with the Z
2 arising from H1(Di,i+1) for some double

curve Di,i+1. Here the image c⇤t (Z
2) is identified with the rank two lattice I.
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Definition 3.17. Let I0 denote the sublattice Z ⇠= H2(�(X0)) ⇢ H2(X0) in Type III or Z
2 ⇠=

H1(Di,i+1) ⇢ H2(X0) in Type II arising from Mayer-Vietoris.

So for both Type II and III, c⇤t (I0) = I and H2(X0)/I0 = e⇤.

Definition 3.18. Define the intersection form · on e⇤ by (↵i) · (�i) =
P

i ↵i · �i.

Definition 3.19. Define ⇠̂i := c1(OX(Vi))
��
X0
2 H2(X0) and let ⇠i 2 e⇤ be the image of ⇠̂i. Then

⇠i =
P

j(Dji �Dij) and
P

i ⇠i = 0. Define ⌅ := Z-span{⇠i} ⇢ e⇤ and declare ⇤ := e⇤/⌅.

It is easy to check directly from property (2) of Proposition 3.3 that ⌅ ⇢ e⇤ is contained in the
null sublattice of the intersection form.

Proposition 3.20. The map c⇤t : H
2(X0)! H2(Xt) induces a surjection e⇤ ⇣ {�,�}?/I sending

⌅ to zero, which thus descends to ⇤. Furthermore, ⌅ = e⇤null is the null sublattice. Hence ⌅ is
saturated, ⇤ is torsion-free and the induced map ⇤! {�,�}?/I is an isometry of lattices.

Proof. [FS86, 4.13] gives an exact sequence

0! ⌅̂! H2(X0)
c⇤t�! ker(N) = {�,�}? ! 0

where ⌅̂ := Z-span{⇠̂i}. Noting that c⇤t (I0) = I, we can quotient the second and third factors in
the above exact sequence to get an exact sequence

0! ⌅! e⇤! {�,�}?/I ! 0.

Since the third term is torsion-free, the kernel ⌅ must be the saturated. It is exactly the null
lattice because the target {�,�}?/I is nondegenerate and c⇤t preserves the intersection form. ⇤

4. The period map

4A. The period of a Kulikov surface. LetX0 be a Kulikov surface, not necessarily d-semistable.
The period map is a homomorphism e from e⇤(X0) (see Def. 3.16) to C

⇤ in Type III or the ellip-
tic double curve E in Type II, which measures the obstruction to a class being represented by a
Cartier divisor. First, we consider the Type III case.

A resolution of the sheaf of non-vanishing holomorphic functions is given by

1! O⇤
X0
!

L
i O⇤

Vi
!

L
ij O⇤

Dij
!

L
ijk O⇤

Tijk
! 1.

Computing Pic(X0) = H1(X0,O⇤
X0

) via the Mayer-Vietoris spectral sequence [FS86, Sec. 3] shows
that Pic(X0) is the kernel of a homomorphism

ker
⇣L

i Pic(Vi)!
L

ij Pic(Dij)
⌘
! H2(�(X0),C

⇤) ⇠= C
⇤

where the latter space is identified with C
⇤ by choosing an orientation on the dual complex. Note

that since Vi and Dij are rational, we have Pic(Vi) = H2(Vi) and Pic(Dij) = H2(Dij) so the first

term is nothing more than the lattice e⇤ of (3.16).

Definition 4.1. The period point of a Type III Kulikov surface X0 is e X0 2 Hom(e⇤,C⇤).

Construction 4.2. Unwinding the maps in the spectral sequence, one can explicitly construct
the homomorphism e X0 . Let ↵ = (↵i) 2 e⇤ be a numerically Cartier divisor. Then ↵i determines
a unique line bundle Li 2 Pic(Vi) for all i. We have

Li

��
Dij

⇠= Lj

��
Dji

⇠= OP1(nij)

so we can extend a line bundle Li ! Vi by Lj ! Vj to a line bundle on Vi [ Vj . We may continue

successively until only one component V1 remains. The result is a line bundle L ! X0 \ V1 and
we may consider the line bundle

L
��
D1
⌦ L�1

1

��
D1

=: L↵ 2 Pic0(D1).
9



We have Pic0(D1) = C
⇤ because the cycle D1 is oriented by the choice of orientation on the dual

complex �(X0). So ↵ determines a period e X0(↵) = L↵ 2 C
⇤. It is independent of the choice of

component V1 and clearly obstructs ↵ being represented by a Cartier divisor.

Construction 4.3. In analogy to Construction 4.2, we now construct a period map e X0 : e⇤! E
in Type II. Orient the segment �(X0) so that X0 = V0 [ · · · [ Vk with indices increasing with
respect to the orientation. Let ↵ = (↵i) 2 e⇤. Then ↵0 2 H2(V0) and ↵k 2 H2(Vk) define line
bundles L0 and Lk because the end surfaces are rational elliptic. On the other hand, the lifts of
an element ↵i 2 H2(Vi), i 6= 0, k to an element Li 2 Pic(Vi) form a torsor over E = Pic0Di,i+1.
So there is a unique lift L1 of ↵1 for which L0

��
D01

⇠= L1

��
D10

. Take this lift to extend L0 to V0 [ V1

by L1. Continuing inductively gives a unique line bundle L! X0 \ Vk. Then define

e X0(↵) := L
��
Dk�1,k

⌦ L�1
k

��
Dk,k�1

2 Pic0(Dk�1,k) = E.

The period map can also be defined from the exponential long exact sequence

· · ·! H1(X0)! H1(X0,O)! Pic(X0)! H2(X0)
 �! H2(X0,O)! H2(X0,O⇤)! · · · .

Note that H2(X0,O) = H0(X0,!X0)
⇤ ⇠= C is one-dimensional. Quotienting by the image of

I0 ⇢ H2(X0), we reproduce the period homomorphism

e X0 : e⇤! C/ (I0).

In Type III, we have C/ (I0) ⇠= C
⇤ while in Type II we have C/ (I0) ⇠= E for an elliptic curve

E. In both cases, Pic(X0) is the kernel because H1(X0,O) = 0.

Proposition 4.4. The surface X0 is smoothable if and only if the period point e X0 2 Hom(e⇤,C⇤)
or Hom(e⇤, E) descends to a period point  X0 2 Hom(⇤,C⇤) or Hom(⇤, E).

Proof. By Theorem 3.5, X0 is smoothable if and only if it is d-semistable. But X0 is d-semistable
if and only if e X0(⇠i) = 1 for all i, i.e. e X0 descends to ⇤ = e⇤/⌅. ⇤

4B. Markings of Kulikov surfaces. In this section, we define the analogues of markings for
Kulikov surfaces X0 to properly formulate results on the period map. Let ⇤0 = ⇤0(t, k) denote
a model for {�,�}?/I in LK3. It depends only on the even integer �2 = t giving the number of
triple points of X0 and the imprimitivity k of � 2 �?/�. We suppress (t, k) in the notation.

Definition 4.5. Let X0 a d-semistable Kulikov surface. A marking (�, b) consists of:

(1) An isometry � : ⇤(X0)! ⇤0 (see Def. 3.16) and
(2) An ordered basis b of I0 ⇢ H2(X0) (see Def. 3.17).

The notion of a marking naturally extends to equisingular families X ! S of Kulikov surfaces
using local systems. We can now define the period map:

Definition 4.6. Let (X ! S,�) be a family of marked d-semistable Kulikov surfaces. The period
map is defined by

S ! Hom(⇤0,C
⇤) or Hom(⇤0, eE), s 7! B � s � ��1.

Here  s comes from the exponential exact sequence as in Section 4A, eE ! C \ R is the universal
marked elliptic curve C/Z� Z⌧ ! {⌧ 2 C \ R}, and B is the quotient map

B : H2(X0,OX0)! C/Z = C
⇤ or B : H2(X0,OX0)! C/Z� Z⌧

induced by the ordered basis b of I0 (the first element b1 of the basis is sent to 1 2 C).

Remark 4.7. In the Type II case, we could also require that b is an oriented basis, in the sense
that ⌧ 2 H. Then the period map can be defined with target eE+ := eE

��
H
instead.
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4C. Partial markings of K3 surfaces. Let X ! (C, 0) be a Kulikov model. We determine
what information a marking of X0 induces on the general fiber Xt = Y . In this subsection, we
denote an analytic K3 surface by Y to distinguish it from the Kulikov model X.

Definition 4.8. A partial marking of Y is a distinguished primitive isotropic class � 2 H2(Y ), a
distinguished vector � 2 �?/� of non-negative norm, and an isometry � : {�,�}?/I ! ⇤0. We say
the partial marking is Type II or III depending on whether �2 = 0 or �2 > 0, respectively.

Proposition 4.9. Let X ! (C, 0) be a Kulikov model. A partial marking of Xt whose distinguished
classes �, � are the monodromy invariants determines uniquely a marking of X0.

Proof. Proposition 3.20 gives an isometry c⇤t : ⇤(X0) ! {�,�}?/I. So a partial marking of Xt

induces an isometry ⇤(X0)! ⇤0 by composing with c⇤t . The class � (and � in Type II) determines
a basis of I0 ⇢ H2(X0) via c⇤t . ⇤

Definition 4.10. The parabolic stabilizer of an isotropic lattice I ⇢ LK3 fits into an exact sequence
0! UI ! StabO(LK3)(I)! �I ! 0 where UI is the unipotent radical: the normal subgroup acting
trivially on the graded pieces I and I?/I. In Type III, UI is isomorphic to the additive group
Hom(I?/I, I). In Type II, UI is a central Z-extension of Hom(I?/I, I). The quotient has the
structure �I

⇠= O(I?/I) ⇥ GL(I). These exact sequences play an important role in the toroidal
compactifications (Sec. 5B).

Definition 4.11. A partially marked K3 surface (Y,�) is admissible if [⌦] : I ⌦ R ! C sending
i 7! [⌦] · i is injective for any non-zero two-form ⌦ on Y . Similarly, define

D
I := {x 2 D

�� I ⌦ R
·x�! C is injective}.

Note that DI ⇢ D is an open subset. The period maps described in Sec. 4A can be understood
as Carlson’s extension class [Car85] for the limit mixed Hodge structure of X0 and D

I is the domain
of Hodge structures on LK3 for which I happens to also define a mixed Hodge structure.

Proposition 4.12. There is a fine moduli space of admissible, partially marked, analytic K3
surfaces, admitting a period map to D

I/UI .

Proof. The partial markings of a K3 surface Y are identified with UI -orbits of the set of markings
of Y . The fine moduli space M of marked analytic K3 surfaces admits a period map P : M! D,
and if the partial marking associated to a marked K3 surface (Y,�) is admissible, then its image
under the period map lies in D

I . The action of UI by post-composition on � is free on P�1(DI)
(as it is free on D

I). The quotient is a non-Hausdor↵ complex manifold. By the Torelli theorem,
the universal family descends to a universal family of partially marked K3 surfaces. ⇤

Proposition 4.13. In Type III, there is an open embedding D
I/UI ,! I?/I ⌦ C

⇤ into a 20-
dimensional algebraic torus. In Type II, there is an open embedding D

I/UI ,! AI where AI !
I?/I ⌦ eE is a punctured holomorphic disk bundle.

Sketch. Though the period domain D of analytic K3s is not Hermitian symmetric, these embed-
dings are defined in exactly the same way as the “torus embeddings” of the unipotent quotients
of Hermitian symmetric domains [AMRT75]. In Type III, one realizes DI as a tube domain inside
C

20. The translation group UI = Hom(I?/I, I) acts by translations by Z
20 on C

20 and so the
quotient DI/UI embeds into (C⇤)20.

In Type II, DI is contained in an upper half-plane bundle, fibered over the total space of a
C

18-bundle over C\R. The central Z acts on the upper-half plane bundle by fiberwise translation.
Quotienting gives a punctured holomorphic disk bundle over the C

18-bundle. Then Hom(I?/I, I)
further acts on the C

18-fiber over ⌧ 2 C \ R by translation by (Z� Z⌧)18. So the quotient DI/UI

embeds into a punctured holomorphic disk bundle AI ! I?/I ⌦ eE . ⇤

The unipotent quotient of DM embeds into D
I/UI for all M . Let D(I) := D

I/UI .
11



Definition 4.14. Define an enlargement D(I) ,! D(I)� as follows: In Type III, it is the closure
of D(I) in the toric variety T� extending the torus I?/I ⌦C

⇤ whose fan consists of the unique ray
R�0�. In Type II, it is the holomorphic disk bundle AI extending the punctured disk bundle AI .

In Type III, the boundary divisor in D(I)� is isomorphic to �?/{�,�}sat ⌦ C
⇤. Since �?/� is

unimodular, this torus can be identified with Hom(⇤,C⇤). Similarly, the added boundary divisor
in Type II is naturally isomorphic to the base I?/I⌦ eE of the disk bundle, which is identified with
Hom(⇤, eE) again because I?/I is unimodular.

Definition 4.15. Let X ! S be a family of d-semistable Kulikov surfaces of Types I + II or I
+ III over a smooth base S. Suppose furthermore that the discriminant locus � ⇢ S is a smooth
divisor. A mixed marking � is a partial marking of the family X ⇤ ! S\� of smooth fibers together
with a compatible (Prop. 4.9) marking of the equisingular family X0 ! � of Kulikov surfaces.

Theorem 4.16. Let (X ! S,�) be a mixed marked family of admissible surfaces as in Definition
4.15. The period map  : S \ �! D(I) extends to a morphism

 : S ! D(I)�

sending the discriminant � to the boundary divisor Hom(⇤,C⇤) or Hom(⇤, eE). Furthermore,  
��
�

is the period map for the family of marked Kulikov surfaces X0 ! �, as in Definition 4.6.

Proof. This theorem is essentially the same as [FS86, Thm. 5.3]. The primary tool is the nilpotent
orbit theorem [Sch73, Thm. 4.9]. ⇤

For anM -quasipolarized d-semistable Kulikov surfaceX0, we fix an embeddingM ,! ker( X0) ⇢
⇤(X0). In the M -quasipolarized case, the period point Hom(⇤, C⇤ or E) descends to a period
point in Hom(⇤/M, C⇤ or E) which we will also denote  X0 by abuse of notation. More pre-
cisely, a primitive sublattice M ⇢ ⇤ � I is the same as a not necessarily primitive sublattice
M ⇢ ⇤ plus a homomorphism  : Tors(⇤/M) ! C

⇤ or E. The period point belongs to the coset
of Hom(⇤/M sat,C⇤ or E) of points with  X0 |Tors(⇤/M) =  . The discussion of the period map
in the above sections holds, replacing everywhere H2(Xt) with j(M)?, LK3 with M?, DI with
D

I
M := D

I \ DM , UI with UI \ �, I? with I?M? , ⇤ with ⇤/j0(M), ⇤0 with ⇤0/M . Recall that �
is the subgroup of O(LK3) acting by the identity on M .

Proposition 4.17. D
I
M = DM for any M .

Proof. An x 2 DM \ DI
M would satisfy x · i = 0 for some nonzero isotropic vector i 2 I ⌦ R. But

then Re(x), Im(x) span a positive definite 2-plane in i?M? ⌦ R which is impossible since M? has
signature (2, 20� r). ⇤

The moduli space of partially marked, M -quasipolarized K3 surfaces admits a period map to
the torsion translate of a subtorus DM (I) := DM/UI \ � ⇢ D(I) which is generically one-to-one.
A mixed marked M -quasipolarized family admits a period map to the toroidal extension

DM (I)� := DM (I) ⇢ D(I)�.

Notation 4.18. We henceforth write I?M? simply as I? whenever it is clear from context that we
are working with M -quasipolarized surfaces.

5. Compactifications of arithmetic quotients

5A. Baily-Borel compactification. By Theorem 2.11, the coarse space of M -polarized (ADE)
K3 surfaces FM is the quotient of the period domain

DM := P{x 2M? ⌦ C
��x · x = 0, x · x > 0}

by the arithmetic group �. In this capacity, the space FM = DM/� has a Baily-Borel compactifi-
cation [BB66], which we now describe.
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Remark 5.1. Note that DM = D
1
M t D

2
M has two connected components and so FM may have

either 1 or 2 connected components, depending on whether or not � contains an element inter-
changing the two components. To simplify (but abuse) notation, we refer to D

1
M and its stabilizer

�1 ⇢ � as DM and �, respectively.

Definition 5.2. The compact dual is D
c
M := P{x 2 M? ⌦ C

��x · x = 0}. It is the compact
hermitian symmetric domain containing DM as an open subdomain.

Definition 5.3. A boundary component of DM is a maximal connected complex submanifold of
the boundary @DM ⇢ D

c
M . The rational boundary components BI are in bijection with primitive

isotropic lattices I ⇢M? via

BI = {x 2 @DM

�� span{Rex, Imx} = I ⌦ R}.
We have BI

⇠= H when rk I = 2. We have BI
⇠= {pt} when rk I = 1. We call these Type II and

III boundary components, respectively. The rational closure of DM is D
+
M := DM [I BI ⇢ D

c
M

topologized at the boundary points using horoballs as a neighborhood base.

Theorem 5.4 ([BB66]). The quotient F
BB
M := D

+
M/� is compact and has the structure of a

projective variety, and the projective coordinate ring is the ring of modular forms for �.

The image of a boundary component BI in F
BB
M is isomorphic to BI/Stab�(I) and so is either

a point when rk I = 1 or a modular curve when rk I = 2.

Definition 5.5. The 0- and 1-cusps of F
BB
M are the zero- and one-dimensional boundary com-

ponents, respectively. They are, respectively, in bijection with �-orbits of rank 1 and 2 primitive
isotropic lattices I ⇢M?.

Proposition 5.6. Let X ! (C, 0) be an M -quasipolarized Kulikov model. The extension of the
period map C⇤ ! FM to the Baily-Borel compactification sends 0 into the cusp associated to
the monodromy lattice I. In Type II, the j-invariant j(Di,i+1) of a double curve agrees with the
j-invariant j : BI/Stab�(I)! H/SL2(Z) = A

1
j of the corresponding image point.

Proof. This well-known fact follows directly from the asymptotics of the period map and the
nilpotent orbit theorem, as in Theorem 4.16. ⇤
5B. Toroidal compactification. The original source on this subject is [AMRT75]. The reference
[Nam80] in the case of Siegel space D = Hg is particularly clear. The following well-known theorem
is key to constructing toroidal compactifications:

Theorem 5.7. Let BI be a rational boundary component of DM . There exists a horoball neigh-
borhood N I � BI preserved by Stab�(I) and an embedding

NI/Stab�(I) ,! DM/� where NI = N I \BI .

So a punctured neighborhood of a Baily-Borel cusp can be constructed locally as a quotient
by the parabolic stabilizer Stab�(I). Let 0 ! UI ! Stab�(I) ! �I ! 0 be the exact sequence
associated to the unipotent radical UI (4.10). Then NI/UI ,! DM (I) = DM/UI has an open
embedding into the unipotent quotient. The Levi group �I has a residual action on both.

Definition 5.8. Let I = Z� be a rank 1 isotropic lattice. Let C� ⇢ �?/� ⌦R denote a connected
component of the positive norm vectors and let C+

� be its rational closure: the union of C� with
all rational rays on its boundary.

Definition 5.9. A �-admissible collection of fans F (or for short, fan) is, for each I = Z�, a fan F�

with support C+
� , such that the collection {F�} is �-invariant, with finitely many orbits of cones.

By “fan” F� we mean a decomposition into rational polyhedral cones, closed under taking
faces and intersections, and locally finite in the positive cone C�. Infinitely many cones meet
at rational rays on the boundary of C+

� . Recall, when rk I = 1, there is a “torus embedding”
DM (I) ,! �?/� ⌦ C

⇤ (4.13).
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Construction 5.10. The toroidal compactification F
F
M associated to a fan F is built as follows:

Take the closure NI/UI ,! NI/UI ⇢ X(F�) in the toric variety containing �?/� ⌦ C
⇤ associated

to the fan F�. Then quotient by �I to get an analytic space VI := (NI/UI)/�I . This is possible
by �-invariance of F. Note that VI contains an open subset

(NI/UI)/�I = NI/Stab�(I) ,! DM/�.

Define the Type III extension to be the gluing of FM = DM/� to VI along this open set, ranging
over all �-orbits of rank 1 isotropic I.

If I = Z� � Z� is isotropic of rank 2, take the closure NI/UI ⇢ DM (I)� in the projective line
bundle over I?/I ⌦ eE+ (4.13) and define VI as above. The Type II extension is the gluing of FM

with VI along their common open subset (NI/UI)/�I = NI/Stab�(I).

The toroidal compactification F
F
M := FM [I VI is the gluing of the Type II and III extensions.

Let � 2 I = Z��Z�. The analytic structure where the corresponding Type III and II loci meet
is described by the Mumford construction [Mum72] applied to a periodic, rational polyhedral tiling
F�,I of I?/I ⌦ R. The polyhedral tiles are defined as follows: Quotient the cones of F� passing
through R

+� ⇢ C+
� , viewing I?/I as the subquotient �?/� of �?/�. Geometrically, I?/I ⌦ R

is identified with a small horosphere through � (minus �) in the hyperbolic space PC�. The
projectivized cones of F� decompose this horosphere in a Stab��(�)-invariant manner.

5C. Semitoroidal compactification. The papers [Loo85, Loo03] are the only references for
this section. Semitoroidal compactifications are determined combinatorially, unify the toroidal
and Baily-Borel compactifications, and form the smallest class of compactifications closed under
taking normal images of toroidal compactifications (proven in Theorem 5.14 below).

The combinatorial input is similar to toroidal compactifications, with two di↵erences:

Definition 5.11 ([Loo03, Def. 6.1]). A semifan F requires the same data as a fan (Def. 5.9), but
we allow the cones in F� to be only locally polyhedral in C�.

We additionally require “compatibility” at each 1-cusp: Let � 2 I be a primitive integral vector
in a rank 2 isotropic lattice and let F�,I denote the corresponding polyhedral tiling of I?/I ⌦ R.
The tiles of F�,I are of the form B ⇥ (HI,� ⌦ R) for bounded polytopes B and HI,� ⇢ I?/I a
primitive sublattice. We require that HI,� = HI is independent of choice of �.

Example 5.12. Any fan is a semifan. The tiles of F�,I are bounded polytopes, so HI = {0} for all
I. At the other extreme, the semifan F for which F� = {C+

� } is locally finite and the compatibility

condition holds: HI,� = I?/I for all � 2 I. The resulting compactification is F
F
M = F

BB
M .

We now compile the key results we need about semitoroidal compactifications:

Theorem 5.13. There is a normal compactification F
F
M whose boundary strata are in bijection

with �-orbits of cones of F [Loo03, Thm. 6.7]. The stratum Str� corresponding to a cone � ⇢ F�

is finite quotient of �?/{�,�}⌦C
⇤ in Type III, and a finite quotient of I?/{I,HI}⌦ E in Type II

[Loo03, p. 552]. For any semifan G which refines F, there is a morphism

F
G
M ! F

F
M

mapping strata to strata [Loo03, Lem. 6.6]. Given an inclusion of cones �G ⇢ �F the map of
corresponding strata is induced by the natural quotient map on tori.

Unlike for fans, a Type III cone � of a semifan may have an infinite stabilizer Stab���. Still,
the corresponding stratum is a finite quotient of a torus.

A simple way to visualize a semifan or fan F is as follows: For each �-orbit of isotropic vector
�, associate a cusped, real-hyperbolic orbifold M� := H

19�rkM/�� where H
19�rkM = PC� is real-

hyperbolic space. The cusps of M� correspond to ��-orbits of isotropic rays in C+
� . A semifan

F� gives rise to a finite decomposition of M� (for all �) into metrically convex, rational, locally
polyhedral cells, compatible with the hyperbolic cusps. For a fan, these cells are polyhedra, while
for a semifan, they may have nontrivial topology.
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We now prove a key theorem characterizing semitoroidal compactifications:

Theorem 5.14. Let F be a Type IV arithmetic quotient and let F be a normal compactification
of F . The following are equivalent:

(1) F sits between some toroidal and the Baily-Borel compactification: F
G m�! F ! F

BB
.

(2) There exists a semifan F for which F = F
F
.

Proof. The implication (2) =) (1) follows from refining F to some fan G.
Now we prove (1) =) (2). Define an equivalence relation �1 ⇠ �2 on maximal cones of G

generated by: �1 ⇠ �2 if �1 and �2 share a codimension one face ⌧ such that the corresponding
1-dimensional boundary stratum Str⌧ is contracted by m. Our strategy is to show that the curves

contracted by any birational morphism m : F
G ! F over F

BB
are algebraically equivalent to a

union of 1-dimensional torus orbits. So the “toroidally definable” equivalence relation ⇠ captures
everything one needs to know about the contracting morphism m.

Define a decomposition of C+
� into a collection of maximal dimensional sets

[�0] :=
S

�⇠�0
�.

We claim that the [�0] form the maximal cones of some semifan F. The �-invariance is automatic,
so it su�ces to show that [�0] satisfy the semifan axioms, including the compatibility condition
(Def. 5.11) over the 1-cusps.

Begin with a Type III cone ⌧ 2 G�. The stratum Str⌧ ⇢ F
G

is the Stab��(⌧)-quotient of the
toric variety X(G�/⌧) associated to the quotient fan. Consider the Stein factorization X(G�/⌧)!
Z⌧ ! m(Str⌧ ). It is proved in [BMSZ18, Lem. 2.3.4] that the target of a morphism from a proper
toric variety to a normal variety (Z⌧ here) is automatically toric and with the morphism also toric.

Since the maps Z⌧ ! m(Str⌧ ) and X(G�/⌧)! Str⌧ are finite, the curves contracted by Str⌧ !
m(Str⌧ ) are exactly those that lift to curves contracted by X(G�/⌧) ! Z⌧ . So the equivalence
relation ⇠ on the maximal cones containing ⌧ is induced by the morphism of fans corresponding
to the toric morphism X(G�/⌧) ! Z⌧ . Thus the cones [�0] locally form a fan in a tubular
neighborhood of ⌧ ⇢ C+

� . In particular, they are locally polyhedral and convex at their boundary.
So the [�0] define a semifan within C�.

Next, we examine the Type II locus. Since F has a morphism to F
BB

, we conclude that m
induces a fiberwise morphism over the modular curve 1-cusp. Let j be a point in the 1-cusp of

F
BB

. The fiber over j in any toroidal compactification is a finite quotient of I?/I ⌦ Ej so there
is a morphism I?/I ⌦ Ej ! F j induced by m. In analogy with the Type III case, take the Stein
factorization of this morphism I?/I ⌦ Ej ! Zj ! F j . Since the normal image of an abelian
variety is an abelian variety, this map is the quotient by a sub-abelian variety HI ⌦ Ej .

The contracted curves are generated, up to algebraic equivalence, by h⌦Ej for h 2 HI . Taking
the limit

j ! the 0-cusp of F
BB

associated to �,

the elliptic curve h⌦Ej breaks in the Type III locus to a cycle of rational curves, according to the
Mumford degeneration discussed after Construction 5.10.

Applying the torus action to the cycle of rational curves limj h⌦Ej we can break it further into
a cycle of contracted 1-dimensional boundary strata connecting 0-dimensional boundary strata of
Type III. So the equivalence relation ⇠ on maximal cones induces a polyhedral decomposition of
I?/I ⌦R whose tiles are fixed under translation by h, and in turn by HI . Conversely, consider an
h 2 I?/I fixing all tiles in the polyhedral decomposition HI,� of I?/I induced by the cones [�0].
This h corresponds to a contracted cycle of rational curves, which deforms to a contracted elliptic
curve h ⌦ Ej . Hence h 2 HI . Thus HI = HI,� is independent of �. So there exists a semifan F
whose maximal cones are [�0].

Since F is a coarsening of G, there is a morphism F
G n�! F

F
and the above arguments prove

that the curves contracted by n are exactly those contracted by m. We conclude by Zariski’s main

theorem that F = F
F
, because F is normal. ⇤
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6. Moduli of stable slc pairs

6A. Canonical choices of polarizing divisor. Let Fq
M be the moduli stack ofM -quasipolarized

K3 surfaces. Fix a class L 2 M , not necessarily primitive, which defines a relatively big and nef
line bundle L! X ! Fq

M on the universal family, canonical up to twisting by line bundles pulled
back from Fq

M . Since L is big and nef on every fiber, hi(Xs,Ls) = 0 for i > 0 for all s 2 Fq
M . By

Cohomology and Base Change, the pushforward of L from the universal family defines a vector
bundle of rank 2 + 1

2L
2 on Fq

M , canonical up to twisting by line bundles, cf. [Kol23, Cor. 2.69].
Let PL denote its projectivization, a P

g-bundle over the stack, where g = d+ 1.

Definition 6.1. A canonical choice of polarizing divisor is a rational section R of the projective
bundle PL. Alternatively, it is an ample divisor R on the generic K3 surface.

Let U be the regular locus of this rational section. The key definition of the paper is:

Definition 6.2. A canonical choice of polarizing divisor R is recognizable for FM if every M -
quasipolarized Kulikov surface X0 of Type I, II, or III contains a divisor R0 ⇢ X0 which, for any
M -quasipolarized smoothing X ! (C, 0) with C⇤ ⇢ U , has the property that R0 is the flat limit
of Rt ⇢ Xt, t 6= 0, up to the action of Aut0(X0).

Here Aut0(X0) is the connected component of the identity of the automorphism group, which is
always trivial in Type III, and is isomorphic to (C⇤)k�1 where k� 1 is the number of intermediate
elliptic ruled components, in Type II.

We use the term “smoothing” to mean specifically a Kulikov model X ! (C, 0). Roughly,
Definition 6.2 amounts to saying that the canonical choice R can also be made on any Kulikov
surface, including smooth K3s, at least up to Aut0(X0).

Proposition 6.3. Let (X ⇤,R⇤) ! U be the universal family of pairs. If R is recognizable, it
extends to a flat family of pairs (X ,R)! Fq

M . That is, R defines a regular section of PL ! Fq
M .

Proof. Let 0 2 Fq
M be in the complement of U . Choose any curve C ⇢ Fq

M containing 0 for
which C⇤ = C \ 0 ⇢ U . Then X ! C is a Type I Kulikov model, for which X0 is a smooth
M -quasipolarized K3 surface. By assumption, there is a divisor R0 2 |L| on X0 which is the flat
limit of the curves Rt for t 6= 0. We may extend the section R⇤ : U ! PL

��
U

set-theoretically by
declaring R(0) = R0. This extension is algebraic when restricted to any curve in U [ {0}. Since
Fq

M is normal, we conclude that the rational section R⇤ extends over 0. ⇤
This proposition only concerns Type I Kulikov models. The properties of recognizability in

Types II and III is discussed in Section 8.

6B. Compact moduli of stable pairs. We refer the reader to [Kol23] for a definitive account.
An slc (or KSBA) stable pair (X,B =

P
biBi) consists of a projective variety and a Q-divisor which

has semi log canonical (slc) singularities such that the divisor KX +B is ample. A particular case
is a log Calabi-Yau pair (X,� + ✏R) such that � is reduced and log canonical, 0 < ✏ ⌧ 1,
KX + � ⇠Q 0 and R is ample, not containing any log centers of �. In our notations, R is a
polarizing divisor. By [KX20], in any dimension the irreducible components of the moduli of log
Calabi-Yau pairs with a polarizing divisor are projective. Sections 6.4 and 8.3 of [Kol23] are closely
related to our setup.

The situation for K3 surfaces (note � = 0) is easier because if (X0, ✏R0) is the stable limit of
a one-parameter family of K3 pairs (Xt, ✏Rt) then the divisor R0 is, perhaps surprisingly, Cartier
and not merely Q-Cartier. Indeed, the pair (X0, ✏R0) is the central fiber of the stable model of a
divisor model we defined and discussed in Section 3B. We state the main theorem for the moduli
functor we need in this paper. The details are in given in [AET19, Sec. 3].

Definition 6.4. For a fixed degree e 2 N and fixed rational number 0 < ✏  1, a stable K-trivial
pair of type (e, ✏) is a pair (X, ✏R) such that

(1) X is a Gorenstein surface with !X ' OX ,
(2) The divisor R is an e↵ective, ample Cartier divisor of degree R2 = e.
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(3) The pair (X, ✏R) has semi log canonical singularities.

Definition 6.5. A family of stable K-trivial pairs of type (e, ✏) is a flat morphism f : (X , ✏R)! S
such that !X/S ' OX locally on S, the divisor R is a relative Cartier divisor, such that every fiber
is a stable K-trivial pair of type (e, ✏).

By [AET19, Lem. 3.6], for a fixed degree e there exists an ✏0(e) > 0 such that for any 0 < ✏  ✏0
the moduli stacks Mslc(e, ✏0) and Mslc(e, ✏) coincide.

Definition 6.6. A family of stable K-trivial pairs of degree e is a family of type (e, ✏0), with
✏0(e) chosen as above. We will denote the corresponding moduli functor by Mslc

e . For a scheme S,
Mslc

e (S) = {families of type (e, ✏0(e)) over S}, with the equivalence relation being S-isomorphisms
of the family X ! S preserving R.

Proposition 6.7 ([AET19, Prop. 3.8]). Mslc
e is a Deligne-Mumford stack of stable K-trivial pairs.

We denote the coarse moduli space by M slc
e .

Definition 6.8. Let N 2 N. The moduli stack PN,2d parameterizes proper flat families of pairs
(X,R) such that (X,L) is a polarized K3 surface with ADE singularities and a primitive ample
line bundle L, L2 = 2d, and R 2 |NL| is an arbitrary divisor. One has R2 = 2dN2. In particular,
one defines P2d := P1,2d.

If we take ✏0(e) as above then the pair (X, ✏0R) is stable. Obviously, the stack PN,e is fibered

over the stack F2d with fibers isomorphic to P
dN2+1. The automorphism groups of stable pairs are

finite, and it is easy to see that PN,2d is coarsely represented by a scheme PN,2d.

Definition 6.9. One defines PN,2d (resp. PN,2d) to be the closure of the coarse moduli space
PN,2d (resp. stack PN,2d) in M slc

e (resp. Mslc
e ) for e = 2dN2.

For K3 surfaces polarized by a lattice M ⇢ PicX, choose a primitive vector L 2M with L2 > 0.
Then the substack FM ⇢ F2d parameterizing M -polarized K3 surfaces inside of ZL-polarized K3
surfaces has dimension 20 � rankM . A canonical choice R of polarizing divisor over a Zariski
open subset U ⇢ FM (or equivalently Fq

M as in Def. 6.1) defines an embedding of U ⇢ PN,2d if
R 2 |NL|.
Remark 6.10. We should choose U to avoid the non-separated locus of Fq

M to ensure that
U ⇢ PN,2d. This embedding exists on the stack level. For instance, on the stack Fq

2 of degree
2 K3 surfaces, there is a nontrivial generic inertia group Z2. Then R must be preserved by the
involution, and defines an embedding of stacks U ⇢ PN,2d.

Definition 6.11. Let FR
M denote the closure of U in PN,2d and let F

R
M be its coarse space.

Proposition 6.12. If R is recognizable, FR
M contains FM as an open substack.

Proof. By Proposition 6.3, the choice of divisor R extends to all of Fq
M when R is recognizable.

Taking the relative stable model of the universal family of pairs (X ,R) ! Fq
M gives a classifying

morphism Fq
M ! FR

M which necessarily factors through the separated quotient FM . ⇤

Theorem 6.13 ([AET19, Thm. 3.11]). PN,2d and thus also F
R
M are projective.

7. �-families

The goal of this section is to construct “�-families” of Kulikov models, both unpolarized and
M -quasipolarized, of a fixed combinatorial type, and to describe the birational modifications which
relate them. These are families of Kulikov models, which complete any one-parameter degeneration
with monodromy invariant � and play a critical role in the main theorem of [FS86]: two Kulikov
models with the same � are related by Atiyah flops and topologically trivial deformations.

Some improvements on loc.cit. are made: We construct families for which the boundary period
mapping is an isomorphism onto the period torus Hom(⇤,C⇤ or E), as opposed to simply an
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isogeny. Also, we globalize the main theorem of [FS86]: two �-families are related by certain
global birational modifications (Thm. 7.19, Thm. 7.28). These global modifications are key to
proving that di↵erent formulations of recognizability are equivalent (Sec. 8).

Unlike Kulikov models, which depend on continuous parameters, the �-families depend only on
combinatorial parameters, and thus are countable in number. Similar families of Kulikov surfaces
previously appear in work of Olsson [Ols04]. See Remark 7.35 for a comparison with our version.

7A. Deformation spaces of Kulikov models. We recall the description of the universal de-
formation of a d-semistable Kulikov surface X0 given in [Fri83b, Thm. 5.10], when (X0)sing is
connected. The deformation space S [ T has two smooth components. The component S is
smooth and 20-dimensional, with a smooth, divisorial discriminant locus �. The general fiber over
s 2 S is a smooth K3 surface. The other component T has large dimension rk e⇤(X0), and consists
of the topologically trivial deformations of X0. These result from deforming the gluings of double
curves or the moduli of anticanonical pairs (Vi, Di) and are generally not d-semistable. � = S \T
consists of the d-semistable, topologically trivial deformations of X0. The universal family X ! S
is topologically a product X ⇡di↵ �⇥X with a fixed Kulikov model X ! (C, 0), and has smooth
total space. In particular, X ! S admits a mixed marking (4.15) over a contractible S.

As for deformations of smooth K3 surfaces, the local period map on S is understood:

Theorem 7.1. Let X0 be a d-semistable Kulikov surface. Suppose t > 0, or t = 0, k = 1 (Sec. 4B).
The period map S ! D(I)� is an order k cyclic cover, branched along the boundary divisor.

Proof. In Type III, this is [FS86, Thm. 5.3]. The Type II case is similar [Fri84]. ⇤

By Theorem 7.1 we can ensure that X ! S is universal at all s 2 S: A topologically trivial
family X0 ! � of d-semistable Kulikov surfaces is a fiberwise universal deformation if and only if
the period map to the boundary divisor Hom(⇤, C⇤ or eE) ⇢ D(I)� is a local isomorphism.

Remark 7.2. In the remaining case t = 0, k > 1 the singular locus of X0 is disconnected, making
it possible to independently smooth each double curve. The d-semistable deformations of X0 have
dimension 19+ k and fiber over Ck, with each coordinate hyperplane parameterizing deformations
which do not smooth a given double curve of X0.

In this case, we define S as the inverse image of the line C(1, . . . , 1) ⇢ C
k. It gives a slice

transverse to the natural action of Aut0(X0) ⇠= (C⇤)k�1. The discriminant locus � ⇢ S is the
inverse image of 0 2 C

k and is still the universal d-semistable topologically trivial deformation,
while the general fiber is a K3 surface that simultaneously smooths all k double curves.

Proposition 7.3. Let X0 ! �� be a topologically trivial family of marked Kulikov surfaces for
which the period map �� ! Hom(⇤, C⇤ or eE) ⇢ D(I)� is an isomorphism. There is a smoothing

X0 X

�� S�

for which the mixed period map S� ! D(I)� defines an order k cyclic branched cover to an open
neighborhood of the boundary divisor. The analytic germ of the family along �� ⇢ S� is unique.

Sketch. The construction parallels that of [ast85, Exp. XIII]. When t > 0, or t = 0 and k = 1, we
glue together the 20-dimensional bases of everywhere-universal deformations of the fibers X0 ⇢ X0.
With the mixed markings, these bases either glue uniquely (when k = 1) or uniquely up to the
order k cyclic action permuting the sheets of the period mapping (Thm. 7.1). Taking care to
ensure that the glued base is Hausdor↵, the resulting family X ! S� smooths X0 ! �� and the
germ is unique by local universality. The t = 0, k > 1 case is proven in the same way, by instead
gluing the slices S of the Aut0(X0) action, see Remark 7.2. ⇤
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7B. The gluing and period complexes. We now explicitly construct families of Kulikov sur-
faces X0 ! �� satisfying the hypotheses of Proposition 7.3, developing ideas in [FS86, Sec. 4].
We assume here that X0 =

S
(Vi, Di) is Type III. For notational convenience, we drop the index

i when analyzing an individual component.

Each component (V,D) admits a toric model (V,D)
f � (eV , eD)

g�! (V ,D) where f is a sequence
of corner blow-ups and g is a sequence of internal blow-ups (3.9). Note that f has no moduli
whereas g can be varied by moving the non-nodal points blown up on the Dj . Note that unless
(V,D) is itself toric, the toric model is non-unique.

Definition 7.4. An ordered toric model of (V,D) is an orientation of the cycle D and a toric
model f, g as above, together with a factorization g = ⌧Q � · · · � ⌧1 into internal blow-ups. Here
Q = Q(V,D) is the charge (3.7). An ordered toric model of X0 is an orientation of �(X0), a toric
model of each component (Vi, Di), and a total ordering of the 24 internal blow-ups.

An ordered toric model of X0 orients each cycle Di ⇢ Vi and thus gives a way to label the nodes
on the component Dij ⇢ Di as 0 and 1. But on the double curve Dji ⇢ Dj the corresponding
nodes have the opposite label, so the non-nodal points of Dij and Dji are inverse torsors for C⇤.

Construction 7.5. Fix an ordered toric model of X0 and fix copies of the toric surfaces (V i, Di).
For a given toric surface (V ,D), construct a family

(eV, eD)
⌧Q��! · · · ⌧1�! (V ,D)⇥ (C⇤)Q

of anticanonical pairs over (C⇤)Q by freely varying the points blown up by ⌧k. There exists a
simultaneous contraction (V,D) ! (C⇤)Q which contracts the corner blowdowns of f fiberwise.
So we have families (Vi,Di)! (C⇤)Qi for all i.

Now, for each i, choose some fiber (Vi, Di) of this family and glue Dij ⇢ Di to Dji ⇢ Dj by a
map identifying the appropriate nodes of Di and Dj . The set of such gluings is a torsor over C⇤.
Varying all such gluings, we get a family of Kulikov surfaces

X gig
0 !

Q
i(C

⇤)Qi ⇥ (C⇤)E = (C⇤)24+E

whose fibers are not necessarily d-semistable. Here E is the number of double curves of X0. We
call this the gigantic gluing family of Kulikov surfaces associated to the ordered toric model of X0.
It is globally topologically trivial by construction.

Choose an origin of the open torus orbit in the fixed toric surface (V i, Di). This choice defines
a distinguished origin point of any toric boundary component and thus defines an isomorphism
of the C

⇤-torsor associated to any internal blow-up or any edge-gluing with C
⇤. So such a choice

identifies the base of the gigantic gluing family with Hom(G0, C⇤) where

G0 :=
L24

k=1 ZEijk �
L

i<j ZDij

is a free Z-module encoding the blow-up points of the ⌧k and the gluing maps. Here the index ijk
indicates that Eijk meets the component Dij and is the kth internal blow-up in the ordered toric
model. Note that Dij range only over the curves corresponding to actual double curves appearing

in X0 and not to boundary components blown down in (eVi, eDi).
Consider now automorphisms. Define G1 :=

L
i Mi with each Mi

⇠= Z
2 the character lattice of

the toric surface (V i, Di). The set of choices of origin points in the open torus orbit of (V i, Di) is
naturally a torsor over Hom(G1,C⇤). Fixing the family X gig

0 but varying the chosen origin point
defines an equivariant action of Hom(G1,C⇤) on X gig

0 ! Hom(G0,C⇤) by isomorphisms. On the
base, this action is determined by a map of Z-modules G0 ! G1.

Definition 7.6. The gluing complex G is the two-step complex G0
@G��! G1.

We describe the map @G explicitly. An orientation of the cycle Di (and thus of Di) gives a
canonical identification wi : Mi ! Ni sending v 7! det(v,�).
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Proposition 7.7. We have

@G(Eijk) = w�1
i (vij), @G(Dij) = w�1

i (vij) + w�1
j (vji).

Here vij 2 Ni in the cocharacter lattice of (V i, Di) is the primitive integral vector in the fan of
(V i, Di) corresponding to the component Dij.

Proof. The action of a change-of-origin ci 2 Hom(Mi,C⇤) on the induced origin point of Dij is
given by ci(w

�1
i (vij)). This factor scales either the gluing parameter between Dij and Dji or the

position of any blow-up Eijk on the edge Dij . ⇤

Given Proposition 7.7, it is convenient to identify G1
⇠=
L

i Ni using the isomorphisms w�1
i on

each summand, so that @G(Eijk) = vij and @G(Dij) = vij + vji.

Definition 7.8. The period complex P of a Kulikov model is the two-step complex P0
@P��! P1

where P0 =
L

i H
2(Vi), P1 =

L
ij H

2(Dij), and @P is the signed restriction map with respect to
an orientation of the edges of �(X0).

Theorem 7.9. Let X0 be a Type III Kulikov surface with an ordered toric model. The gluing
and period complexes are quasi-isomorphic as complexes of Z-modules. In particular H0(G) =
H0(P) = e⇤ and K := H1(G) = H1(P).

Proof. We first record some exact sequences of Picard groups arising from the basic results on
smooth projective toric surfaces:

Lemma 7.10. Write (Vi, Di =
P

j Dij) as (V,D =
P

Dj). For each component, one has the
following exact sequences:

0! PicV ! �ZDj ! N ! 0, L 7!
P

(L ·Dj)Dj

0! Pic eV ! �ZDj � ZEjk ! N ! 0, eL 7!
P

(L ·Dj)Dj +
P

(eL · Ejk)Ejk

0! PicV ! �ZDj � ZEjk ! N ! 0, L 7!
P

(L ·Dj)Dj +
P

(eL · Ejk)Ejk

where

(1) L, eL,L are the line bundles on V, eV , V , and L = g⇤eL.
(2) In the last line we take eL = f⇤L.
(3) In the last line the sum goes only over Dj such that Dj = f⇤ eDj 6= 0.
(4) Dj 7! vj and Ejk 7! vj.

Notationally reincorporating the dependence on i, and summing these exact sequences, we get
a short exact sequence of two-term complexes:

0 0

0 �PicVi �ijZDij 0

0 �i,jZDij �24
k=1 ZEijk �ijZDij �Ni 0

0 �Ni �Ni 0

0 0

Note that:

(1) The first column is a direct sum of sequences from the previous lemma.
(2) In the first line @P : Li 7! ±

P
(Li ·Dij)Dij is the signed restriction map.
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(3) In the second column, the first map sends Dij 7! Dij + vij .
(4) In the second line, Dij 7! Dij + vij and Dji 7! �Dij + vji if the corresponding edge is

oriented from i to j. Also, for all i and j, Eijk 7! vij .

The commutativity of the diagram follows from eDi = f⇤
i (Di)�

P
j,k Eijk. Since the last complex

is acyclic, the complex P is quasi-isomorphic to the second complex eG. There also is a quasi-
isomorphism G ! eG. On G0 it maps Dij 7! Dij +Dji and Eijk 7! Eijk and on G1 it is (0, id). ⇤

Proposition 7.11. The gigantic gluing family X gig
0 ! Hom(G0,C⇤) descends along the canonical

surjection Hom(G0,C⇤) ⇣ Hom(H0(G),C⇤). Furthermore, the isomorphism Hom(H0(G),C⇤) =
Hom(e⇤, C⇤) induced by Theorem 7.9 is the period map of the descended family.

Proof. As noted, Hom(G1,C⇤) acts by automorphisms on X gig
0 . The action is free and the quotient

can be constructed, for instance, by restricting X gig
0 to a subtorus of Hom(G0,C⇤) which intersects

each orbit of Hom(G1,C⇤) exactly once.
For the second statement, it su�ces to show that the action of regluing on periods is described

by the isomorphism H0(G)! e⇤. By Construction 4.2, regluing Dij or moving the blow-up point
of Eijk by c 2 C

⇤ can be computed by gluing in Vi as the last component. The action is

 X0(�) 7! c�·Dij X0(�) and  X0(�) 7! cf
⇤
i �·Eijk X0(�) for � 2 e⇤.

This exactly corresponds to the first chain map P0 ! eG0 in Theorem 7.9. Thus the map P0 ! eG0

in Lemma 7.10 is the natural one, H0(P) = H0(G) canonically, and the proposition follows. ⇤

Definition 7.12. Let X0 be a Type III Kulikov surface with ordered toric model. Define the big
gluing family to be the descended family X big

0 ! Hom(e⇤,C⇤) from Proposition 7.11, for which the
period map is an isomorphism.

Now observe that Hom(⇤,C⇤) is the subtorus of Hom(e⇤,C⇤) corresponding to the d-semistable
Kulikov surfaces. So we define:

Definition 7.13. The gluing family associated to the ordered toric model of X0 is the restriction
of X big

0 to the subtorus X0 ! Hom(⇤,C⇤) = ��. The period map is an isomorphism.

Definition 7.14. The �-family of a Type III Kulikov surface X0 with ordered toric model is the
unique germ X ! S� of the universal smoothing (Prop. 7.3) of the gluing family X0 ! ��.

We delay the construction of �-families in Type II, as some complications arise from the non-
existence of toric models.

7C. The global Friedman-Scattone theorem. We now discuss birational modifications. Let
X ! (C, 0) be a Kulikov model of Type I, II, or III.

Definition 7.15. An (M0), (M1), or (M2) modification ofX is the flop along a curve E ⇠= P
1 in the

central fiber X0. The cases are distinguished by when E \ (X0)sing = ;, when E \ (X0)sing = {pt},
or when E ⇢ (X0)sing, respectively.

We describe the e↵ect of each modification on the central fiber X0:

(M0) flops a smooth (�2)-curve in X0 which does not deform to the general fiber. It leaves the
isomorphism type of X0 invariant.

(M1) flops an internal exceptional (�1)-curve E on a component Vi ⇢ X0. The e↵ect on the
central fiber is to contract E ⇢ Vi and blow up the intersection point E \Dij on Vj .

(M2) flops a double curve Dij which is exceptional on both components on which it lies. The
e↵ect on X0 is to contract Dij on both Vi, Vj and to make corner blow-ups on the two
remaining components V`, Vr which E intersects.

Notation 7.16. In the book [FM83b], M0, M1, M2 modifications are called Type 0, 1, 2 modifi-
cations, but we find this to conflict with the already existing usage of the word “Type.”
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[FS86, Thm. 0.6] states that any two Kulikov models with the same (k, t) are related by M0,
M1, and M2 modifications and topologically trivial deformations. We require an analogue of this
statement on the level of the entire �-family.

Definition 7.17. Let X ! S� be the �-family associated to some ordered toric model of X0. Let
B ⇢ S� be a smooth divisor and let E ! B be a smooth P

1-fibration for which the normal bundle
to E restricts to O(�1)�O(�1) on every fiber. We call the relative flop along E :
(GM0) if B is the closure in S� of a Noether-Lefschetz divisor of K3 surfaces with a (�2)-curve,

and E is the family of (�2)-curves.
(GM1) if B = �� is the discriminant, and E is a family of internal exceptional curves meeting a

relative double curve Dij .
(GM2) B = �� is the discriminant, and E is a family of relative double curves Dij which is, on

each fiber, exceptional on both components.

In all three cases, the divisor B ⇢ S� is smooth. Indeed in the GM1, GM2 cases, B is the
(smooth) discriminant divisor �, and in the GM0 case it is the closure of Noether-Lefschetz
divisor, a hypersurface subtorus, in the divisorial toroidal extension S�.

The relative flop X 99K X 0 along E exists. Indeed, let eX ! X be the blowup along E . The
exceptional divisor eE is a (P1 ⇥ P

1)-fibration over B and eE · ` = �1 for the lines of either ruling.
By [Nak71] there exists the contraction eX ! X 0 along the second ruling so that eX is the blowup
along E 0 ⇢ X 0, a P

1-fibration over B.

Example 7.18. Fix a Kulikov surface X0 =
S

Vi in the �-family X ! S� and consider a boundary
divisor Dij ⇢ V i of some ordered toric model which receives two internal blow-ups E1 and E2.
On the sublocus of �� where the two blow-up points coincide, the first (�1)-curve E1 breaks into
the union of the (�1)-curve E2 and a (�2)-curve with class E1 � E2. But the second exceptional
curve E2 never breaks, and thus satisfies the conditions of Definition 7.17(GM1).

Theorem 7.19. Any two �-families X ! S� and X 0 ! S� with the same (k, t) are related by a
series of GM0, GM1, and GM2 modifications.

Proof. Choose an arc (C, 0) intersecting �� ⇢ S� transversely, mapping C⇤ generically into a
locus of K3 surfaces with Picard group ZL, L2 = 2d. Consider the two Kulikov models X ! (C, 0)
and X 0 ! (C, 0). Then the punctured families X⇤, (X 0)⇤ ! (C, 0) are isomorphic as families of
(partially marked) K3 surfaces, and admit polarizations. So by [SB83, Cor. 3.1] there exists a
sequence of M1 and M2 modifications X 99K X 0 connecting them. Requiring ker X0 = ZL, no
modification of X supports a (�2)-curve, eliminating the need for M0 modifications.

We now seek to globalize these modifications to a sequence of GM0, GM1, GM2 modifications.
There is no obstruction to globalizing an M2 modification to GM2, since the relative double curve
Dij never breaks. For GM0 and GM1 modifications, it su�ces to work component-wise.

Lemma 7.20. Let (V,D) ! (C⇤)Q and (V 0,D0) ! (C⇤)Q be families of anticanonical pairs (see
7.5) associated to two ordered toric models of a given pair (V,D). Then, there is an isomorphism
in S±

Q of the bases and a sequence of GM0 modifications connecting V and V 0.

Here S±
Q is the signed symmetric group, acting on (C⇤)Q by permuting and inverting coordinates.

Proof. First, note that M0 and GM0 modifications also make sense for anticanonical pairs, by flop-
ping (�2)-curves in the complement V \D. Since we will only be making birational modifications
in the complement of the anticanonical cycle, and V \ D = eV \ eD, we may as well assume that
(V,D) = (eV , eD) i.e. there are no corner blow-ups in the toric model.

Fix (V,D) very general, in the sense that it has no (�2)-curves disjoint from D. An ordered
toric model is given by an ordered collection (E1, . . . , EQ) of Q disjoint internal exceptional curves.
It follows from a theorem of Blanc [Bla13, Thm. 1] describing the birational automorphism group
of ((C⇤)2, dx

x ^
dy
y )—see [HK20, Prop. 3.27] for the interpretation we employ—that any two such

tuples are related by a series of two moves:
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Definition 7.21. An elementary mutation replaces the first exceptional curve (E1, E2, . . . , EQ) 7!
(E0

1, E2, . . . , EQ) where E1 + E0
1 is the pullback of a fiber of a toric ruling on (V ,D).

Definition 7.22. An order switch sends (E1, . . . , Ei, Ei+1, . . . , EQ) 7! (E1, . . . , Ei+1, Ei, . . . , EQ).

An elementary mutation of the ordered toric model gives rise to an isomorphism (V,D) !
(V 0,D0) of the corresponding families: The construction of the family by successive blow-ups

(V,D)
⌧Q��! · · · ⌧2�! (V1,D1)

⌧1�! (V0,D0) = (V ,D)⇥ (C⇤)Q

is unaltered when the blow-up ⌧1 is replaced with the blow-up ⌧ 01. The bases B ⇠= (C⇤)Q ⇠= B0

of the two families of varying blow-ups g = ⌧Q � · · · � ⌧2 � ⌧1 and g0 = ⌧Q � · · · � ⌧2 � ⌧ 01 can thus
be canonically identified. But with respect to this canonical identification, the point blown up
by ⌧ 01 lives in the inverse C

⇤-torsor to the point blown up by ⌧1. We require the coordinates on
B0 ⇠= (C⇤)Q to be compatible with the orientation, so we must invert the first coordinate.

An order switch gives an isomorphism of the families whenever Ei and Ei+1 meet distinct
components—⌧i and ⌧i+1 commute. But when Ei and Ei+1 meet the same component, the families
are only canonically isomorphic over the locus where Ei and Ei+1 meet distinct points. Then
(Vi+1,Di+1) and the family (V 0

i+1,D0
i+1) constructed with the reverse ordering are related by a

flop along the relative (�2)-curve Ei+1 � Ei ⇢ Vi+1

��
L
fibering over the locus L where the blow-up

points coincide. The remaining blow-ups ⌧j for j > i + 1 do not interfere with the flop because
Ei+1 � Ei is disjoint from the boundary. The order switch permutes two C

⇤ coordinates of B.
Thus, we can connect any two families (V,D) and (V 0,D0) by a series of isomorphisms and GM0

modifications. The sequence of elementary mutations and order switches connecting (E1, . . . , EQ)
to (E0

1, . . . , E
0
Q) induces an isomorphism B ! B0 valued in S±

Q . ⇤
By Lemma 7.20, two families (Vi,Di) of anticanonical pairs associated to ordered toric models

of a given component (Vi, Di) ⇢ X0 are connected by GM0 modifications. To globalize an M1
modification along E ⇢ Vi we apply Lemma 7.20 to find a sequence of isomorphisms and GM0
modifications until E = EQ is the last exceptional curve in the ordered toric model. Then EQ never
breaks in the gluing family X0 as it is the last blow-up performed on any given fiber. So EQ can
be flopped in X . The GM0 modifications on the discriminant family X0 extend to the smoothing
X because the relative (�2)-curve Ei+1 � Ei deforms over the Noether-Lefschetz divisor B ⇢ S�.

This proves that there exists a series of GM0, GM1, GM2 modifications of X ! S� to a new �-
family X 00 ! S� for which the sequence of modifications restricts to the given sequence of birational
modifications X 99K X 0. Again applying Lemma 7.20, perform a sequence of GM0 modifications
until the ordered toric models defining X 00 and X 0 are the same. The theorem follows. ⇤
7D. Type II �-families. We construct topologically trivial families of Type II Kulikov surfaces
for which the period map is an isomorphism. It is simplest to construct a family for a single
combinatorial type with (k, t) = (k, 0), then just apply GM0 and GM1 modifications to it.

Proposition 7.23. For each k, there exists a family of Type II Kulikov models X0 ! Hom(⇤, eE)
for which the period map is the identity.

Proof. It su�ces restrict to the k = 1 as we may otherwise insert k � 1 intermediate components
which are P

1-bundles over elliptic curves.
Let D ⇢ P

2 be an arbitrary smooth cubic. Take 18 points p1, . . . , p9, q1, . . . , q9 2 D satisfying
the single condition OD(6) ⇠= OD(

P
pi +

P
qi). Let D1 denote the strict transform of D in

V1 := Blp1,...,p9P
2 and let D2 denote the strict transform of D in V2 := Blq1,...,q9P

2. Then
X0 := (V1, D1) [ (V2, D2) is a d-semistable Type II Kulikov surface, even when D1 and D2 are
glued via an arbitrary translation. This construction produces a 1+ (18� 1)+1 = 19-dimensional
space of Kulikov surfaces. Respectively, the parameters are the j-invariant of D, the 18 points
pi, qi subject to the single condition, and the translation to glue by.

There is a projective linear automorphism acting by translation on D and sending one 9-tuple
to another (p1, . . . , p9) 7! (p01, . . . , p

0
9) if and only if p0i � pi are all equal to a fixed element of

Pic0(D)[3] ⇠= Z
2
3. Thus the family of Kulikov surfaces bX0 ! bS gotten by varying the data of D, pi,
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qi, and the gluing descends to a quotient X0 ! S = bS/(Z2
3 ⇥ Z

2
3). A straightforward computation

of the period map on bS using Construction 4.3 shows that in fact, the fibers of the period mapping
bS ! Hom(⇤, eE) are exactly the orbits of the Z

2
3 ⇥ Z

2
3-action. So X0 ! S is the desired family. ⇤

Corollary 7.24. In Type II, there is a family X ! S� of mixed marked surfaces for which the
period map is an order k branched cover of a tubular neighborhood of the boundary divisor of D(I)�.

Proof. This follows from Proposition 7.3 and Proposition 7.23. ⇤
Definition 7.25. A Type II �-family is a family of surfaces which arises from a series of GM0,
GM1 modifications of the family X ! S� in Corollary 7.24.

Using techniques of Theorem 7.19, replacing toric models with minimal models, we can construct
a Type II �-family for any fixed combinatorial type of surface X0 via a series of GM0, GM1
modifications of the one in Corollary 7.24.

7E. Quasipolarized �-families.

Definition 7.26. An M -quasipolarized �-family is the restriction of a �-family X ! S� to the
Noether-Lefschetz locus DM (I)� \S� ⇢ D(I)�, such that the embedding M ! Pic(Xt) induced by
the marking defines an M -quasipolarization on a generic fiber Xt.

Notation 7.27. When the context is clear, we reuse symbols S�, �� and X , X0 for the intersections
DM (I)� \ S�, DM (I)� \�� and the restrictions of the unpolarized �-families X , X0 to them.

The elements L 2 M extend to line bundles L ! X which are unique up to twisting by the
relative components OX (Vi) and line bundles pulled back from the base S�.

Theorem 7.28. Any two M -quasipolarized �-families are related by a series of GM0, GM1, GM2
modifications.

Proof. By Theorem 7.19, the two unpolarized �-families from which they are restricted (see
Def. 7.26) are related by GM0, GM1, GM2 modifications. These modifications specialize to bira-
tional modifications of the restricted family in all cases, except for a GM0 modification associated
to a (�2)-curve � 2 M . But in this case, the two restricted families are isomorphic before and
after the modification so we simply replace the GM0 modification with this isomorphism. ⇤

We now define analogues of nef and divisor models.

Definition 7.29. A nef �-family is an M -quasipolarized �-family X ! S� together with an
extension of L 2M to a relatively big and nef line bundle L! X .

Definition 7.30. A divisor �-family (X ,R) ! S� is an M -quasipolarized nef �-family and a
relatively big and nef divisor R 2 |L| which contains no stratum of any fiber.

Proposition 7.31. Given a nef model L ! X of a Type III M -quasipolarized Kulikov model
X ! (C, 0), there is an ordered toric model of X0 for which L defines a nef �-family L! X ! S�.

Proof. Write L
��
X0

= (Li) with each Li 2 Pic(Vi). Note that Li is nef for all i and at least one Li

is big. It follows from [EF21, Prop. 1.5] that there exists a toric model of Vi for which

f⇤
i Li =

P
aij eDij +

P
bijkEijk.

with aij , bijk � 0. We order this toric model so that bijk1 > bijk2 implies that Eijk2 is blown
up after Eijk1 . Then Li defines a relatively nef line bundle on the family (Vi,Di) because the
only irreducible curves which Li could possibly intersect negatively are (�2)-curves of the form
� = (fi)⇤(Eijk2 � Eijk1) but

Li · � = f⇤
i Li · (Eijk2 � Eijk1) = bijk1 � bijk2 > 0.

Definition 7.32. An element (↵i) 2 e⇤ is numerically nef if ↵i is the class of a nef line bundle on
each component Vi.
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We have that Li defines a numerically nef class on every fiber of the unpolarized gluing family
over Hom(⇤, C⇤ or eE). On the sublocus of the discriminant �� where (Li) actually defines a
Cartier divisor, in particular over the locus where  X0(M) = 1, we get a relatively big and nef line
bundle L0 ! X0. On the smoothing X ! S�, the line bundle L0 extends to a relatively big and
nef line bundle L, because big and nefness is an open condition. ⇤

Proposition 7.33. Given a nef model L ! X of a Type II M -quasipolarized Kulikov model
X ! (C, 0), there is a nef �-family L! X ! S� extending it.

Sketch. The proof is roughly the same as Proposition 7.31, the key point being to order the
exceptional curves one must successively blow down to get a minimal model of each component
Vi ⇢ X0. This ordering comes from the intersection numbers of Li with each exceptional curve. ⇤

Definition 7.34. A stable �-family (X , ✏R)! S� is defined as ProjS�
�n�0⇡⇤O(nR) for a divisor

�-family.

Cohomology and Base Change theorem [Har77, III.12.11] implies that the fibers of a stable
�-family are stable pairs (X, ✏R).

Remark 7.35. Olsson defined a moduli space closely related to �-families in [Ols04]. The functor
is defined by families of Kulikov surfaces together with a line bundle L extending a polarization,
such that Ln for some n > 0 gives a morphism fiberwise contracting only finitely many curves.
(Olsson uses the language of stacks and log schemes, so this description is approximate, see [Ols04]
for complete details.) Our �-families are di↵erent in a number of ways: our primary focus is
a divisor R, and the corresponding nef line bundle Ln = O(nR) usually contracts irreducible
components of the fibers.

8. Recognizable divisors

When a canonical choice of polarizing divisor (6.1) is recognizable (6.2), Proposition 6.3 allows
us to extended R⇤ to the whole quasipolarized moduli space Fq

M . We now generalize this to �-
families X ! S�. Recall that Aut0(X0) is non-trivial only when t = 0, k > 1, i.e. X0 is of Type II
with intermediate elliptic ruled components. This case for � has a number of subtleties not present
in the general case, and we delay its treatment to Proposition 8.10.

Proposition 8.1. Let X ! S� be an M -quasipolarized �-family. If R is recognizable, then the
Zariski closure of R⇤ is a flat family of curves in X . Conversely, if the canonical choice of divisor
R extends to a flat family of divisors R⇤ on Fq

M , then the existence of a further flat extension of
R⇤ over any �-family X implies that R is recognizable.

Proof. Note that R⇤ extends to a flat family of curves in X if and only if the Zariski closure
R := R⇤ ⇢ X defines a relative curve, even over the discriminant ��. Equivalently, R contains
no component of any singular fiber X0. By recognizability, there is a “candidate curve” R0 ⇢ X0

which enjoys the following property: if we take any curve (C, 0) transverse to �� at 0, then the
Zariski closure of R⇤

��
C⇤ ⇢ X

��
C

intersects X0 at R0. We say that R0 is the flat limit of R⇤ along

the arc C. This follows from recognizability because X
��
C

is Kulikov.
More generally, suppose that (C, 0) is an arc passing through 0 which has intersection multi-

plicity k with ��. This arc defines a degenerating family X ! (C⌫ , 0) with monodromy invariant
k�. Letting t be a local parameter at 0 2 C⌫ , the local analytic equation of the smoothing is of
the form xy = tk and xyz = tk near the double curves and triple points of X0.

Such a family admits a standard resolution (Sec. 3A) to a new Kulikov model X[k] ! (C⌫ , 0)
whose dual complex �(X0[k]) is gotten by subdividing the triangles and segments of �(X0) into
k2 triangles and k segments. Then X[k] defines a map (C⌫ , 0)! Sk� which is transverse to �k�.
Here the Kulikov surfaces over the discriminant have the same combinatorial type as X0[k]. The
boundary divisors �k� = �� are naturally isomorphic and the arcs (C⌫ , 0) in both S� and Sk�

limit to the same point under this isomorphism.
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Then X0[k] contains a distinguished curve R0[k] which is the flat limit of the canonically chosen
divisors over any arc transverse to �k�. So the image R0[k] under the morphism X0[k] ! X0 is
equal to the flat limit of the restriction of R⇤ to any arc with tangency k to ��. So the flat limit
of R⇤ over any arc (C, 0) not fully contained in �� lies in the countable union of curves

S
k�1 R0[k] ⇢ X0.

Supposing for the sake of contradiction R\X0 contained a component Vi, there would be some
point p 2 R \ Vi avoiding the above countable union. Choose some irreducible curve contained in
R passing through p whose projection is not contained in ��. Taking the image in S� gives an
arc C passing through 0, possibly singular, which intersects �� with some finite multiplicity k for
which the restriction R⇤

��
C⇤ contains p in its Zariski closure. Contradiction.

To prove the converse is easy: Every M -quasipolarized smoothing of X0 corresponds to a
transverse arc (C, 0) in the base of the �-family X ! S� and so the flat extension R \X0 defines
a curve R0 satisfying the recognizability property. ⇤

Intuitively, recognizability implies that the limits of canonically chosen curves over arcs (C, 0)
approaching the discriminant with tangency k are rigid, for all k. On the other hand, if the closure
of R⇤ contained a surface in X0, there would have to be some finite tangency order k for which
these limit curves moved.

Remark 8.2. Proposition 8.1 implies that any of the images R0[k] must in fact equal R0. In
particular, the divisor R0 ⇢ X0 is compatible with base change plus standard resolution.

Definition 8.3. We say that R is (resp. weakly) �-recognizable if R⇤ extends to a flat family of
curves in X ! S� for any (resp. some) ordered toric model of any (resp. some) Kulikov model
with monodromy invariant �.

Remark 8.4. The existence of an extension of R⇤ to Fq
M can be considered as �-recognizability in

the � = 0 case. Then Proposition 8.1 states that R is recognizable if and only if it is �-recognizable
for all possible �, including � = 0.

We now show equivalence with weak recognizability:

Proposition 8.5. R is �-recognizable if and only if it is weakly �-recognizable.

Proof. �-recognizability clearly implies weak �-recognizability. To show the converse, apply Theo-
rem 7.28: There exists a sequence of GM0, GM1, GM2 modifications connecting any two �-families.
The condition that the closure of R⇤ in a �-family X ! S� contain no fiber component is a prop-
erty invariant under all three types of modifications, because the center of any such modification
contains no fiber component. Hence weak �-recognizability implies �-recognizability. ⇤

Proposition 8.5 shows that recognizability can be certified by finding some �-family X for which
R⇤ extends, for all �. The following is a key statement:

Proposition 8.6. Suppose R is recognizable, and let X ! (C, 0) be a Kulikov model for which R0

contains no strata of X0. Then all fibers of the flat extension (X ,R) ! S� (Prop. 8.1) enjoy the
same property: R \Xp contains no strata of Xp.

Proof. We show the Type III case; Type II works the same but easier. Assume the opposite: for
some p 2 �� the divisor R\Xp contains a triple point. Following the argument in [AET19, Claim
3.13], there is an order k base change and (possibly non-standard) simultaneous toric resolution
producing a k�-family X 0 ! Sk� for which the closure of R0

��
C⇤ in X 0

��
(C,p)

contains no strata. Here

(C, p) is an arc intersecting �k� transversely at p and R0 ⇢ X 0 extends (Prop. 8.1) the canonical
choice of polarizing divisor.

The discriminant family X 0
0 ! �k� is topologically trivial. The divisor R0 intersects some

irreducible component V 0
p ⇢ X 0

p lying over the triple points of Xp but it is disjoint from the
corresponding component V 0

0 ⇢ X 0
0. The divisor R0 is a section of a line bundle L0 = OX 0(R0). It

restricts to line bundles L0
p resp. L0

0 on V 0
p resp. V 0

0 , with R0
p 2 |L0

p| and R0
0 2 |L0

0|.
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But since L0
0 restricts to the trivial bundle on V 0

0 , the topological triviality implies that L0
p is

the trivial bundle on V 0
p . So R0

p contains V 0
p if it intersects it. Contradiction. An alternative

contradiction avoiding reference to the line bundles is that R0
0 ⇢ X 0

0 is a flat family of curves
intersecting V 0

p but not intersecting the corresponding component for a generic nearby fiber. This
would only possible if R0

p contained a triple point, which is does not. ⇤
Next, we study when we have the freedom to multiply � by an integer:

Proposition 8.7. Suppose R is m�-recognizable and the fibers of the flat extension R ⇢ X ! Sm�

contain no strata of any fiber. Then R is n�-recognizable for all n. Conversely, if R is n�-
recognizable for all n 2 N, then there is an m 2 N for which the flat extension R ⇢ X contains no
strata of fibers.

Proof. First we prove the forward direction, i.e. we have a flat family of curves R ⇢ X ! Sm� not
containing strata of any fiber. Let n = mk, and consider the standard resolution X [k] of the global
base change. On any fiber, the map u : X0[k] ! X0 satisfies the property that the inverse image
R0[k] := u�1(R0) is still a divisor. This divisor certifies recognizability for X0[k]. This would be
false if R0 contained a singular stratum of X0, as then u�1(R0) would contain a component.

Hence R is weakly n�-recognizable for all m | n. By Proposition 8.5, we conclude that R is n�-
recognizable whenever m | n. So consider the case m - n. Supposing R were not n�-recognizable,
the limiting divisor R0 would vary depending on the chosen arc (C, 0) ! Sn�. But taking a
standard resolution and base change of order r, we would conclude that R is not rn�-recognizable
for an r 2 N as the base-changed arcs would also produce di↵erent limiting divisors. Taking r = m
gives a contradiction.

The reverse direction follows from the existence of divisor models: There exists some Kulikov
model X ! (C, 0) with monodromy m� for which the limit R0 contains no strata of X0. Taking a
�-family, Proposition 8.6 shows we get a flat extension R ⇢ X containing no strata of fibers. ⇤
Proposition 8.8. R is n�-recognizable for all n 2 N if and only if there exists a divisor m�-family
(X ,R)! Sm� for some m 2 N.

Proof. The existence of a divisorm�-family (X ,R) implies that R is (weakly)m�-recognizable with
R containing no strata of fibers, so Proposition 8.7 implies that R is n�-recognizable for all n 2 N.
Conversely, choose a divisor model (X,R)! C with monodromy invariant m�. Then Proposition
7.31 (or Proposition 7.33 for Type II) implies that we may choose an ordered toric model of X0

for which the line bundle OX0(R0) extends to a relatively big and nef line bundle L ! X on the
corresponding �-family. By recognizability and Proposition 8.6, the closure R = R⇤ is a section of
L which doesn’t contain strata. We conclude that (X ,R) it is a divisor m�-family. ⇤

We also show equivalence with a weaker condition:

Proposition 8.9. Let X ! (C, 0) ⇥ B be a family of Kulikov models over a curve B for which
the discriminant family X0 = X0 ⇥ B is constant, and the restriction of X to (C, 0) ⇥ {b0} gives
a divisor model. Then R is recognizable if and only if R0,b := limt!0 Rt,b is independent of b, i.e.
R0,b = R0,b0 ⇢ X0 for any such X ! (C, 0)⇥B.

Proof. Certainly if R is recognizable, then R0,b will equal the divisor R0 ⇢ X0 certifying recogniz-
ability for any b. Conversely, suppose R is not recognizable. Following the proof of Proposition 8.1,
there must be a one-parameter family of Kulikov models X ! (C, 0)⇥B for which R0,b varies. It
remains to show that we may assume these Kulikov models are divisor models. To do so, we per-
form a series of GM0, GM1, GM2 modifications (possibly after a global base change and standard
resolution) until the restriction of the modified family X 0 to a fixed arc (C 0, 0)⇥ {b0} is a divisor
model. These modifications do not a↵ect the triviality of the discriminant family X 0

0 = X 0
0 ⇥ B

and the limit curves R0
0,b still vary on X 0

0 because they cover some component. ⇤
Proposition 8.10. Suppose that t = 0 and k > 1. That is, X0 is a Type II Kulikov surface with
intermediate elliptic ruled components. Then, there exist �-families X ! S� for which Propositions
8.1, 8.5, 8.6, 8.7, 8.8, 8.9 hold.
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Proof. Recall that the smoothing component of such a Kulikov surface X0 has dimension 19+k and
is fibered over Ck, with the kth coordinate axis corresponding to the deformations which smooth
the kth double curve. Imposing an M -quasipolarization reduces the dimension to 19 + k � rkM .
Given any smooth arc (C, 0) ,! (C19+k�rkM , 0) =: (S, 0) whose tangent direction T0C is transverse
to all the coordinate axes under the projection to (Ck, 0), the restriction of the universal family to
(C, 0) is a Kulikov model, simultaneously smoothing all of the double curves.

The closure R = R⇤ over the full (19 + k � rkM)-dimensional smoothing component of such
an X0 could contain an entire intermediate elliptic ruled component. In fact, this does occur:
Applying g 2 Aut0(X0) ⇠= (C⇤)k�1 to the arc (C, 0) in the deformation space will translate the flat
limit R0 ⇢ X0 by g. But a recognizable divisor R0 need not be Aut0(X0)-invariant, see the eA17

case in [AET19, Construction 9.27].
Fixing one arc (C, 0) ,! (S, 0) gives a flat limit R0 ⇢ X0 and assuming R is recognizable, the

flat limit R0
0 along any other arc (C 0, 0) ,! (S, 0) di↵ers from R0 by an element g 2 Aut0(X0), i.e.

g(R0
0) = R0. But then, the flat limit along g⇤(C 0, 0) equals R0. So for any arc transverse to the

coordinate axes of (Ck, 0), there is a representative of its Aut0(X0)-orbit for which the flat limit
is equal to R0. Thus, there exists a slice of the Aut0(X0)-action on (S, 0) for which the flat limit
along the slice is always R0.

This procedure can be performed analytically-locally along the fibers over the equisingular locus
� ⇢ S. We call such a slice well-chosen. Summarizing, a well-chosen slice gives a local �-family
over an open set U ⇢ S� around 0 2 �� for which R⇤ extends to a flat family of divisors R.

Now consider a collection {Ui} of well-chosen slices for which Ui \ � cover the equisingular
deformation space ��. On the double overlaps Ui \ Uj these well-chosen slices are isomorphic,
by a unique isomorphism preserving the mixed marking, because the isomorphisms on the smooth
smooth fibers are unique (Prop. 4.12). Thus, when R is recognizable, we can glue to form a �-
family (X ,R)! S� on which R extends to a flat family of divisors. The arguments of the above
propositions apply verbatim to such a well-chosen slice. ⇤

We summarize the results proven above:

Theorem 8.11. Let R be a canonical choice of polarizing divisor, defining a divisor R⇤ on the
universal K3 surface over a Zariski open subset U ⇢ Fq

M . Then the following are equivalent:

(1) Any one-parameter deformation of a divisor model (X,R) ! (C, 0) keeping X0 constant
in moduli gives rise to a constant limiting curve R0, up to Aut0(X0).

(2) R is recognizable.
(3) For all primitive isotropic � and all � 2 C+

� \ �?/�, there is some �-family for which R⇤

extends a flat divisor R ⇢ X .
(4) R⇤ extends to a flat divisor R ⇢ X in every �-family.
(5) For every projective class [�], there exists some k 2 N for which R⇤ extends to a divisor

�-family (X ,R)! Sk�.

If t = 0, k > 1, the above equivalences hold when the �-family is a well-chosen slice.

Proof. Note that we are allowing the case � = 0, which in conditions (3), (4), (5) amounts to
saying that R⇤ extends to a section of the projective bundle PL ! Fq

M . Then (2) () (4) by
Proposition 8.1, (3) () (4) by Proposition 8.5, and (4) () (5) by Proposition 8.8. Finally,
(1) () (2) by Proposition 8.9. ⇤

The conditions in Theorem 8.11 are roughly in increasing order of strength. As such, we use
condition (5) in the proof of Theorem 1, but use condition (1) in the proof of Theorem 2.

Definition 8.12. Let (X, ✏R) =
S

i(V i, Di, ✏Ri) be a stable degeneration of K3 pairs. The slc
combinatorial type is the data of:

(1) The deformation types of the quasipolarized minimal resolutions (Vi, Di, Li) of each com-
ponent, where Li = OVi(Ri), and

(2) the combinatorics �(X) of the singular strata.
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Corollary 8.13. Suppose R is recognizable and let (X
⇤
, ✏R

⇤
) ! C⇤, ✏ ⌧ 1 be a family of stable

K3 pairs over a punctured curve C⇤ = C \ 0. The slc combinatorial type of the unique stable limit
(X0, ✏R0) depends only on the projective class [�] of the monodromy invariant.

Proof. Consider the divisor �-family as in Theorem 8.11(5). The family of canonical models
(X , ✏R), where X = Proj�n�0⇡⇤OX (nR), and R = imR, is the corresponding family of stable slc
pairs. Every one-parameter degeneration with monodromy invariant � has a unique limit in this
family. The combinatorial type of the discriminant family (X0,R0) is fixed, with the line bundles
L0 = OX0(R0) on every fiber identified by the Gauss-Manin connection because X0 is topologically
trivial. Since the contraction X0 ! X0 is defined only by the line bundle L0, the combinatorial
type of the stable models is also fixed. ⇤

9. Main theorem for recognizable divisors

9A. Proof of Theorem 1. We have proven in Corollary 8.13 that whenever R is recognizable,
the slc combinatorial type of an M -polarized degeneration depends only on the projective class
[�] of the monodromy invariant. This is the key input which recognizability gives us: from here
we have an essentially birational-geometric argument to show that the KSBA compactifications
associated to recognizable divisors are (up to normalization) semitoroidal.

Theorem 9.1. If R is recognizable, there exists a unique semifan FR for which F
FR

M ! F
R
M is the

normalization.

Proof. Recall that F
R
M is, by Definition 6.11, the coarse space of the closure (in PN,2d) of the stack

of pairs parameterized by U ⇢ FM .

We define the interior of F
R
M to be the locus in this closure parameterizing M -polarized ADE

K3 surface pairs (X, ✏R). Proposition 6.12 implies that this locus is isomorphic to FM .

Let G be some regular fan (cones are standard a�ne) and let u : F
G
M 99K F

R
M be the birational

map which is isomorphism on the interiors. Let � = span{�1, . . . ,�d} be a Type III standard a�ne
cone of G of maximal dimension. Associated to this cone is an analytic, finite morphism from a
tubular neighborhood N(�) of the toric boundary of

X(�) = C
d = C�1 � · · ·� C�d

to a neighborhood of the boundary strata of F
G
M containing the 0-dimensional stratum associated

�. The finiteness arises from quotienting by the Stab��(�) action on this toric chart.

Let u(�) : N(�) 99K F
R
M denote the corresponding meromorphic map. Consider an arc germ

(C, 0) ⇢ (Cd, 0) with C⇤ ⇢ (C⇤)d contained in the open torus orbit. Since F
R
M is proper, u(�)

extends uniquely over C⇤ to the origin 0. By Corollary 8.13, the combinatorial type of the stable
model depends only on the orders ri of tangency of (C, 0) with the coordinate hyperplanes of Cd,
since this determines the monodromy invariant of (C, 0) to be � = r1�1 + · · ·+ rd�d.

The meromorphic map u(�) : N(�) 99K F
R
M thus satisfies the following conditions:

(1) There is a stratification (by slc combinatorial type) of F
R
M for which the extension of u(�)

over any arc (C, 0) with fixed tangency orders ri to the coordinate hyperplanes of Cd lies
in a fixed slc stratum.

(2) The indeterminacy locus lies in the coordinate hyperplanes, which map by u(�) into the
union of Type III slc strata.

No Type III slc stratum contains a complete curve by Corollary 9.17. We conclude by Lemma
9.18 that there exists a toric blow-up of X(�) eliminating the indeterminacy of u(�). Further
refining, we may assume this toric blow-up is given by a Stab��(�)-invariant fan. Thus, we may
refine G so that u defines a morphism over the refinement of �. Applying this argument to all

�-orbits of maximal cones � 2 G, we may as well have assumed that u : F
G
M 99K F

R
M has no

indeterminacy over the Type III extension of FM .
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In fact, there is no indeterminacy in the Type II (�2 = 0) locus either: By Theorem 8.11, there
is a divisor �-family (X ,R) ! S�. Consider the resulting stable �-family (X , ✏R) ! S�. The
base S� is an order k branched cover of a tubular neighborhood of the boundary divisor in the

unipotent quotient DM (I). There is a natural quotient map v : S� ! F
G
M by the action of �I .

The classifying morphism S� ! F
R
M for the stable �-family must factor through v because the

fibers of v not lying in the boundary give isomorphic ADE K3 surfaces with divisor. Ranging over
all I = Z� � Z�, the maps v surject onto the Type II locus, so u extends to a morphism over the
Type II extension of FM .

Since the Type II and III extensions of FM cover all of F
G
M , we conclude that there is a morphism

F
G
M ! F

R
M—on the intersection of the closure of the Type II locus with the Type III locus, it is

a morphism as opposed to just a set-theoretic map because F
G
M is normal.

By Lemma 9.19, we also have a morphism (F
R
M )⌫ ! F

BB
M . So by Theorem 5.14, the normaliza-

tion of F
R
M is semitoroidal for a unique semifan FR. ⇤

Corollary 9.2. Suppose R is recognizable. The normalization map F
FR

M ! F
R
M sends semitoroidal

strata to slc strata.

Proof. Let � 2 FR be any cone and choose � in the relative interior int(�). By Corollary 8.13, the
stable limit of any degeneration with monodromy invariant � lies in a fixed slc stratum. Since the
natural map �?/{�,�}! �?/{�,�} is surjective, every point in Str� is the limit of some arc with
monodromy invariant �. So the combinatorial type of the slc stable model at any point in Str� is
the same. ⇤

Corollary 9.2 implies that there is a well-defined function

S : {cones of FR mod �}!
(
combinatorial types of slc

strata which appear in F
R
M

)
.

Note that S may not be injective. For instance, S(�) = S(⌧) if the corresponding strata are
unglued by normalizing. By abuse, let S(�) := S(�) where � 2 int(�).

Theorem 9.3. Let R be a recognizable divisor for FM . Let D be the decomposition of monodromy
invariants into loci

�
� 2

`
� C

+
� \ �?/�

�� S(�) is constant
 
. Then maximal cones of FR and D

are the same.

A maximal cone of D is a top-dimensional, convex cone in C+
� whose integral interior points lie

in a single element of D, and which is maximal for this property.

Proof. S is constant on cones of FR by Corollary 9.2, so it su�ces to show that S cannot take the
same value on two maximal dimensional cones �1,�2 2 FR and a codimension 1 face ⌧ ⇢ �1 \ �2
they share. If this were the case, the closed boundary stratum Str⌧ would map to a fixed slc stratum
S(�1) = S(�2) = S(⌧). But the Type III slc strata contain no complete curve by Corollary 9.17. So

Str⌧ would be contracted to a point, contradicting finiteness of the normalization F
FR

M ! F
R
M . ⇤

Theorem 9.3 gives a method to compute the semifan FR. Up to taking faces, its cones are sets
of monodromy invariants � which produce a fixed combinatorial slc type. This is how FR was
computed in Examples 9.20, 9.21 below.

The semifan FR is also functorial under restriction to Type IV subdomains of FM , i.e. Noether-
Lefschetz loci. Let M ⇢ M 0 ⇢ LK3 be primitive hyperbolic sublattices. Then there is a natural
map of moduli stacks Fq

M 0 ! Fq
M sending (X, j) 7! (X, j

��
M
). Let L 2M .

Proposition 9.4. Suppose R 2 |L| is recognizable for Fq
M . Then its restriction to Fq

M 0 is also
recognizable. Furthermore, FR(M 0) is the restriction of the semifan FR(M) to the appropriate
linear subspaces of C+

� ⇢ �?M?/�.
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More precisely, if � 2 M 0? ⇢ M? is an isotropic vector corresponding to some 0-cusp of FM 0 ,
we restrict the decomposition FR,�(M) to the subspace �?

M 0?/�.

Proof. Proposition 9.4 follows from the the fact that any M 0-quasipolarized Kulikov model is also
M -quasipolarized, plus the functoriality of the stable pair and semitoroidal constructions under
restriction to Noether-Lefschetz subdomains. ⇤

9B. Moduli of anticanonical pairs. We prove here that Type III slc strata contain no complete
curve by considering the periods of anticanonical pairs. A useful general reference is [Fri15].

Definition 9.5. Let (V,D) be an anticanonical pair with D = D1 + · · ·+Dn an oriented, labeled
cycle of rational curves. Define ⇤(V,D) := {D1, . . . , Dn}? ⇢ H2(V ) and define the period point

 (V,D) 2 Hom(⇤(V,D), C
⇤) to be the restriction map � 7! �

��
D
2 Pic0(D) = C

⇤.

Definition 9.6 ([Fri15, Def. 5.4]). The generic ample cone Agen ⇢ H2(V ) is the ample cone of a
very general topologically trivial deformation of (V,D).

It su�ces to take a deformation for which ker( (V,D)) = 0. This is possible because there is
a local universal deformation (V,D) ! S of pairs for which the assignment s 7!  (Vs,Ds) is an
isomorphism to an open subset of Hom(⇤(V,D),C

⇤).

Definition 9.7 ([Fri15, Def. 6.5]). A Looijenga root � 2 ⇤(V,D) is a class of square �2 = �2 which
represents a smooth (�2)-curve on some topologically trivial deformation of (V,D), and for which
 (V,D)(�) = 1.

Reflections in Looijenga roots act on Agen. The ample cone A of (V,D) is a fundamental
chamber for the action of the group W(V,D) := hr� : � a Looijenga rooti on Agen. We can now
recall the Torelli theorem for anticanonical pairs:

Theorem 9.8 ([Fri15, Thm. 8.7]). Two pairs (V,D) and (V 0, D0) (with oriented, labeled cycle)
are isomorphic if and only if there exists an isometry � : H2(V )! H2(V 0) for which �(Dj) = D0

j,
�(Agen) = A0

gen, and  (V,D) =  (V 0,D0) � �. Furthermore, � = f⇤ is induced by an isomorphism
f : (V 0, D0)! (V,D) if and only if �(A) = �(A0). This isomorphism is unique up to the action of
continuous automorphisms Aut0(V,D).

So the analogue of the Torelli Theorem 2.3 holds nearly verbatim, replacing C with Agen (which
is notably not the positive cone), K with A (which is the Kähler cone), and WX with W(V,D).

Definition 9.9. Fix a reference lattice L(V,D) isomorphic to H2(V ). Fix classes (Dj)0 2 L(V,D)

and fix a cone A0
gen ⇢ L(V,D)⌦R. A marking of (V,D) is an isometry � : H2(V )! L(V,D) sending

�(Dj) = (Dj)0 and �(Agen) = A0
gen. Let �(V,D) ⇢ O(L(V,D)) be the subgroup fixing all this data.

Theorem 9.10 ([Fri15, Thm. 8.13]). Assume Aut0(V,D) is trivial. There is a fine moduli space
M(V,D) of marked anticanonical pairs deformation-equivalent to (V,D). It has a period map

M(V,D) ! Hom(L(V,D),C
⇤)

which is generically one-to-one, and whose fibers are torsors over a group isomorphic to W(V,D)

with the action on a fiber given by (X,�) 7! (X, g � �).

When Aut0(V,D) is non-trivial, there is still a space M(V,D) admitting a family which defines
at every point a universal deformation, and for which every isomorphism type is represented, but
it is not a fine moduli space.

Definition 9.11. A quasi-polarized triple (V,D,L) is an anticanonical pair (V,D) and a big and
nef line bundle L 2 Pic(V ). A polarized ADE triple is an image (V ,D,L) of such under the linear
system �|nL|, n� 0 (we must add the condition that  (V,D)(L) = 1 when L 2 ⇤). A divisor triple
(V,D,R) is the extra data of an element R 2 |L| such that R contains no nodes of D. A stable
triple (V ,D, ✏R) is an image of a divisor triple (V,D, ✏R) under �|nR|, n� 0.
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The map (V,D) ! (V ,D) contracts the components of D for which L ·Dj = 0, together with
some negative-definite ADE configuration of (�2)-curves whose classes lie in ⇤(V,D).

Theorem 9.12. The coarse moduli space of polarized ADE triples F(V ,D,L) of a fixed deformation

type is the quotient of Hom(L(V,D), C
⇤) by the finite group �(V,D,L) := Stab�(V,D)

(L).

Proof. The result is analogous to Theorem 2.11. If L /2 ⇤, take the sublocus M(V,D,L) ⇢M(V,D)

where L defines a big and nef divisor—this surjects onto the period torus with fibers a torsor
over the reflection subgroup W(V,D,L) := StabW(V,D)

(L). When L 2 ⇤, we restrict to the sublocus
 (V,D)(L) = 1. Now take the relative linear system of nL, which simultaneously contracts the
ADE configuration in ⇤(V,D) \ L? and some components of D.

The fibers of the period map M(V,D,L) ! Hom(L(V,D), C
⇤) (or Hom(L(V,D)/ZL, C

⇤) when
L 2 ⇤) are identified with distinct resolutions of the contraction, and the moduli functor factors
through the separated quotient of M(V,D,L). Since we have included L as part of the data, our
change-of-markings in �(V,D) must preserve L. The result follows.

We can even identify (when Aut0(V,D) is trivial) the moduli stack as the separated quotient of
[M(V,D,L) : �(V,D,L)]. Like in the K3 case (Rem. 2.12), its only di↵erence with the quotient stack
[Hom(L(V,D), C

⇤) : �(V,D,L)] is that the inertia groups are locally quotiented by W(V,D,L). ⇤

Let F(V ,D,R) denote the coarse moduli space of stable triples (V ,D, ✏R) with a fixed deformation
type of minimal resolution. Here ✏ is a fixed small number.

Lemma 9.13. F(V ,D,R) is a (possibly non-flat) family of a�ne varieties over the coarse moduli
space F(V ,D,L).

Proof. On a given polarized ADE triple (V ,D,L), we may choose R 2 |L| arbitrarily, subject
to the condition that R not contain any nodes of D. This condition is either not satisfied by
any element of |L|, or is the complement of a non-zero number of hyperplanes, corresponding to
sections which go through some node. Thus, the set of choices of R on a fixed ADE triple forms
an a�ne variety.

The automorphism group of (V ,D,L) acts on the set of such choices R. So when this auto-
morphism group is finite, the choices form an a�ne variety. If the automorphism group contains a
continuous part of dimension 1 or 2, we may rigidify by requiring R to go through 1 or 2 generically
chosen points of V \ D. Then, the coarse moduli space is a finite image of the rigidified moduli
space, which is again a�ne by the reasoning of the first paragraph. ⇤

Corollary 9.14. The coarse moduli space F(V ,D,R) contains no complete curves.

Proof. This follows immediately from Lemma 9.13 and F(V ,D,L) being a�ne. ⇤

Let F(X,R) denote the coarse moduli space of stable slc pairs of a fixed combinatorial type, as
in Definition 8.12.

Remark 9.15. Semi log canonical singularities are seminormal. The seminormality implies that
the scheme-theoretic structure of a 0-stratum of X is unique, since X is the direct limit of the
diagram of strata, partially ordered by inclusion. So moduli is uniquely determined by the moduli
of components and gluings of double curves.

Theorem 9.16. Let F(X,R) be a coarse moduli space of glued seminormal stable pairs containing
a Type III stable pair degeneration of K3 surfaces. Then F(X,R) contains no complete curve.

Proof. We can construct the coarse moduli space as follows: First, take the product of the coarse
moduli spaces of each component

Q
i F(V i,Di,Ri)

. Let {µij} ⇢ C
⇤ be the (possibly empty, but

always finite) set of gluings of Dij to Dji which identify the nodes of Di and Dj and for which
Ri\Dij = Rj \Dji. The space G(X,R) of such glued pairs is

Q
i F(V i,Di,Ri)

⇥
Q

i,j{µij} which has

a finite map to
Q

i F(V i,Di,Ri)
. So by Corollary 9.14, G(X,R) contains no complete curves.
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The spaceG(X,R) parameterizes seminormal pairs (X, ✏R) together with a combinatorial labeling

of the dual complex �(X). Consider the finite group of combinatorial self-maps of �(X) preserving
the combinatorial types of all stable triples. The coarse moduli space F(X,R) is the quotient of
G(X,R) by this finite group. Since G(X,R) contains no complete curve, neither does F(X,R). ⇤

Corollary 9.17. No Type III stratum of F
R
M contains a complete curve.

Proof. A Type III stratum of F
R
M is a sublocus of the coarse moduli space of pairs (X, ✏R) as in

Theorem 9.16. The corollary follows. ⇤

9C. Other lemmas. We prove the remaining lemmas used in Theorem 9.1. Let (Cn, B) denote
the analytic germ of B := {x1 · · ·xn = 0}, the union of the coordinate hyperplanes, in C

n.

Lemma 9.18. Let V be an analytic variety stratified by sub-varieties Vi. Consider a meromorphic
map � : (Cn, B) 99K V with locus of indeterminacy contained in B. Assume that the image of the
indeterminacy locus is contained in [i2IVi and that no Vi for i 2 I contains a complete curve.

Assume that for any arc germ f : (C, 0) ! (Cn, 0) with f(C \ 0) ⇢ (C⇤)n, there exists an
extension g : (C, 0) ! V of � � f . Moreover, assume that for any such f , the stratum Vi 3 g(0)
depends only on the orders of tangency of C to the coordinate hyperplanes.

Then the indeterminacy of � can be resolved by toric blow-ups.

Proof. Fix the standard torus action of T = (C⇤)n on C
n. By Hironaka (see W lodarczyk [W lo09]

for a careful treatment of analytic spaces), there exists a sequence of blowups at smooth centers
in the indeterminacy loci that resolves �. Let H be the first center which is not T -invariant.

Let O be the largest T -orbit with O \H 6= ;. By restricting to an open subset, we can assume
that H ( O. Consider the toric cross-sections normal to O. These cross-sections satisfy the con-
ditions of the Lemma, and so applying an inductive hypothesis in n, we resolve the indeterminacy
of � generically along O, by a series of toric blowups.

So we get a rational map �0 : (X 0, B0) 99K V from a toric variety, a torus orbit O0, and a nontoric
center of indeterminacy H 0 ⇢ O0 such that �0 is regular on an open set U ⇢ X 0 intersecting O0.
Then �0(U \O0) is contained in a single stratum Vi. The stratum containing the limit of an arc in
X 0 again depends only on the orders of tangency with the components of B0.

Let X 0  Z ! V be a resolution of singularities. Then there exists p 2 O0 \H 0 such that for
the fiber Zp of Z ! X 0 the morphism Zp ! V is non-constant. Since Zp is proper and the strata
Vi contain no complete curve, there exist two arcs with f1(0) = f2(0) = p and with g1(0), g2(0)
lying in di↵erent strata Vi. But shifts of these arcs by the torus action have the same tangency
conditions with the coordinate hyperplanes and satisfy f(0) 2 U . So for them g(0) lie in the same
stratum of V . Contradiction. ⇤

Lemma 9.19. There is a morphism (F
R
M )⌫ ! F

BB
M for any canonical choice of polarizing divisor

R (recognizable or not).

This is proved in [AET19, Thm. 3.15] and amounts to the observation that in Type II, the

j-invariant of the corresponding point in the 1-cusp of F
BB
M can be recovered from the stable slc

pair (X, ✏R). Indeed, either X is nonnormal and every connected component of the double locus
is an elliptic curve E with this j-invariant, or X has an elliptic singularity corresponding to E.

9D. Examples. Previously known examples of recognizable divisors come from [AET19], [ABE22].

Example 9.20 (Degree 2 K3s). Let (X,L) be a quasipolarized K3 surface of degree L2 = 2. Let
X denote the corresponding polarized ADE K3 surface. Then �|L| defines a branched double cover

X ! P
2 or X ! F

0
4 (the contraction of the Hirzebruch surface F4 along its negative section).

Define R 2 |3L| to be the pullback of the ramification locus R ⇢ X.
There is only one �-orbit of primitive isotropic vector � 2 L?, and so a semitoroidal compact-

ification is determined by a single ��-invariant semifan F = F� in the positive cone of C+
� . Then
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[AET19] verifies Theorem 8.11(5) directly, by constructing for each monodromy invariant �, a
divisor �-family with monodromy invariant in the projective class [�].

These divisor models are constructed by ensuring the involution on the general fiber Xt of
Kulikov model X ! (C, 0) extends to the central fiber X0. Then the fixed locus R0 ⇢ X0 is the
canonical choice of divisor certifying recognizability. The resulting semifan FR is not a fan. The
lattice �?/� is a hyperbolic root lattice with a finite covolume Coxeter chamber K. There is an
infinite subgroup W ⇢ �� for which FR is the ��-orbit of a single chamber L := W · K.

Thus, Theorem 9.1 cannot be strengthened by replacing “semifan” with “fan.”

Example 9.21 (Elliptic K3s). Let (X, j) be an H-quasipolarized K3 surface, i.e. an elliptic K3
surface, with fiber class f and section s (so h lies in cone spanned by f , s+2f). Let R = s+m

P
fi

be the section plus the sum of the singular fibers, with multiplicity, and weighted by m. Here

L = s+ 24mf 2 H is the relevant big and nef class. F
R
H is the same for all m > 1

3 .
As in the previous example, [ABE22] find Kulikov models X ! (C, 0) for any monodromy

invariant which preserve the existing structures on the general fiber: X0 admits a fibration by
genus 1 curves ⇡0 : X0 ! B0 over a chain of rational curves B0, with a section s0. Finitely many
fibers fi,0 = ⇡�1

0 (bi) not contained in the double locus of X0 have more nodes than all analytically
nearby fibers. Counting fi,0 with the correct multiplicity, the recognizable divisor on X0 is

R0 = s0 +m
X

fi,0.

There is a unique �-orbit of primitive isotropic � 2 H? = II2,18 and �?/� = II1,17 is a hyperbolic
root lattice with a finite covolume Coxeter chamber K. Then FR is the ��-orbit of a subdivision
of K into 9 subchambers. So FR is a fan.

Example 9.22. Any choice of divisor R when dimDM = 1 is recognizable: There exists a divisor
model in the neighborhood of any point p 2 FM in the unique toroidal compactification, which
also equals the Baily-Borel compactification.

Remark 9.23. The necessity of normalizing F
R
M to get a semitoroidal compactification is apparent

in both Examples 9.20, 9.21. [AET19, ABE22] compute the normalization map explicitly.

10. The rational curve divisor

Our goal is to now make a canonical choice of divisor for F2d for any d > 0, then prove its
recognizability. From this, we can conclude Corollary 3: there are KSBA compactifications of F2d

whose normalizations are semitoroidal, for all degrees. Our divisor is roughly the sum of all rational
curves in |L|. Its recognizability is proven below, by showing that the image of a predeformable,
stable, genus zero map to any Kulikov surface is rigid.

10A. Definition of Rrc
. Consider the moduli space F q

2d of quasipolarized K3 surfaces of degree
2d. Let (X,L) 2 F q

2d.

Definition 10.1. We say that G 2 |L| is a rational curve if the normalization of every irreducible
component of G is P1.

Theorem 10.2 (Yau-Zaslow formula [YZ96, Bea99, Che99, Che02]). There is a Zariski open
subset U ⇢ F q

2d for which any rational curve G 2 |L| for (X,L) 2 U is irreducible, nodal, and for
which the number of such rational curves is exactly

nd := [qd]
1

q

Y

k�1

1

(1� qk)24
= [qd]

1

�(q)

where �(q) is the modular discriminant, and [qd] denotes the qd-coe�cient.

The integer nd is the number of 24-colored partitions of d+ 1.

Definition 10.3. The rational curve divisor is the canonical choice of polarizing divisor Rrc :=P
G2|L| rational G 2 |ndL| defined over the open subset U ⇢ F q

2d.
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We now outline an alternative definition using Gromov-Witten invariants.

Definition 10.4. Let X be a smooth complete variety and let � 2 H2(X,Z). The Kontsevich
space Mg(X,�) is the moduli space of stable maps f : T ! X from a genus g nodal curve T , for
which f⇤[T ] = �.

The Kontsevich space is a proper Deligne-Mumford stack. For a surface, H2(X,Z) andH2(X,Z)
are canonically identified by Poincaré duality, so we make no distinction. We will take L = �.

There is a virtual fundamental cycle [Mg(X,�)]vir 2 Aexp.dim(Mg(X,�)) where exp.dim =
(dimX�3)(1�g)+c1(TX) ·� is the expected dimension of the moduli space [BF97]. In particular,
for stable genus 0 maps to a K3 surface, exp.dim = �1 so [M0(X,L)]vir = 0. Geometrically, this
can be explained by the fact that GW invariants are deformation-invariant, but that a generic
deformation of X has no nontrivial line bundles, so � cannot represent an algebraic curve.

For polarized K3 surfaces (X,L), there is a reduced virtual fundamental cycle [M0(X,L)]vir,red 2
A0(M0(X,L)), see [KT14]. Roughly, it is built to be invariant only under the deformations of X
which stay in Fq

2d. This decreases dimension of the obstruction space by one, increasing the
expected dimension by one.

Lemma 10.5. Let (T, f) be a stable map f : T ! X with T a nodal curve of arithmetic genus
0 and X a smooth K3 surface. Under any deformation of the stable map (T, f) 2 M0(X,L), the
image divisor f⇤T is constant.

Proof. If the image divisor f⇤T moves under a deformation of (T, f), a restriction of f gives a
dominant map S = B ⇥ P

1 ⇡�! X, for some (possibly incomplete) curve B. Letting Ram ⇢ S
be the ramification divisor of the map S ! X, the Riemann-Hurwitz formula gives KS = Ram.
This contradicts the adjunction formula, because restricting to a general fiber F = {b}⇥ P

1 gives
�2 = 2g(F )� 2 = F · (F +Ram) = F · Ram � 0. ⇤

Replicating this argument for a Kulikov surface is the key to proving that Rrc is recognizable.

Definition 10.6. Let G 2 |L| be a rational curve. Define MG(X) to be the union of the connected
components of M0(X,L) for which f⇤T = G. This is well-defined because f⇤T is constant on any
connected component by Lemma 10.5. Define

nG := degMG(X)[M0(X,L)]vir,red 2 Q.

This quantity a priori only lies in Q because of stack-theoretic issues.

Proposition 10.7. For any smooth quasipolarized K3 surface (X,L), we have

Rrc =
P

G2|L| rational nGG.

Furthermore, nG is a non-negative integer for all rational curves G 2 |L|.

Proof. Chen’s theorem [Che02] implies that for a su�ciently general (X,L) 2 U , we have nG = 1
for all rational curves G. Fix an (X0, L0) 2 F q

2d not in U and consider a 1-parameter deformation
(X ,L) ! (C, 0) over an analytic disc C for which Xt 2 U for all t 2 C⇤. Consider the moduli
space of relative stable maps M0(X ,�) where � is the class of L0 pushed forward to X .

There is a proper morphism M0(X ,�) ! C sending a curve to the fiber it is supported on,
but the fibers of this family are in general poorly behaved. For instance, the dimension can and
often does suddenly jump at t = 0. But by assumption, the fiber over any point t 2 C⇤ is a
reduced zero-dimensional scheme consisting of exactly nd points. The proposition follows if we
can prove that the scheme-theoretic intersection M0(X ⇤,�) \M0(X0, L0) represents the reduced
virtual fundamental class, in homology.

The constancy of the reduced Gromov-Witten invariants nd = degM0(Xt,�)[M0(Xt,�)]vir,red as
one varies t follows from the existence of a relative perfect obstruction theory [BF97, Sec. 7], [KT14,
Rem. 3.1]. Without going into the details, this is a perfect two-term complex with a morphism to
the relative cotangent complex, satisfying various axioms.
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Now let W ⇢M0(X ,�) be a connected component. The restriction of the axioms of a (relative)
perfect obstruction theory still hold under restricting this two-term complex to W . Hence the
constancy of reduced GW invariants still holds, i.e. degW [M0(X0, L0)]vir,red will equal the number
of sheets of M0(Xt, Lt) whose closures over t = 0 lie in W . This implies the first statement.

Summing these integrals over the components W for which the image curve f⇤T = G, we also
see that nG is a non-negative integer. ⇤
Remark 10.8. A priori, the contribution nG could equal zero. Perhaps no genus 0 stable map with
image G deforms to the general fiber Xt. Notably, this cannot occur when there is a component
W ⇢MG(X) of dimension dimW = 0, see [Huy16, Ch. 13.2.3] and references therein.

Proposition 10.7 provides us with a definition of Rrc on all (X,L) 2 F q
2d.

Definition 10.9. A quasipolarized K3 surface (X,L) of degree 2d is unigonal if it is elliptic, with
section and fiber classes s, f and L = s+ (d+ 1)f .

As a Noether-Lefschetz locus of Picard rank 2, the unigonal locus forms a divisor in F q
2d iso-

morphic to the moduli space F q
H of elliptic K3s.

Proposition 10.10. On a unigonal K3 surface (X,L), the rational curve divisor is

Rrc := nd(s+
d+1
24

P
fi)

where fi are the 24 singular fibers in |f |, counted with multiplicity.

Proof. The proposition follows immediately from Proposition 10.7 and the main result of [BL00],
though historically [Che02] relies on [BL00]. ⇤
10B. Proof of Theorem 2. We now prove our second main result:

Theorem 10.11. The rational curve divisor Rrc is recognizable for F2d for all d > 0.

Proof. Take a divisor model (X,R) ! (C, 0). We verify Theorem 8.11(1) by showing that the
limiting curve R0 ⇢ X0 satisfies some geometric property ensuring its rigidity on X0 even as we
deform the smoothing of X0. Take a base change and standard resolution of (X,R) ! (C, 0) so
that the irreducible components Gt of Rt are not permuted by monodromy. Then, Lemmas 10.12
and 10.14 imply that the limit of any individual rational curve Gt is rigid. ⇤
Lemma 10.12. Let X ! (C, 0) be a Kulikov model and let G ⇢ X be a flat family of curves for
which Gt is an irreducible rational curve for t 6= 0, and G0 contains no strata. Then, after a finite
base change and resolution of X ! (C, 0), there is a stable map f : T ! X0 from a nodal, genus
0 curve (a tree of P1s) for which f⇤T = G0 and (T, f) is predeformable (see Def. 10.13).

Definition 10.13. We say that (T, f) is predeformable [Li01, Def. 2.5] if no component of T is
contracted into the double locus, and for each node p 2 T with f(p) 2 Dij , the two arcs (Tk, p),
(T`, p) with f(Tk) ⇢ Vi and f(T`) ⇢ Vj satisfy

the tangency order of f(Tk, p) to Dij = the tangency order of f(T`, p) to Dji.

Proof of Lemma 10.12. Because G0 contains no strata, it maps into the complement of the triple
points of X0, i.e. the union of the non-singular locus and the double locus. Then, the result follows
from the properness over (C, 0) of the space of predeformable stable maps [Li01, Thm. 3.10] to
varieties with only double crossings. ⇤
Lemma 10.14. Let f : T ! X0⇥B be a family of stable maps over a local curve B, such that Tb

is a tree of P1s of fixed combinatorial type for all b 2 B, and for which (Tb, fb) is predeformable.
Then the image curves f⇤(Tb) = G0 are constant.

Proof. Let T = [kTk be the components of T . We have Tk
⇠= P

1 ⇥ B. Let Nk` = Tk \ T` be the
relative nodes over B. We label the vertices �(T )[0] of the dual complex �(T ) as follows:

(V0) Tk is contracted to a point inside a component.
(V1b) Tk is contracted along multisections to a curve inside a component.
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V0 V1b V1f V2

V0 v0 v0 — v0

V1b v0/v1/d0 v1 v0/v1/d0

V1f v1 v1

V2 all

Table 1. Allowable adjacencies for the labeled dual complex �(T ).

(V1f) Tk is contracted along fibers of Tk ! B to a curve inside a component.
(V2) Tk maps generically finitely to a component.

These are the only possibilities, by noting that Tk ! B is proper and that the image of f contains
no triple points. Next, we label the edges �(T )[1] of the dual complex �(T ) as follows:

(v0) Nk` maps to a point in the interior of a component.
(v1) Nk` maps to a curve in the interior of a component.
(d0) Nk` maps to a point in a double curve.
(d1) Nk` maps to a curve in a double curve.

Table 1 records the allowable adjacencies for the labeled dual complex �(T ), which can be
verified from predeformability by straightforward geometric arguments.

Let � ⇢ �(T ) be a maximal subtree consisting of only V2-vertices and d1-edges. Let T� ⇢ T be
the sub-family of curves with dual complex �. Consider the restricted family f� : T� ! X0 ⇥B.

The fibers T�,b may only fail to map in a predeformable way to X0 at the leaves of � which
are not leaves of �(T ). Consider the edges emanating from such a V2 leaf which are connected to
the rest of �(T ). Disconnecting �(T ) at a v-edge does not interfere with the condition of being
predeformable, so consider only the d-edges. By Table 1 and maximality of �, such a V2 leaf of �
must connect by a d0-edge.

So fix one V2 leaf of �, associated to a component Tk
⇠= P

1 ⇥ B ⇢ T� attached to the rest of
�(T ) by d0-edges. The further restriction fk : Tk ! Vi is now a map of smooth surfaces.

Each outgoing d0-edge corresponds to a relative node Nk` of T which maps under fk to a single
point pk` 2 Dij . There is at most one remaining relative node N ⇢ Tk which attaches Tk to the
rest of T� and for which f(N) is a curve in one boundary component of Vi. Make an interior
blow-up eVi ! Vi at each fixed attaching point pk`. Taking the strict transforms of the images of
fibers of Tk ! B, we can lift fk to a map efk : Tk ! eVi. If efk still sends any Nk` to a point in the
new anticanonical boundary eDij , we continue to blow up at the fixed attaching points, until the

lifted map satisfies the property ef�1
k ( eDi) = N .

Since both N and eDi are divisors with coe�cient 1, we have by Riemann-Hurwitz that

!Tk(N) = ef⇤
k (!eVi

( eDi))⌦O(Ram)⌦O(
P

aiEi).

Here Ram ⇢ Tk is the interior ramification divisor, i.e. the ramification away from the boundary
eDi, and Ei ⇢ Tk are the contracted curves of efk. Note that ai � 0 because eVi is smooth. Since
!eVi

( eDi) = O we conclude !Tk(N) is e↵ective, implying �1 = !Tk(N) · P1 � 0. Contradiction. ⇤

In analogy with Proposition 10.7, Lemma 10.14 allows us to define Rrc for Kulikov surfaces
inherently, in terms of logarithmic Gromov-Witten invariants [Che14, AC14, AMW14].

10C. The rational curve semifan. We first give some general results concerning the Baily-Borel
compactification of F2d, following [Sca87].

The number of 0-cusps of F
BB
2d is exactly bN+2

2 c where d = N2d0 for a square-free integer d0.
As discussed in Section 5A, they are in bijection with the �-orbits of primitive isotropic lattices
I = Z� in the lattice

L2d := h�2di �H�2 � E�2
8 = v? ⇢ LK3.
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The �-orbit of a generator � 2 I is determined by the following invariant: �⇤ = �
p⇤(�) 2 �2d :=

L⇤
2d/L2d, where p⇤ is by definition the imprimitivity in L⇤

2d. Then �
⇤ is an isotropic vector for the

quadratic form on �2d valued in 1
2dZ/2Z ⇢ Q/2Z. Identifying the source �2d = Z/2dZ and the

target with Z/4dZ, the quadratic form is given by x 7! x2. We must have �⇤ = 2qNd0 2 Z/2dZ
for q 2 Z/NZ. So I = Z� is determined by {±q} and we have

�?/� = h �2d
p⇤(�) i �H � E�2

8 .

A semitoroidal compactification of F2d is determined by a collection of ��-invariant semifans F�

decomposing the rational closures C+
� of the positive cones of each lattice �?/� as above, as one

ranges over the bN+2
2 c possible values of {±�⇤}. By Theorems 1 and 2, we may define:

Definition 10.15. Let Frc be the semifan for which ⌫ : F
Frc

2d ! F
Rrc

2d is the normalization map.

Some facts about the combinatorics of Frc can be deduced from Proposition 10.10 and [ABE22],
by restricting to the locus of elliptic K3 surfaces.

Theorem 10.16. Consider a cone C+
� with invariant p⇤(�) = 1, that is, where � is primitive in

L⇤
2d (all such � are equivalent under �). The restriction of Frc to h�2di? = H � E�2

8 , or any
��-orbit of it, is a fan. Furthermore, h�2di? \ C+

� is a union of cones of Frc
� .

We call such hyperplanes unigonal. The last statement in the theorem implies that Frc refines
the unigonal hyperplane arrangement in C+

� .

Proof. Suppose (X,L) is in the unigonal locus, so that L = s+ (d+ 1)f . The inclusion ZL ,! H
induces an inclusion of moduli spaces FH ! F2d. So the restriction of Rrc to FH is recognizable.
Suppose that � 2 H? is primitive isotropic. There is a unique isometry orbit of such and � is
primitive in (L?)⇤. So �?H?/� includes into the lattice �?L?/� corresponding an isotropic vector
with invariant �⇤ = 0. Concretely, it is the summand inclusion H � E�2

8 ,! h�2di �H � E�2
8 .

By Proposition 9.4, the restriction of Frc to H � E�2
8 is the semifan Frc

H whose corresponding

semitoroidal compactification normalizes F
Rrc

H . By Proposition 10.10, the rational curve divisor,
as in Definition 10.3, when extended to the unigonal locus, is a multiple of R = s + m

P
fi for

m = d+1
24 . [ABE22, Thm. 1.2] gives an explicit description of the fan Frc

H modulo the following
caveat: The divisor models described in [ABE22, Sec. 7B] require a threshold value of m > 1

3 for
the divisors R0 ⇢ X0 constructed therein to be nef. The threshold is achieved when �(X0) has a
so-called X3 end singularity. So it is automatic that loc.cit describes the restriction of Frc to the
unigonal hyperplane when d > 7. For m  1

3 or d  7, the stable models only di↵er from those
in loc.cit. in a minor way—one might contract the section on one or both end surfaces. But the
stratum function S has the same level sets and so Frc

H is the same (Prop. 9.3).
The fan Frc

H consists of six orbits of maximal cones [ABE22, Sec. 4C]. To prove the final statement
of the theorem, we must show that all six of the 18-dimensional cones �H 2 Frc

H are themselves
cones of Frc and not simply slices of the interior of some 19-dimensional cone � 2 Frc.

A maximal cone �H corresponds to a 0-stratum of the stable pair compactification of elliptic
K3s and hence to unique Type III elliptic stable K3 pair (X0, R0). If (X0, R0) deforms out of the
unigonal locus as rational curve K3 pair, keeping the combinatorial type constant, then �H must
be a cone of Frc. But if the elliptic stable K3 pair (X0, R0) is, as a rational curve K3 pair, rigid in
its combinatorial type, then �H must be the slice of a larger dimensional cone of Frc.

Let (X0, R0) be a Type III divisor model whose stable model is (X0, ✏R0), see [ABE22, Sec. 7A]
for an explicit description. Let L0 = OX0(R0). We can deform (X0, L0) to a non-elliptic, d-
semistable Kulikov model (X 0

0, L
0
0) by regluing double curves so that  X0

0
(f) 6= 1. Concretely,

comparing to [ABE22, Def. 7.10], it corresponds to when a connected chain of fibers of vertical
rulings fails to glue to a closed cycle, destroying the elliptic fibration and the Cartierness of f .

Since Rrc is recognizable, the rational curve divisor on such a deformed Kulikov model is nec-
essarily a deformation of the curve nd(s +

d+1
24

P
fi,0) (see 9.21) living in the linear system |L0

0|.
38



So the resulting stable model has the same combinatorial type as the elliptic one

(X
0
0, ✏R

0
0) =

Sr
i=1(V i, Di, ✏Ri)

for r = 18, 19, 20 depending on the cone �H .
In the elliptic case, the intermediate components V i for i 6= 1, r are the result of gluing two

sections of P1 ⇥ P
1 via the isomorphism provided by the vertical fibration. But when we deform

X0 out of the elliptic locus to the Kulikov surface X 0
0, the surface V i also deforms: The gluing

map between the two sections includes a shift exactly equal to  X0
0
(f).

Hence (X0, ✏R0) is not rigid in F
Rrc

2d within its slc combinatorial type. Even forgetting the
divisor, the underlying surface X0 is not rigid. We conclude that �H is a cone of Frc. ⇤

Remark 10.17. The results of this section hold for the imprimitive rational curve divisor

Rrc(m) =
X

G2|mL| rational

nGG

where the coe�cients nC are defined using reduced GW invariants as in Definition 10.6. A naive
version of Chen’s theorem (that generically all rational curves are nodal) is false: For instance
one can take mG for G 2 |L| rational. It is not clear whether one can recover Chen’s theorem by
subtracting out these and other obvious non-reduced and non-irreducible contributions to get a
divisor Rrc

prim(m). Regardless, the above serves as a definition of Rrc(m) and produces a canonical
choice of polarizing divisor. The proof of recognizability, Theorem 10.11 applies verbatim because
the normalization of any irreducible component of Rrc(m) is P1.

Thus, there are semifans Frc(m) for all m � 1 which give the normalization of the KSBA
compactification associated to Rrc(m).
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in Mathematics, vol. 29, Birkhäuser, Boston, Mass., 1983, Based on papers presented at the Summer
Algebraic Geometry Seminar held at Harvard University, Cambridge, Mass. June 11–July 29, 1981.

[Fri83a] Robert Friedman, Base change, automorphisms, and stable reduction for type IIIK3 surfaces, The
birational geometry of degenerations (Cambridge, Mass., 1981), Progr. Math., vol. 29, Birkhäuser,
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