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Stable pair compactification of moduli
of K3 surfaces of degree 2

By Valery Alexeev at Athens, GA, Philip Engel at Athens, GA and
Alan Thompson at Loughborough

Abstract. We prove that the universal family of polarized K3 surfaces of degree 2 can
be extended to a flat family of stable KSBA pairs .X; ✏R/ over the toroidal compactification
associated to the Coxeter fan. One-parameter degenerations of K3 surfaces in this family are
described by integral-affine structures on a sphere with 24 singularities.
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1. Introduction

By the Torelli theorem [48], the coarse moduli space F2d of primitively polarized K3 sur-
faces .X;L/ of degree L2

D 2d is the quotient F2d D ÄnD of a 19-dimensional Hermitian
symmetric domain by an arithmetic group. In its capacity as an arithmetic quotient, there are the
Baily–Borel F BB

2d
[10] and infinitely many toroidal F tor

2d
[9] compactifications of F2d . These

were unified by the more general semitoric compactifications F semi
2d

[42] of Looijenga.

The corresponding author is Philip Engel.
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The geometry of these Hodge-theoretic compactifications can be described explicitly.
For instance, the incidence structure of the boundary strata is encoded by combinatorial infor-
mation, called a semifan Fsemi. But a priori, semitoric compactifications are not modular—the
boundary points need not parameterize some geometric generalization of a K3 surface.

On the other hand, if we canonically choose for every polarized K3 surface .X;L/ an
effective divisorR 2 jNLj in a fixed multiple of the polarization, we get a geometrically mean-
ingful compactification F2d ,! F slc

2d
by taking the closure of the space of pairs .X; ✏R/ in the

moduli space of all KSBA stable pairs. These are pairs with semi-log-canonical (slc) singulari-
ties and ample log-canonical class KX C ✏R, see e.g. [1,3,33,34]. Generally, it is very hard to
describe the boundary of F slc

2d
and the surfaces appearing over it.

Thus, finding compactifications of K3 moduli which are both Hodge-theoretic and alge-
bro-geometric has been a central, and largely open, motivating question.

Question 1.1. Do F slc
2d

, F tor
2d

coincide for appropriate choices of divisor R and fan F?
If so, what are the fibers over the toroidal boundary strata?

For the moduli space Ag of principally polarized abelian varieties (ppavs), these ques-
tions were answered affirmatively in [2]: On a ppav .X;L/, we choose the unique theta divisor
R D ‚ 2 jLj in the principal polarization. Then the closure of the pairs .X; ✏‚/ in the space of
KSBA stable pairs coincides (up to normalization) with the toroidal compactification associated
to the second Voronoi fan.

In this paper, we answer Question 1.1 affirmatively for the moduli space F2. A K3 surface
.X;L/ of degree 2 is canonically equipped with an involution ◆, switching the sheets of �jLj. So
its ramification divisor R D Fix.◆/ 2 j3Lj is uniquely determined by .X;L/. Thus, the closure
of the space of pairs .X; ✏R/ gives a geometric compactification of F2.

On the other hand, there is a natural choice of toroidal compactification. A fan is given
by an O.N/-invariant polyhedral decomposition of the rational closure of the positive cone in
N ´ H ˚E2

8 ˚ A1 which is a hyperbolic lattice of signature .1; 18/. Then N is a hyperbolic
root lattice, and we define the Coxeter fan Fcox to have walls equal to the perpendiculars of the
roots, i.e. vectors r 2 N of norm �2. Our main result is the following.

Theorem 1.2. There is a semifan for which ⌫WF semi
2 ! F slc

2 is the normalization of the
KSBA compactification associated to the ramification divisor R. The Coxeter fan refines this
semifan, and hence there is a family of stable pairs over the associated toroidal compactifica-
tion F tor

2 .
The KSBA-stable surfaces over the boundary of F tor

2 admit completely explicit descrip-
tions, in terms of sub-Dynkin diagrams of the Coxeter diagram for N .

For a generic K3 surface of degree 2, the quotient Y D X=◆ is isomorphic to P
2, and the

double cover is branched in a sextic curve B . The pair .X; ✏R/ is stable if and only if the pair
.Y; 1C✏

2 B/ is. Hacking [30] defined and studied the stable pair compactification M.P2; d / for
the pairs .P2; 3C✏

d
Cd /, where Cd is a curve of degree d . Then the space F slc

2 is the special
case d D 6. Hacking provides a complete description of M.P2; d / for d D 4; 5 and a fairly
complete one for 3 ≠ d . Some examples of degenerate surfaces for d D 6 are given in [31],
but the problem of giving a complete description of M.P2; 6/ remained open. Theorem 1.2
provides such a description.
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A moduli space related to F slc
2d

is the compactified spaceP 2d of K3 pairs .X; ✏D/, where
D 2 jLj is an arbitrary divisor in the polarization class. This space has dimension 20C d ver-
sus 19 for F 2d . Laza [40], building on the work of Shah [50] and Looijenga [42], described P 2

and the degenerate pairs at the boundary. Our constructions are unrelated since the ramification
divisor R lies in j3Lj.

Our compactifications of the universal family over F2 provide toroidal, semitoric, and
stable pair compactifications for any subfamily. Among them is the Heegner divisor Fell ⇢ F2

of elliptic K3 surfaces. Theorem 1.2 directly generalizes to these subfamilies. In particular, it
leads to three compactifications of Fell which are discussed further in [5].

The compactification F slc
ell induced by F slc

2 is for the polarizing divisor equal to the tri-
section of nontrivial 2-torsion. Stable pair compactifications of Fell for different choices of
polarizing divisors, weighted sums of the section and fibers, were investigated by Brunyate
[12], Ascher–Bejleri [8], and [5], with a description of the surfaces appearing on the boundary.

We now briefly explain our approach and features that parallel or contrast the case of
principally polarized abelian varieties.

One-parameter degenerations of ppavs admit a toric description, due to Mumford [45].
LetM ' Z

g be a fixed lattice andN DM ⇤ its dual. The Voronoi fan Fvor is supported on the
rational closure C of the cone of positive definite symmetric forms

C D πQWM ⇥M ! R; Q > 0º;

equivalently of positive symmetric maps fQWM ! NR. Classically, a positive semi-definite
quadratic form Q defines two dual polyhedral decompositions of MR, periodic with respect to
translation by M : Voronoi and Delaunay, cf. [55,55] or [6]. As Q varies continuously, so does
VorQ, but the set of possible Delaunay decompositions is discrete. Locally closed cones of the
fan Fvor are precisely the subsets of C where the combinatorial type of VorQ stays constant,
or equivalently where DelQ stays constant.

A one-parameter degeneration .Xt ; ✏‚t / of ppavs with an integral monodromy vector
Q 2 C can be written as a Z

g -quotient of an infinite toric variety whose fan in R˚NR

is the cone over a shifted Voronoi decomposition .1; `C fQ.VorQ//, see [6, Lemma 1.8].
Mikhalkin–Zharkov [43] called the quotient

.Xtrop; ‚trop/ D
�
NR; `C fQ.VorQ/

�
=fQ.M/

a tropical principally polarized abelian variety. It is an integral-affine torus

Xtrop D NR=fQ.M/ ' .S1/g

with a tropical divisor‚trop on it. Then‚trop induces a cell decomposition ofXtrop which is the
dual complex of the singular central fiber .X0; ✏‚0/. The normalization of each component of
X0 is a toric variety, whose fan is modeled by the corresponding vertex of ‚trop.

Kontsevich and Soibelman proposed in [36] that, for K3 surfaces, the real torus Xtrop
should be replaced by an integral-affine structure with 24 singular points on a sphere S2

(let us call it an IAS2 for short). This fits into the general framework of the Gross–Siebert
program [28], which seeks to understand mirror symmetry near a maximally unipotent degen-
eration of Calabi–Yau varieties via tropical and integral-affine geometry.

By work of Kulikov [38], Persson–Pinkham [47], and Friedman–Miranda [23], it is
understood that a triangulated two-sphere is the combinatorial model for a Type III Kulikov
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degeneration: aK-trivial, semistable, maximally unipotent, one-parameter family X ! .C; 0/

of degenerating K3 surfaces. In fact, the dual complex Ä.X0/ of the central fiber admits the
structure of a triangulated IAS2, cf. [16, 26], which encodes the combinatorial information
of X0. As for ppavs, one uses toric geometry and the triangulation to build the central fiber X0.
The main complication for K3s is that an integral-affine structure on S2 necessarily has singu-
larities, whereas an integral-affine structure on .S1/g is non-singular.

Conversely, from a triangulated IAS2 B , one can reconstruct a surface X0 satisfying
Ä.X0/ D B , which smooths to a Type III degeneration by [20]. This “reconstruction” pro-
cedure was used in [16, 18] to study deformations and smoothings of cusp singularities via
a crepant resolution of the smoothing. The key innovation in this paper is to introduce an
integral-affine divisor on an IAS2: a weighted 1-dimensional subcomplex RIA ⇢ B which is
balanced at its vertices. The Kulikov degenerations in [16, 18] used to study cusp singularities
were only analytic—in fact non-algebraizable because the central fiber contains a Type VII
surface, so there was no integral-affine divisor.

For each vector in a connected component C ⇢ πEa 2 N ˝R j Ea2 > 0º, we construct an
IAS2 B.Ea/ with up to 24 singularities, together with an integral-affine divisor RIA. As Ea 2 C

varies continuously, so does the pair .B.Ea/;RIA/. Dual to the polyhedral decomposition of
B.Ea/ induced by RIA is a discrete subdivision of S2 with 24 singularities. The set of the dual
subdivisions is discrete. Thus, the family of .B.Ea/;RIA/ varying continuously over C is the
analogue of VorQ, and the dual subdivisions are the analogues of DelQ.

This family of IAS2 with integral-affine divisors extends over the rational closure C of the
positive cone. As Ea approaches a cusp of C , the sphereB collapses to a segment, which are dual
complexes of Type II degenerations of K3 surfaces. The cones of the Coxeter fan are exactly the
subsets of C where the combinatorial type of the pair .IAS2.Ea/;RIA/ is constant, respectively,
where the dual subdivision is constant, in complete analogy with the second Voronoi fan for
ppavs.

When the vector Ea is integral and satisfies a certain parity condition, a triangulation of
B.Ea/ into elementary lattice triangles defines a combinatorial type of Kulikov model. By surjec-
tivity of an appropriate period map, cf. [24], these Kulikov models describe all one-parameter
degenerations of K3 surfaces with a given Picard–Lefschetz transformation, encoded in the
vector Ea. The canonical models of these Kulikov models are the stable pairs at the boundary
of KSBA moduli. We describe explicitly what curves and components get contracted on the
Kulikov model to produce the stable model.

Our IAS2 are quite different from those appearing in [46]. The main difference is that our
pairs .B.Ea/;RIA/ vary in a PL manner, and so define a polyhedral decomposition of C .

The plan of the paper is as follows. In Section 2, we recall the definition of Kulikov
models and discuss their connection to integral-affine structures on S2. Using symplectic
geometry, we state and prove the Monodromy Theorem, allowing one to concretely compute
the monodromy invariant of a Kulikov degeneration.

In Section 3, we recall various compactifications of moduli spaces as they apply to
K3 surfaces of degree 2, and prove some auxiliary results about them. Section 4 lays out the
combinatorics of the Coxeter fan and the corresponding toroidal compactification F tor

2 in detail,
along with a semitoric compactification F semi

2 .
In Section 5, we discuss a one-dimensional family of K3 surfaces with Picard rank 19

that is mirror-symmetric to F2. For a general surface in this family, its nef cone is isomorphic
to a fundamental chamber of the Coxeter fan.
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In Section 6, we apply the general theory of polarized IAS2 to the case at hand, building
the family of pairs .B.Ea/;RIA/ over the Coxeter fan Fcox. We interpret an integral vector Ea in
this fan as a combinatorial type of Kulikov model of K3 surfaces with the monodromy vector Ea.
In Section 7, we describe explicitly the resulting stable models, in terms of theADE and zA zD zE
surfaces of [7].

Finally, in Section 8, we prove Theorem 1.2. Throughout, we work over C.

2. Kulikov models and IAS2

2A. Kulikov models and anticanonical pairs. One of the first results about degener-
ations of K3 surfaces is the well-known theorem of Kulikov and Persson–Pinkham [38, 47].

Theorem 2.1. Let X ! .C; 0/ be a flat proper family over a germ of a curve such
that the fibers of X

⇤
! C ⇤

D C n 0 are projective K3 surfaces. Then there is a finite ram-
ified base change .C 0; 0/! .C; 0/ and a birational modification X

0
! X ⇥C C 0 such that

⇡ WX0
! C 0 is semistable (a smooth threefold with X

0
0 a reduced normal crossing divisor)

with !X0=C 0 ' OX0 .

Moreover, by Shepherd-Barron [51], for a relatively nef line bundle L
⇤ on X

⇤
! C ⇤,

there is a model as above to which L
⇤ extends as a nef line bundle L.

Definition 2.2. A degeneration X ! .C; 0/ satisfying the conclusion of the theorem is
a Kulikov degeneration, and we call the central fiber a Kulikov surface.

Let logT be the nilpotent logarithm of the unipotent Picard–Lefschetz transformation
T WH 2.Xt ;Z/! H 2.Xt ;Z/. There are three possible cases for the order of logT , called
Types I, II, III.

(I) If logT D 0, then X0 is a smooth K3 surface.

(II) If .logT /2 D 0 but logT ¤ 0, then X0 D
Sn

iD1 Vi is a chain of surfaces with dual com-
plex a segment. The ends V1 and Vn are rational and Vi for i ¤ 1; n are birational to
E ⇥ P

1 for a fixed elliptic curve E. The double curves Di;iC1 ´ Vi \ ViC1 are iso-
morphic to E, the union of the double curves lying on Vi is an anticanonical divisor,
and

Di;iC1j
2
Vi
CDi;iC1j

2
ViC1

D 0:

(III) If .logT /3 D 0 but .logT /2 ¤ 0, then X0 D
Sn

iD1 Vi is a union of rational surfaces
whose dual complex is a triangulation of the sphere. The union of all double curves
Dij ´ Vi \ Vj lying on (the normalization of) Vi form an anticanonical cycle of rational
curves. Declaring Dij ⇢ Vi and Dj i ⇢ Vj and dij ´ �2pa.Dij / �D

2
ij , we have

dij C dj i D �2:

Note that pa.Dij / D 0 unless Dij ⇢ Vi is an anticanonical cycle of length 1, i.e. an
irreducible nodal anticanonical divisor Dij 2 j�KVi

j.
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Every natural compactification of the moduli space of K3 surfaces has strata of Types I,
II, III, with Types II, III on the boundary. The three cases are distinguished by the property that,
for Type I, the central fiber is smooth, for Type II, the central fiber has double curves but no
triple points, and for Type III, the central fiber has triple points.

Definition 2.3. An anticanonical pair .V;D/ is a smooth rational surface V together
with a cycle of smooth rational curves D 2 j�KV j.

Definition 2.4. Let .V;D/ be an anticanonical pair, with D D D1 C � � �CDn. The
charge is Q.V;D/´ 12 �

P
.D2

i C 3/.

Definition 2.5. A corner blow-up of .V;D/ is the blow-up at a node of the cycle D,
and an internal blow-up is a blow-up at a smooth point ofD. In both cases, the blow-up has an
anticanonical cycle mapping to D. The corner blow-up leaves the charge invariant, while the
internal blow-up increases the charge by 1.

For the internal blow-up, the resulting anticanonical cycle is the strict transform of D,
whereas for the corner blow-up, it is the reduced inverse image of D.

Remark 2.6. By [22, Lemma 2.7], the pair .V;D/ is toric, in the sense that V is toric
and D is the toric boundary, if and only if Q.V;D/ D 0. Otherwise, Q.V;D/ > 0.

We have the following proposition.

Proposition 2.7 (Conservation of charge). Let X! .C; 0/ be a Type III Kulikov degen-
eration. Then

Pn
iD1Q.Vi ;

P
j Dij / D 24. In particular, at most 24 components of X0 are

non-toric.

Proof. See [23, Proposition 3.7] of Friedman–Miranda.

As we will see in Section 2C, this proposition presaged the existence of an integral-affine
structure on the dual complex Ä.X0/ of the central fiber.

The combinatorial type of a Kulikov degeneration is the combinatorial information of the
simplicial complex Ä.X0/, together with the deformation type of each irreducible component
.Vi ;

P
j Dij /, which, in particular, determines (but is not always determined by) the collection

of integers dij .
The remaining data is continuous: one must choose a point in the deformation space of

anticanonical pairs for each component, and choose how to glue double curves Dij . These
moduli are parameterized by a torus .C⇤/N of some large dimension, but for X0 to be smooth-
able, we must choose the gluings and moduli of Vi carefully. A theorem of Friedman [20] states
that d -semistability

Ext1.�1
X0
;OX0

/ D 1 2 Pic0..X0/sing/ ' .C
⇤/#πVi º�1

is a necessary and sufficient condition for smoothability.
By [24], the logarithm of monodromy in Types II and III is given by

logT W x 7! .x � ı/� � .x � �/ı
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for elements ı;� 2 H 2.Xt ;Z/ satisfying

ı2
D ı � � D 0; ı primitive; and �2

D #πtriple points of X0º:

Thus, �2
D 0 if the degeneration is Type II.

Definition 2.8. Let X ! C be a Type III degeneration. We call ı 2 H 2.Xt ;Z/ the
vanishing cycle and the vector � 2 ı?=ı the monodromy invariant. If the family X ! C is
polarized by L, the vanishing cycle and monodromy invariant are defined similarly, but with
reference to the ambient lattice c1.L/

?
⇢ H 2.Xt ;Z/.

By taking a Kulikov model and setting

I D Zı if X ! C is Type III;
J D .Zı ˚ Z�/sat if X ! C is Type II;

any degeneration of K3 surfaces determines a primitive isotropic sublattice of H 2.Xt ;Z/.

2B. Integral-affine structures: General definitions.

Definition 2.9. An integral-affine structure on a real surface S is a collection of charts
from S to R

2 such that the transition functions lie in SL2.Z/ Ë R
2.

Definition 2.10. The monodromy representation ⇢W⇡1.S;⇤/! SL2.Z/ Ë R
2 is con-

structed by patching together charts along a loop � 2 ⇡1.S;⇤/ in the unique way such that
they glue on overlaps, then comparing the chart at the end of the loop with the one at the
beginning. This process of patching charts together defines the developing map from the uni-
versal cover zS ! R

2 which is equivariant with respect to ⇢. Usually, we further project the
monodromy to the group SL2.Z/.

As defined, the two-sphere admits no integral-affine structures. One must introduce a rea-
sonable class of singularities of such structures.

Definition 2.11. An I1 singularity is the germ of a singular integral-affine surface
isomorphic to the following basic example.

Cut from R
2
D Re1 ˚Re2 the convex cone with the sides R�0e2 and R�0.e2 � e1/, as

on the left in Figure 1, and glue one boundary ray to another by a shear in the e1-direction, i.e.
by the rule e1 7! e1, e2 7! �e1 C e2.

e1

e2

e1

e2

e1

e2

Figure 1. Three representations of the I1 singularity.
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Three straight lines in the affine structure are shown in bold blue. The second and third
figures in Figure 1 also represent the I1 singularity, with a dashed ray in the monodromy-
invariant direction removed. The image of the developing map is R

2 minus the ray. We can
visualize this presentation as taking the standard affine structure on R

2 minus the ray, then
gluing across the ray by a shear.

Remark 2.12. The I1 singularity can be presented by removing any ray emanating from
the singularity. When this ray is not in a monodromy-invariant direction, the two sides of the
ray separate to produce a gap as in the left-hand figure.

Definition 2.13. Let Ev1; : : : ; Evk be a sequence of primitive integral vectors, ordered
cyclically counterclockwise around the origin. Define an integral-affine singularity

.S; p/ D I.n1Ev1; : : : ; nk Evk/

to be the result of shearing the affine structure of R
2 a total of ni times along R�0Evi .

LetM.Ev/ be the unique matrix conjugate in SL2.Z/ to .e1; e2/ 7! .e1; e1 C e2/ such that
EvM.Ev/ D Ev, i.e. M.Ev/ is the unit shear along Ev. Then the SL2.Z/ monodromy of a counter-
clockwise loop around the singularity .S; p/ is the product M.S; p/ DM.Ev1/

n1
� � �M.Evk/

nk .
We can view I.n1Ev1; : : : ; nk Evk/ as the collision of n1 C � � �C nk I1 singularities, with

monodromy invariant directions along the Evi .

Definition 2.14. The charge of a singularity .S; p/ is the number
Pk

iD1 ni of rays
sheared to produce it, counted with multiplicity. For instance, the I1 singularity I.Ev/ has charge
one.

Definition 2.15. An integral-affine sphere B , or IAS2 for short, is a sphere B D S2

and a finite set πp1; : : : ; pnº 2 B such that B n πp1; : : : ; pnº has a non-singular integral-affine
structure, and a neighborhood of each pi is modeled by some integral-affine singularity

I.n1Ev1; : : : ; nk Evk/:

Proposition 2.16. Let B be an integral-affine structure with singularities on a compact
oriented surface of genus g. Then the sum of the charges is 12.2 � 2g/.

Proof. See [36] or [17].

Remark 2.17. The shearing directions Evi used to construct each singularity form part of
the definition of B . Thus, two IAS2 may not be isomorphic even if there is a homeomorphism
B1 ! B2 which is an integral-affine isomorphism away from the singular sets. We discuss the
appropriate equivalence relation below.

Definition 2.18. Let Eu; Ev; Ew 2 Z
2 be three vectors so that .Eu; Ev/ form an oriented basis

and EuC EvC EwD 0. As a further shortcut, we define I.p/D I.p Eu/, called an Ip singularity. Let
I.p; q/ D I.p Eu; qEv/, and I.p; q; r/ D I.p Eu; qEv; r Ew/. Up to the action of SL2.Z/, this nota-
tion is symmetric under cyclic rotations. Finally, we set I.p;q; r; s/D I.p Eu;qEv;r.�Eu/; s.�Ev//,
also symmetric up to cyclic rotation.
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2C. Pseudo-fans and Kulikov models. In this section, we describe how to encode
a deformation type of anticanonical pairs as an integral-affine surface singularity, and in turn
how to encode a Type III Kulikov model as an IAS2.

Definition 2.19. The pseudo-fan of an anticanonical pair F.V;D/, see [26, Section 1.2]
or [16, Definition 3.8], is a triangulated integral-affine surface with boundary constructed as
follows.

As a PL surface, F.V;D/ is the cone over the dual complex of D. The affine structure
on each triangle in this cone is declared integral-affine equivalent to a lattice triangle of lattice
volume 1. Two adjacent triangles are glued by the following rule. Let Eej be the directed edge
of F.V;D/ emanating from the cone point and pointing towards the vertex corresponding
to Dj . In a chart containing the union of the two adjacent triangles containing Eej , we have
Eej �1 C Eej C1 D dj Eej , where dj D �D

2
j ifDj is smooth and dj D �D

2
j C 2 ifDj is a rational

nodal curve.

Remark 2.20. When .V;D/ is a toric pair, the pseudo-fan F.V;D/ is a non-singular
integral-affine surface with a single chart to a polygon in R

2. The vertices of this polygon are
the endpoints of the primitive integral vectors pointing along the 1-dimensional rays of the fan
of .V;D/.

Remark 2.21. A toric model ⇡ W .V;D/! .V ;D/ is a blow-down to a toric pair. After
some corner blow-ups, every anticanonical pair admits a toric model, see [27, Proposition 1.3].
Assume that ⇡ consists only of internal blow-ups, as corner blow-ups do not affect toricity.
Then [16, Proposition 3.13] implies F.V;D/ is the result of shearing along the rays of the fan
of .V ;D/ corresponding to components which get blown up. Hence, by Definition 2.13, every
integral-affine surface singularity is the cone point of the pseudo-fan of some anticanonical
pair, and by subdividing the singularity into standard affine cones, the converse is also true.

Furthermore, the charge Q.V;D/ coincides with the charge of the corresponding singu-
larity F.V;D/. It is the number of internal blow-ups of the toric model.

Let X ! C be a Type III degeneration. We label the vertices of the dual complex Ä.X0/

by vi , the edges by eij , and the triangles by tijk , corresponding respectively to the components,
double curves, and triple points of X0. Let star.vi / be the union of the triangles containing vi .

Proposition 2.22. The dual complex Ä.X0/ of a Type III degeneration of K3 surfaces
admits a natural integral-affine structure such that

star.vi / D F
⇣
Vi ;

X

j

Dij

⌘
:

Conversely, given an integral-affine structure B on the two-sphere with a triangulation into
lattice triangles of lattice volume 1 and singularities at the vertices, there is a Type III degen-
eration X ! C such that Ä.X0/ D B .

Here, lattice volume means twice the Euclidean area.
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Proof. See [16] or [26, Remark 1.11v1]. The key point is that the pseudo-fans of the
components compatibly glue to form a well-defined integral affine structure on any quadrilat-
eral formed from two adjacent triangles of Ä.X0/. This follows from the formula dij C dj i D 2

in (III), below Definition 2.2.

Definition 2.23. Two anticanonical pairs .V1;D1/ and .V2;D2/ lie in the same corner
blow-up equivalence class (c.b.e.c.) if they are related by a sequence of corner blow-ups and
blow-downs, and a topologically trivial deformation. A toric model of a c.b.e.c. is a represen-
tative .V;D/ of the equivalence class, and a toric model .V;D/! .V ;D/.

Note that all topologically trivial deformations of .V;D/ are the result of deforming the
points on D which are blown up.

By Remark 2.21, a toric model of an anticanonical pair .V;D/ determines an integral-
affine singularity at the cone point of F.V;D/. Corner blow-ups subdivide the pseudo-fan,
which do not affect the singularity. Neither do topologically trivial deformations. We conclude
that there is a bijection between presentations I.n1Ev1; : : : ; nk Evk/ of integral-affine singularities
by shears and toric models of c.b.e.c.s. We now forget the dependence on the toric model.

Definition 2.24. Two integral-affine singularities are equivalent,

.S1; p1/ D I.n1Ev1; : : : ; nk Evk/ ⇠ I.m1 Ew1; : : : ; melll Ewelll/ D .S2; p2/;

if the corresponding c.b.e.c.s are equal Œ.V1;D1/ç D Œ.V2;D2/ç.

By choosing a single anticanonical pair .V;D/ which admits both toric models corre-
sponding to Evi and to Ewj , and building F.V;D/ by the recipe in Definition 2.19 (which does
not use a toric model), an equivalence of integral-affine singularities provides a homeomor-
phism .S1; p1/! .S2; p2/ which is an integral-affine isomorphism away from the pi . But
the converse is false, see [18, Example 4.13]. Such examples explain why it does not suffice
to define an integral-affine singularity as purely a geometric structure—the presentation via
shears (at least up to equivalence) is part of the definition.

Remark 2.25. Each toric model of the c.b.e.c. of .V;D/ defines a Zariski open subset
of the open Calabi–Yau .C⇤/2 ,! V nD. One may choose a different toric model by changing
exactly one exceptional curveE blown down in the toric model—to a curve F such thatE C F
is the fiber of a toric ruling. The change-of-coordinates to the new inclusion .C⇤/2 ,! V nD is
a birational map called a cluster mutation. It is almost always the case that there are infinitely
many such cluster charts. Any two toric models of a c.b.e.c. are connected by a series of cluster
mutations, by a theorem of Blanc [11].

Example 2.26. Start with the toric pair .P2; L1 C L2 C L3/ and make a corner blow-
up to get .F1; s0 C f C s1 C f /, with s2

0 D 1, s2
1 D �1. Blow up one point on s0, then

contract one exceptional curve intersecting s1 to obtain P
1
⇥ P

1. This corresponds to a single
cluster mutation as in Remark 2.25. We may also blow up p points on the first copy of f , q
points on the second copy of f , and one more point on s0. In this way, we see the equivalences

I.2; p; q/ ⇠ I.1; p; 1; q/ ⇠ I.p; 1; q; 1/ ⇠ I.2; q; p/:
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2D. Birational modifications and base change. All Kulikov models X! .C;0/ com-
pleting a punctured family X

⇤
! C ⇤ are related by flops along smooth rational curves. The

modifications which change the isomorphism type of X0 are the following.

(1) M1 modifications are Atiyah flops along an exceptional curve E ⇢ Vi meeting a double
curve Dij at a single point p. The effect on X0 is to blow down E on Vi and blow up Vj

at p.

(2) M2 modifications are Atiyah flops along an exceptional double curveEDDij D Vi \Vj .
The effect on X0 is to blow down E on both Vi and Vj , blow up the two triple points
Tijk and Tij` contained in E, on the components Vk and Vl , and then glue the resulting
exceptional curves.

Definition 2.27. Let .S; p/ D I.n1Ev1; : : : ; nk Evk/ be an integral-affine singularity. A
nodal slide along Evi of length t , cf. [52, Definition 6.1], is a surgery on the integral affine struc-
ture .S; p/ which translates by t Evi the originating point of one shearing ray in the direction Evi .

Note that nodal slides are called moving worms in the mirror symmetry literature, see e.g.
[36] or [26].

Starting with the single singularity .S; p/, the nodal slide results in an integral-affine
surface with two singularities I.n1Ev1; : : : ; .ni � 1/Evi ; : : : ; nk Evk/ and an I1 singularity at the
endpoint of t Evi . The result is an integral-affine surface which is isomorphic to the original one
on the complement of the segment t Evi . Thus, the operation is purely local and can be done
independently of the rest of the integral affine surface. For appropriately large t , a nodal slide
may result in the I1 singularity sent off colliding into another singularity.

In fact, any integral-affine singularity can be defined as the result of colliding a collection
of I1 singularities moving along nodal slides.

Proposition 2.28 ([18, Propositions 4.5, 4.6]). An M2 modification does not change the
IAS2 structure on B D Ä.X0/, but retriangulates B by cutting along the opposite diagonal of
an integral-affine unit square.

An M1 modification preserves the triangulation of Ä.X0/, but changes the IAS2 B by
a unit length nodal slide, moving an I1 singularity along Eeij from vi to vj .

A sequence of M1 and M2 modifications connecting two Kulikov surfaces X0 Ü X
0
0

is thus modeled as a sequence of retriangulations and integer length nodal slides

Ä.X0/ Ü Ä.X0
0/

on the corresponding dual complexes.

Proposition 2.29 ([19]). Let X ! .C; 0/ be a Kulikov model, and consider the base
change X

0
! .C 0; 0/ ramified over 0 to order N . There is a standard resolution XŒN ç! X

0,
producing a new Kulikov model whose central fiber X0ŒN ç is the result of inserting “special
bands of hexagons” of width N between all the components of X0. The effect on the dual
complex Ä.X0/ is to take the standard refinement every triangle into N 2 triangles (see also
Claim 3.15 below).
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In fact, the integral-affine structure on the dual complex BŒN ç´ Ä.X0.N // is the
result of post-composing the integral-affine charts U ! R

2 on B D Ä.X0/ with multiplica-
tion by N , cf. [18, Proposition 4.3]. We call this the order N refinement of B . Note that the
base change multiplies the monodromy invariant � 7! N�.

2E. Integral-affine divisors. In this section, we define an integral-affine divisor on an
IAS2. For motivation, consider a line bundle L! X on a Kulikov model. Let

Li ´ LjVi
2 Pic.Vi /:

These line bundles automatically satisfy a compatibility condition Li �Dij D Lj �Dj i . Thus,
we have the following definition.

Definition 2.30. Let B be an IAS2. An integral-affine divisor RIA on B consists of two
pieces of data.

(1) A weighted graph RIA ⇢ B with vertices vi , straight line segments as edges eij , and
integer labels nij on each edge.

(2) Let vi 2 RIA be a vertex and .Vi ;Di / be an anticanonical pair such that F.Vi ;Di / mod-
els vi and contains all edges of eij coming into vi . We require the data of a line bundle
Li 2 Pic.Vi / such that degLi �Dij D nij for the components Dij of Di corresponding
to edges eij and Li has degree zero on all other components of Di .

Definition 2.31. Given a line bundle L! X on a Kulikov degeneration, the inter-
section numbers nij D Li �Dij define an integral-affine divisor RIA ⇢ B D Ä.X0/ supported
on the 1-skeleton. If L is nef, then RIA is effective, i.e. nij � 0.

Remark 2.32. When vi 2 RIA is non-singular, the pair .Vi ;Di / is toric, and the labels
nij uniquely determine Li . They must satisfy a balancing condition. If vij are the primitive
integral vectors in the directions eij , then one must have

P
nij vij D 0 for such a line bundle

Li ! Vi to exist.
Similarly, if I1 D F.Vi ;Di / D I.Ev/, i.e. .Vi ;Di / is the result of a single internal blow-

up of a toric pair, the nij determine a unique line bundle Li so long as
P
nij vij 2 ZEv. This

condition is well-defined as the vij are well-defined up to shears in the Ev direction.

Definition 2.33. We say that a divisor on B is polarizing if each line bundle Li is nef
and at least one Li is big. The self-intersection of an integral-affine divisor is

R2
IA ´

X

i

L2
i 2 Z:

Definition 2.34. An IAS2 is generic if it has 24 distinct I1 singularities.

Remark 2.35. Let B be a lattice triangulated IAS2, or equivalently, B D Ä.X0/ is the
dual complex of a Type III degeneration. Then B is generic if and only if Q.Vi ;Di / 2 π0; 1º

for all components Vi ⇢ X0. WhenB is generic, an integral-affine divisorRIA ⇢ B is uniquely
specified by a weighted graph satisfying the balancing conditions of Remark 2.32, so the extra
data (2) of Definition 2.30 is unnecessary.
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Definition 2.36. An integral-affine divisor RIA ⇢ B is compatible with a triangulation
if every edge of RIA is formed from edges of the triangulation.

If B comes with a triangulation, we require the integral-affine divisor to be compatible
with it.

2F. Integral-affine structures from Lagrangian torus fibrations. The reference for
this section is Symington [52]. Let .S; !/ be a smooth symplectic 4-manifold. Given a Lagrang-
ian torus fibration �W .S; !/! B with only nodal singularities, the base B inherits a natural
integral-affine structure with an In singularity under a necklace of n two-spheres.

Definition 2.37. Let C˛ and Cˇ be cylinders in S fibering over a path from a fixed
base point ⇤ 2 B to a point p 2 B such that the ends of the cylinders over ⇤ are homologous
to ˛ and ˇ, an oriented basis of H1.S⇤;Z/. The induced integral affine structure on B is the
collection of charts of the form

p 7! .x.p/; y.p// D

✓Z

C˛

!;

Z

Cˇ

!

◆
2 R

2:

These charts are only defined up to monodromy in SL.2;Z/ Ë R
2, by choosing a path in

a different homotopy class and moving the base point ⇤.
Let T be a complex toric surface, L 2 Pic.T /˝R an ample class, and ! a symplectic

form with Œ!ç D L. The moment map �T W .T ; !/! P is a Lagrangian torus fibration which
induces the integral-affine structure on the moment polytope P coming from its embedding
into R

2. It degenerates over the toric boundary D ⇢ T and sends the components of D to the
boundary components of P .

Now let �WT ! T be a blow-up at a smooth point of the boundary D, with exceptional
divisorE. Symington [52] constructed a Lagrangian torus fibration �T W .T; !/! P satisfying
Œ!ç D �⇤Œ!ç � aE over a singular integral-affine disk P (a “Symington polytope”) obtained
as follows.

Definition 2.38. A Symington surgery is the result of cutting a triangle of lattice size a
(and lattice volume a2) from the side of the moment polytope P corresponding to the compo-
nent blown up, then gluing the two remaining edges, introducing an I1 singularity p 2 P at
the interior corner of the triangle.

The fiber over p is an irreducible nodal I1 fiber of the torus fibration. In symplectic geom-
etry, this procedure is called an almost toric blow-up. The monodromy axis of the singularity
is parallel to the side of P on which the surgery triangle rests and the location of the cut on the
side of P is essentially arbitrary.

Construction 2.39. Let B be a generic IAS2 and let Bo
D B n πp1; : : : ; p24º be its

non-singular locus. Let � D
P

i .�i ; ˛i / ⇢ B be a 1-chain with values in the constructible sheaf
TZ ´ i⇤.TZB

o/, where i WBo ,! B is the inclusion. This sheaf is a Z-local system of rank 2
on Bo and has rank 1 at the I1 singularities.

Concretely, � is a collection of oriented paths �i ! B and a (constant) integral vector
field ˛i on each path. There is a boundary map � to 0-chains with values in TZ gotten by taking
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an oriented sum of the tangent vectors ˛i at the endpoints of �i . We say that � is a 1-cycle if�� D 0. Some care must be taken at the singularities, where the rank of TZ drops. Here, the
condition that the boundary is zero means that

P
˛i is parallel to the monodromy-invariant

direction of the singularity.
From such a 1-cycle � , we may construct a PL surface †� ⇢ S inside the symplectic

4-manifold with a Lagrangian torus fibration �W .S; !/! B . We take a cylinder in S which
maps to �i whose fibers are the circles in the torus fiber that correspond to ˛i via the symplectic
form. The condition that �� D 0 is exactly the condition that the ends of these cylinders over
the points in

S
i ��i are null-homologous in the fiber. Thus, we may glue in a (Lagrangian)

2-chain contained in the fiber over
S

i ��i and produce a closed PL surface †� .

Definition 2.40. The surfaces †� constructed as above are the visible surfaces.

Example 2.41. Given a path � connecting two I1 singularities p and q such that the
monodromy-invariant directions at both p and q are parallel to ˛, the 1-cycle .�; ˛/ defines
a visible surface, which we denote E.�;˛/. It satisfies E2

.�;˛/
D �2 because E.�;˛/ is attached

to each nodal fiber Sp, Sq by a .�1/-framed 2-handle.

Note that †� is non-canonical even on the level of its homology class: there are many
choices of Lagrangian 2-chains in the fibers over

S
i ��i . But they all differ by some multiple

of the fiber class f D Œ��1.p/ç. Note that also Œ†� ç � f D 0. We do have a well-defined class
Œ†� ç 2 f

?=f .
We note an important special case of the above construction.

Definition 2.42. Suppose that all �i ’s are straight line segments eij forming a graph
in the integral-affine structure on B , and that the tangent vector field is an integer multiple
nij of the primitive integral tangent vector along �i . Then the cylinder lying over eij can be
made Lagrangian and the surface †� is a PL Lagrangian surface in .S; !/. We call the result
a Lagrangian visible surface.

In particular, the class of a Lagrangian visible surface satisfies Œ†� ç � Œ!ç D 0. Observe
that the condition that � is a 1-cycle is exactly the balancing condition of Remark 2.32. Thus,
an integral-affine divisor R on B in the sense of Definition 2.30 corresponds to a Lagrangian
visible surface †R.

2G. The Monodromy Theorem. Our goal now is to understand the vanishing cycle ı,
monodromy invariant �, and polarization of a Kulikov degeneration X!C , see Definition 2.8,
in terms of IAS2 and symplectic geometry. We now prove a version of [18, Proposition 3.14],
the key new ingredient being the presence of a polarizing divisor R.

Theorem 2.43. Let B be a generic IAS2, together with a triangulation into lattice
triangles of lattice volume 1.

(1) Let X ! C be a Type III Kulikov degeneration such that Ä.X0/ D B .

(2) Let �W .S; !/! B be a Lagrangian torus fibration over the same B .
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Then there exists a diffeomorphism �WS ! Xt to a nearby fiber t ¤ 0 such that

(a) �⇤f D ı,

(b) �⇤Œ!ç D � in ı?=ı ˝R.

Moreover, suppose that L! X is a line bundle, which defines the integral-affine divisor RIA
on B . Let †RIA be the corresponding Lagrangian visible surface in S . Then we have

(c) �⇤Œ†RIA ç D c1.Lt / in ı?=ı.

Proof. We first prove (a) and (b) following [18, Proposition 3.14] closely. There, an
almost exactly analogous statement is proved for Type III degenerations of anticanonical pairs,
so we only describe the minor modifications necessary. We ignore the parts of the proof in [18]
which refer to D, and similarly the special component of X0 equal to the hyperbolic Inoue
surface, instead treating all surfaces Vi ⇢ X0 on equal footing. Then the construction of �
proceeds the same way, by using the Clemens collapse to show that .S; !/ and Xt can be writ-
ten as the same fiber connect-sum of 2-torus fibrations over the intersection complex Ä.X0/

_.
Statement (a) follows immediately.

Again following [18], we consider the collection of Lagrangian visible surfaces †�

which fiber over the 1-skeleton Ä.X0/
Œ1ç. The images under �⇤ of the classes Œ†� ç gen-

erate a 19-dimensional lattice in ı?=ı invariant under the Picard–Lefschetz transformation
H 2.Xt IZ/! H 2.Xt ;Z/. Since Œ!ç � Œ†� ç D 0, we conclude that the monodromy invariant
� and �⇤Œ!ç are proportional in ı?=ı. By [24],

�2
D #πtriple points of X0º D vol.Ä.X0// D Œ!ç

2:

We conclude that � D �⇤Œ!ç mod Zı, i.e. (b).
Now suppose that X admits a line bundle L. There is an integral-affine divisor R on

Ä.X0/ whose defining line bundles Li 2 Pic.Vi / are LjVi
. Since Ä.X0/ is generic, these

line bundles are uniquely determined by the integer weights nij D Li �Dij on the edges of
Ä.X0/

Œ1ç. By construction, the Lagrangian visible surface†RIA ⇢ S fibering over the weighted
balanced graph RIA is sent by � to a surface whose Clemens collapse is a union of surfaces
†i ⇢ Vi satisfying

(1) †i \Dij D †j \Dj i ,

(2) †i �Dij D Li �Dij .

These conditions uniquely determine the class �⇤Œ†RIA ç. We conclude (c).

Remark 2.44. Statements similar to Theorem 2.43 (a) and (b) have appeared in the
mirror symmetry literature. For instance, [29, Theorem 5.1] computes the monodromy of the
Picard–Lefschetz transform of a toric degeneration of Calabi–Yau varieties in terms of cup
product with the radiance obstruction

cB 2 H
1.B; i⇤.TZB

o//;

a cohomology class canonically associated to an integral-affine structure, first studied in [25].
The class cB is identified with Œ!ç via the Leray spectral sequence of the map �W .S; !/! B .
These monodromy formulas verify the prediction of topological SYZ mirror symmetry that the
Picard–Lefschetz transformation is cup product with a section of the SYZ fibration. See also
[46, Corollary 4.24].
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3. Compactifications of F2

We first recall the basics about the moduli spaces of K3 surfaces as they apply to the
degree 2 case. For the Baily–Borel and toroidal compactifications, a convenient reference
is [49]. Then we describe a compactification via stable pairs and prove some auxiliary results
about it.

3A. Period domain and moduli space. Let ƒK3 ' H
3
˚E2

8 be a fixed lattice of
signature .3; 19/ isomorphic to H 2.S;Z/ for a K3 surface S . Here, H is the hyperbolic
plane, and the lattice E8 for convenience is negative definite. All primitive vectors of square
h2
D 2d lie in the same orbit of the isometry group of ƒK3. The lattice h? is isometric

to H 2
˚E2

8 ˚ h�2d i. The period domain for the polarized K3 surfaces of degree 2d is
a connected component of

D D D2d ´ Pπx 2 h?
˝C j x � x D 0; x � x > 0º;

a Hermitian symmetric domain associated to the groupOC.2; 19/. On it, we have the action of
the group Ä D Ä2d which is the spinor norm 1 subgroup of the stabilizer of h in the isom-
etry group O.ƒK3/. By the Torelli theorem, the quotient space F2d D ÄnD is the coarse
moduli space of polarized K3 surfaces .X;L/, where X is a K3 surface with ADE (Du Val)
singularities, andL is an ample line bundle withL2

D 2d . One has dimF2d D dim D2d D 19.
The moduli stack F2d of polarized K3 surfaces of degree 2d is a smooth DM stack. This

stack and its coarse moduli space F2d are incomplete, and F2d is quasiprojective.

3B. Baily–Borel compactification. Let D
_ denote the compact dual of D; it is the

quadric defined by dropping the condition x � x > 0. Let D ⇢ D
_ be the topological closure.

Let I be a primitive isotropic sublattice of h?. Then I has rank one or two. One calls the
former Type III and the latter Type II. The boundary component associated to I is by definition

FI ´ Pπx 2 D j spanπRe.x/; Im.x/º D I ˝Rº ⇢ D
_

which is either a 0-cusp, a point for Type III or a 1-cusp, a copy of H for Type II (H is the
upper-half plane).

Notation 3.1. To distinguish the ranks, we henceforth use I or J for rank 1 or 2
primitive isotropic lattices, respectively.

Then the Baily–Borel compactification is, topologically,

F BB
2d ´ Än.D [J FJ [I FI /:

In F BB
2 , the boundary consists of four curves, meeting at a single point, see [49]. The point is

the Type III boundary, while the curves (minus the point) are the Type II boundary. The curves
correspond to four distinct orbits of rank 2 primitive isotropic sublattices J ⇢ h?. For each of
them, J?=J contains a finite index root sublattice, which can be used as a label for this 1-cusp,

A17; D10 ˚E7; E
2
8 ˚ A1; and D16 ˚ A1:

The stabilizer StabÄ.J / ⇢ Ä acts on J ' Z
2 by a finite index subgroup ÄJ ⇢ SL2.Z/,

and the boundary component ÄJ nFJ is a modular curve corresponding to a Type II boundary
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curve. One has a natural finite morphism ÄJ nFJ ! SL.2;Z/nH D A
1
j to the j -line. Thus,

the boundary of the Baily–Borel compactification has codimension 18.

3C. Toroidal compactifications. Toroidal compactifications F2d ,! F
F
2d

have divi-
sorial boundary, but depend on a Ä-admissible collection of fans. This is a choice of a fan
F D πFI º for each cusp of the Baily–Borel compactification, satisfying conditions described
below. For the 1-cusps, the fans are 1-dimensional and no choice is involved; they are automat-
ically compatible with the fans for the 0-cusps.

Each 0-cusp corresponds to a primitive isotropic line I ⇢ h?. Consider the lattice

ƒI ´ I?=I

whose intersection form has signature .1; 18/. Let ÄI ´ StabÄ.I /=UI , where UI ⇢ StabÄ.I /

is the unipotent subgroup, isomorphic to a translation subgroup of I?=I . Let CI denote the
positive cone ofƒI ˝R and let CI denote its rational closure—the union of the positive cone
and the rational null rays on its boundary. Then the fan FI D π⌧iº is a collection of closed,
convex, rational polyhedral cones in CI , closed under taking intersections and faces, such that

(1) Supp FI D CI and FI is locally finite in the positive cone CI ,

(2) FI is invariant under the action of ÄI with only finitely many orbits.

Then, for each 0-cusp I , the infinite type toric variety X.FI / contains an analytic open subset
VI satisfying the following conditions.

(1) VI contains all toric boundary strata of X.FI / which correspond to cones of FI that
intersect CI (the only strata it does not fully contain are those corresponding to null rays
and the origin).

(2) VI is ÄI -invariant and the action of ÄI is properly discontinuous.

(3) The open stratum of VI modulo ÄI is the intersection of a neighborhood of the Type III
point PI of F BB

2d
with F2d .

Taking the union of F2d with the open sets from (3), for all I , we get a map

F2d [I .ÄInVI /! F BB
2d

with complete fibers. It surjects onto the union of F2d with an open neighborhood of the
Type III boundary point. This map extends over the Type II boundary as a fibration in finite
quotients of abelian varieties. More explicitly, the preimage of the Type II boundary component
ÄJ nFJ ⇢ F

BB
2d

in the toroidal compactification is the quotient by a subgroup of O.J?=J / of
a family of abelian varieties isogenous to J?=J ˝ E , the self-product of the universal elliptic
curve over ÄJ nFJ .

The toroidal compactification FF
2d

associated to the Ä-admissible collection of fans F
is then the result of extending these abelian variety families from F2d [I .ÄInVI /, along all
orbits of rank 2 isotropic lattices J . The toroidal compactification admits a birational morphism
F

F
2d
! F BB

2d
which is an isomorphism on F2d .

For degree 2 K3 surfaces, there is only one 0-cusp, and the fan for this unique 0-cusp
has the support on C D CI in the vector space N ˝R, where N D I?=I D H ˚E2

8 ˚ A1

is a lattice of signature .1; 18/. The fan must be ÄI D O
C.N /-invariant, where OC.N / is

the index 2 subgroup of the isometry group O.N/ preserving the positive cone C . For us, the
critical fact is the following.
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Proposition 3.2. The unipotent UInD embeds into I?=I ˝C
⇤ and the period map

C ⇤
! UInD of a Kulikov model X ! .C; 0/ with monodromy invariant � is well-approxi-

mated by a translate of the cocharacter �˝C
⇤ near 0 2 C .

Proof. This is a direct consequence of Schmid’s nilpotent orbit theorem.

3D. Stable pair compactification. First, we recall the definitions.

Definition 3.3. A pair .X;B D
P
biBi / consisting of a normal variety and a Q-divisor

with 0  bi  1, bi 2 Q, is log-canonical (lc) if the divisorKX C B is Q-Cartier and for a res-
olution f WY ! X with a divisorial exceptional locus Exc.f / D

S
Ej and normal crossingS

f �1
⇤ Bi [ Exc.f /, in the natural formula

f ⇤.KX C B/ D KY C

X

i

bif
�1

⇤ Bi C

X

j

bjEj ;

one has bj  1.

Definition 3.4. A pair .X;B D
P
biBi / consisting of a reduced variety and a Q-

divisor is semi-log-canonical (slc) if X is S2, has at worst double crossings in codimension 1,
and for the normalization ⌫WX⌫

! X writing

⌫⇤.KX C B/ D KX⌫ C B⌫ ;

the pair .X⌫ ; B⌫/ is log-canonical. Here, B⌫
D D C

P
bi⌫

�1.Bi /, andD is the double locus.

Definition 3.5. A pair .X;B/ consisting of a connected projective variety X and a Q-
divisor is stable if

(1) .X;B/ has semi-log-canonical singularities, in particular KX C B is Q-Cartier,

(2) the Q-divisor KX C B is ample.

Next, we introduce the objects that we are interested in here.

Definition 3.6. For a fixed degree e 2 N and fixed rational number 0 < ✏  1, a stable
K-trivial pair of type .e; ✏/ is a pair .X; ✏R/ such that

(1) X is a Gorenstein surface with !X ' OX ,

(2) the divisor R is an ample Cartier divisor of degree R2
D e,

(3) the surface X and the pair .X; ✏R/ are slc. In particular, the pair .X; ✏R/ is stable in the
sense of Definition 3.5.

Definition 3.7. A family of stable K-trivial pairs of type .e; ✏/ is a flat morphism
f W .X; ✏R/! S such that !X=S ' OX locally on S , the divisor R is a relative Cartier divisor,
such that every fiber is a stable K-trivial pair of type .e; ✏/.

Lemma 3.8. For a fixed degree e, there exists an ✏0.e/ > 0 such that, for any 0 < ✏  ✏0,
the moduli stacks M

slc.e; ✏0/ and M
slc.e; ✏/ coincide.
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Proof. For a fixed surface X , there exists an 0 < ✏0 ⌧ 1 such that the pair .X; ✏0R/

is slc if and only if R does not contain any centers of log-canonical singularities: images of
the divisors with codiscrepancy bi D 1 on a log-resolution of singularities Y ! X⌫

! X as
in Definitions 3.3, 3.4. There are finitely many of such centers. Then, for any ✏ < ✏0, the pair
.X; ✏0R/ is slc if and only if .X; ✏R/ is.

Now, since !X ' OX and R is ample Cartier of a fixed degree, the family of the pairs
.X;R/ is bounded, and the number ✏0 with this property can be chosen universally.

We will be interested in the moduli space M slc
e of such pairs, and more precisely in the

closure of F2d in M slc
e for a chosen intrinsic polarizing divisor R 2 jNLj.

We refer to [3,33,34] for the existence and projectivity of the moduli space of stable pairs
.X;

P
biBi /. In general, when some coefficients bi are  1

2 , there are delicate problems with
the definition of a family since a flat limit of divisors may happen to be a nonreduced scheme
with embedded components. In our case, the situation is much easier since R is Cartier.

Definition 3.9. A family of stable K-trivial pairs of degree e is a family of type .e; ✏0/,
where ✏0.e/ is chosen as in Lemma 3.8. We denote the corresponding moduli functor by M slc

e .
For a scheme S , M slc

e .S/ D πfamilies of type .e; ✏0.e// over Sº.

Proposition 3.10. There is a Deligne–Mumford stack M
slc
e and a coarse moduli space

M slc
e of stable K-trivial pairs.

Proof. The spaces M
slc
e and M slc

e are constructed by standard methods, as quotients of
appropriate Hilbert schemes by a PGL group action. Again, for general stable pairs, there are
delicate questions of the formation of .!˝n

X=S
.nR//⇤⇤ commuting with base changes. But in

our case, both !X=S and OX.R/ are invertible, so these questions disappear.

We do not prove that the moduli space M slc
e is proper, but we do prove below that it

provides a compactification for the moduli spaces of ordinary K3 surfaces. (The components
of M slc

e where X is generically non-normal require additional arguments.) A related moduli
space is given by the following definition.

Definition 3.11. Let N 2 N. The moduli stack PN;2d parameterizes proper flat fam-
ilies of pairs .X;R/ such that .X;L/ is a polarized K3 surface with ADE singularities and
a primitive ample line bundle L, L2

D 2d , and R 2 jNLj is an arbitrary divisor. One has
R2
D 2dN 2. In particular, one defines P2d ´ P1;2d .

If we take ✏0.e/ as in Lemma 3.8, then the pair .X; ✏0R/ is stable. Obviously, the stack
PN;e is fibered over the stack F2d with fibers isomorphic to P

dN 2C1. The automorphism
groups of stable pairs are finite, and it is easy to see that the stack PN;2d is coarsely represented
by a scheme, denoted PN;2d .

Definition 3.12. One defines PN;2d to be the closure of the coarse moduli space PN;2d

inM slc
e for e D 2dN 2. A canonical choice of a divisorR 2 jNLj for each .X;L/ 2 F2d gives

an embedding F2d ⇢ PN;2d . Its closure in PN;2d is denoted by F slc
2d

.
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Theorem 3.13. PN;2d and thus also F slc
2d

are proper and projective.

Proof. Properness follows from the next theorem. Projectivity follows from it by results
of Fujino and Kovács–Patakfalvi [37].

Theorem 3.14. For a fixed degree e, every family f ⇤
WX

⇤
!C ⇤

DC n 0 over a smooth
curve of K3 surfaces withADE singularities and ampleR,R2

D e, can be extended to a family
of stable K3 pairs .X0; ✏0.e/R

0/! C 0 of type .e; ✏0.e// possibly after a ramified base change
C 0
! C .

Proof. (Cf. [40, Theorem 2.11, Remark 2.12]) The proof is achieved by modifying
that of a theorem of Shepherd-Barron [51, Theorem 1]. His theorem says that if X ! C is
a semistable model with KX D 0 and L

⇤ is a relatively nef line bundle on X
⇤ of positive

degree, then there exists another semistable model to which L
⇤ extends as a relatively nef line

bundle L. This is done over C , without a base change. Then [51, Theorem 2] says that L
n for

n � 4 gives a contraction ⇡ WX ! X so that !X ' OX , with L an ample line bundle on X

and L D ⇡⇤.L/.
Now let f W .X⇤; ✏R⇤/! C ⇤ be a family of K3 surfaces with ADE singularities and

a relatively ample Cartier divisor R. After shrinking the base, we can simultaneously resolve
the singularities to obtain a family of smooth K3s .X⇤

1 ;R
⇤
1/ with a relatively big and nef effec-

tive divisor. By Theorem 2.1, after a further base change, we get a semistable model X2 ! C

withKX2
D 0. We are now in a situation where Shepherd-Barron’s theorem applies. However,

first we make another base change that exists by Claim 3.15 to obtain a Kulikov model X3

satisfying condition (*).

(*) The closure of R
⇤ in X does not contain any strata (double curves or triple points) of the

central fiber X0.

The proof of [51, Theorem 1] proceeds by starting with a divisor R3 which does not
contain an entire component of the central fiber. One then makes it nef using flops along curves
E with R3 �E < 0. The flops are called elementary modifications. They are of three types:
(0) along an interior .�2/-curve, (I) along a curve intersecting a double curve, and (II) along
a double curve.

But with condition (*) achieved, the divisor R3 already intersects the double curves
non-negatively, and the flops of type (II) are not needed. The flops of types (0) and (I) pre-
serve (*). Thus, the end result is a model X4 ! C 0 with an effective, relatively nef divisor R4

satisfying (*).
Since the central fiber .X4/0 is normal crossing, for 0 < ✏ ⌧ 1, the pair .X4; ✏R/ is

slc. Then the contraction X4 ! X4 provided by [51, Theorem 2] gives a family .X4; ✏R4/ of
stable pairs extending the original family .X⇤; ✏R⇤/! C ⇤ after a base change C 0

! C .

Claim 3.15. For any Kulikov model X ! C , there exists a finite base change C 0
! C

and birational modification to a Kulikov model X
0
! C 0 of X ⇥C C 0 satisfying (*).

Proof. This is a local toric computation. We give an argument for a triple point, which
by simplification also applies to double curves. An obvious modification of this proof works
for a semistable degeneration in any dimension.
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Let the triple point be the origin with a local equation xyz D t . A local toric model of
it is A

3
x;y;z . Its fan is the cone � that is the first octant in R

3 with the lattice N D Z
3. In the

lattice of monomials M D N ⇤
' Z

3, the dual cone �_ is the first octant as well. A ramified
base change t D sd means choosing the new lattices

M 0
DM C Z

.1; 1; 1/

d
; N � N 0

D

≤
n D .a; b; c/

ˇ̌
ˇ̌ n �

.1; 1; 1/

d
2 Z

≥
:

Choosing a Kulikov model locally at this 0-stratum is equivalent to choosing a triangulation T

of the triangle � \ πaC b C c D dº with the vertices .d; 0; 0/, .0; d; 0/, .0; 0; d/ into elemen-
tary triangles of lattice volume 1. Then the new fan is obtained by subdividing � into the cones
over these elementary triangles.

We note that an arbitrary triangulation T will not achieve condition (*). Instead, it has
to be chosen carefully. Using x; y; z as local parameters, the equation of the divisor is a power
series f 2 kŒŒx; y; zçç. Let πmj º be the set of the monomials appearing in f . Let P be the
convex hull of

S
j .mj C �

_/. This is an infinite polyhedron, but it has only finitely many
vertices, say mj for 1  j  r .

Let NFan.P / be the normal fan of P ; it is a refinement of the cone � . Let X 0 be the toric
variety, possibly singular, for this fan. We have a toric blow-up X 0

! A
3 modeling a blow-up

f WX0
! X. The strict preimage of the divisor R has the same equation f which still makes

sense for each of the standard open sets A
3 that coverX 0. The reason for taking the convex hull

was this: the vertices of P correspond to the 0-dimensional strata x0
j of X 0 and the fact that,

for each of them, the corresponding monomial has a nonzero coefficient means that the divisor
does not pass through x0

j . These points are in a bijection with the maximal-dimensional cones
� 0

j of NFan.P /. Subdividing these cones further means blowing up at the points x0
j further. The

preimage of the divisor under these blow-ups will not contain any strata on the blow-up.
So the final recipe is this. From the equation of f , obtain the polyhedron P and its

normal fan NFan.P /. It has finitely many rays R�0.ai ; bi ; ci /, where .ai ; bi ; ci / 2 Z
3
�0. Let

di D ai C bi C ci and let d be the gcd.di / so that these rays are cones over some integral
points of the triangle � \ πaC b C c D dº. The fan NFan.P / gives a subdivision of this tri-
angle. Refine it arbitrarily to a triangulation T into volume 1 triangles. This defines a Kulikov
model locally. Then repeat this procedure at all the 0-strata of X. The resulting Kulikov model
satisfies condition (*).

Remark 3.16. Difficulties with the moduli spaces of stable pairs .X;B D
P
biBi /

arise whenKX C B is Q- or R-Cartier butKX and B by themselves are not. One solution was
proposed in [4, Section 1.5]: choose the coefficients bi so that .1; b1; : : : ; bn/ are Q-linearly
independent. In the situation at hand, this means picking ✏ to be irrational. We do not need
this trick for the K3 surfaces, however, since by the above the divisor R remains Cartier in the
interesting part of the compactified moduli space.

Theorem 3.17. The rational maps .PN;2d /
⌫ Ü F BB

2d
and, for a canonical choice of

a polarizing divisor, .F slc
2d
/⌫ Ü F BB

2d
from the normalizations ofPN;2d andF slc

2d
to the Baily–

Borel compactification are regular.

Proof. We apply Lemma 3.18 with X D .PN;2d /
⌫ resp. X D .F slc

2d
/⌫ , and Y D F BB

2 .
We claim that the condition of Lemma 3.18 is satisfied. Namely, for a one-parameter family of
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stable K3 surfaces over .C; 0/, the central fiber uniquely determines if the limit in the Baily–
Borel compactification is of Type II or Type III, and if it is of Type II, then the j -invariant of
the elliptic curve is uniquely determined.

As in the proof of Theorem 3.14, we get a Kulikov model X to which a big and nef
line bundle L D OX.R/ extends and then a contraction X ! X to the canonical model. If
X is of Type III, then X is a union of rational surfaces with rational singularities, glued along
rational curves. If X is of Type II, then either some components of X are glued along an
elliptic curveE or, if all the elliptic curves that constitute the double locus of X are contracted,
a component of X has an elliptic singularity, resolved by inserting E. So the type, and for
Type II the j -invariant of E, can be recovered from the central fiber X0.

Lemma 3.18. Let X and Y be proper varieties, with X normal. Let 'WX Ü Y be
a rational map, regular on an open dense subset U ⇢ X . Let .C; 0/ be a regular curve and
f WC ! X a morphism whose image meets U . Let gWC ! Y be the unique extension of f ı '
which exists by the properness of Y . Assume that, for all f with the same f .0/, there are only
finitely many possibilities for g.0/. Then ' can be extended uniquely to a regular morphism
X ! Y .

Proof. Let Z ⇢ X ⇥ Y be the closure of the graph of U ! Y . The projection Z ! Y

is a morphism extending '. The morphism Z ! X is birational, and the condition is that it is
finite. By Zariski’s Main Theorem, Z ! X is an isomorphism.

4. The Coxeter fan and compactifications of F2

4A. The Coxeter fan. For F2, a toroidal compactification depends on a single fan,
supported on the rational closure C of the positive cone in the space NR for the hyperbolic
latticeN D H ˚E2

8 ˚ A1. We now describe a particularly nice fan onN , cf. [49, Section 6.2].

Definition 4.1. The Coxeter fan Fcox is obtained by cutting C by the mirrors r? to the
roots of N , i.e. the vectors r 2 N with r2

D �2.

The Weyl group W.N/ generated by reflections in the roots has finite index in the isom-
etry group OC.N /, with the quotient OC.N /=W.N/ D S3. Here, OC.N / is the index 2
subgroup of O.N/ fixing the positive cone. Reflection groups acting on hyperbolic spaces
were studied by Vinberg, see e.g. [53, 54]. Note that, in those papers, a hyperbolic space has
signature .r � 1; 1/ vs. our .1; 18/.

A fundamental chamber K ofW.N/ is described by a Coxeter diagram given in Figure 2.
The nodes represent 24 roots ri that generateN , with the index i given by the label in Figure 2.
We have .ri ; rj / D 0; 1; 2; 6 depending on whether there is no line, a single line, a doubled
line, or a dashed line connecting i to j , respectively. The fundamental chamber is

K D π� 2 C W � � ri � 0 for 0  i  23º:

The group S3 acts on the fundamental chamber by symmetries of the diagram. The projec-
tivization P D P .K/ is a hyperbolic polytope with cusps: it has infinite vertices corresponding
to null rays v 2 K with v2

D 0. However, it has finite hyperbolic volume.
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Figure 2. Coxeter diagram Gcox and its maximal parabolic subdiagrams zA17, zD10 zE7, zE2
8
zA1,

zD16 zA1.

Definition 4.2. A subdiagram of Gcox is a subgraph G ⇢ Gcox induced by a subset
V ⇢ V.Gcox/ of the vertices, i.e. a subset of the 24 roots ri . It defines a vector subspace
RV D hri ; i 2 V i ⇢ NR.

A subdiagram is called elliptic if the restriction of the quadratic form of N to RV is
negative definite. It is called parabolic if it negative semi-definite. Maximal parabolic means
maximal by inclusion among the parabolic diagrams.

Vinberg described the faces of the fundamental polytope P , see [53, Theorem 3.3]. In
our situation, this gives the following theorem.

Theorem 4.3. The correspondence

F 7! G.F / D πi j F ⇢ r?
i º; G D πri ; i 2 Gº 7! F.G/ D

\

i2I

r?
i

defines an order reversing bijection between the faces of the fundamental chamber K and
the elliptic and maximal parabolic subdiagrams G ⇢ Gcox. The chamber itself corresponds to
G D ;.

Type III cones (meeting the interior C ) of dimension d > 0 correspond to elliptic sub-
diagrams of rank r D 19 � d . These are disjoint unions of Dynkin diagrams Gi of ADE type
with

P
jGi j D r .

Type II rays R�0v with v2
D 0 correspond to maximal parabolic subdiagrams of Gcox.

These are disjoint unions of affine Dynkin diagrams zGi with
P
jGi j D 17.

Lemma 4.4. The cones of the Coxeter fan Fcox mod W.N/ are in a bijection with the
faces of the fundamental chamber. The cones of Fcox mod OC.N / are in a bijection with
elliptic and maximal parabolic subdiagrams of Gcox mod S3.

Proof. This follows since K is a fundamental domain for the W.N/-action and

OC.N / D S3 ËW.N/:
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The following two lemmas are proved by direct enumeration.

Lemma 4.5. Modulo S3, there are 4 maximal parabolic subdiagrams of Gcox, illus-
trated on the right in Figure 2.

(1) zA17 D Œi; 0  i < 18ç,

(2) zD10 zE7 D Œ18; 17; 0; : : : ; 6; 7; 19ç t Œ9; : : : ; 15; 20ç,

(3) zE2
8
zA1 D Œ13; : : : ; 2; 18ç t Œ4; : : : ; 11; 19ç t Œ20; 23ç.

(4) zD16 zA1 D Œ19; 5; 6; : : : ; 0; 1; 18ç t Œ3; 23ç.

Lemma 4.6. Modulo S3, the numbers of elliptic subdiagrams of Gcox that have ranks
r D 1; : : : ; 18 are 6, 51, 328, 1518, 5406, 14979, 33132, 59339, 87077, 105236, 105078,
86505, 58223, 31564, 13371, 4209, 883, 99. In particular, in Fcox mod OC.N /, there are
4C 99 D 103 rays.

For each of the extended Dynkin diagrams zAk , zDk , zEk , there is a unique primitive posi-
tive integer combination of the roots which is null in the affine root lattice. The coefficients for
the first k nodes are the fundamental weights of the corresponding Lie algebra and the coeffi-
cient of the extended node is 1. Alternatively, these are labels of the extended Dynkin diagram
such that each label is half the sum of its neighbors. For example, for the first zE8 diagram in
case (3) above, this vector is

n. zE
.1/
8 / D r13 C 2r14 C 3r15 C 4r16 C 5r17 C 6r0 C 4r1 C 2r2 C 3r18:

Lemma 4.7. For each maximal parabolic subdiagram of Gcox, the square-zero vectors
of its connected components coincide:

n. zD10/ D n. zE7/; n. zE
.1/
8 / D n. zE

.2/
8 / D n. zA1/; n. zD16/ D n. zA1/:

The six zE2
8
zA1 equations generate all the relations between the 24 roots ri . The unique syzygy

between them is that the sum of the three zE2
8 differences is zero.

Proof. An easy direct check.

4B. Connected Dynkin subdiagrams of Gcox. We adopt the notation of [7] for the
connected subdiagrams of Gcox using decorated Dynkin diagrams.

Definition 4.8. The subdiagrams of Gcox with the vertices entirely contained in the
subset π18; 19; 20; 21; 22; 23º are called irrelevant. A diagram is relevant if it has no irrelevant
connected components. For eachG ⇢ Gcox, its relevant contentGrel is the subdiagram obtained
by dropping all irrelevant connected components.

We list the connected subdiagrams of Gcox in Table 1. The indices 0  i < 18 are taken
in Z18. We first give the elliptic subdiagrams, then parabolic, then irrelevant elliptic, and finally
irrelevant parabolic. The diagrams are considered up to the S3-symmetry if they do not lie in the
outside 18-cycle. The ones that are contained in the 18-cycle are considered up to the dihedral
symmetry group D9.
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Type Vertices Type Vertices

A2nC1 2i C 1; : : : ; 2i C 2nC 1, n  8 zA17 i , 0  i < 18
A�

2n 2i C 1; : : : ; 2i C 2n, n  8 zD10 18; 17; 0; : : : ; 6; 7; 19
�A�

2nC1 2i; : : : ; 2i C 2n, n  8 zE7 9; : : : ; 15; 20
0A2nC1 18; 0; 1; : : : ; 2n � 1, n  8 zE�

8 13; : : : ; 2; 18
0A�

2n 18; 0; 1; : : : ; 2n � 2, n  8 zD16 19; 5; 6; : : : ; 0; 1; 18
0A0

9 18; 0; : : : ; 6; 19 zA⇤
1 3; 23

0A0
15 18; 0; : : : ; 12; 20

D2n 18; 17; 0; 1; : : : ; 2n � 3, n  8 Airr
1 18

D�
2nC1 18; 17; 0; 1 : : : ; 2n � 2, n  8 �A� irr

1 21

D0
10 18; 17; 0; : : : ; 6; 19

D0
16 18; 17; 0; : : : ; 12; 20 zA irr

1 20; 23
�E�

6 18; 16; 17; 0; 1; 2
�E7 18; 16; 17; 0; 1; 2; 3
�E�

8 18; 16; 17; 0; 1; 2; 3; 4

Table 1. Connected elliptic and parabolic subdiagrams of Gcox.

The parabolic subdiagrams of Gcox are shown in Figure 2.

Definition 4.9. The skeleton of a diagram its intersection with the cycle 0; 1; : : : ; 17.

In the shortcut notation of Table 1, a minus or prime on the left and right implies that
the clockwise and counterclockwise vertex, respectively, adjacent to the skeleton is odd. The
absence of a marking implies the vertex is even. The prime indicates that an extra leaf of the
subdiagram has entered the interior vertices π18; 19; 20; 21; 22; 23º of Figure 2.

Definition 4.10. The stable type of an elliptic or maximal parabolic subdiagram

G D
G
Gk ⇢ Gcox

is its relevant content Grel, with diagrams notated as in Table 1, listed in cyclic order around
the 18-cycle. We introduce symbols A�

0 or �A0 to indicate, respectively, that both 2i; 2i C 1 or
both 2i C 1; 2i C 2 .mod 18/ do not lie in the skeleton of G.

The insertion of the symbols A�
0 or �A0 is necessary to determine the spacing between

the relevant connected components. Two examples are shown in Figure 3. Note that the S3 or
D9 action cyclically rotates and/or flips the diagram labels in the stable type, and orientation
reversing symmetries flip which sides of a symbol are decorated with a � sign.

4C. A toroidal compactification.

Definition 4.11. The toroidal compactification F tor
2 D F

Fcox
2 we consider in this paper

is the one corresponding to the Coxeter fan Fcox.
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Figure 3. Stable types .A�
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9 and D�
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�A0A

�
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0A�
4

�E7.

We describe the strata of F tor
2 which by Theorem 4.3, Lemma 4.4 correspond to elliptic

and maximal parabolic subdiagrams of Gcox mod S3.

Notation 4.12. An elliptic subdiagram G D
F
Gk is a union of ADE Dynkin dia-

grams. We denote by RG the corresponding root system and W.G/ its Weyl group. Let

SG ËW.G/ ⇢ O.RG/

be the extension by the symmetries SG ⇢ S3 of the subdiagram. A parabolic subdiagram
zG D

F
zGk is a union of affine ADE Dynkin diagrams. In this case, let G D

F
Gk be the

union of the corresponding ordinary (not extended) Dynkin diagrams.

Proposition 4.13. The Type III and II strata in F tor
2 are as follows.

(1) Let G be an elliptic diagram. Then Str.G/ is the quotient by SG ËW.G/ of the torus
Hom.MG ;C

⇤/ where MG is the saturation of the root torus RG in M D N ⇤.

(2) Let zG be a maximal parabolic diagram. Then Str. zG/ is the quotient by SG ËW.G/ of
Hom.MG ;E/ ' E

17, where E
17
! A

1
j is the self-fiber product of the universal family

of elliptic curves E !M1;1 over the moduli stack.

Proof. The strata of Type III are contained in the fiber of F tor
2 ! F BB over the unique

Type III point and can be described purely in terms of toric geometry. We have two lattices
N D I?=I D H ˚E2

8 ˚ A1 and M D N ⇤. Using the quadratic form on N , we can present
N ⇤ as an overlattice withN ⇤=N D Z2. The latticeN is generated by the 24 roots ri in Coxeter
diagram. Thus,

M D N ⇤
D

≤
v 2

1

2
N

ˇ̌
ˇ̌ .v; ri / 2 Z

≥
D N C

1

2
r21:

For each Type III cone � D �.G/ of Fcox, we have a cone � ⇢ NR and a toric variety U�

with a unique closed orbit O� , which is a torus itself. It is standard in toric geometry that
O� D Hom.�?

\M;C⇤/, and we have �?
DMG D R

sat
G , the saturation of the root lattice

RG in M . In the toroidal compactification, we divide an infinite toric variety by Ä D OC.N /.
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The orbit TG is divided by its stabilizer in OC.N /, which is SG ËW.G/. The description in
Type III follows.

The exact structure of a Type II boundary divisor is determined by the parabolic group
StabÄ.J / stabilizing the corresponding rank 2 isotropic lattice J . This parabolic group acts
on the period domain H ⇥C

17 of Type II mixed Hodge structures, and the quotient is the
boundary divisor. The unipotent subgroup UJ is the kernel of the map

StabÄ.J /
q
�! SL.J / ⇥O.J?=J /

and induces the full group of translations J?=J ˝ .Z˚ Z⌧/ ' .Z˚ Z⌧/17 on the second
factor C

17. Quotienting by UJ first gives J?=J ˝ .C=Z˚ Z⌧/! H on which the image of
q further acts.

We claim that q is surjective. First, we show that, for any isotropic J , there is a comple-
mentary isotropic subspace J 0, i.e. a lift of h?=J? to an isotropic plane in h? such that the
pairing between J and J 0 realizes J 0

D Hom.J;Z/. For instance, let e1; e2 be a basis of J .
There is an isotropic f1 such that e1 � f1 D 1. Taking the perpendicular of πe1; f1º, we get
a sublattice of h? isometric to N because there is a unique 0-cusp. We claim that there is an
isotropic f2 2 N such that e2 � f2 D 1. Observe that e2 is primitive in N ⇤; it is primitive in
N and is not of the form r21 C 2n for any n 2 N because the norm of any such element is
nonzero. Hence there is an f2 such that e2 � f2 D 1. Since N is even, we can modify f2 by
a multiple of e2 to ensure it too is isotropic. Then we choose J 0

D πf1; f2º.
We can now realize any element .�; g/ 2 GL.J / ⇥O.J?=J / by an isometry of h?: we

declare the action on J to be � , on J 0
D Hom.J;Z/ to be the transpose action �T , and the

action on the lattice summand .J ˚ J 0/? ' J?=J to be g. Thus, the Type II boundary divisor
is the quotient of E

17
! H by all of SL2.Z/ ⇥O.J

?=J /; we only get SL2.Z/ because the
isometry must have spinor norm 1.

Lemma 4.14. For the connected elliptic subdiagramsG, one hasMG D RG except for
the following diagrams given up to S3, where the quotient MG=RG is

(1) Z2 for Airr
1 D Œ23ç;

0A0
9, 0A0

15, D0
10, D0

16;

A17 D Œ3; : : : ; 1ç;
�A�

17 D Œ4; : : : ; 2ç; and D18 D Œ18; 17; 0; : : : ; 15çI

(2) Z6 for A17 D Œ1; : : : ; 17ç.

Proof. For a vector u 2MQ, one has u 2M , .u; v/ 2 Z for all v 2 N , i.e. if and
only if .u; ri / 2 Z for the 24 roots ri . Now, for each of the lattices ƒ D RG , we check the
finitely many vectors in ƒ⇤=ƒ and see for which of them all the intersection numbers with the
24 roots ri are integral. As usual, A⇤

n=An D ZnC1,D⇤
n=Dn D Z

2
2 or Z4 for n even or odd, and

E⇤
n=En D Z9�n.

Example 4.15. For the lattice 0A0
9, the vector

u D
1

2
.r18 C r1 C r3 C r5 C r19/ 2 RG ˝Q

in fact lies in M because .u; rj / 2 Z for all roots rj . Note that u ⌘ $5 mod A9, the funda-
mental weight of the A9 lattice for the middle node. Similarly for the A17 diagram in (2), the
vector u D 1

6

P17
iD1 iri is in .RG ˝Q/ \M .
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4D. Generalized Coxeter semifan. We start with a more general situation and then
specialize to our case. Let N be a hyperbolic lattice of signature .1; r � 1/, C ⇢ NR the
positive cone, and C its rational closure. Let W ⇢ O.N/ be a discrete group generated by
reflections in vectors πrk 2 N j k 2 Kº such that r2

k
< 0 and rk � rk0 � 0 for k ¤ k0. Let

K D πv j v � rk � 0º \ C D

\

k

HC
rk
\ C

be the fundamental domain of W . Then P D P .K/ is a polytope in a hyperbolic space whose
faces by Vinberg [54] admit a description similar to Theorem 4.3.

Definition 4.16. We split the set K D I t J into two subsets of active and inactive
mirrors. We call a face K\j 2V r

?
j of K irrelevant if V ⇢ J . Let WJ D hwj ; j 2 J i. We

define a bigger chamber L D
S

h2WJ
h.K/ and a generalized Coxeter semifan Fsemi as the

one whose maximal cones are g.L/ for g 2 W .

Proposition 4.17. The following statements hold.

(1) One has L D
T

i2I; h2WJ
HC

h.ri /
. In particular, L is convex and locally finite.

(2) The stabilizer group of L in W is WJ .

(3) The support of Fsemi is C .

(4) The cones in Fsemi are g.F / for g 2 W and the relevant faces F of K.

Proof. Consider a single reflection wj in a vector rj , j 2 J and a neighboring chamber
wj .K/ D

T
i H

C
r 0

k

, where r 0
D wj .rk/. Then, for i ¤ j and v 2 K, one has

ri � wj .v/ D ri �

✓
v �

2ri � rj

r2
j

rj

◆
� ri � v D wj .ri / � wj .v/:

A product of two generators of WJ is wjwj 0 D .wjwj 0w�1
j /wj , which is the same as

the reflection in the inactive mirror r?
j followed by the reflection in an inactive mirror of the

neighboring chamber wj .K/. In the same way, any element h 2 WJ is a product of reflections
in inactive mirrors in a sequence of neighboring chambers.

By induction, we get ri � h.v/ � h.ri / � h.v/ D ri � v � 0 for any i 2 I and h 2 WJ .
Thus, L ⇢ HC

h.ri /
.

Vice versa, suppose v 2 C is such that h.ri / � v � 0 for all i 2 I and h 2 WJ . Let ⇢ 2 N
be a vector in the interior of K. Then ⇢ � rk 2 Z>0 for all k 2 K. If there exists j 2 J such
that v � rj < 0, then

⇢ � wj .v/ D ⇢ �

✓
v �

2v � rj

r2
j

rj

◆
< ⇢ � v:

Both ⇢ � v and ⇢ � wj .v/ are positive integers and the set of vectors v with 0 < ⇢ � v  const
is finite. Therefore, after finitely many reflections in h0.rj /, h0

2 WJ , we arrive at an element
h.v/, h 2 WJ , such that rj � h.v/ � 0 for j 2 J . For all i 2 I , we already have

ri � h.v/ D h
�1.ri / � v � 0:

Thus, h.v/ 2 K and v 2 h�1.K/. This proves (1). Parts (2) and (3) are immediate.
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For (4), clearly, each face of L is of the form g.F / for some face F of K. A face
F D K\i2V r

?
i is not a face of L if the images g.K/ for g 2 WJ cover its open neighborhood.

This happens when WV ⇢ WJ , i.e. V ⇢ J and F is irrelevant.

We now apply this to our lattice N D H ˚E2
8 ˚ A1, the 24 roots rk , and the sets

I D π0; : : : ; 17º and J D π18; : : : ; 23º. In this situation, the cone L has infinitely many faces
and an infinite stabilizer group in O.N/ D S3 ËW.N/. This explains the name semifan that
we use for the generalized Coxeter semifan Fsemi.

Corollary 4.18. The semifan Fsemi is a coarsening of the Coxeter fan Fcox. For two
elliptic or maximal parabolic subdiagrams G1; G2 ⇢ Gcox, the corresponding cones of Fcox

map to the same cone in Fcox if and only if Grel
1 D G

rel
2 .

Remark 4.19. The same construction applies to an elliptic lattice or parabolic ambi-
ent diagram Gcox. When the subdiagram J is elliptic, the Weyl group WJ is finite. In this
case, the resulting semifan is a fan, and it can be alternatively defined as the normal fan of
a permutahedron.

The fan Fcox itself is the normal fan of the permutahedron, that is, an infinite polyhedron
Conv.W:p/ for a point p in the interior of K. If q is chosen to be on a lower-dimensional face of
K for an elliptic subdiagram J , with a finite Weyl groupWJ , then Fsemi is again the normal fan
of the permutahedron Conv.W:q/. This is basically the “Wythoff construction” for the uniform
polytopes by Coxeter [13].

Looijenga [41, 42] has constructed a generalization of both the Baily–Borel and toroidal
compactifications of an arithmetic quotients ÄnD of a symmetric Hermitian domain. The start-
ing data is a semifan supported on C in which the cones are not assumed to be finitely generated
or to have finite stabilizers. For example, the Baily–Borel compactification corresponds to the
semifan consisting only of the cone C itself and its null rays.

Definition 4.20. Let F semi
2 be the semi-toric compactification for the generalized Cox-

eter semifan Fsemi.

Theorem 4.21. There is a morphism F tor
2 ! F semi

2 , an isomorphism on ÄnD, whose
induced map on strata is isogenous to the natural map of tori

Hom.MG ;C
⇤/! Hom.MGrel ;C⇤/; Hom.MG ;E/! Hom.MGrel ;E/

in Types III, II, respectively.

Proof. This follows directly from Proposition 4.17, Corollary 4.18, and the functoriality
of the semi-toric construction under refinement of semifans.

Note that jGj � jGrel
j  3, with the maximum achieved when there are three Airr

1 dia-
grams in G. So the largest fiber dimension of the morphism in Theorem 4.21 is 3. For the
Type II boundary strata, G D Grel except when G D zE2

8
zA1, in which case the morphism of

Theorem 4.21 loses 1 dimension.
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Figure 4. Fan of the toric surface T and the dual graph of negative curves on the surface
T D Blp0;p6;p12.T /.

5. The mirror surfaces

In Dolgachev–Nikulin–Voisin mirror symmetry for K3 surfaces [14], the 19-dimensional
moduli space F2 of polarized K3 surfaces with a rank 1 Picard lattice Zh, h2

D 2, is mirror-
symmetric to the 1-dimensional moduli space of lattice-polarized K3 surfaces with a primitive
rank 19 sublattice H ˚E2

8 ˚ A1 ⇢ PicS . We describe the latter explicitly and show that, for
a general surface S , its nef cone can be identified with the fundamental chamber K of the
Coxeter fan Fcox.

The K3 surfaces in this family admit several elliptic fibrations, one of which contains an
I18 Kodaira fiber. It turns out that they also come with an involution that fixes this I18 fiber,
and the quotient surface T D S=◆ is a non-minimal rational elliptic surface with an I9 Kodaira
fiber in its minimal form.

5A. A toric model. We begin with a toric surface T whose fan is depicted in Figure 4
on the left. It is easy to see that T is smooth and projective. For each ray, we have a boundary
curve F i . One has F 2

i D �3 for i D 0; 6; 12, F 2
i D �4 for other even i , and F 2

i D �1 for
odd i . The Picard rank is ⇢.T / D 16. There are three toric rulings T ! P

1 corresponding to
the opposite pairs of rays numbered 0; 9, 6; 15, and 12; 3, respectively.

5B. A rational elliptic surface. We define T as the blow-up of T at three points
Pi 2 F i , i D 0; 6; 12, each corresponding to the identity 1 2 P

1 under the torus action. Let
the exceptional divisors of this blow-up be F18, F19, F20, and let Fi for 0  i < 18 be the
strict transforms of the divisors F i on T .

The fiber over P0 in the first ruling defined above is, after pullback, F18 C F21, where
F21 is a .�1/-curve intersecting F9. Similarly, the pulled back fiber of the second fibration over
P6 is F19 C F22, and the pulled back fiber of the third fibration over P12 is F20 C F23. One
has F 2

i D �4 for the even 0  i < 18, and �1 for all other i . The intersection graph of Fi ’s
is given in Figure 4 on the right. The black vertices correspond to the .�4/-curves and white
vertices to the .�1/-curves. For the solid edges, one has Fi � Fj D 1, and for the dashed edges,
Fi � Fj D 3.
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The divisor

F D

17X

iD0

Fi

satisfies OF .F / ' OF and defines an elliptic fibration T ! P
1. Contracting the nine .�1/-

curves F1; F3; : : : ; F17 gives a relatively minimal elliptic fibration with an I9 Kodaira fiber
and three I1 fibers. This is the extremal elliptic surface X9111 in the terminology of [44, Theo-
rem 4.1]; it has three sections and three bisections, given by Fi for 18  i < 24. The excep-
tional curves not lying in the fibers are precisely the sections. Thus, Fi for 0  i < 24 are all
the negative curves on T .

5C. An elliptic K3 double cover. Let ⇡ WS ! T be the double cover ramified in the
nine .�4/-curves F0; F2; : : : ; F16 and another fiber F 0 of the elliptic fibration. Since there
are three special I1 fibers, one gets a 1-parameter family of such surfaces, with three mem-
bers of the family having a rational double point. For a very general choice of F 0, one has
⇢.S/ D 19. A more detailed discussion of the moduli space of these mirror K3s may be found
in [15, Section 5].

For the preimages Ei of the exceptional curves, one has ⇡⇤.Fi / D 2Ei for the even
0  i < 18 and ⇡⇤.Fi / D Ei for all other i . Then E2

i D �2 for all 0  i < 24 and the inter-
section graph of Ei ’s is the Coxeter graph of Figure 2. Thus, Ei generate a 19-dimensional
lattice N D H ˚E2

8 ˚ A1. Since detN D 2 is square-free, it follows that PicS D N . Thus,
S is a 2-elementary K3 surface described by Nikulin and Kondo. Note that the graph of the
.�2/-curves in [35, Figure 1] is exactly our Coxeter graph.

The elliptic fibration on T induces an elliptic fibration on S with an I18 fiber, which is
zA17 in Dynkin notation. The preimage of a ruling on T for the rays 0; 9 (or 6; 15 or 12; 3) gives

an elliptic fibration on S with zE8 zE8 zA1 fibers). The preimage of a ruling for the rays 2; 10 (or
4; 14 or 8; 16) gives an elliptic fibration with zD10 zE7 fibers. The three subdiagrams zD16 zA1 give
yet three more elliptic fibrations on S which also double cover rulings on T , see Section 5E.

5D. The nef cones of the rational and K3 surfaces.

Lemma 5.1. For a surface S as above with ⇢ D 19, the nef cone is a finite, polyhedral
cone equal to

Nef.S/ D π� j � �Ei � 0 j 24 curves Eiº:

Under the identification Pic.S/ D N , it maps isomorphically to a fundamental chamber K of
the Coxeter fan Fcox. The double cover defines identifications

⇡⇤
WPic.T /Q

⇠
�! Pic.S/Q; ⇡⇤

WNef.T /
⇠
�! Nef.S/:

However, the lattice structures on Pic.T / and Pic.S/ are different.

Proof. The nef cone of an algebraic surface is the intersection of the closure of the
positive cone C D π� j �2 > 0; � � h > 0º ⇢ Pic.S/R with the half spaces � �E � 0 for the
irreducible curves E with E2 < 0. By [35], the 24 curves Ei are the only negative curves
on S . We thus get the same inequalities that define a fundamental chamber K of Fcox.

The pullback of a negative curve is a sum of negative curves. Thus, Fi for 0  i < 24 are
the only negative curves on T , and ⇡⇤

WNef.T /
⇠
�! Nef.S/.
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Figure 5. Fan of the toric surface T .

5E. A second toric model. Let T ! T be the contraction of the disjoint .�1/-curves
F19;F20;F21. Just as T , the surface T is also a smooth projective toric surface with ⇢.T /D 16.
Its fan is shown in Figure 5.

6. Family of IAS2 over the Coxeter fan

We now define a family of polarized IAS2 over the Coxeter fan (our “Voronoi” decom-
positions). We motivate the construction with mirror symmetry.

As we saw in Section 4, a compactification of F2 is governed by a fan decomposition F of
the rational closure of the positive cone of N D H ˚E˚2

8 ˚ A1. Each � 2 N , �2
� 0, deter-

mines a Picard–Lefschetz transformation of a one-parameter degeneration of complex struc-
ture, whose logarithm is given by .logT / � x D .x � ı/� � .x � �/ı. Mirror symmetry dictates
that the complex moduli of F2 are interchanged with the Kähler moduli of the Dolgachev–
Nikulin–Voisin mirror K3 surface S from Section 5. This is instantiated in the isomorphisms
Pic.S/ D N , Nef.S/ D K.

To make the mirror correspondence more precise, consider some � 2 N , �2 > 0. The
symplectic geometry of .S; !/ in Kähler class Œ!ç D � should be interchanged with the com-
plex geometry of a degenerating family of degree 2 surfaces, whose monodromy vector is �.
We have a mechanism for this interchange—the Monodromy Theorem of Section 2G. It states
that the IAS2 on the base of a Lagrangian torus fibration �W .S; !/! B should be identified
with the dual complex B D Ä.X0/ of a Kulikov degeneration X ! .C; 0/ whose monodromy
vector is �.

Finally, we recall the construction S ! T as a double cover of a rational surface. This
motivates a construction of B for any monodromy vector � and thus any Type III degeneration:
we should produce a Symington polytope P for the rational surface T , then glue two copies
B D P [ P op together to form an IAS2 which is the base of a Lagrangian torus fibration
�W .S; !/! B satisfying Œ!ç D �.

We also give an explicit description of the Type II degenerations corresponding to the
cusps of K, when �2

D 0.

6A. Construction of IAS2. Let ⇡ WS ! T be the double cover of a special K3 ratio-
nal by a special K3 surface as defined in Section 5. Let L 2 Pic.T /˝R be a nef class. Let
ai D ⇡

⇤.L/ �Ei for the .�2/-curves Ei ⇢ S , and let bi D L � Fi for the .�1/- and .�4/-
curves on T . Thus, ai D bi for the even 0  i < 18, and ai D 2bi for all other i .
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Let �WT ! T be the blow-up of the first toric model, which contracts exceptional curves
F18, F19, F20 meeting F0, F6, F12. Set Nbi D L � F i . Then

L D �⇤.L/ � b18E18 � b19E19 � b20E20;

b0 D
Nb0 � b18; b6 D

Nb6 � b19; b12 D
Nb12 � b20; bi D

Nbi for other i:

Construction 6.1. In Lemma 5.1, we identified the nef cones of S and T with a funda-
mental chamber K of the Coxeter fan Fcox. So let L D Eb 2 Nef.T / D K be a nef R-divisor.

First, assume that all bi > 0; a fortiori, all Nbi > 0. Let P be the Symington polytope
obtained from the moment polytopeP forL by three almost toric blow-ups of size b18; b19; b20

on sides 0, 6, 12 as shown in Figure 6. This introduces three I1 singularities in the interior of
P whose monodromy-invariant lines parallel the side from which the surgery triangle was
removed. So P is an integral-affine disc with 18 boundary components. The location of the
cut on the sides 0, 6, 12 can be chosen arbitrarily; ultimately, choices will produce Kulikov
models differing by “nodal slides” defined below, which do not affect anything. We make the
symmetric choice: with the cut centered around the midpoint of the side.

By [18, Theorem 5.3], the class L on T is nef if and only if it is possible to fit surgery
triangles of the appropriate size inside the polytope for a toric model without overlapping. In
our case, this is also easy to see directly.

Define an integral-affine sphere B ´ P [ P op by gluing together two copies of P . This
requires introducing an I1 singularity at each corner of P , whose monodromy-invariant lines
are shown dashed in Figure 6. More precisely, we can take the top figure for P in Figure 6, and
take its isometric reflection along the edge 3 (with edges 9 or 15, it is similar). This produces
a copy of P op attached to P along 3, but there is a gap between edge 4 and its reflection.
This gap is closed exactly by gluing edge 4 and its reflection with a unit shear in the dotted
direction. Once this gluing is made, we must introduce another singularity to glue edge 5 and
its reflection. And so on for edges 0, 1, 2, 3, 4, 5, 6 (and similarly for the other edges).

The general case is obtained as a limit of the above construction by sending some of the
bi ’s to zero.

Definition 6.2. For any real vector Ea D .� � ri /i2π0;:::;23º with � 2 K, �2 > 0, this con-
struction defines an integral affine structure B.Ea/ on a sphere with 24 singularities, some of
which may coalesce, an IAS2 for short. We sometimes suppress the dependence on Ea.

When all ai > 0, we define an integral-affine divisor RIA whose supporting graph is the
equator, that is, the common boundary of P and P op. The multiplicities are 2 for the even
sides and 1 for the odd sides. The assumption ai > 0 implies that the IAS2 has 18 isolated I1

singularities on the equator. By Remark 2.32, this suffices to define RIA uniquely.
When some ai D 0, the definition of RIA is quite subtle. It is delayed until Section 6C,

but the supporting graph is still the equator, and the multiplicities are the same values, 1 and 2,
for the odd and even sides i 2 π0; : : : ; 17º with ai ¤ 0.

The pair .B;RIA/ is an analogue of a Voronoi decomposition in the case of abelian
varieties. As Ea varies continuously, so do they.

Lemma 6.3. One has .⇡⇤L/2 D 2L2
D vol.B/, where the latter is the lattice volume,

twice of the Euclidean one.
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Figure 6. An example of the same IAS2 glued in two different ways.
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Proof. By definition, vol.B/ D 2 vol.P / and vol.P / D vol.P / � b2
18 � b

2
19 � b

2
20. It is

easy to see that L2
D L2

� b2
18 � b

2
19 � b

2
20. For any toric variety with a nef class, its volume

is the lattice volume of the moment polytope; this gives L2
D volP .

Remark 6.4. By definition, b18 is the lattice distance from the singularity to the side 0.
The linear relation n. zE8/ D n. zA1/ of Lemma 4.7 implies that b21 is the lattice distance to the
opposite side 9. Similarly for b19; b22 and b20; b23.

Example 6.5. Figure 6 shows a concrete example with

Nb0 D
Nb6 D

Nb12 D 3; b2 D b4 D � � � D b16 D 2; b1 D b3 D � � � D b17 D 1;

b18 D b19 D b20 D 1; b0 D b6 D b12 D 2; b21 D b22 D b23 D 29:

The green interior region is an open chart for the integral-affine structure on the disc P . In the
a-coordinates, ai D 2 � 1 for 0  i < 21 and a21 D a22 D a23 D 2 � 29.

The second picture gives an alternative way of presenting the same IAS2, using the sec-
ond toric model T . It is obtained by cutting a different ray emanating from the I1 singularity,
which, instead of hitting the edge 12, goes in the opposite direction, towards edge 3.

Recall that, in Lemma 4.7, we defined the vectors n.zƒ/ for the affine Dynkin diagrams
zA17, zE8, zA irr

1 , zD10, zE7, zD16 and zA⇤
1 , using notations of Table 1.

Lemma 6.6. The circumference in the vertical direction, that is, twice the lattice dis-
tance in P and in P between the sides 3 and 12, is ev.n3;12/, where

n3;12 D n. zE
.1/
8 / D n. zE

.2/
8 / D n. zA irr

1 /

and ev.ri / D ai is the evaluation map. Similarly, the circumference in the 8-16 direction is
ev.n8;16/, n8;16 D n. zD10/ D n. zE7/; the circumference in the 2-4 direction in the second pre-
sentation (i.e. around a singularity, close to the side 12) is ev.n2;4/, n2;4 D n. zD16/ D n. zA

⇤
1/;

and the circumference along the equator is ev.n. zA17//.

Proof. This follows by observation using Lemma 4.7.

Example 6.7. In the example of Figure 6, all the ai D 2 for i ¤ 21; 22; 23. It follows
and is indeed very amusing to observe that the projections of sides 13, 14, 15, 16, 17, 0, 1, 2, and
18 to a vertical line have lattice lengths 1, 2, 3, 4, 5, 6, 4, 2, and 3, which are the multiplicities
of the simple roots in n. zE8/. Similarly, the projections of the sides 18, 17, 0, . . . , 6, 7, 19 to
a horizontal line have lattice lengths 1, 1, 2, . . . , 2, 1, 1, which are the multiplicities for zD10,
and similarly for zE7.

Corollary 6.8. Near the rays L2
D 0 of K D Nef.S/, the sphere B with its integral-

affine structure degenerates to an interval as follows.

(1) zA17. The Symington polytope P degenerates to a segment from the boundary of P to the
north pole, and B degenerates to a longitude.

(2) zD10 zE7. Both P and B degenerate to the side 8, identified with the side 16.
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(3) zE2
8
zA1. Both P and B degenerate to the side 3, identified with the side 12.

(4) zD16 zA1. Both P and B degenerate to the side 2, identified with the side 4.

In cases (2), (3), (4), the interval lies in the equator.

Definition 6.9. We define the family of IAS2 over the fundamental chamber K by Con-
struction 6.1. By Lemma 6.3, this gives a family outside of the boundary rays with L2

D 0,
where IAS2 degenerates to an interval.

We then extend it to a family over C by reflections in the Weyl group W.N/. This is
well defined because K is a fundamental domain of the reflection group and because, on the
boundary of K where some ai D 0, the limits of the structures from both sides coincide.

Remark 6.10. As we mentioned, the locations of the cuts on the sides 0, 6, 12 are quite
arbitrary and may be moved by a “nodal slide”. Instead of the symmetric choice for the cuts,
one could also make a “vertex-preferred” choice: for this choice, if bi are integral, then the
coordinates of the three internal singularities are also integral. For the symmetric choice, they
are only half-integral.

This is quite similar to the case of abelian varieties where, given an integral positive-
definite symmetric bilinear form BWM ⇥M ! Z on M ' Z

g , the Voronoi decomposition
fB.VorB/ in NR DM

⇤
R has only half-integral coordinates, but in low dimensions, there is

a “vertex-preferred” linear shift ` so that `C fB.VorB/ has vertices in the lattice N DM ⇤.

6B. Collisions of singularities in IAS2. We now describe how the 24 singularities
collide and the resulting singularities of the integral-affine structures.

Theorem 6.11. For a big and nef classL 2 Nef.S/, the possibilities for the collisions of
the 24 singular points are in bijection with the elliptic subdiagrams G of the Coxeter diagram
Gcox, excepting 6.12. Each collision point, excepting 6.12, is in bijection with a connected
component Gk of G.

Proof. In Lemma 5.1, we made an identification of Nef.S/ with the fundamental cham-
ber K. Now we simply apply Theorem 4.3. With the noted insignificant exceptions, the colli-
sions correspond to the collections of indices πi j ai D 0º ⇢ π0; : : : ; 23º, i.e. to the faces of K,
by virtue of Construction 6.1.

6.12. The exceptions, which play no role in the end, occur as artifacts of the “symmetric
choice” of cuts for the Symington polytope P . A collision is insignificant if a different choice
of cut would get rid of the collision, for instance, when two cuts are made that have the same
apex in the interior of P .

Lemma 6.13. The singularities appearingB.Ea/ as some collection of ai! 0 for i 2Gk

(such subdiagrams are listed in Table 1) are exactly those listed in Table 2 with the same Dynkin
label.

Decorations “�” from Table 1 are dropped in Table 2 as they do not affect the resulting
integral-affine singularity.
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Definition Name Charge

I.nC 1/ An nC 1

I.2; 2; n � 2/ Dn nC 2

I.2; 3; 3/ E6 8

I.2; 3; 4/ E7 9

I.2; 3; 5/ E8 10

I.2; 3; n � 3/ D0
n�1 nC 2

I.nC 1; 1/ 0An nC 2

I.n; n; 2/ 0A0
2n�1 2nC 2

Table 2. Possible integral-affine singularities on B.Ea/ for some Ea 2 K.

Proof. A singularity resulting from a collision as ai ! 0 is determined by (and in fact,
is defined by, see Definition 2.13) tracking the monodromy directions of the I1 singularities as
they coalesce. This presents the coalesced singular point in the form I.n1Ev1; : : : ; nk Evk/. The
results are determined by direct geometric examination of Figure 6, and tabulated in Table 2.

For example, the E8 diagram formed from nodes i 2 π18; 16; 17; 0; 1; 2; 3; 4º of Gcox
corresponds to the coalescence where these lengths ai all approach zero. This results in the
collision of 10 total I1 singularities. Choosing monodromy-invariant cut directions for each
singularity in a counterclockwise fashion about the center of edge 0 (like a windmill) and
letting ai ! 0, we see that this collision can be presented as I.5; 1; 3; 1/ ⇠ I.2; 3; 5/, which is
the “E8” integral affine singularity.

6C. Polarization of the IAS2. We now define the polarizing divisor RIA on B , when
some singularities have collided. By Definition 2.30 and Remark 2.35, the data of RIA is spec-
ified by a nef line bundle Li on an anticanonical pair .Vi ;Di / for which F.Vi ;Di / models
each integral-affine singularity. This line bundle is furthermore required to have intersection
numbers nij D Li �Dij agreeing with the weighted balanced graph in B .

The graph underlying RIA is supported on the equator and has exactly two nonzero
weights nij 2 π1; 2º emanating from an equatorial vertex vi 2 F.Vi ;Di /. These weights are
notationally incorporated into the decorations of the corresponding Dynkin subdiagram Gk by
the � and 0 decorations, see the discussion following Table 1. For each singularity, we must
give an anticanonical pair .Vi ;Di / in the c.b.e.c. describing the singularity, and the appropriate
line bundle Li ! Vi .

Theorem 6.14. Let ◆IA be the involution of B switching the hemispheres P;P op and
fixing the equator pointwise. For each singularity vi on the equator of B , consider the defor-
mation class of “involution pairs” .V i ;Di C ✏Ri /, see [7] and Section 7A, notated in [7] by
exactly the same decorated Dynkin symbol of the corresponding subdiagram, listed in Table 1.

Let ◆i be the involution, so Ri D Fix.◆i /, and let ◆i be the induced involution on the mini-
mal resolution ⇡i W .Vi ;Di /! .V i ;Di /. Then vi D F.Vi ;Di / as integral-affine singularities,
and ◆i induces the same the action as ◆IA. Furthermore, denoting Ri D ⇡

⇤
i .Ri /, the nef line
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bundleLi ´ OVi
.Ri / has intersection numbers nij D Li �Dij which give the weighted graph

on the equator described in Definition 6.2.

Proof. Essentially, the proof is by direct calculation of all the cases. We simply check
that F.Vi ;Di / is the correct integral-affine singularity, and Li �Dij are the correct values. We
perform this check below for some representative examples.

Remark 6.15. The proposition should not come as a surprise—the notation for subdia-
grams of Gcox was reverse-engineered so that Theorem 6.14 becomes true.

For notational convenience, we drop the index i .

Example 6.16 (�A0 andA�
0 ). .V;D/ D .P2;D1 CD2/ is a projective plane with a line

D1 plus conicD2 as anticanonical divisor. The singularity of F.V;D/ is an I1 singularity, and
the degrees forRIA must be 1, 2 on the componentsD1,D2 corresponding to equatorial edges,
respectively.

The pair .V;D/ admits an involution ◆ fixing another lineR, and an isolated point onD1.
The line bundle L D OV .R/ D OP2.1/, which gives the correct multiplicities 1; 2 on the two
equatorial edges of RIA. The two cases �A0 and A�

0 are, respectively, distinguished by whether
the line is on the left (clockwise) or right (counterclockwise) side of the equator.

Example 6.17 (A2n�1). As the singularity is I.2n/ D I.n; 0; n; 0/, see Remark 2.21,
we can model the c.b.e.c. as the blow-up

.V;D/ D .V;D1 CD2 CD3 CD4/! .P1
⇥ P

1; s1 C f1 C s2 C f2/;

at n points on s1, then n points on s2. The edges corresponding to the equator of B correspond
to the two fibers f1, f2 and are required to intersect the polarization with degree 2. There is an
involution ◆W .V;D/! .V;D/ preserving f and switching the strict transforms of s1 and s2,
which have classes

D1 D s �

nX

iD1

ei and D3 D s �

2nX

iDnC1

ei :

Here, ei are the exceptional divisors.
Assuming the points blown up are chosen generically, the ramification divisor of ◆ is the

strict transform of the divisor on P
1
⇥ P

1 in the linear system j2s C nf j which passes through
all the 2n points. It has the class R D 2s C nf �

P2n
iD1 ei with R2

D 2n. The line bundle
L D OV .R/ has intersection numbers L �D2 D L �D4 D 2 and L �D1 D L �D3 D 0 with
the boundary. Thus, it gives the correct intersection numbers for RIA as it passes through an
I.2n/ singularity on the equator.

Finally, the stable model V is the result of contracting D1 and D3 which are the only
curves on which L has degree 0. The involution descends and defines the A2n�1 involution
pair from [7].

Example 6.18 (0A0
2n�1). As the singularity is I.n; n; 2/ D I.n; 1; n; 1/, the c.b.e.c. is

represented by blowing up an A2n�1 pair at one point on each of f1, f2 with the exceptional
classes g1, g2. We blow up at a point in R \ f1 and R \ f2, respectively. So the resulting pair
.V;D1 CD2 CD3 CD4/ still admits an involution ◆ lifting the involution of the A2n�1 pair.
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The boundary curves have classes

D1 D s �

nX

iD1

ei ; D3 D s �

2nX

iDnC1

ei ; D2 D f � g1; D4 D f � g2;

R D 2s C nf �

2nX

iD1

ei � .g1 C g2/

:

The polarization is defined to be L D OV .R/, and note that

L �D2 D L �D4 D 1 and L �D1 D L �D3 D 0;

as desired. The stable model is again the result of contracting D1 and D3 and gives the 0A0
2n�1

involution pair.

Example 6.19 (D2n). The easiest model for D2n is a pair .V;D1 CD2/, whose com-
ponents are a fiber f and the 2n-fold blow-up of a bisection in class 2s C f , on P

1
⇥ P

1.
Taking some corner blow-ups and a toric model, one finds the pseudo-fan is

F.V;D/ D I.2; 2; 2n � 2/;

as desired, and that D1 and D2 correspond to the edges emanating from v along the equator.
There is an involution ◆ preserving f and switching the two sheets of the bisection. Its

ramification divisor has class R D 2s C nf �
P2n

iD1 ei , R2
D 2n. Setting L D OV .R/, one

has L �D1 D L �D2 D 2, as desired. In this case, L is already ample, so the stable model is
the same surface, and it is the D2n involution pair.

Example 6.20 (D0
2n). The D0

2n surface is obtained from the D2n surface by an addi-
tional blow-up at one of the two points D1 \R. This gives the singularity I.2; 3; 2n � 2/,
which is the same as for En, but in these two cases, the equator sits differently with respect to
the shearing rays. The involution on the D2n pair lifts to give an involution.

Example 6.21 (En). For E8, the singularity is I.2; 3; 5/ D I.5; 1; 3; 1/, which can be
represented by blowing up 5, 1, 3, 1 points, respectively, on the four sides of an anticanonical
square in P

1
⇥ P

1. Contracting the two boundary exceptional curves gives the blow-up of
a nodal cubic in P

2 at 8 smooth points, and at the node. Then R is the fixed locus of the
Bertini involution, which intersects each boundary component with degree 1, as desired. Here,
L D O.R/ is already ample.

For �E7, there are 7 blow-ups on the cubic and an additional blow-up at the node, and
for �E�

6 , there are two more blow-ups at the node. The involution is the Geiser involution. See
[7, § 4.5] for more details.

Remark 6.22. In Examples 6.17, 6.18, 6.19, 6.20, 6.21, the description ofR as Fix.◆/ is
valid only when the blow-ups are chosen generically. This is because, as we vary the blow-up
points on a smooth anticanonical pair, the fixed loci Fix.◆/ do not vary in a flat manner. The
resolution of this issue is to work with the ADE surfaces of [7], on which Ri D Fix.◆i / does
vary in a flat manner. Then the pullback Ri to the minimal resolutions also varies in a flat
manner.
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The same phenomenon occurs even for smooth degree 2 K3 surfaces acquiring a .�2/-
curve, such as the minimal resolution of a double cover of P

2 ramified over a nodal sextic. The
divisorR on such a smooth K3 is not Fix.◆/ but rather the pullback of Fix.◆/ for the involution ◆
of the ADE K3 surface.

Proposition 6.23 (Reconstructing the polarization). The line bundles Li defining the
polarization RIA at a singularity vi D F.Vi ;Di / are uniquely characterized by

(1) the intersection numbers nij D Li �Dij 2 π0; 1; 2º,

(2) the ◆i -invariance of the class of Li ,

(3) L2
i D the number of equatorial I1 singularities involved in the collision.

Proof. As for Theorem 6.14, this simply requires a direct check in all cases.

This completes the construction of a family .B.Ea/;RIA/ of polarized IAS2, varying over
C , which is combinatorially constant exactly along the cones of Fcox.

6D. Kulikov degenerations and their monodromy. The goal of this section is to ver-
ify that the monodromy invariant of a Kulikov model X ! .C; 0/ whose central fiber satisfies
Ä.X0/ D B.Ea/ is in fact Ea 2 K.

Definition 6.24 (The parity condition). We say that Ea 2 Z
24 satisfies the parity condi-

tion if ai ⌘ 0 mod 2 for i odd, and all i � 18. Equivalently that all bi 2 Z.

Let N D H ˚E2
8 ˚ A1 be our standard lattice of signature .1; 18/ as in Section 4. For

each vector Ea 2 Z
24
�0 coming from an integral point in K and satisfying the parity condition,

we define a combinatorial type of polarized Kulikov surface. Then we prove that a Kulikov
degeneration with this central fiber has the monodromy �.

Construction 6.25. Suppose that Ea 2 K satisfies the parity condition so that B.Ea/ has
singularities only at integral points. Let ◆IA be the orientation-reversing involution of B.Ea/
which switches P and P op, fixing the equator pointwise. Choose an ◆IA-invariant triangulation
T of B.Ea/ into triangles of lattice volume 1 which contains the equator RIA as a set of edges.

We now apply Proposition 2.22 to produce a Kulikov surface X0 D
S

i .Vi ;Di / for
which F.Vi ;Di / D star.vi / as an integral-affine surface, and Ä.X0/ D B.Ea/. This specifies
a unique deformation type of X0 but not its continuous moduli.

To choose from the continuous moduli, first, we pick an anticanonical pair .Vi ;Di / on
the equator admitting an involution ◆i which induces ◆IA on F.Vi ;Di /. This is possible by
Theorem 6.14. Then we glue the equatorial edges of X0 by ensuring that Ri glue into a Cartier
divisor, i.e. Ri \Dij D Rj \Dj i as multisets. Finally, we glue the northern and southern
hemispheres of X0 onto this equatorial band of surfaces, in an arbitrary involution-invariant
manner.

The resulting Kulikov surface X0 admits an involution which we denote ◆0 and which
acts on Ä.X0/ by ◆IA. Furthermore, by construction, there is a Cartier divisor R ⇢ X0 given
by R D

S
i Ri . We show in Section 6G that it is possible to glue so that this involutive surface
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X0 is also d -semistable (see Section 2A), but for the moment, assume this. In particular, X0

is smoothable by [20].

Definition 6.26. We write X0.Ea/ for the Kulikov surface defined in Construction 6.25
and X.Ea/ for a smoothing of it.

Theorem 6.27. Let Ea satisfy the parity condition and suppose B.Ea/ is generic.

(1) Let X.Ea/! .C; 0/ be a Kulikov degeneration defined above.

(2) Let �W .S; !/! B.Ea/ be a Lagrangian torus fibration over B.Ea/.

(3) Let �WS ! Xt be the diffeomorphism of Theorem 2.43.

Define v´ �⇤Œ†IAç 2 ı
?=ı, where †IA ´ †RIA . Then πv; ıº?=ı is isometric to N and the

monodromy invariant is � D Ea mod OC.N /.

Proof. By construction of �, �⇤Œ†IAç 2 ı
?=ı is invariant under the Picard–Lefschetz

transformation, hence perpendicular to the monodromy invariant �. So � 2 πv; ıº?=ı.
We describe a collection of 24 spheres πEiº of self-intersection �2 in .S; !/, which

intersect according to the Coxeter diagram Gcox. They are all presented as non-Lagrangian
visible surfaces. Let �i for i D 0; : : : ; 17 be the i -th edge of P . Then the monodromy-invariant
vectors ˛i at the two endpoints of �i are parallel. By Construction 2.39 and Example 2.41,
there is a visible surface Ei ´ †.�i ;˛i / fibering over �i . Now, let i D 18; 19; 20. Define �i

as a path which connects the singularity of P over the edge 0; 6; 12), to the mirror singularity
in P op, crossing the edge 0; 6; 12, respectively. As before, let Ei ´ †.�i ;˛i / where ˛i is the
(common) vanishing cycle at the two endpoints of �i . Finally, we define Ei for i D 21; 22; 23
similarly, but this time connecting the singularity in P to the mirror one in P op via a path �i

which crosses the edge 9; 15; 3, respectively. It is an easy check that if the Ei are properly
oriented, the intersection numbers Ei �Ej give exactly a system of roots as in Gcox.

We directly compute by perturbing and counting signed intersection points that

Œ†IAç � ŒEi ç D 0:

Since the classes ŒEi ç generate a lattice of determinant 2 and rank 19, we conclude that �⇤ŒEi ç

generate the rank 19 lattice πı; vº?=ı over Z and that this lattice is isometric to N , with the
isometry identifying �⇤ŒEi ç and ri .

Finally, we wish to show � and Ea define the same element of N modulo OC.N /. We
have the following formula for the symplectic area of a visible surface:

Œ!ç �Ei D

Z 1

0
det.˛i ; �

0
i .t// dt D ai

for all i . Hence � � �⇤ŒEi ç D ai for all i . This shows that � and Ea represent the same lattice
point in K, i.e. � D Ea mod OC.N /.

Corollary 6.28. The vector v 2 ı?=ı is imprimitive with v D 3w and w2
D 2.

Proof. By taking a generic perturbation of †IA off itself and counting signed intersec-
tions, we see that v2

D 18. Also, v lies in spanπ�⇤ŒEi çº
?
⇢ ı?=ı, a one-dimensional lattice of

determinant 2, which is necessarily generated by a vector w with w2
D 2. Hence v D 3w.
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Theorem 6.29. Theorem 6.27 holds, even when B.Ea/ is not generic.

Proof. The primary issue with the proof of Theorem 6.27 in the non-generic case is
that there is no smooth Lagrangian torus fibration �W .S; !/! B.Ea/ when B.Ea/ has more
complicated singularities such as 0A0

2n�1. So we cannot directly apply Theorem 2.43.
Let Ea.t/ be a one-parameter family over t 2 Œ0; 1ç such that ai .t/ > 0 for all t > 0 and

ai .0/ results in a collision of I1 singularities. LetN > 0 be a large integer. For all t , letB 0.Ea.t//
be the result of performing nodal slides (Definition 2.27) of fixed length lying in N�1

Z, to
every singularity involved in a collision. Then, as t ! 0, the singularities no longer collide,
and rather the collection of singularities of B.Ea/ are factored into I1 singularities by the nodal
slides. Let

�.t/W .S.t/; !.t//! B.Ea.t// for t 2 .0; 1ç;
�0.t/W .S 0.t/; !0.t//! B 0.Ea.t// for t 2 Œ0; 1ç

be the corresponding families of almost toric fibrations. The fibration�.0/ does not exist unless
B.Ea/ has all unprimed singularities, but �0.0/ does. Define

�.t/ D Œ†IAç 2 H
2.S.t/;Z/:

The �.t/ are identified under the Gauss–Manin connection on the fiber bundle S.t/! .0; 1ç.
Define � 0.t/ by parallel transport of �.t/ along the nodal slide connecting B.Ea.t// to B 0.Ea.t//.
It is easy to see that � 0.t/ is also represented by a visible surface †0

IA.t/ which fibers over
RIA.t/ and the segments along which the nodal slides were made. Since �0.0/ exists (as the I1

singularities no longer collide), we have that � 0.0/ D Œ†0
IA.0/ç is the parallel transport of � 0.t/.

As the slide parameters lie inN�1
Z, these parameters are integral on the orderN refine-

ment. So B 0.a.0//ŒN ç admits a triangulation into lattice triangles. By Proposition 2.22, we get
a Kulikov degeneration X

0ŒN ç! .C; 0/ such that Ä.X0
0ŒN ç/ D B

0.a.0//ŒN ç.
The nodal slides destroy the involution symmetry of B.a.0//ŒN ç and any chance of X

having an involution. But we may apply the first half of Theorem 2.43 to B 0.a.0//ŒN ç to
conclude that the vanishing cycle is identified with Œ�0.0/�1.p/ç and the monodromy invariant
�0ŒN ç is identified with NŒ!ç0.0/. Furthermore, the class �⇤� 0.0/ is invariant under Picard–
Lefschetz, and the conclusion of Theorem 6.27,

�0ŒN ç D N Ea.0/ mod OC.N /;

holds by continuity: we have Œ!.t/ç D Œ!0.t/ç because nodal slides leave the class of the sym-
plectic form invariant. Hence

Œ!0.0/ç D lim
t!0

Œ!0.t/ç D lim
t!0

Œ!.t/ç D lim
t!0

a.t/ D a.0/:

Integral length nodal slides correspond to M1 modifications of X
0ŒN ç by Proposition 2.28.

Thus, there is a sequence of such modifications after which we have a Kulikov degeneration
X

00ŒN ç! C satisfying Ä.X00
0 ŒN ç/ D B.a.0//ŒN ç. After a series of M2 modifications corre-

sponding to retriangulation (again Proposition 2.28), we can produce a Type III degeneration
XŒN ç! C such that the dual complex is the standard order N refinement of a triangulated
IAS2 B.a.0//. We conclude by Proposition 2.29 that XŒN ç! C is in fact an order N base
change of a Kulikov degeneration X ! C such that Ä.X0/ D B.Ea.0//, whose vanishing cycle
is the same, and whose monodromy-invariant � is Ea.0/.
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Furthermore, we have produced not just a class �⇤� 0.0/ but an actual surface �.†0
IA.0//

on the general fiber Xt (note the M1 and M2 modifications act trivially on the punctured
family). Under the Clemens collapsing map Xt ! X0, the surface �.†0

IA.0// is pinched at
the double curves to produce a union of surfaces Ri ⇢ Vi on the equator such that

Ri \Dij D Rj \Dij :

We note that the involution is restored in the limit ai ! 0 when undoing the nodal slides.
The class ŒRi ç is invariant under the involution on an anticanonical pair of deformation type
.Vi ;Di /. We also know the values of ŒRi ç

2 and ŒRi ç �Dij by continuity, so we can apply
the reconstruction proposition, Proposition 6.23, to determine Ri uniquely as the class of the
ramification locus.

6E. An example: The A0
18

ray. Consider the A0
18 subdiagram of Gcox where ai D 0

for i 2 Œ18; 0; 1; : : : ; 16ç. The corresponding cone in Fcox is a ray. Take Ea to be twice the inte-
gral generator so that it satisfies the parity condition, Definition 6.24. Then a17 D 6. Relations
in N determine .a19; a20; a21; a22; a23/ D .10; 8; 30; 14; 22/. Recall from Section 6 that Ea
corresponds to line bundle M in the nef cone PicS of the mirror K3 satisfying M �Ei D ai .
Letting ⇡ WS ! T be the double cover of the rational elliptic surface, we have M D ⇡⇤L,
where L � Fi D bi with Eb D .0; : : : ; 0; 3; 0; 5; 4; 15; 7; 11/. Then we may further blow down
�WT ! T to the first “6-6-6” toric model. The values bi D .�⇤L/ � F i are b6 D 5, b12 D 4,
b17 D 3 with all other bi D 0.

Take a moment polygon of T with polarization L D �⇤L and apply two Symington
surgeries of size 5 and 4 on the edges associated to b6 and b12, respectively, producing the
green integral-affine disc P.Ea/ with blue boundary depicted in the upper part of Figure 7. We
double the disc so that the blue edge becomes the equator of the IAS2 B.Ea/.

We triangulateB.Ea/ into lattice triangles in an involution-invariant manner, respecting the
blue edge. The singular red stars and non-singular black points form the vertices vi . Finally, we
interpret each vertex as the pseudo-fan F.Vi ;

P
j Dij / an anticanonical pair and glue according

to the combinatorics of the triangulation. The resulting Kulikov surface X0 is shown in the
lower part of Figure 7, with double curves in gray, self-intersections in purple, and triple points
in yellow.

The line bundles Ri are trivial on all but three components, those along the blue line. On
the outer component, Ri is the fixed locus on involution on a resolution of the type A0

18 involu-
tion pair. On the two other equatorial components, Ri is the fiber of a ruling along the equator.
These glue to form the Cartier divisor R. Taking the image of a multiple of OX0

.R/, we get
the stable model: this contracts the northern and southern hemispheres to a point, contracts
a ruling on two equatorial components, and is a birational morphism of the outer component to
the polarized A0

18 involution pair.
The resulting stable model is irreducible, and is the contraction of an anticanonical pair

with cycle of self-intersections .�10;�2;�1;�2;�10;�1/ to a singular surface with two
boundary components glued. It has two cyclic quotient singularities at the north and south
poles whose resolutions are a chain of rational curves of self-intersections .�10;�2/ and the
images of the .�1/-curves which are glued.

6F. Type II Kulikov models. It remains to determine the Kulikov models correspond-
ing to the rational cusps of K.
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Figure 7. Top: P.Ea/ for the Ea 2 K generating the A0
18 ray. Bottom: A Kulikov surface X0.Ea/ with

Ä.X0.Ea// D B.Ea/.
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Construction 6.30. To a vector Ea ¤ 0 2 K with Ea2
D 0, we associate a Type II Kulikov

surface X0.Ea/ with an involution ◆0 and a stable surface .X0.Ea/; ✏R/.
For the relevant connected parabolic diagrams, we have the Type II zA zD zE involution pairs

.Xk;Dk/ of [7] which glue to a stable surface X0.Ea/ with an involution ◆0 and fixed locus R.
For the diagrams zE2

8
zA1, zD10 zE7, zD16 zA1 where there are two components, the elliptic curves

Dk must be isomorphic to a fixed E.
Now we describe the Kulikov models. If Ea D mEa0 with primitive Ea0, then the dual com-

plex Ä.X0.Ea// will be an interval Œ0;mç. A triangulation in this case is the subdivision into
intervals of length 1.

For zD10 zE7 and zD17 zA1, the surface X0.Ea/ is constructed by taking the minimal res-
olution of each component of X0.Ea/ and gluing these components, with a chain of m � 1
P

1-bundles over E inserted between them, like an accordion.
In the zE2

8
zA1 case, we assume after an order 2 base change that m is even. At the ends,

we put the minimal resolutions of two zE8 involution pairs. We build a chain of surfaces as in
the previous case, but on the middle component, we blow up a pair of points on the boundary
of P

1
⇥E switched by the involution. This corresponds to the zA1 D zA

irr
1 diagram.

In the zA17 case, resolve the two simple elliptic singularities of the zA17 involution pair
X0.Ea/ D .V ; p1; p2/ to obtain a surface .V;D1 CD2/ which is ruled over an elliptic curve
with 18 broken fibers, and whose anticanonical divisor D1 tD2 is the disjoint union of two
elliptic curves E of self-intersection �9. We again assumem is even, and put the anticanonical
pair .V;D1 CD2/ at them=2 vertex. We add ruled surfaces over the same elliptic curve E for
the integral points l ¤ 0;m=2;m and cap both ends of the segment by the rational anticanonical
pair .P2; E/.

Remark 6.31. The Type II Kulikov models can also be constructed directly from the
segment, together with the data of how it degenerated from an IAS2; an analogue of the Mon-
odromy Theorem, Theorem 2.43, likely holds. This requires first generalizing pseudo-fans to
allow blow-ups of E ⇥ P

1, corresponding to the surfaces in the interior of the interval. The
ends of the interval are anticanonical pairs .V;D/ with D smooth. These obviously have no
toric models, but can be constructed via node smoothing surgeries, cf. [16, Proposition 3.12].
For example, in the zA17 case, the three surgery triangles consume all of P . At the north pole,
this dictates three node smoothing surgeries on the anticanonical pair .P2; L1 C L2 C L3/,
giving the pair .P2; E/, as in Construction 6.30.

6G. Deformations of Kulikov models with involution. We now prove that the Kulikov
surfaces X0.Ea/ constructed

(1) can be made d -semistable and admit a smoothing into F2, and

(2) the union R ⇢ X0.Ea/ of the curves Ri ⇢ .Vi ;Di / from Theorem 6.14 is the flat limit of
the ramification divisor.

Once these are demonstrated, we show that

(3) every degeneration C ⇤
! F2 admits a Kulikov limit of the form X0.Ea/ with R the flat

limit of the ramification divisor.

We first recall the basic statements about d -semistable Kulikov surfaces from [20,24,27,
39]. Let X0 be a Type III Kulikov surface with v irreducible components Vi , e double curves
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Dij D Vi \ Vj , and f triple points Tijk D Vi \ Vj \ Vk . One defines an important lattice of
“numerical Cartier divisors”

zƒ D ker
⇣M

i

PicVi !

M

i<j

PicDij

⌘

with the homomorphism given by restricting line bundle and applying ˙1 signs. The map is
surjective over Q by [24, Proposition 7.2]. The set of isomorphism classes of not necessarily
d -semistable Type III surfaces of the combinatorial type X0 is isogenous to Hom.zƒ;C⇤/.

For a given  2 Hom.zƒ;C⇤/, the Picard group of the corresponding surface is ker. /.
The surface is d -semistable if and only if the following v divisors are Cartier:

⇠i D
X

j

Dij �Dj i 2 zƒ:

Note that
P

i ⇠i D 0. Thus, the d -semistable surfaces correspond to the points of multiplicative
group Hom.ƒ;C⇤/, where

„ D

L
i Z⇠i

.
P

i ⇠i /
; ƒ D coker.„! zƒ/:

By [21, 24], the Clemens–Schmid exact sequence identifies ƒ as isometric to

πı;�º?=ı D �?
⇢ I?=I or J?=J

in Types III or II, respectively.
The dimension of the space of the d -semistable surfaces is

X

i

⇢.Vi / � e � .v � 1/ D .2e � 2v C 24/ � e � .v � 1/ D e � 3v C 25 D 19

because e � 3v D �6 for a triangulation of a sphere.

Lemma 6.32. For all Ea, there is at least one d -semistable Kulikov surface X0.Ea/ which
admits an involution acting by switching the hemispheres of B.Ea/, and acts in the prescribed
way on the equatorial components (cf. Theorem 6.14).

Proof. Within any deformation type, the Kulikov surface X0 for which D 1 is the one
for which all moduli of components and gluing data are trivial: only �1 (in toric coordinates)
is blown up on a toric model of a component .Vi ;Di /, and all double curves Dij and Dj i are
identified by gluing (in toric coordinates) by �1.

For this surface, it is automatic that the equatorial edgesDij are glued in such a way that
Ri \Dij D Rj \Dj i . Thus, the union of the equatorial components admits an involution, and
by uniqueness of this Kulikov surface, the involution extends across the two hemispheres.

Finally, since  D 1, the d -semistability condition is automatic.

Lemma 6.33. Any d -semistable equisingular deformation of the Kulikov surface X0.Ea/

from Lemma 6.32 keeping ŒRç Cartier smooths to a degree 2 K3 surface. The space of such de-
formations is isogenous to Hom.ƒ=1

3ZŒRç;C⇤/ in Type III and Hom.ƒ=1
3ZŒRç;E/ in Type II.
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Proof. To prove the second part, observe that Corollary 6.28 implies Œ†IAç is 3-divisible
in πf; Œ!çº?=f and therefore ŒRç is 3-divisible in πı;�º?=ı D ƒ. Since 1

3 ŒRç is Cartier on the
surface with  D 1, any deformation keeping ŒRç Cartier also keeps 1

3 ŒRç Cartier. Thus, any
deformation keeping ŒRç Cartier admits a line bundle L, with L2

D 2.
By [20], the analytic smoothing component S of X0 is 20-dimensional and analytically

locally isomorphic to an extension of vector spaces

0! Hom.ƒ;C/! S ! H 0.Ext1.�1
X0
;OX0

//! 0:

The first space forms the tangent space to equisingular d -semistable deformations, and by d -
semistability, the third space has dimension one. The hyperplane SŒRç ⇢ S keeping ŒRç Cartier
fits into an exact subsequence

0! Hom.ƒ=1
3ZŒRç;C/! SŒRç ! C ! 0:

and a deformation is first-order smoothing if and only if it has nonzero image in C. So there
are smoothings keeping ŒRç Cartier and admitting a line bundle L, L2

D 2. The first part of the
lemma follows.

Lemma 6.34. Any equisingular deformation as in Lemma 6.33 admits an involution ◆0
and a Cartier divisor R representing the deformation of ŒRç, realizing it as a Kulikov surface
X0.Ea/ coming from Constructions 6.25, 6.30.

Proof. It suffices to prove that the deformations which keep the class ŒRç Cartier also
admit an involution ◆0 acting in the desired way on X0 and are, therefore, instances of Con-
struction 6.25 (caveat lector: R and Fix.◆0/ need not be equal, see Remark 6.22).

First, we suppose B.Ea/ is generic. In this case, we prove that a deformation keeps ŒRç
Cartier if and only if it deforms the involution ◆0. The reverse implication is easy, as the Cartier
divisorR can be reconstructed from ◆0; it is the pullback ofRi D Fix.◆i / from the stable models
of the equatorial components.

Next we show that the first-order d -semistable equisingular deformations of X0 keeping
ŒRç Cartier preserve the involution. The tangent space to the d -semistable equisingular defor-
mations is Hom.ƒ;C/. Here, the target vector space C depends on the orientation of Ä.X0/,
so the involution ◆0 acts on it as .�1/. Thus, the tangent space to deformations preserving
the involution is Hom.ƒ=ƒC;C/, where ƒC is the .C1/-eigenspace of ◆0 on ƒ. Obviously,
ŒRç 2 ƒC. So all we have to show is that .nC; n�/´ .rankƒC; rankƒ�/ D .1; 18/. We now
compute the ranks of the .C1/ and .�1/-eigenspaces for all the lattices involved.

Let us denote by eE , eN the edges of the triangulation of the sphere that appear on the
equator and in the northern hemisphere. One has e D eE C 2eN . Similarly, v D vE C 2vN

for the vertices and q D qE C 2qN D 18C 6 for the charges.
For an irreducible component, the Picard rank is ⇢.Vi / D e

i
C qi

� 2, where we only
count the edges and charges belonging to Vi . For a symmetric pair of surfaces in the north-
ern and southern hemispheres, this gives .ei

N C q
i
N � 2; e

i
N C q

i
N � 2/. For a surface in the

equator, .ei
E C e

i
N C q

i
N � 1; e

i
N C q

i
E C q

i
N � 1/. Adding up the eigenspaces for

L
PicVi

gives
.2eE C 2eN � vE � 2vN C qN ; 2eN � vE � 2vN C qE C qN /:
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For the lattice
L

PicDij , it is of course .eE C eN ; eN /, and for „, it is .vE C vN � 1; vN /.
Putting this together, the ranks .nC; n�/ are

✓
1

2
.e � 3v/C

1

2
.eE � vE /C qN C 1;

1

2
.e � 3v/ �

1

2
.eE � vE /C qE C qN

◆
:

Using e � 3v D �6 and eE D vE , we have .nC; n�/ D .qN � 2; qE C qN � 3/ D .1; 18/.
When Ä.X0/ is non-generic, the computation has an additional subtlety: the action of

the involution on Pic.Vi / for an equatorial component varies (see Remark 6.22) as one varies
the involution pair .V i ;Di C ✏Ri /. But choosing a generic member of the space of .Vi ;Di /

admitting an involution ◆i gives a specified action on Pic.Vi /, and for this generic choice,
.nC; n�/ D .1; 18/.

We now lift to higher-order deformations, noting that these higher-order lifts form a torsor
over the first-order deformation space Hom.ƒ;C/. Thus, the involution ◆0 acts on higher-order
deformations by an affine-linear transformation, whose linear part fixes an 18-dimensional sub-
space. It follows that the involution fixes an 18-dimensional affine-linear subspace. So the
involution can be lifted to higher order. Furthermore, these lifts are exactly those preserving
the line bundle since the fixed locus of the involution is Cartier. We conclude that deformations
over an analytic open subset of Hom.ƒ;C⇤/ have an involution. This open subset is Zariski
dense since the condition of having such an involution is algebraic.

We now specialize from this sublocus of Hom.ƒ;C⇤/ of Kulikov surfaces with involu-
tion, observing that a limiting Kulikov surface X0 still admits an involution, and the limiting
class ŒRç is still Cartier. Alternatively, we can cite [7, Theorem B]—the spaces of ADE sur-
faces are parameterized by tori .C⇤/n, so by varying the moduli of the equatorial components
and the edge gluings, the space of X0.Ea/ fills out all of .C⇤/18, as opposed to some Zariski
open subset.

In the Type II case, a dimension count shows that varying moduli of the ADE surfaces
and gluings from Construction 6.30, with a fixed elliptic curve E, produces an abelian variety
isogenous to E17. Thus, additionally varying j.E/ fills out the entire abelian variety fibration
Hom.ƒ=1

3ZŒRç;E/ over the modular curve.

Theorem 6.35. Let X0.Ea/ be a d -semistable Kulikov surface from Constructions 6.25,
6.30. The Cartier divisor R ⇢ X0.Ea/ is the flat limit of the ramification divisors R

⇤
⇢ X

⇤ on
any smoothing X ! .C; 0/ keeping ŒRç Cartier.

Furthermore, every degenerating family .X⇤;R⇤/! C ⇤ of degree 2 K3 surfaces with
ramification divisor admits, after some finite base change, a Kulikov model X ! .C; 0/ of this
form.

Proof. Let X0.Ea/ be a generic element of Hom.ƒ=1
3ZŒRç;C⇤/. Then each anticanoni-

cal pair .Vi ;Di / with involution ◆i is generic, and the involution ◆0 acts on ƒ with eigenspaces
of dimension .1; 18/. The argument of Lemma 6.34 shows that any smoothing keeping ŒRç
Cartier preserves the involution because ◆0 acts on H 0.Ext1.�1

X0
;OX0

// by negation.
So there is an involution ◆ on any Kulikov model X smoothing X0 which keeps ŒRç

Cartier. This implies limt!0 Fix.◆t / D Fix.◆0/ because X is smooth, so Fix.◆/ consists of only
0- and 2-dimensional components. In particular, each 2-dimensional component is irreducible
and forms a flat family of divisors. Furthermore, since we are in the generic case, Fix.◆t / D Rt

for all t including 0.



Alexeev, Engel and Thompson, Compactification of moduli of K3 surfaces 49

For X0.Ea/ non-generic, i.e. having .�2/-curves in equatorial components, and a general
smoothing X ! .C; 0/, the involution ◆0 does not extend to a regular involution ◆ of X. Instead,
X

⇤ admits an involution ◆⇤ which only extends as a birational involution ◆WX Ü X whose
locus of indeterminacy is the .�2/-curves in the equatorial components, and the restriction
◆jX0.Ea/ extends to ◆0.

We conclude that the flat limit of R
⇤ differs from Fix.◆0/ at most along the equatorial

.�2/-curves, as does R, by construction. So limt!0 Rt D RC
P
aiCi for Ci these .�2/-

curves. On the other hand, R
2
t D R

2 by construction, R � Ci D 0, and Ci span a negative-
definite lattice, so we conclude that ai D 0 for all i . This completes the proof of the first
paragraph in the theorem.

To prove the second paragraph, we observe that, after a finite base change, any degen-
eration X

⇤
! C ⇤ has unipotent monodromy and thus has some monodromy invariant � 2 K.

After a further order 2 base change, we can ensure vector Ea 2 Z
24
�0 defined by .� � ri /i2π0;:::;23º

satisfies the parity condition. Let X0.Ea/ be one of the corresponding Kulikov surfaces. By
Theorem 6.29, the monodromy invariant of a smoothing X.Ea/! .C; 0/ is, in fact, equal to �.

It remains to show that we can vary the continuous moduli of X.Ea/ until our given family
X

⇤
! C ⇤ agrees with X

⇤.Ea/. By Lemmas 6.33, 6.34, the d -semistable surfaces X0.Ea/ keep-
ing ŒRç Cartier form a family X0.Ea/ over (a variety isogenous to) .C⇤/18 or E

⇥17 in Types III
and II, respectively.

A result of Friedman–Scattone [24, Lemmas 5.5, 5.6] shows that the smoothing compo-
nents of the fibers of X0.Ea/ keeping ŒRç Cartier can be glued together, to form a family X.Ea/ of
smooth and Kulikov K3 surfaces with line bundle. The base of X.Ea/ is 19-dimensional and, up
to the action of a finite group, is identified with the toroidal extension F2 ,! F �

2 whose only
cones are the Ä-orbits of the ray R�0�. The boundary divisor is exactly the base of X0.Ea/,
parameterizing the d -stable equisingular deformations of X0.Ea/ keeping ŒRç Cartier. Proposi-
tion 3.2 implies that X

⇤
! C ⇤ is a subfamily of X.Ea/ because the period map approximates

a co-character �˝C
⇤ which is completed at 0 in F �

2 . The theorem follows.

7. Determination of stable models

The goal of this section is to determine the KSBA stable limit of any one parameter
degeneration .X⇤; ✏R⇤/! C ⇤ in F2,. We describe the components which will appear on any
stable limit of degree 2 K3 pairs .X; ✏R/, and how they are glued.

7A. ADE and zA zD zE surfaces. In this section, we describe the classification of invo-
lution pairs of [7] in more detail.

Definition 7.1. Let X be a normal projective surface with a reduced boundary divisor
D and an involution ◆WX ! X , ◆.D/ D D such that

(1) KX CD ⇠ 0 is a Cartier divisor linearly equivalent to 0,

(2) the ramification divisor R is Cartier and ample, and

(3) the pair .X;D C ✏R/ has log-canonical singularities for 0 < ✏ ⌧ 1.
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Such pairs were called .K CD/-trivial polarized involution pairs in [7], where they are clas-
sified in terms of the decorated ADE diagrams in Type III and extended zA zD zE diagrams in
Type II.

The classification in [7] is done in terms of the quotients .Y; C / D .X;D/=◆ and the
branch divisors B ⇢ Y . The surface X is recovered as a double cover ⇡ WX ! Y branched
in B . Then R D ⇡�1.B/ and D D ⇡�1.C /.

In toric geometry, a lattice polytope P corresponds to a toric variety YP with an ample
line bundle LP . For many Dynkin diagrams, there exists a polytope P corresponding to it in
an obvious way. Then Y is defined to be YP and the branch divisor B to be a divisor in the
linear system jLP j.

For example, there are polytopes of shapes associated to A�
0 , D5, E7 in Figure 3. In

general, the polytope P has the following vertices:

(1) An, A�
n for n odd and even, respectively: .2; 2/, .0; 0/, .nC 1; 0/.

(2) �A�
n , �An for n odd and even, respectively: .2; 2/, .1; 0/, .nC 2; 0/.

(3) Dn and D�
n : .2; 2/, .0; 2/, .0; 0/, .n � 2; 0/.

(4) En (�E�
6 , �E7, �E�

8 ): .2; 2/, .0; 3/, .0; 0/, .n � 3; 0/.

(5) zD2n: .0; 2/, .0; 0/, .2n � 4; 0/, .4; 2/.

(6) zE7: .0; 4/, .0; 0/, .4; 0/.

(7) zE8: .0; 3/, .0; 0/, .6; 0/.

In the ADE cases, the boundary D has two components. In the zA zD zE cases, D is an
irreducible smooth elliptic curve.

The only non-toric initial cases are zA2n�1 and two small exotic zA shapes.

(8) zA2n�1. The surface is cone ProjE .O ˚ F / over an elliptic curve E, where F is a line
bundle of degree n. The boundary C D 0 is empty and B 2 j�2KY j.

(9) zA⇤
1 . Here, Y D P

2, the boundary C is a smooth conic, and the branch curve B is a pos-
sibly singular conic. If B is smooth, then X D P

1
⇥ P

1, and if B is two lines, then
X D P .1; 1; 2/ with R passing through the apex. Also included is a degenerate subcase
when P

2 degenerates to Y D P .1; 1; 4/ with R not passing through the apex.

(10) zA�
0 . Here, Y D P .1; 1; 2/ D F

0
2 . The curve C is the image of zC 2 js C 3f j on F2. The

branch curve is a conic section disjoint from the apex.

All other pairs are obtained from these by a process called “priming”: making up to 4
weighted .1; 2/ blow-ups Y 0

! Y at the points of intersection of the branch divisor B with the
boundary C and then contracting parts of the boundary C 0 on which �KY 0 is no longer ample.
On the double cover ⇡ WX ! Y , this corresponds to an ordinary smooth blow-up at a point of
R \D and then contracting parts of the boundary D0 on which R0 is no longer ample.

These “primed” surfaces Y 0 are usually not toric. But they are toric in the 0A2n�1, 0A�
2n,

0A0
2n�1 andD0

2n cases for which there are also lattice polytopes. The polytope for 0An is obtained
from that for An by cutting a corner, a triangle with lattice sides 1; 1; 2, which corresponds to
the weighted .1; 2/ blow-up. For the 0A0

2nC1 diagram, the corners on both sides are cut. For the
D0

2n diagram, the corner on the “right” side is cut. See a concrete example of a polytope of
shape 0A4 in Figure 3.
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Examples 6.16, 6.17, 6.18, 6.19, 6.20, 6.21 describe explicitly the minimal resolutions of
involution pairs .X;D/ of shapes A�

0 , A2n�1, 0A0
2n�1, D2n, D0

2n, En to smooth anticanonical
pairs admitting an involution.

Notation 7.2. In general, the involution pairs with elliptic diagram have two boundary
components, each isomorphic to P

1, and meeting at two points to form a banana curve. We call
the two nodes the north and south poles, and the two components the left and right components.

7B. All degenerations of K3 surfaces of degree 2. Recall that the stable type (Defini-
tion 4.10) of an elliptic or maximal parabolic subdiagram of Gcox was a cyclically ordered list
of its equatorial diagrams, with �A0 and A�

0 diagrams inserted in the space between diagrams.

Definition 7.3. Associated to every Type III stable type, we build a stable surface as
follows. For each diagram, we take an involution pair .Xk;Dk; ◆k/ with the corresponding
label by [7] (see Section 7A). Then we successively glue the surfaces together,

.X; ◆/ D
[

k

.Xk;Dk; ◆k/;

along their boundary components, identifying the right component ofDk to the left component
ofDkC1 and identifying the two north poles and the two south poles. The intersection complex
of the resulting surface is a sphere, decomposed like the slices of an orange. We glue in such
a way that the ramification divisors Rk glue to a Cartier, ample divisor R.

In Type II, we do something similar for stable types zE2
8 , zD10 zE7, zD16 zA1 by gluing the

two components along elliptic curves. Finally, the stable surface associated to zA17 is simply
the zA17 involution pair.

The scheme-theoretic structure of the surface .X; ◆/ is uniquely determined by the re-
quirement that the gluing be seminormal with SNC double locus, see [32, Proposition 5.3,
Corollary 5.33].

Example 7.4. Consider the empty subdiagram of Gcox, corresponding to the open cell
of K. Its stable type is .A�

0
�A0/

9, see Figure 3, and the corresponding stable surface is the
result of taking 18 copies of .P2; LC C/ with a line and conic, and successively gluing conics
to conics, and lines to lines, in such a way that the fixed divisors, which are lines in each P

2,
glue into a Cartier divisor.

This will be the unique maximal degeneration of F slc
2 .

Theorem 7.5. The stable limits of K3 pairs .X; ✏R/ of degree 2, polarized by the
ramification divisor, are exactly the stable surfaces of Definition 7.3, formed from the union
of involution pairs associated to a stable type of an elliptic or maximal parabolic subdia-
gram of Gcox. More precisely, if the monodromy-invariant � of a one-parameter degeneration
X

⇤
! C ⇤ lies in the relative interior � 2 �o of a cone � 2 Fcox, the stable limit is a stable

surface associated to the stable type of the subdiagram defining � .

Proof. Let X
⇤
! C ⇤ be a degeneration of degree 2 K3 surfaces with monodromy

invariant �. By Theorem 6.35, there is some finite base change and an extension to a Kulikov
model X ! .C; 0/ for which the central fiber X0 D X0.Ea/ arises from Constructions 6.25
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and 6.30. Here, Ea 2 Z
24
�0 is the vector corresponding to � 2 K via � � ri D ai . The flat limit

of R is then a Cartier divisor on X0.Ea/ which is empty in the hemispheres of X0.Ea/ and
is the pullback of Rk D Fix.◆k/ on the involution pair .Xk;Dk/ which is the contraction of
an equatorial component (see Theorem 6.14, but note that the involution pair is notated there
as .V i ;Di /).

In particular, R ⇢ X is a relatively big and nef Cartier divisor not containing any strata
of X0. By the proof of Theorem 3.14, the stable limit of X

⇤
! C ⇤ can be computed as

ProjC
M

n�0

⇡⇤OX.nR/;

which contracts each hemisphere of X0 to a single point, contracts the edges along the equator
by rulings, and contracts each equatorial vertex to the involution pair .Xk;Dk/. The resulting
stable surface is exactly that described in Definition 7.3.

It is worth remarking that, when a subdiagram of Gcox has an Airr
1 or zA irr

1 component,
there is an equatorial surface in X0 receiving two internal blow-ups switched by the involu-
tion, but the information of the location of these blow-ups is lost on the stable model because
they are contracted to points on a double curve.

7C. Moduli of stable strata. The following proposition should be compared with Prop-
osition 4.13.

Proposition 7.6. The strata in F slc
2 are as follows.

(1) For a Type III stable type Grel, Str.Grel/ is, up to an isogeny and a W.Grel/ action, the
root torus Hom.RGrel ;C⇤/.

(2) For a Type II stable type zGrel, Str. zGrel/ is, up to an isogeny and a W.Grel/ action,
Hom.RGrel ;E/ ' E

17, where E
17
!M1 is the self-fiber product of the universal family

of elliptic curves E !M1 over its moduli stack.

Proof. The parameter space for a Type III stratum is, up to a finite group, the product
of the parameter spaces for the irreducible components .Xk;Dk C ✏Rk/ because the gluings
of double curves which make

S
k Rk Cartier are, up to a finite group, unique. By [7], each

of these is a quotient of torus isogenous to the root torus Hom.RGk
;C⇤/ by the Weyl group

W.Gk/. Without the additional data of an involution, this result is essentially due to Gross–
Hacking–Keel [27].

The same works for Type II strata. Such a stratum is a finite quotient of the fiber product
over M1 of the period domains of involution pairs with smooth elliptic anticanonical divisor.
The period point of an anticanonical pair .Vk;Dk/ is the element of Hom.D?;D/ which
sends L 7! LjDk

2 Pic0.Dk/ D Dk . The ◆-invariant period points form an abelian subvariety
isogenous to Hom.RGk

;Dk/, and the moduli space for each component is the quotient by
the ◆-invariant “admissible isometries” of H 2.Vk;Dk/, cf. [22], which in our case is the Weyl
group W.Gk/.

Fixing an elliptic curve D D Dk and taking the product of moduli of components pro-
duces the quotient by W.Grel/ of an abelian variety isogenous to Hom.RGrel ;D/. Finally, we
may vary the moduli of D over M1, giving the fiber product.
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8. Proof of main theorems

We now assemble the ingredients from the above sections to prove the main theorems. In
the proof of Theorem 6.35, we defined the toroidal extension F2 ,! F �

2 whose fan consists of
the Ä-orbit of a ray R�0�, and a family X.Ea/! U.Ea/ of Kulikov and smooth K3 surfaces, with
U.Ea/ a finite cover of F �

2 and Ea D .� � ri /i2π0;:::;23º assumed to satisfy the parity condition.
Recall that the boundary divisor of U.Ea/ was isogenous to Hom.ƒ=1

3ZŒRç;C⇤/ ' .C⇤/18 or
Hom.ƒ=1

3ZŒRç;E/ ' E
⇥17, where ƒ (see Section 6G) is the lattice �?

⇢ I?=I or J?=J .

Theorem 8.1. Let � 2 �o
G \N lie in the relative interior of a cone of Fcox for a subdi-

agram G ⇢ Gcox. Assume Ea D .� � ri /i2π0;:::;23º satisfies the parity condition. Then the classi-
fying map U.Ea/ Ü F slc

2 is a morphism, and the induced morphism on the boundary divisor is
(isogenous to) the restriction map Hom.ƒ=1

3ZŒRç;C⇤ or E/! Hom.RGrel ;C⇤ or E/ for the
natural inclusion RGrel ,! RG ,! ƒ=1

3ZŒRç, followed by the quotienting by a finite group.

Proof. The proof is essentially the same as Theorem 7.5, except we do not restrict
to a one-parameter subfamily. Let R ⇢ X.Ea/ be the universal ramification divisor and let
L D OX.Ea/.R/ be the corresponding line bundle, which is relatively big and nef. The fam-
ily of divisors R exists because the flat limit of the ramification divisor on any Kulikov model
is R ⇢ X0.Ea/ by Theorem 6.35.

By Shepherd-Barron [51], the higher cohomology groups of Ln are zero on every fiber, so
for n � 4, Ln defines a contraction to a model with an ample line bundle. Since the divisors R
do not contain strata on any fiber by construction, the fibers in the contracted family are stable
pairs .X.Ea/; ✏R/! U.Ea/, and the fibers over the boundary divisor have stable type determined
by Grel, by Theorem 7.5. This proves that the classifying map is a morphism.

So the classifying map induces a morphism from Hom.ƒ;C⇤ or E/ to the slc stratum
Str.Grel/ of Proposition 7.6. We claim that this morphism factors through the natural map of
tori induced by the inclusions RGrel ,! RG ,! ƒ; note that RG ,! ƒ because

� 2 � H) �?
⇢ �?

⇢ I?=I H) RG ⇢ ƒ:

Let .Vi ;Di / be an equatorial component of X0, and define

ƒi ´ spanπDij º
?
⇢ H 2.Vi ;Z/:

The period domain [22, 27] for anticanonical pairs .Vi ;Di / is Hom.ƒi ;C
⇤/, while the corre-

sponding period domain for involution pairs [7] is a torus with character lattice isogenous to
RGi
⇢ ƒi (more canonically a quotient), consisting of periods of anticanonical pairs .Vi ;Di /

accepting an involution ◆i . Finally, observe that there is an inclusion
L

i ƒi ,! ƒ as every class
inƒi can be extended by 0 to a numerically Cartier class on X0. This map induces the inclusion
RG ,!ƒ=1

3ZŒRç. We conclude that the map on moduli Hom.ƒ=1
3ZŒRç;C⇤ or E/! Str.Grel/

is induced by the claimed map of lattices.

Theorem 8.2. The rational map 'WF semi
2 ÜF slc

2 is regular and the normalization map.

Proof. We first prove that the rational map '0
WF tor

2 Ü F slc
2 is regular. For any ray

R�0� of the fan, the map extends over the interior of the corresponding divisor of F tor
2 by Theo-

rem 8.1. So, if there is any indeterminacy locus of '0, then it is contained in the Type III locus.
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Suppose that '0 is not regular. Let F tor
2

p
 � Z

q
�! F slc

2 be a resolution of singularities
of '0. The preimage Zx D p

�1.x/ of a point x 2 F tor
2 is projective. By Theorem 7.5 and

Proposition 7.6, one has q.Zx/ ⇢ Str.Grel/. But by Proposition 7.6, every Type III stratum in
F slc

2 is affine. So the map Zx ! F slc
2 is constant. We conclude by Lemma 3.18.

The morphism '0 factors through 'WF semi
2 ! F tor

2 : In fact, by Theorem 8.1 and Theo-
rem 4.21, the curves contracted by F �

2 ! F semi
2 and F �

2 ! F slc
2 are the same, giving the claim.

Then ' is a birational morphism with finite fibers, so by Zariski’s Main Theorem, it is the
normalization.

Corollary 8.3. The Stein factorization of F tor
2 ! F slc

2 is F tor
2 ! F semi

2 ! F slc
2 .

Proof. This follows from the fact that the fibers of F tor
2 ! F semi

2 are connected.

Corollary 8.4. There is a regular map F
semi
2 ! F

slc
2 of Deligne–Mumford stacks, for

an appropriate choice of stack structure on F semi
2 .

Remark 8.5. Corollary 8.4 is essentially a tautology by pulling back the stack structure,
but it is subtle from the perspective of arithmetic quotients.

(1) Even the interior is not the stack quotient ŒD W Äç. The Heegner divisors associated to
roots ˇ 2 h? have inertia in ŒD W Äç but not in F2.

(2) Due to the presence of generic automorphisms on slc strata, we need a stacky fan: for each
cone � 2 Fcox, we must choose a sublattice of span.�/ \N , which introduces inertia at
the toric boundary components.

Similar to the enumeration of the strata of F tor
2 in Lemma 4.5 and Lemma 4.6, by looking

at the subdiagrams of Gcox without irrelevant connected components only, mod S3 or D9, one
can enumerate the strata of F semi

2 or F slc
2 . In particular, we have the following lemma.

Lemma 8.6. Both in F semi
2 and in F slc

2 , there are 38 boundary divisors, of which 3 are
of Type II and 35 are of Type III.

Remark 8.7. The normalization map F semi
2 !F slc

2 is not the identity map. For instance,
when a diagram Grel is entirely contained in the 18-cycle 0; : : : ; 17, the resulting stable pair
stratum is the same for all diagrams in theD9 dihedral group orbit ofGrel. For semi-toric strata,
only diagrams related by D3 ' S3 are identified.
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