J. reine angew. Math. 799 (2023), 1-56 Journal fiir die reine und angewandte Mathematik
DOI 10.1515/crelle-2023-0011 © De Gruyter 2023

Stable pair compactification of moduli
of K3 surfaces of degree 2

By Valery Alexeev at Athens, GA, Philip Engel at Athens, GA and
Alan Thompson at Loughborough

Abstract. We prove that the universal family of polarized K3 surfaces of degree 2 can
be extended to a flat family of stable KSBA pairs (X, eR) over the toroidal compactification
associated to the Coxeter fan. One-parameter degenerations of K3 surfaces in this family are
described by integral-affine structures on a sphere with 24 singularities.
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1. Introduction

By the Torelli theorem [48], the coarse moduli space F5 4 of primitively polarized K3 sur-
faces (X, L) of degree L2 = 2d is the quotient F>; = I'\D of a 19-dimensional Hermitian
symmetric domain by an arithmetic group. In its capacity as an arithmetic quotient, there are the
Baily—Borel F55 [10] and infinitely many toroidal F'5%, [9] compactifications of F,,4. These

2d i
were unified by the more general semitoric compactifications F 37" [42] of Looijenga.
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The geometry of these Hodge-theoretic compactifications can be described explicitly.
For instance, the incidence structure of the boundary strata is encoded by combinatorial infor-
mation, called a semifan F*™. But a priori, semitoric compactifications are not modular—the
boundary points need not parameterize some geometric generalization of a K3 surface.

On the other hand, if we canonically choose for every polarized K3 surface (X, L) an
effective divisor R € | NL| in a fixed multiple of the polarization, we get a geometrically mean-
ingful compactification F,; — 75212 by taking the closure of the space of pairs (X, €R) in the
moduli space of all KSBA stable pairs. These are pairs with semi-log-canonical (slc) singulari-
ties and ample log-canonical class Ky + €R, see e.g. [1,3,33,34]. Generally, it is very hard to
describe the boundary of f;lz and the surfaces appearing over it.

Thus, finding compactifications of K3 moduli which are both Hodge-theoretic and alge-

bro-geometric has been a central, and largely open, motivating question.

Question 1.1. Do 75212, fg’; coincide for appropriate choices of divisor R and fan §&?
If so, what are the fibers over the toroidal boundary strata?

For the moduli space Ag of principally polarized abelian varieties (ppavs), these ques-
tions were answered affirmatively in [2]: On a ppav (X, L), we choose the unique theta divisor
R = © € |L]in the principal polarization. Then the closure of the pairs (X, € ®) in the space of
KSBA stable pairs coincides (up to normalization) with the toroidal compactification associated
to the second Voronoi fan.

In this paper, we answer Question 1.1 affirmatively for the moduli space F». A K3 surface
(X, L) of degree 2 is canonically equipped with an involution ¢, switching the sheets of ¢z|. So
its ramification divisor R = Fix(t) € |3L| is uniquely determined by (X, L). Thus, the closure
of the space of pairs (X, € R) gives a geometric compactification of F5.

On the other hand, there is a natural choice of toroidal compactification. A fan is given
by an O (N )-invariant polyhedral decomposition of the rational closure of the positive cone in
N :=H& E% @ A which is a hyperbolic lattice of signature (1, 18). Then N is a hyperbolic
root lattice, and we define the Coxeter fan Fox to have walls equal to the perpendiculars of the
roots, i.e. vectors r € N of norm —2. Our main result is the following.

Theorem 1.2. There is a semifan for which v: fzemi — f;lc is the normalization of the
KSBA compactification associated to the ramification divisor R. The Coxeter fan refines this
semifan, and hence there is a family of stable pairs over the associated toroidal compactifica-
tion FY".

The KSBA-stable surfaces over the boundary of ftzor admit completely explicit descrip-
tions, in terms of sub-Dynkin diagrams of the Coxeter diagram for N.

For a generic K3 surface of degree 2, the quotient Y = X /¢ is isomorphic to P2, and the
double cover is branched in a sextic curve B. The pair (X, €R) is stable if and only if the pair
(Y, 1';6 B) is. Hacking [30] defined and studied the stable pair compactification M (P2, d) for
the pairs (P2, 3diCd), where Cy; is a curve of degree d. Then the space f;lc is the special
case d = 6. Hacking provides a complete description of M (P2, d) for d = 4,5 and a fairly
complete one for 3  d. Some examples of degenerate surfaces for d = 6 are given in [31],
but the problem of giving a complete description of M (P2, 6) remained open. Theorem 1.2

provides such a description.
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A moduli space related to 7521("1 is the compactified space P, 4 of K3 pairs (X, D), where
D € |L] is an arbitrary divisor in the polarization class. This space has dimension 20 + d ver-
sus 19 for fzd- Laza [40], building on the work of Shah [50] and Looijenga [42], described Py
and the degenerate pairs at the boundary. Our constructions are unrelated since the ramification
divisor R liesin |3L].

Our compactifications of the universal family over [/, provide toroidal, semitoric, and
stable pair compactifications for any subfamily. Among them is the Heegner divisor Feyy C F3
of elliptic K3 surfaces. Theorem 1.2 directly generalizes to these subfamilies. In particular, it
leads to three compactifications of Fe which are discussed further in [5].

The compactification ff}ﬁ induced by fszlc is for the polarizing divisor equal to the tri-
section of nontrivial 2-torsion. Stable pair compactifications of Fgj for different choices of
polarizing divisors, weighted sums of the section and fibers, were investigated by Brunyate
[12], Ascher—Bejleri [8], and [5], with a description of the surfaces appearing on the boundary.

We now briefly explain our approach and features that parallel or contrast the case of
principally polarized abelian varieties.

One-parameter degenerations of ppavs admit a toric description, due to Mumford [45].
Let M ~ 7% be a fixed lattice and N = M * its dual. The Voronoi fan %" is supported on the
rational closure € of the cone of positive definite symmetric forms

€C={0:M xM — R, 0 >0},

equivalently of positive symmetric maps fo: M — Ng. Classically, a positive semi-definite
quadratic form Q defines two dual polyhedral decompositions of MR, periodic with respect to
translation by M : Voronoi and Delaunay, cf. [55,55] or [6]. As Q varies continuously, so does
Vor Q, but the set of possible Delaunay decompositions is discrete. Locally closed cones of the
fan V" are precisely the subsets of € where the combinatorial type of Vor Q stays constant,
or equivalently where Del Q stays constant.

A one-parameter degeneration (X;,e®;) of ppavs with an integral monodromy vector
QO € € can be written as a Z&-quotient of an infinite toric variety whose fan in R @& Ng
is the cone over a shifted Voronoi decomposition (1, £ + fg(Vor Q)), see [6, Lemma 1.8].
Mikhalkin—Zharkov [43] called the quotient

(Xtropa ®trop) = (NRvg + fQ(VOr Q))/fQ(M)

a tropical principally polarized abelian variety. It is an integral-affine torus
Xtrop = NR/fQ(M) = (Sl)g

with a tropical divisor O, on it. Then ®yp induces a cell decomposition of Xiop which is the
dual complex of the singular central fiber (X¢, € ®¢). The normalization of each component of
Xy is a toric variety, whose fan is modeled by the corresponding vertex of Oyyp.

Kontsevich and Soibelman proposed in [36] that, for K3 surfaces, the real torus Xp
should be replaced by an integral-affine structure with 24 singular points on a sphere S?2
(let us call it an IAS? for short). This fits into the general framework of the Gross—Siebert
program [28], which seeks to understand mirror symmetry near a maximally unipotent degen-
eration of Calabi—Yau varieties via tropical and integral-affine geometry.

By work of Kulikov [38], Persson—Pinkham [47], and Friedman—Miranda [23], it is
understood that a triangulated two-sphere is the combinatorial model for a Type Il Kulikov
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degeneration: a K -trivial, semistable, maximally unipotent, one-parameter family XX — (C, 0)
of degenerating K3 surfaces. In fact, the dual complex I'(Xo) of the central fiber admits the
structure of a triangulated IASZ, cf. [16, 26], which encodes the combinatorial information
of X. As for ppavs, one uses toric geometry and the triangulation to build the central fiber X.
The main complication for K3s is that an integral-affine structure on S? necessarily has singu-
larities, whereas an integral-affine structure on (S1)# is non-singular.

Conversely, from a triangulated IAS? B, one can reconstruct a surface X satisfying
I'(Xo) = B, which smooths to a Type III degeneration by [20]. This “reconstruction” pro-
cedure was used in [16, 18] to study deformations and smoothings of cusp singularities via
a crepant resolution of the smoothing. The key innovation in this paper is to introduce an
integral-affine divisor on an IAS?: a weighted 1-dimensional subcomplex Risx C B which is
balanced at its vertices. The Kulikov degenerations in [16, 18] used to study cusp singularities
were only analytic—in fact non-algebraizable because the central fiber contains a Type VII
surface, so there was no integral-affine divisor.

For each vector in a connected component € C {@a € N ® R | a% > 0}, we construct an
IAS? B(a) with up to 24 singularities, together with an integral-affine divisor Rjs. As @ € €
varies continuously, so does the pair (B(a), Ria). Dual to the polyhedral decomposition of
B(a) induced by Ry is a discrete subdivision of S? with 24 singularities. The set of the dual
subdivisions is discrete. Thus, the family of (B(d), Rja) varying continuously over € is the
analogue of Vor Q, and the dual subdivisions are the analogues of Del Q.

This family of IAS? with integral-affine divisors extends over the rational closure € of the
positive cone. As d approaches a cusp of €, the sphere B collapses to a segment, which are dual
complexes of Type Il degenerations of K3 surfaces. The cones of the Coxeter fan are exactly the
subsets of € where the combinatorial type of the pair (IAS?(a), Rya) is constant, respectively,
where the dual subdivision is constant, in complete analogy with the second Voronoi fan for
ppavs.

When the vector a is integral and satisfies a certain parity condition, a triangulation of
B(a) into elementary lattice triangles defines a combinatorial type of Kulikov model. By surjec-
tivity of an appropriate period map, cf. [24], these Kulikov models describe all one-parameter
degenerations of K3 surfaces with a given Picard—Lefschetz transformation, encoded in the
vector a. The canonical models of these Kulikov models are the stable pairs at the boundary
of KSBA moduli. We describe explicitly what curves and components get contracted on the
Kulikov model to produce the stable model.

Our IAS? are quite different from those appearing in [46]. The main difference is that our
pairs (B(@), Ria) vary in a PL manner, and so define a polyhedral decomposition of €.

The plan of the paper is as follows. In Section 2, we recall the definition of Kulikov
models and discuss their connection to integral-affine structures on S2. Using symplectic
geometry, we state and prove the Monodromy Theorem, allowing one to concretely compute
the monodromy invariant of a Kulikov degeneration.

In Section 3, we recall various compactifications of moduli spaces as they apply to
K3 surfaces of degree 2, and prove some auxiliary results about them. Section 4 lays out the
combinatorics of the Coxeter fan and the corresponding toroidal compactification ftz"r in detail,
along with a semitoric compactification f;emi.

In Section 5, we discuss a one-dimensional family of K3 surfaces with Picard rank 19
that is mirror-symmetric to F». For a general surface in this family, its nef cone is isomorphic
to a fundamental chamber of the Coxeter fan.
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In Section 6, we apply the general theory of polarized IAS? to the case at hand, building
the family of pairs (B(a), Ria) over the Coxeter fan F°X. We interpret an integral vector d in
this fan as a combinatorial type of Kulikov model of K3 surfaces with the monodromy vector a.
In Section 7, we describe explicitly the resulting stable models, in terms of the A DE and ADE
surfaces of [7].

Finally, in Section 8, we prove Theorem 1.2. Throughout, we work over C.

2. Kulikov models and IAS?

2A. Kulikov models and anticanonical pairs. One of the first results about degener-
ations of K3 surfaces is the well-known theorem of Kulikov and Persson—Pinkham [38,47].

Theorem 2.1. Let X — (C,0) be a flat proper family over a germ of a curve such
that the fibers of X* — C* = C \ 0 are projective K3 surfaces. Then there is a finite ram-
ified base change (C’,0) — (C,0) and a birational modification X' — X x¢ C’ such that
m: X' — C' is semistable (a smooth threefold with X, a reduced normal crossing divisor)
with wx’/c’ ~ Ox'.

Moreover, by Shepherd-Barron [51], for a relatively nef line bundle £* on X* — C*,
there is a model as above to which £* extends as a nef line bundle £.

Definition 2.2. A degeneration X — (C, 0) satisfying the conclusion of the theorem is
a Kulikov degeneration, and we call the central fiber a Kulikov surface.

Let log T be the nilpotent logarithm of the unipotent Picard-Lefschetz transformation
T:H?*(X;,7Z) — H?(X;,Z). There are three possible cases for the order of log 7', called
Types I, 11, 1II.

(D IflogT = 0, then X is a smooth K3 surface.

(D) If (log T)? = O butlog T # 0, then Xo = | J/_; Vi is a chain of surfaces with dual com-
plex a segment. The ends V7 and V,, are rational and V; for i # 1,n are birational to
E x P! for a fixed elliptic curve E. The double curves D; ;41 := V; N V;41 are iso-
morphic to E, the union of the double curves lying on V; is an anticanonical divisor,
and
Diit1ly, + Dii+1ly,,, = 0.

(II1) If (log T)3 = 0 but (log T)? # 0, then Xo = (J?_, Vi is a union of rational surfaces
whose dual complex is a triangulation of the sphere. The union of all double curves
D;; := V; N V; lying on (the normalization of) V; form an anticanonical cycle of rational
curves. Declaring D;; C V; and Dj; C V; and djj := —2pa(Dijj) — Dl.zj, we have

dij +dji = =2.

Note that p,(D;;) = 0 unless D;; C V; is an anticanonical cycle of length 1, i.e. an
irreducible nodal anticanonical divisor D;; € |—Ky;|.
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Every natural compactification of the moduli space of K3 surfaces has strata of Types I,
11, I, with Types II, III on the boundary. The three cases are distinguished by the property that,
for Type I, the central fiber is smooth, for Type II, the central fiber has double curves but no
triple points, and for Type III, the central fiber has triple points.

Definition 2.3. An anticanonical pair (V, D) is a smooth rational surface V' together
with a cycle of smooth rational curves D € |—Ky|.

Definition 2.4. Let (V, D) be an anticanonical pair, with D = Dy + --- 4+ D,. The
chargeis Q(V. D) := 12— Y (D? +3).

Definition 2.5. A corner blow-up of (V, D) is the blow-up at a node of the cycle D,
and an internal blow-up is a blow-up at a smooth point of D. In both cases, the blow-up has an
anticanonical cycle mapping to D. The corner blow-up leaves the charge invariant, while the
internal blow-up increases the charge by 1.

For the internal blow-up, the resulting anticanonical cycle is the strict transform of D,
whereas for the corner blow-up, it is the reduced inverse image of D.

Remark 2.6. By [22, Lemma 2.7], the pair (V, D) is foric, in the sense that V' is toric
and D is the toric boundary, if and only if Q(V, D) = 0. Otherwise, Q(V, D) > 0.

We have the following proposition.

Proposition 2.7 (Conservation of charge). Let X — (C,0) be a Type III Kulikov degen-
eration. Then Y 7_; Q(Vi, Y ;j Dij) = 24. In particular, at most 24 components of Xo are
non-toric.

Proof. See [23, Proposition 3.7] of Friedman—Miranda. O

As we will see in Section 2C, this proposition presaged the existence of an integral-affine
structure on the dual complex I'(X) of the central fiber.

The combinatorial type of a Kulikov degeneration is the combinatorial information of the
simplicial complex I' (X)), together with the deformation type of each irreducible component
Vi, > j D;j), which, in particular, determines (but is not always determined by) the collection
of integers d;; .

The remaining data is continuous: one must choose a point in the deformation space of
anticanonical pairs for each component, and choose how to glue double curves D;;. These
moduli are parameterized by a torus (C*)" of some large dimension, but for X o to be smooth-
able, we must choose the gluings and moduli of V; carefully. A theorem of Friedman [20] states
that d -semistability

Ext' (Qy,. Oxy) = 1 € Pic®((X0)sing) = (C*HHViI!

is a necessary and sufficient condition for smoothability.
By [24], the logarithm of monodromy in Types II and III is given by

logT:x — (x-8)A—(x-A)5



Alexeev, Engel and Thompson, Compactification of moduli of K3 surfaces 7

for elements §, A € H?(X;,Z) satisfying
§2=38-1=0, §primitive, and A% = #{triple points of Xo}.
Thus, A2 = 0 if the degeneration is Type II.

Definition 2.8. Let XX — C be a Type III degeneration. We call § € H?(X,,Z) the
vanishing cycle and the vector A € §1/8 the monodromy invariant. If the family X — C is
polarized by L, the vanishing cycle and monodromy invariant are defined similarly, but with
reference to the ambient lattice ¢ (L)t ¢ H?(X;,Z).

By taking a Kulikov model and setting

1 =76 it X — C is Type III,
J = (Z§ ® Z1)*™ if X — C is Type II,

any degeneration of K3 surfaces determines a primitive isotropic sublattice of H?(X;, Z).
2B. Integral-affine structures: General definitions.

Definition 2.9. An integral-affine structure on a real surface S is a collection of charts
from S to R? such that the transition functions lie in SL,(Z) x R2.

Definition 2.10. The monodromy representation p:m1(S,*) — SLy(Z) x R? is con-
structed by patching together charts along a loop y € m1(S, %) in the unique way such that
they glue on overlaps, then comparing the chart at the end of the loop with the one at the
beginning. This process of patching charts together defines the developing map from the uni-
versal cover § — R2 which is equivariant with respect to p. Usually, we further project the
monodromy to the group SLy(Z).

As defined, the two-sphere admits no integral-affine structures. One must introduce a rea-
sonable class of singularities of such structures.

Definition 2.11. An [/, singularity is the germ of a singular integral-affine surface
isomorphic to the following basic example.

Cut from R? = Re; @ Re, the convex cone with the sides R>pez and R>o(e2 —e1), as
on the left in Figure 1, and glue one boundary ray to another by a shear in the e -direction, i.e.
by the rule e — ey, ex —> —e1 + 5.

\\ L/ YAVAV ANANAN

N/ = N

LR B K A K

Figure 1. Three representations of the /1 singularity.
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Three straight lines in the affine structure are shown in bold blue. The second and third
figures in Figure 1 also represent the /; singularity, with a dashed ray in the monodromy-
invariant direction removed. The image of the developing map is R? minus the ray. We can
visualize this presentation as taking the standard affine structure on R? minus the ray, then
gluing across the ray by a shear.

Remark 2.12. The /; singularity can be presented by removing any ray emanating from
the singularity. When this ray is not in a monodromy-invariant direction, the two sides of the
ray separate to produce a gap as in the left-hand figure.

Definition 2.13. Let vy,...,U; be a sequence of primitive integral vectors, ordered
cyclically counterclockwise around the origin. Define an integral-affine singularity

(S,p) = I(nlljl,...,nkﬁk)

to be the result of shearing the affine structure of R? a total of n; times along R>o ;.

Let M (V) be the unique matrix conjugate in SL>(Z) to (e1, e2) — (e1,e1 + e3) such that
VM (V) = v, i.e. M(V) is the unit shear along v. Then the SL,(Z) monodromy of a counter-
clockwise loop around the singularity (S, p) is the product M(S, p) = M(v{)"! --- M (v )"k.

We can view I(n101,...,n,0x) as the collision of ny + --- + ny Iy singularities, with
monodromy invariant directions along the v;.

Definition 2.14. The charge of a singularity (S, p) is the number Zf;l n; of rays
sheared to produce it, counted with multiplicity. For instance, the I singularity /(v) has charge
one.

Definition 2.15. An integral-affine sphere B, or IAS? for short, is a sphere B = §?
and a finite set {py, ..., pn} € B such that B \ {p1,..., pn} has a non-singular integral-affine
structure, and a neighborhood of each p; is modeled by some integral-affine singularity

I(nlﬁl,...,nkf)k).

Proposition 2.16. Let B be an integral-affine structure with singularities on a compact
oriented surface of genus g. Then the sum of the charges is 12(2 — 2g).

Proof. See[36] or [17]. O

Remark 2.17. The shearing directions v; used to construct each singularity form part of
the definition of B. Thus, two IAS? may not be isomorphic even if there is a homeomorphism
B — B> which is an integral-affine isomorphism away from the singular sets. We discuss the
appropriate equivalence relation below.

Definition 2.18. Let i, v, w € Z?2 be three vectors so that (i, v) form an oriented basis
and 1 + U + w = 0. As a further shortcut, we define /(p) = I(pu), called an I, singularity. Let
I(p,q) = I(pu,qv), and I(p,q,r) = I(pu,qv, rw). Up to the action of SL,(Z), this nota-
tion is symmetric under cyclic rotations. Finally, we set I(p,q,r,s) = I[(pu,qv,r(—u),s(—v)),
also symmetric up to cyclic rotation.
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2C. Pseudo-fans and Kulikov models. In this section, we describe how to encode
a deformation type of anticanonical pairs as an integral-affine surface singularity, and in turn
how to encode a Type ITT Kulikov model as an IAS?.

Definition 2.19. The pseudo-fan of an anticanonical pair % (V, D), see [26, Section 1.2]
or [16, Definition 3.8], is a triangulated integral-affine surface with boundary constructed as
follows.

As a PL surface, §(V, D) is the cone over the dual complex of D. The affine structure
on each triangle in this cone is declared integral-affine equivalent to a lattice triangle of lattice
volume 1. Two adjacent triangles are glued by the following rule. Let €; be the directed edge
of F(V, D) emanating from the cone point and pointing towards the vertex corresponding
to Dj. In a chart containing the union of the two adjacent triangles containing €;, we have
€j—1+¢€j+1 =dje;, whered; = —Df if D; is smooth and d; = —D]? + 2if D; is arational
nodal curve.

Remark 2.20. When (V, D) is a toric pair, the pseudo-fan F(V, D) is a non-singular
integral-affine surface with a single chart to a polygon in R2. The vertices of this polygon are
the endpoints of the primitive integral vectors pointing along the 1-dimensional rays of the fan
of (V, D).

Remark 2.21. A roric model w: (V, D) — (V, D) is a blow-down to a toric pair. After
some corner blow-ups, every anticanonical pair admits a toric model, see [27, Proposition 1.3].
Assume that 7 consists only of internal blow-ups, as corner blow-ups do not affect toricity.
Then [16, Proposition 3.13] implies % (V/, D) is the result of shearing along the rays of the fan
of (V, D) corresponding to components which get blown up. Hence, by Definition 2.13, every
integral-affine surface singularity is the cone point of the pseudo-fan of some anticanonical
pair, and by subdividing the singularity into standard affine cones, the converse is also true.

Furthermore, the charge Q(V, D) coincides with the charge of the corresponding singu-
larity §(V, D). It is the number of internal blow-ups of the toric model.

Let X — C be a Type III degeneration. We label the vertices of the dual complex I'(X)
by v;, the edges by ¢;;, and the triangles by 7; i, corresponding respectively to the components,
double curves, and triple points of X. Let star(v;) be the union of the triangles containing v;.

Proposition 2.22. The dual complex T'(Xo) of a Type Il degeneration of K3 surfaces
admits a natural integral-affine structure such that

star(vy) = F(Vi. Y Diy)-
J

Conversely, given an integral-affine structure B on the two-sphere with a triangulation into
lattice triangles of lattice volume 1 and singularities at the vertices, there is a Type 11l degen-
eration Xi — C such that I'(Xy) = B.

Here, lattice volume means twice the Euclidean area.
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Proof. See [16] or [26, Remark 1.11v1]. The key point is that the pseudo-fans of the
components compatibly glue to form a well-defined integral affine structure on any quadrilat-

eral formed from two adjacent triangles of I"(Xo). This follows from the formula d;; + d;; =2
in (III), below Definition 2.2. D

Definition 2.23. Two anticanonical pairs (V1, D) and (Va, D») lie in the same corner
blow-up equivalence class (c.b.e.c.) if they are related by a sequence of corner blow-ups and
blow-downs, and a topologically trivial deformation. A foric model of a c.b.e.c. is a represen-
tative (V, D) of the equivalence class, and a toric model (V, D) — (V, D).

Note that all topologically trivial deformations of (V, D) are the result of deforming the
points on D which are blown up.

By Remark 2.21, a toric model of an anticanonical pair (V, D) determines an integral-
affine singularity at the cone point of F(V, D). Corner blow-ups subdivide the pseudo-fan,
which do not affect the singularity. Neither do topologically trivial deformations. We conclude
that there is a bijection between presentations I (1101, . .., ny Uy ) of integral-affine singularities
by shears and toric models of c.b.e.c.s. We now forget the dependence on the toric model.

Definition 2.24. Two integral-affine singularities are equivalent,

(S1, p1) = I(n101,...,ngVx) ~ [(M1W1, ..., menlWenl) = (S2, p2),

if the corresponding c.b.e.c.s are equal [(V1, D1)] = [(Va, D2)].

By choosing a single anticanonical pair (V, D) which admits both toric models corre-
sponding to v; and to w;, and building F(V, D) by the recipe in Definition 2.19 (which does
not use a toric model), an equivalence of integral-affine singularities provides a homeomor-
phism (Sy, p1) — (52, p2) which is an integral-affine isomorphism away from the p;. But
the converse is false, see [18, Example 4.13]. Such examples explain why it does not suffice
to define an integral-affine singularity as purely a geometric structure—the presentation via
shears (at least up to equivalence) is part of the definition.

Remark 2.25. Each toric model of the c.b.e.c. of (V, D) defines a Zariski open subset
of the open Calabi—Yau (C*)? < '\ D. One may choose a different toric model by changing
exactly one exceptional curve E blown down in the toric model—to a curve F such that £ + F
is the fiber of a toric ruling. The change-of-coordinates to the new inclusion (C*)? < V\D is
a birational map called a cluster mutation. It is almost always the case that there are infinitely
many such cluster charts. Any two toric models of a c.b.e.c. are connected by a series of cluster
mutations, by a theorem of Blanc [11].

Example 2.26. Start with the toric pair (IP’2, L1 + L, + L3) and make a corner blow-
up to get (F1,s0 + f + s00 + f), with s2 = 1, s2, = —1. Blow up one point on so, then
contract one exceptional curve intersecting soo to obtain P! x P!, This corresponds to a single
cluster mutation as in Remark 2.25. We may also blow up p points on the first copy of f, ¢
points on the second copy of f, and one more point on s¢. In this way, we see the equivalences

1(2717»61) "’I(I’P’I’CI) ~ I(p71’qv1) NI(qu’p)
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2D. Birational modifications and base change. All Kulikov models X — (C,0) com-
pleting a punctured family X* — C* are related by flops along smooth rational curves. The
modifications which change the isomorphism type of X are the following.

(1) M1 modifications are Atiyah flops along an exceptional curve E C V; meeting a double
curve D;; at a single point p. The effect on Xy is to blow down E on V; and blow up V;
at p.

(2) M2 modifications are Atiyah flops along an exceptional double curve E = D;; =V; N V.
The effect on Xy is to blow down E on both V; and V;, blow up the two triple points
T;jr and T;j, contained in E, on the components Vi and V;, and then glue the resulting
exceptional curves.

Definition 2.27. Let (S, p) = I(n1V1,...,n, V) be an integral-affine singularity. A
nodal slide along v; of length t, cf. [52, Definition 6.1], is a surgery on the integral affine struc-
ture (S, p) which translates by 7v; the originating point of one shearing ray in the direction ;.

Note that nodal slides are called moving worms in the mirror symmetry literature, see e.g.
[36] or [26].

Starting with the single singularity (S, p), the nodal slide results in an integral-affine
surface with two singularities I(n11, ..., (n; — 1)V;,...,ngV;) and an I singularity at the
endpoint of 7v;. The result is an integral-affine surface which is isomorphic to the original one
on the complement of the segment ¢v;. Thus, the operation is purely local and can be done
independently of the rest of the integral affine surface. For appropriately large 7, a nodal slide
may result in the /; singularity sent off colliding into another singularity.

In fact, any integral-affine singularity can be defined as the result of colliding a collection
of I singularities moving along nodal slides.

Proposition 2.28 ([18, Propositions 4.5, 4.6]). An M2 modification does not change the
IAS? structure on B = T'(Xy), but retriangulates B by cutting along the opposite diagonal of
an integral-affine unit square.

An M1 modification preserves the triangulation of T'(Xo), but changes the IAS? B by
a unit length nodal slide, moving an 1y singularity along é;; from v; to v;.

A sequence of M1 and M2 modifications connecting two Kulikov surfaces Xo --> X,
is thus modeled as a sequence of retriangulations and integer length nodal slides

I'(Xo) --> I'(Xp)
on the corresponding dual complexes.

Proposition 2.29 ([19]). Let X — (C,0) be a Kulikov model, and consider the base
change X' — (C’,0) ramified over 0 to order N. There is a standard resolution X[N] — X/,
producing a new Kulikov model whose central fiber Xo[N] is the result of inserting “special
bands of hexagons” of width N between all the components of Xo. The effect on the dual
complex T'(X) is to take the standard refinement every triangle into N? triangles (see also
Claim 3.15 below).
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In fact, the integral-affine structure on the dual complex B[N] := I'(Xo(N)) is the
result of post-composing the integral-affine charts U — R? on B = I'(Xy) with multiplica-
tion by N, cf. [18, Proposition 4.3]. We call this the order N refinement of B. Note that the
base change multiplies the monodromy invariant A — N A.

2E. Integral-affine divisors. In this section, we define an integral-affine divisor on an
IAS?. For motivation, consider a line bundle £ — X on a Kulikov model. Let

L; := Ly, € Pic(V;).

These line bundles automatically satisfy a compatibility condition L; - D;; = L; - Dj;. Thus,
we have the following definition.

Definition 2.30. Let B be an IAS?. An integral-affine divisor Ry on B consists of two
pieces of data.

(1) A weighted graph Rjpn C B with vertices v;, straight line segments as edges ¢;;, and
integer labels n;; on each edge.

(2) Let v; € Rya be a vertex and (V;, D;) be an anticanonical pair such that %(V;, D;) mod-
els v; and contains all edges of e;; coming into v;. We require the data of a line bundle
L; € Pic(V;) such that deg L; - D;; = n;; for the components D;; of D; corresponding
to edges ¢;; and L; has degree zero on all other components of D;.

Definition 2.31. Given a line bundle £ — X on a Kulikov degeneration, the inter-
section numbers n;; = L; - D;; define an integral-affine divisor Rix C B = I'(Xo) supported
on the 1-skeleton. If &£ is nef, then Ry, is effective, i.e. n;; > 0.

Remark 2.32. When v; € Ry, is non-singular, the pair (V;, D;) is toric, and the labels
n;; uniquely determine L;. They must satisfy a balancing condition. If v;; are the primitive
integral vectors in the directions e;;, then one must have > n; 7v;ij = 0 for such a line bundle
L; — V; to exist.

Similarly, if I; = &(V;, D;) = 1(V), i.e. (V;, D;) is the result of a single internal blow-
up of a toric pair, the n;; determine a unique line bundle L; so long as Y _n;;v;; € Zv. This
condition is well-defined as the v;; are well-defined up to shears in the v direction.

Definition 2.33. We say that a divisor on B is polarizing if each line bundle L; is nef
and at least one L; is big. The self-intersection of an integral-affine divisor is

RL =) L} €L

1

Definition 2.34. An IAS? is generic if it has 24 distinct /1 singularities.

Remark 2.35. Let B be a lattice triangulated IAS?, or equivalently, B = I" (X)) is the
dual complex of a Type III degeneration. Then B is generic if and only if Q(V;, D;) € {0, 1}
for all components V; C Xo. When B is generic, an integral-affine divisor Rj5 C B is uniquely
specified by a weighted graph satisfying the balancing conditions of Remark 2.32, so the extra
data (2) of Definition 2.30 is unnecessary.
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Definition 2.36. An integral-affine divisor Rjpa C B is compatible with a triangulation
if every edge of Rja is formed from edges of the triangulation.

If B comes with a triangulation, we require the integral-affine divisor to be compatible
with it.

2F. Integral-affine structures from Lagrangian torus fibrations. The reference for
this section is Symington [52]. Let (S, w) be a smooth symplectic 4-manifold. Given a Lagrang-
ian torus fibration u: (S, w) — B with only nodal singularities, the base B inherits a natural
integral-affine structure with an 7, singularity under a necklace of n two-spheres.

Definition 2.37. Let Cy and Cg be cylinders in S fibering over a path from a fixed
base point * € B to a point p € B such that the ends of the cylinders over * are homologous
to o and B, an oriented basis of H(Sx, Z). The induced integral affine structure on B is the
collection of charts of the form

p (x(p),y(p) = (/C w/c w) € R2.
o B

These charts are only defined up to monodromy in SL(2, Z) x R2, by choosing a path in
a different homotopy class and moving the base point .

Let T be a complex toric surface, L € Pic(7T) ® R an ample class, and @ a symplectic
form with [@] = L. The moment map u7: (T, @) — P is a Lagrangian torus fibration which
induces the integral-affine structure on the moment polytope P coming from its embedding
into R2. It degenerates over the toric boundary D C T and sends the components of D to the
boundary components of P.

Now let ¢: T — T be a blow-up at a smooth point of the boundary D, with exceptional
divisor E. Symington [52] constructed a Lagrangian torus fibration u7: (T, w) — P satisfying
[w] = ¢*[@] — aE over a singular integral-affine disk P (a “Symington polytope”) obtained
as follows.

Definition 2.38. A Symington surgery is the result of cutting a triangle of lattice size a
(and lattice volume a?) from the side of the moment polytope P corresponding to the compo-
nent blown up, then gluing the two remaining edges, introducing an /; singularity p € P at
the interior corner of the triangle.

The fiber over p is an irreducible nodal /; fiber of the torus fibration. In symplectic geom-
etry, this procedure is called an almost toric blow-up. The monodromy axis of the singularity
is parallel to the side of P on which the surgery triangle rests and the location of the cut on the
side of P is essentially arbitrary.

Construction 2.39. Let B be a generic IAS? and let B = B\ {p1...., p24) be its
non-singular locus. Let y = Y . (y;, ;) C B be a 1-chain with values in the constructible sheaf
Tz :=ix(Tz B?), where i: B — B is the inclusion. This sheaf is a Z-local system of rank 2
on B? and has rank 1 at the /; singularities.

Concretely, y is a collection of oriented paths y; — B and a (constant) integral vector
field «; on each path. There is a boundary map 0 to O-chains with values in 77 gotten by taking
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an oriented sum of the tangent vectors ¢; at the endpoints of y;. We say that y is a 1-cycle if
dy = 0. Some care must be taken at the singularities, where the rank of 7z drops. Here, the
condition that the boundary is zero means that ) «; is parallel to the monodromy-invariant
direction of the singularity.

From such a 1-cycle y, we may construct a PL surface X, C § inside the symplectic
4-manifold with a Lagrangian torus fibration u: (S, w) — B. We take a cylinder in S which
maps to y; whose fibers are the circles in the torus fiber that correspond to «; via the symplectic
form. The condition that 0y = 0 is exactly the condition that the ends of these cylinders over
the points in | J; dy; are null-homologous in the fiber. Thus, we may glue in a (Lagrangian)
2-chain contained in the fiber over _J; 0y; and produce a closed PL surface X,,.

Definition 2.40. The surfaces X,, constructed as above are the visible surfaces.

Example 2.41. Given a path y connecting two I; singularities p and g such that the
monodromy-invariant directions at both p and ¢ are parallel to «, the 1-cycle (y, «) defines
a visible surface, which we denote E(, o). It satisfies EZ2 . = —2 because E(, o) is attached

(yy ) (y,(x) ()/, )
to each nodal fiber S,, S; by a (—1)-framed 2-handle.

Note that X, is non-canonical even on the level of its homology class: there are many
choices of Lagrangian 2-chains in the fibers over (_J; 0y;. But they all differ by some multiple
of the fiber class f = [~ (p)]. Note that also [Z,]- f = 0. We do have a well-defined class
(5] e fH/1.

We note an important special case of the above construction.

Definition 2.42. Suppose that all y;’s are straight line segments e;; forming a graph
in the integral-affine structure on B, and that the tangent vector field is an integer multiple
n;; of the primitive integral tangent vector along y;. Then the cylinder lying over e;; can be
made Lagrangian and the surface X, is a PL Lagrangian surface in (S, @). We call the result
a Lagrangian visible surface.

In particular, the class of a Lagrangian visible surface satisfies [2,] - [w] = 0. Observe
that the condition that y is a 1-cycle is exactly the balancing condition of Remark 2.32. Thus,
an integral-affine divisor R on B in the sense of Definition 2.30 corresponds to a Lagrangian
visible surface X g.

2G. The Monodromy Theorem. Our goal now is to understand the vanishing cycle 8,
monodromy invariant A, and polarization of a Kulikov degeneration X, — C, see Definition 2.8,
in terms of IAS? and symplectic geometry. We now prove a version of [18, Proposition 3.14],
the key new ingredient being the presence of a polarizing divisor R.

Theorem 2.43. Let B be a generic 1AS?, together with a triangulation into lattice
triangles of lattice volume 1.
(1) Let X — C be a Type III Kulikov degeneration such that I'(Xy) = B.

(2) Let u: (S, w) — B be a Lagrangian torus fibration over the same B.
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Then there exists a diffeomorphism ¢: S — X to a nearby fiber t # 0 such that

(a) ¢*f =9,
() ¢pu[w] =L inst/§ ®R.

Moreover, suppose that £ — X is a line bundle, which defines the integral-affine divisor Ria
on B. Let X g,, be the corresponding Lagrangian visible surface in S. Then we have

©) ¢«[ZRry) = c1(&Ly) in 6L/6.

Proof.  'We first prove (a) and (b) following [18, Proposition 3.14] closely. There, an
almost exactly analogous statement is proved for Type III degenerations of anticanonical pairs,
so we only describe the minor modifications necessary. We ignore the parts of the proof in [18]
which refer to D, and similarly the special component of X/¢ equal to the hyperbolic Inoue
surface, instead treating all surfaces V; C X on equal footing. Then the construction of ¢
proceeds the same way, by using the Clemens collapse to show that (S, w) and X; can be writ-
ten as the same fiber connect-sum of 2-torus fibrations over the intersection complex I'(Xg) V.
Statement (a) follows immediately.

Again following [18], we consider the collection of Lagrangian visible surfaces X,
which fiber over the I-skeleton T'(Xo)!!. The images under ¢« of the classes [X,] gen-
erate a 19-dimensional lattice in §1/8 invariant under the Picard—Lefschetz transformation
H?(X;Z) — H?(X;,Z). Since [0] - [£,] = 0, we conclude that the monodromy invariant
A and ¢ [w] are proportional in §+ /8. By [24],

A2 = #{triple points of Xo} = vol(I'(Xp)) = [w].

We conclude that A = ¢«[w] mod Z4, i.e. (b).

Now suppose that X' admits a line bundle &£. There is an integral-affine divisor R on
I'(Xo) whose defining line bundles L; € Pic(V;) are £|y,. Since I'(Xp) is generic, these
line bundles are uniquely determined by the integer weights n;; = L; - D;; on the edges of
I'(X0)!). By construction, the Lagrangian visible surface YR, C S fibering over the weighted
balanced graph Riya is sent by ¢ to a surface whose Clemens collapse is a union of surfaces
X; C V; satisfying

() X;NnDj; =%;NDjj,
2) %; -D,‘j =1L -D,‘j.

These conditions uniquely determine the class ¢«[X g,,]. We conclude (c). |

Remark 2.44. Statements similar to Theorem 2.43 (a) and (b) have appeared in the
mirror symmetry literature. For instance, [29, Theorem 5.1] computes the monodromy of the
Picard-Lefschetz transform of a toric degeneration of Calabi—Yau varieties in terms of cup
product with the radiance obstruction

cg € HY(B,i«(T7 B%)).

a cohomology class canonically associated to an integral-affine structure, first studied in [25].
The class cp is identified with [w] via the Leray spectral sequence of the map u: (S, w) — B.
These monodromy formulas verify the prediction of topological SYZ mirror symmetry that the
Picard-Lefschetz transformation is cup product with a section of the SYZ fibration. See also
[46, Corollary 4.24].



16 Alexeev, Engel and Thompson, Compactification of moduli of K3 surfaces

3. Compactifications of F»

We first recall the basics about the moduli spaces of K3 surfaces as they apply to the
degree 2 case. For the Baily—Borel and toroidal compactifications, a convenient reference
is [49]. Then we describe a compactification via stable pairs and prove some auxiliary results
about it.

3A. Period domain and moduli space. Let Ags ~ H 3@ E% be a fixed lattice of
signature (3,19) isomorphic to H?2(S,Z) for a K3 surface S. Here, H is the hyperbolic
plane, and the lattice Eg for convenience is negative definite. All primitive vectors of square
h? = 2d lie in the same orbit of the isometry group of Ags. The lattice At is isometric
to H? @ Eg @ (—2d). The period domain for the polarized K3 surfaces of degree 2d is
a connected component of

D=Dy; :=P{xeht®C|x-x=0,x-X>0},

a Hermitian symmetric domain associated to the group O (2, 19). On it, we have the action of
the group I' = I',; which is the spinor norm 1 subgroup of the stabilizer of / in the isom-
etry group O(Axs3). By the Torelli theorem, the quotient space F,; = I'\ID is the coarse
moduli space of polarized K3 surfaces (X, L), where X is a K3 surface with ADE (Du Val)
singularities, and L is an ample line bundle with L? = 2d. One has dim F,; = dimD,; = 19.

The moduli stack ,, of polarized K3 surfaces of degree 2d is a smooth DM stack. This
stack and its coarse moduli space F5,; are incomplete, and F5; is quasiprojective.

3B. Baily—Borel compactification. Let DV denote the compact dual of ; it is the
quadric defined by dropping the condition x - X > 0. Let D € DV be the topological closure.
Let / be a primitive isotropic sublattice of 2®. Then I has rank one or two. One calls the
former Type III and the latter Type II. The boundary component associated to I is by definition

Fy :=P{x € D | span{Re(x),Im(x)} = I ® R} c DV
which is either a O-cusp, a point for Type III or a 1-cusp, a copy of H for Type II (H is the
upper-half plane).

Notation 3.1. To distinguish the ranks, we henceforth use / or J for rank 1 or 2
primitive isotropic lattices, respectively.

Then the Baily—Borel compactification is, topologically,
FES =I\(D Uy Fy Uy Fr).

In fg‘B, the boundary consists of four curves, meeting at a single point, see [49]. The point is
the Type III boundary, while the curves (minus the point) are the Type II boundary. The curves
correspond to four distinct orbits of rank 2 primitive isotropic sublattices J C h-L. For each of
them, J 1 /J contains a finite index root sublattice, which can be used as a label for this 1-cusp,

A17, D10 ® E7, E§ ® Ay, and D16 @ A;.

The stabilizer Stabr(J) C T acts on J ~ Z? by a finite index subgroup I'y C SL»(Z),
and the boundary component I"j\ Fy is a modular curve corresponding to a Type II boundary
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curve. One has a natural finite morphism I'y\ Fy — SL(2,Z)\H = AJI. to the j-line. Thus,
the boundary of the Baily—Borel compactification has codimension 18.

3C. Toroidal compactifications. Toroidal compactifications F,; — F? ; have divi-
sorial boundary, but depend on a ["-admissible collection of fans. This is a choice of a fan
& = {&1} for each cusp of the Baily—Borel compactification, satisfying conditions described
below. For the 1-cusps, the fans are 1-dimensional and no choice is involved; they are automat-
ically compatible with the fans for the 0-cusps.

Each 0-cusp corresponds to a primitive isotropic line / C hL. Consider the lattice

Ap:i=11)1

whose intersection form has signature (1, 18). Let I'; := Stabr(/)/ Uy, where Uy C Stabr (/)
is the unipotent subgroup, isomorphic to a translation subgroup of /- /1. Let €; denote the
positive cone of A7 ® R and let €; denote its rational closure—the union of the positive cone
and the rational null rays on its boundary. Then the fan §; = {t;} is a collection of closed,
convex, rational polyhedral cones in €7, closed under taking intersections and faces, such that

(1) Supp&; = €7 and &1 is locally finite in the positive cone €y,
(2) & is invariant under the action of I'; with only finitely many orbits.

Then, for each O-cusp /, the infinite type toric variety X (§7) contains an analytic open subset
V7 satistying the following conditions.

(1) Vi contains all toric boundary strata of X (&) which correspond to cones of ¥; that
intersect €y (the only strata it does not fully contain are those corresponding to null rays
and the origin).

(2) Vj is I'7-invariant and the action of I'y is properly discontinuous.

(3) The open stratum of V7 modulo I'y is the intersection of a neighborhood of the Type III
point Py of F55 with Fay.

Taking the union of F,; with the open sets from (3), for all /, we get a map
Foq Ur (T1\V1) — F35

with complete fibers. It surjects onto the union of F,; with an open neighborhood of the
Type I boundary point. This map extends over the Type II boundary as a fibration in finite
quotients of abelian varieties. More explicitly, the preimage of the Type Il boundary component
[y\F; C F5% in the toroidal compactification is the quotient by a subgroup of O(J=+/J) of
a family of abelian varieties isogenous to J1/J ® &, the self-product of the universal elliptic
curve over ['y\ Fy.

The toroidal compactification 72 ; associated to the I"-admissible collection of fans &
is then the result of extending these abelian variety families from F,4; Uy (I'y\V7), along all
orbits of rank 2 isotropic lattices J . The toroidal compactification admits a birational morphism
f?d — 71232 which is an isomorphism on F» .

For degree 2 K3 surfaces, there is only one O-cusp, and the fan for this unique 0-cusp
has the support on € = €; in the vector space N ® R, where N = [+/] = H & E% b A
is a lattice of signature (1, 18). The fan must be I'; = O (N)-invariant, where O (N) is
the index 2 subgroup of the isometry group O(N) preserving the positive cone €. For us, the
critical fact is the following.
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Proposition 3.2. The unipotent Ur\D embeds into I+/1 ® C* and the period map
C* — Ur\D of a Kulikov model X, — (C,0) with monodromy invariant A is well-approxi-
mated by a translate of the cocharacter A ® C* near0 € C.

Proof. This is a direct consequence of Schmid’s nilpotent orbit theorem. O
3D. Stable pair compactification. First, we recall the definitions.

Definition 3.3. A pair (X, B = )_ b; B;) consisting of a normal variety and a Q-divisor
with0 < b; < 1,b; € Q, s log-canonical (Ic) if the divisor Ky + B is Q-Cartier and for a res-
olution f:Y — X with a divisorial exceptional locus Exc(f) = | J E; and normal crossing
U £ ' B; UExc(f), in the natural formula

S*(Kx + B) =Ky + Y _bi f"'Bi + > _bjEj.
i J
one has b; < 1.

Definition 3.4. A pair (X, B = ) _b; B;) consisting of a reduced variety and a Q-
divisor is semi-log-canonical (slc) if X is S;, has at worst double crossings in codimension 1,
and for the normalization v: XV — X writing

v*(KX + B) = Kxv + B,

the pair (X", B¥) is log-canonical. Here, B” = D + Y b;v~!(B;), and D is the double locus.

Definition 3.5. A pair (X, B) consisting of a connected projective variety X and a Q-
divisor is stable if

(1) (X, B) has semi-log-canonical singularities, in particular Kx + B is Q-Cartier,

(2) the Q-divisor Kx + B is ample.
Next, we introduce the objects that we are interested in here.

Definition 3.6. For a fixed degree e € N and fixed rational number 0 < € < 1, a stable
K-trivial pair of type (e, €) is a pair (X, € R) such that

(1) X is a Gorenstein surface with wy >~ Oy,
(2) the divisor R is an ample Cartier divisor of degree R? = e,

(3) the surface X and the pair (X, €eR) are slc. In particular, the pair (X, € R) is stable in the
sense of Definition 3.5.

Definition 3.7. A family of stable K-trivial pairs of type (e, ¢) is a flat morphism
fi(X,eR) — Ssuchthatwy,s ~ Ox locally on S, the divisor (R is a relative Cartier divisor,
such that every fiber is a stable K-trivial pair of type (e, €).

Lemma 3.8. For afixed degree e, there exists an €g(e) > 0 such that, for any 0 < € < €,
the moduli stacks M (e, €g) and M (e, €) coincide.
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Proof. For a fixed surface X, there exists an 0 < €9 < 1 such that the pair (X, €oR)
is slc if and only if R does not contain any centers of log-canonical singularities: images of
the divisors with codiscrepancy b; = 1 on a log-resolution of singularities ¥ — X" — X as
in Definitions 3.3, 3.4. There are finitely many of such centers. Then, for any € < ¢€g, the pair
(X, eoR) is slc if and only if (X, €R) is.

Now, since wy >~ Ox and R is ample Cartier of a fixed degree, the family of the pairs
(X, R) is bounded, and the number €y with this property can be chosen universally. o

We will be interested in the moduli space M, eSIC of such pairs, and more precisely in the
closure of F»4 in M, jlc for a chosen intrinsic polarizing divisor R € |NL|.

We refer to [3,33,34] for the existence and projectivity of the moduli space of stable pairs
(X, > bi B;). In general, when some coefficients b; are < 1 there are delicate problems with
the definition of a family since a flat limit of divisors may happen to be a nonreduced scheme
with embedded components. In our case, the situation is much easier since R is Cartier.

Definition 3.9. A family of stable K-trivial pairs of degree e is a family of type (e, €¢),
where €q(e) is chosen as in Lemma 3.8. We denote the corresponding moduli functor by M ;lc.
For a scheme S, M$'°(S) = {families of type (e, €o(e)) over S}.

Proposition 3.10. There is a Deligne—-Mumford stack M3 and a coarse moduli space
M eSIC of stable K-trivial pairs.

Proof. The spaces M and M are constructed by standard methods, as quotients of
appropriate Hilbert schemes by a PGL group action. Again, for general stable pairs, there are
delicate questions of the formation of (w?&'/’ s(mR))** commuting with base changes. But in
our case, both wx; /s and O x (R) are invertible, so these questions disappear. m]

We do not prove that the moduli space M glc is proper, but we do prove below that it
provides a compactification for the moduli spaces of ordinary K3 surfaces. (The components
of M3 where X is generically non-normal require additional arguments.) A related moduli
space is given by the following definition.

Definition 3.11. Let N € N. The moduli stack $y 4 parameterizes proper flat fam-
ilies of pairs (X, R) such that (X, L) is a polarized K3 surface with ADE singularities and
a primitive ample line bundle L, L? = 2d, and R € |NL| is an arbitrary divisor. One has
R? = 2dN?. In particular, one defines P54 := P1,24-

If we take €g(e) as in Lemma 3.8, then the pair (X, €9 R) is stable. Obviously, the stack
PN, is fibered over the stack 5,4 with fibers isomorphic to PAN?+1 The automorphism
groups of stable pairs are finite, and it is easy to see that the stack &’ »4 is coarsely represented
by a scheme, denoted Py 4.

Definition 3.12. One defines P N,24 to be the closure of the coarse moduli space Py 4
in M3 for e = 2dN2. A canonical choice of a divisor R € |[NL| foreach (X, L) € F,4 gives

sle

an embedding F,4 C Py 4. Its closure in ?N,zd is denoted by 72 a-
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Theorem 3.13. Py >4 and thus also F>7; are proper and projective.

Proof. Properness follows from the next theorem. Projectivity follows from it by results
of Fujino and Kovacs—Patakfalvi [37]. D

Theorem 3.14. For a fixed degree e, every family f*: X* — C* = C \ 0 over a smooth
curve of K3 surfaces with ADE singularities and ample R, R*> = e, can be extended to a family
of stable K3 pairs (X', eg(e)R') — C’ of type (e, €o(e)) possibly after a ramified base change
C'—C.

Proof. (Cf. [40, Theorem 2.11, Remark 2.12]) The proof is achieved by modifying
that of a theorem of Shepherd-Barron [51, Theorem 1]. His theorem says that if X — C is
a semistable model with Ky = 0 and £* is a relatively nef line bundle on X™* of positive
degree, then there exists another semistable model to which £* extends as a relatively nef line
bundle £. This is done over C, without a base change. Then [51, Theorem 2] says that £" for
n > 4 gives a contraction 7: X — X so that wx >~ Oy, with &£ an ample line bundle on X
and £ = 7*(&£).

Now let f:(X™*,eR*) — C* be a family of K3 surfaces with ADE singularities and
a relatively ample Cartier divisor RR. After shrinking the base, we can simultaneously resolve
the singularities to obtain a family of smooth K3s (X7, R}) with a relatively big and nef effec-
tive divisor. By Theorem 2.1, after a further base change, we get a semistable model X, — C
with Ky, = 0. We are now in a situation where Shepherd-Barron’s theorem applies. However,
first we make another base change that exists by Claim 3.15 to obtain a Kulikov model X3
satisfying condition (*).

(*) The closure of R* in X does not contain any strata (double curves or triple points) of the
central fiber X.

The proof of [51, Theorem 1] proceeds by starting with a divisor R3 which does not
contain an entire component of the central fiber. One then makes it nef using flops along curves
E with R3 - E < 0. The flops are called elementary modifications. They are of three types:
(0) along an interior (—2)-curve, (I) along a curve intersecting a double curve, and (II) along
a double curve.

But with condition (*) achieved, the divisor JR3 already intersects the double curves
non-negatively, and the flops of type (II) are not needed. The flops of types (0) and (I) pre-
serve (*). Thus, the end result is a model X4 — C’ with an effective, relatively nef divisor R4
satisfying (*).

Since the central fiber (X4)o is normal crossing, for 0 < € < 1, the pair (X4, €R) is
slc. Then the contraction X4 — X4 provided by [51, Theorem 2] gives a family (X4, e R4) of
stable pairs extending the original family (X*, eR*) — C* after a base change C’ — C.

Claim 3.15. For any Kulikov model X, — C, there exists a finite base change C' — C
and birational modification to a Kulikov model X' — C' of X x¢ C’ satisfying (*).

Proof. This is a local toric computation. We give an argument for a triple point, which
by simplification also applies to double curves. An obvious modification of this proof works
for a semistable degeneration in any dimension.
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Let the triple point be the origin with a local equation xyz = ¢. A local toric model of
it is Ai’y’z. Its fan is the cone o that is the first octant in R3 with the lattice N = Z>. In the
lattice of monomials M = N* ~ Z3, the dual cone oV is the first octant as well. A ramified
base change ¢ = s¢ means choosing the new lattices

11,1
M’=M+Z(’d’ )

, NDN' = {n = (a,b,c)

) GLD gl

Choosing a Kulikov model locally at this O-stratum is equivalent to choosing a triangulation 7~
of the triangle 0 N {a + b 4+ ¢ = d} with the vertices (d, 0, 0), (0, d, 0), (0,0, d) into elemen-
tary triangles of lattice volume 1. Then the new fan is obtained by subdividing o into the cones
over these elementary triangles.

We note that an arbitrary triangulation 7 will not achieve condition (¥). Instead, it has
to be chosen carefully. Using x, y, z as local parameters, the equation of the divisor is a power
series f € k[[x,y, z]]. Let {m;} be the set of the monomials appearing in f. Let P be the
convex hull of | J i(mj + o). This is an infinite polyhedron, but it has only finitely many
vertices, say m; for1 < j <r.

Let NFan(P) be the normal fan of P; it is a refinement of the cone o. Let X’ be the toric
variety, possibly singular, for this fan. We have a toric blow-up X’ — A3 modeling a blow-up
f: X" — X. The strict preimage of the divisor R has the same equation f* which still makes
sense for each of the standard open sets A3 that cover X’. The reason for taking the convex hull
was this: the vertices of P correspond to the 0-dimensional strata xJ/. of X’ and the fact that,
for each of them, the corresponding monomial has a nonzero coefficient means that the divisor
does not pass through x]/.. These points are in a bijection with the maximal-dimensional cones
aJ/. of NFan(P). Subdividing these cones further means blowing up at the points xj/. further. The
preimage of the divisor under these blow-ups will not contain any strata on the blow-up.

So the final recipe is this. From the equation of f, obtain the polyhedron P and its
normal fan NFan(P). It has finitely many rays R>¢(a;, b;, c;), where (a;, b;, c;) € Zio. Let
di = a; + b; 4+ ¢; and let d be the gcd(d;) so that these rays are cones over some integral
points of the triangle o N {a + b + ¢ = d}. The fan NFan(P) gives a subdivision of this tri-
angle. Refine it arbitrarily to a triangulation 7 into volume 1 triangles. This defines a Kulikov
model locally. Then repeat this procedure at all the O-strata of X . The resulting Kulikov model
satisfies condition (*). O

Remark 3.16. Difficulties with the moduli spaces of stable pairs (X, B = )_b; B;)
arise when Ky + B is Q- or R-Cartier but Ky and B by themselves are not. One solution was
proposed in [4, Section 1.5]: choose the coefficients b; so that (1, by,...,b,) are Q-linearly
independent. In the situation at hand, this means picking € to be irrational. We do not need
this trick for the K3 surfaces, however, since by the above the divisor R remains Cartier in the
interesting part of the compactified moduli space.

Theorem 3.17. The rational maps (FN,zd)v -—> 722 and, for a canonical choice of
a polarizing divisor, (F szlfl V> F ]232 from the normalizations of P n 24 and F ;151 to the Baily—
Borel compactification are regular.

Proof. We apply Lemma 3.18 with X = (FN,zd)v resp. X = (f;lfi)", and Y = ng.
We claim that the condition of Lemma 3.18 is satisfied. Namely, for a one-parameter family of
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stable K3 surfaces over (C, 0), the central fiber uniquely determines if the limit in the Baily—
Borel compactification is of Type II or Type III, and if it is of Type II, then the j-invariant of
the elliptic curve is uniquely determined.

As in the proof of Theorem 3.14, we get a Kulikov model X to which a big and nef
line bundle £ = @ (R) extends and then a contraction X, — X to the canonical model. If
X is of Type III, then X is a union of rational surfaces with rational singularities, glued along
rational curves. If X is of Type II, then either some components of X are glued along an
elliptic curve E or, if all the elliptic curves that constitute the double locus of X are contracted,
a component of X has an elliptic singularity, resolved by inserting E. So the type, and for
Type II the j-invariant of E, can be recovered from the central fiber X. O

Lemma 3.18. Let X and Y be proper varieties, with X normal. Let ¢: X --> Y be
a rational map, regular on an open dense subset U C X. Let (C,0) be a regular curve and
f:C — X amorphism whose image meets U. Let g: C — Y be the unique extension of f o ¢
which exists by the properness of Y . Assume that, for all f with the same f(0), there are only
finitely many possibilities for g(0). Then ¢ can be extended uniquely to a regular morphism
X —>7.

Proof. Let Z C X x Y be the closure of the graph of U — Y. The projection Z — Y
is a morphism extending ¢. The morphism Z — X is birational, and the condition is that it is
finite. By Zariski’s Main Theorem, Z — X is an isomorphism. O

4. The Coxeter fan and compactifications of F»

4A. The Coxeter fan. For [, a toroidal compactification depends on a single fan,
supported on the rational closure € of the positive cone in the space Nr for the hyperbolic
lattice N = H @ E g @ A;. We now describe a particularly nice fan on N, cf. [49, Section 6.2].

Definition 4.1. The Coxeter fan §° is obtained by cutting € by the mirrors r to the
roots of N, i.e. the vectors r € N with r2 = —2.

The Weyl group W(N) generated by reflections in the roots has finite index in the isom-
etry group O (N), with the quotient O (N)/W(N) = S3. Here, O"(N) is the index 2
subgroup of O(N) fixing the positive cone. Reflection groups acting on hyperbolic spaces
were studied by Vinberg, see e.g. [53, 54]. Note that, in those papers, a hyperbolic space has
signature (r — 1, 1) vs. our (1, 18).

A fundamental chamber & of W(N) is described by a Coxeter diagram given in Figure 2.
The nodes represent 24 roots r; that generate N, with the index i given by the label in Figure 2.
We have (r;,r;) = 0,1,2,6 depending on whether there is no line, a single line, a doubled
line, or a dashed line connecting i to j, respectively. The fundamental chamber is

R={A1e€:A-r;>0for0<i<23).

The group S3 acts on the fundamental chamber by symmetries of the diagram. The projec-
tivization P = P (K) is a hyperbolic polytope with cusps: it has infinite vertices corresponding
to null rays v € & with v2 = 0. However, it has finite hyperbolic volume.
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Figure 2. Coxeter diagram Geox and its maximal parabolic subdiagrams 117, 51057, ngfl,
D16A1.

Definition 4.2. A subdiagram of Gox is a subgraph G C G.ox induced by a subset
V C V(Geox) of the vertices, i.e. a subset of the 24 roots r;. It defines a vector subspace
RV =(ri,i € V) C Ng.

A subdiagram is called elliptic if the restriction of the quadratic form of N to RV is
negative definite. It is called parabolic if it negative semi-definite. Maximal parabolic means
maximal by inclusion among the parabolic diagrams.

Vinberg described the faces of the fundamental polytope P, see [53, Theorem 3.3]. In
our situation, this gives the following theorem.

Theorem 4.3. The correspondence

Fi>GF)={i|FCr)., G={r.icG~FG) =\
iel
defines an order reversing bijection between the faces of the fundamental chamber K and
the elliptic and maximal parabolic subdiagrams G C Geox. The chamber itself corresponds to
G =0.

Type III cones (meeting the interior €) of dimension d > 0 correspond to elliptic sub-
diagrams of rank r = 19 — d. These are disjoint unions of Dynkin diagrams G; of ADE type
with Y |G| =r.

Type Il rays Rx>qv with v2 = 0 correspond to maximal parabolic subdiagrams of Gox.
These are disjoint unions of affine Dynkin diagrams G; with YIGi| = 17.

Lemma 4.4. The cones of the Coxeter fan {°°* mod W(N) are in a bijection with the
faces of the fundamental chamber. The cones of F°* mod OV (N) are in a bijection with
elliptic and maximal parabolic subdiagrams of G¢ox mod Ss.

Proof. This follows since K is a fundamental domain for the W (N )-action and

OT(N) = S3 x W(N). o
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The following two lemmas are proved by direct enumeration.

Lemma 4.5. Modulo S5, there are 4 maximal parabolic subdiagrams of Geox, illus-
trated on the right in Figure 2.

(1) A7 =1[i,0<i < 18],

(2) DyoE7 =[18,17,0,...,6,7,19] U9, ..., 15,20],
(3) EZA; =[13,...,2,18] U[4,...,11,19] U [20,23].
(4) DigA1 =[19,5.6,...,0,1,18] U [3,23].

Lemma 4.6. Modulo S3, the numbers of elliptic subdiagrams of G.ox that have ranks
r=1,...,18 are 6, 51, 328, 1518, 5406, 14979, 33132, 59339, 87077, 105236, 105078,
86505, 58223, 31564, 13371, 4209, 883, 99. In particular, in {§°* mod 0+(N), there are
4 + 99 = 103 rays.

For each of the extended Dynkin diagrams A k> D k> E, &, there is a unique primitive posi-
tive integer combination of the roots which is null in the affine root lattice. The coefficients for
the first k nodes are the fundamental weights of the corresponding Lie algebra and the coeffi-
cient of the extended node is 1. Alternatively, these are labels of the extended Dynkin diagram
such that each label is half the sum of its neighbors. For example, for the first Eg diagram in
case (3) above, this vector is

n(ESY) = ris + 2r14 4 3r1s + 4r16 + 5117 + 670 + 411 + 215 + 3113,

Lemma 4.7. For each maximal parabolic subdiagram of Gox, the square-zero vectors
of its connected components coincide:

n(Dio) = n(E7), n(EL) = n(EP) = n(A1), n(Die) = n(4)).

The six E%/T 1 equations generate all the relations between the 24 roots r;. The unique syzygy
between them is that the sum of the three E% differences is zero.

Proof. An easy direct check. O

4B. Connected Dynkin subdiagrams of G.. We adopt the notation of [7] for the
connected subdiagrams of Gy using decorated Dynkin diagrams.

Definition 4.8. The subdiagrams of G.,x with the vertices entirely contained in the
subset {18, 19,20, 21,22, 23} are called irrelevant. A diagram is relevant if it has no irrelevant
connected components. For each G C G, its relevant content G™ is the subdiagram obtained
by dropping all irrelevant connected components.

We list the connected subdiagrams of G.ox in Table 1. The indices 0 < i < 18 are taken
in Z1g. We first give the elliptic subdiagrams, then parabolic, then irrelevant elliptic, and finally
irrelevant parabolic. The diagrams are considered up to the S3-symmetry if they do not lie in the
outside 18-cycle. The ones that are contained in the 18-cycle are considered up to the dihedral
symmetry group Dyg.
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Type Vertices Type  Vertices

Appyr  2i4+1,....2i+2n+1, n<8 Ay i,0<i<18

A3, 2i +1,...,2i +2n, n<8 Dy  18,17,0,...,6,7,19
Ay, 2i.....20 +2n, n<8 E;  9,...,15,20
UAopyr  18,0,1,....2n—1, n<8 Eg  13,...,2,18

A3, 18,0,1,...,2n -2, n<8 Dis 19,5,6,...,0,1,18
A 18,0,...,6,19 Ay 3,23

A s 18,0,...,12,20

D2y 18,17,0,1,...,2n -3, n <8 Al 18

Dy,.y 18,17,0,1....2n—2, n<8 A7 21

D, 18,17,0,...,6,19

D' 18,17,0,...,12,20 Al 20,23

Eg 18,16,17,0,1,2

“E7 18,16,17,0,1,2,3

“Eg 18,16,17,0,1,2,3,4

Table 1. Connected elliptic and parabolic subdiagrams of G¢ox.

The parabolic subdiagrams of G.ox are shown in Figure 2.
Definition 4.9. The skeleton of a diagram its intersection with the cycle 0, 1, ..., 17.

In the shortcut notation of Table 1, a minus or prime on the left and right implies that
the clockwise and counterclockwise vertex, respectively, adjacent to the skeleton is odd. The
absence of a marking implies the vertex is even. The prime indicates that an extra leaf of the
subdiagram has entered the interior vertices {18, 19,20, 21,22, 23} of Figure 2.

Definition 4.10. The stable type of an elliptic or maximal parabolic subdiagram

G=|_|Gk C Geox

is its relevant content G™', with diagrams notated as in Table 1, listed in cyclic order around
the 18-cycle. We introduce symbols A or “Ag to indicate, respectively, that both 27,2/ + 1 or
both 2i + 1,2i + 2 (mod 18) do not lie in the skeleton of G.

The insertion of the symbols A, or "Ag is necessary to determine the spacing between
the relevant connected components. Two examples are shown in Figure 3. Note that the S3 or
Dy action cyclically rotates and/or flips the diagram labels in the stable type, and orientation
reversing symmetries flip which sides of a symbol are decorated with a — sign.

4C. A toroidal compactification.

Definition 4.11. The toroidal compactification 7‘2‘“ = f? “* we consider in this paper
is the one corresponding to the Coxeter fan .
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kf

Figure 3.  Stable types (AO__AO)9 and D3 AgAgA; E7.

We describe the strata of thor which by Theorem 4.3, Lemma 4.4 correspond to elliptic
and maximal parabolic subdiagrams of Gox mod Ss3.

Notation 4.12. An elliptic subdiagram G = | | Gy is a union of ADE Dynkin dia-
grams. We denote by Rg the corresponding root system and W(G) its Weyl group. Let

S x W(G) C O(Rg)

be the extension by the symmetries Sg C S3 of the subdiagram. A parabolic subdiagram
G = | | G is a union of affine ADE Dynkin diagrams. In this case, let G = | | G be the
union of the corresponding ordinary (not extended) Dynkin diagrams.

Proposition 4.13.  The Type III and II strata in FY" are as follows.

(1) Let G be an elliptic diagram. Then Str(G) is the quotient by Sg x W(G) of the torus
Hom(Mg, C*) where Mg is the saturation of the root torus Rg in M = N*.

(2) Let G be a maximal parabolic diagram. Then Str(G) is the quotient by Sg x W(G) of
Hom(Mg, &) ~ &7, where &7 — A} is the self-fiber product of the universal family
of elliptic curves & — M1 over the moduli stack.

Proof. The strata of Type III are contained in the fiber of F" — FBB over the unique
Type III point and can be described purely in terms of toric geometry. We have two lattices
N=IY/I=H®& Eg @ Ay and M = N*. Using the quadratic form on N, we can present
N* as an overlattice with N* /N = Z,. The lattice N is generated by the 24 roots r; in Coxeter
diagram. Thus,

— * 1
M—N—UEEN

1
(v,ri) € Z} =N + 51’21.

For each Type Il cone 0 = o (G) of {F*, we have a cone 0 C N and a toric variety Uy
with a unique closed orbit Oy, which is a torus itself. It is standard in toric geometry that
Oy = Hom(oJ- N M,C*), and we have ol =Mg = R%‘, the saturation of the root lattice
Rg in M. In the toroidal compactification, we divide an infinite toric variety by I' = O (N).
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The orbit Tg is divided by its stabilizer in OF(N), which is Sg x W(G). The description in
Type III follows.

The exact structure of a Type II boundary divisor is determined by the parabolic group
Stabr(J) stabilizing the corresponding rank 2 isotropic lattice J. This parabolic group acts
on the period domain H x C!7 of Type II mixed Hodge structures, and the quotient is the
boundary divisor. The unipotent subgroup Uy is the kernel of the map

Stabr(J) % SL(J) x O(J L/ J)

and induces the full group of translations J+/J ® (Z & Zt) ~ (Z & Z7)'” on the second
factor C17. Quotienting by Uy first gives J+/J ® (C/Z @ Zt) — H on which the image of
q further acts.

We claim that g is surjective. First, we show that, for any isotropic J, there is a comple-
mentary isotropic subspace J', i.e. a lift of 4/J = to an isotropic plane in 4™ such that the
pairing between J and J' realizes J' = Hom(J, Z). For instance, let e1, e; be a basis of J.
There is an isotropic fj such that e; - f; = 1. Taking the perpendicular of {e1, f1}, we get
a sublattice of 41 isometric to N because there is a unique 0-cusp. We claim that there is an
isotropic f> € N such that e; - f5 = 1. Observe that e, is primitive in N *; it is primitive in
N and is not of the form r»; + 2n for any n € N because the norm of any such element is
nonzero. Hence there is an f, such that e; - fo = 1. Since N is even, we can modify f, by
a multiple of e, to ensure it too is isotropic. Then we choose J' = { f1, f>2}.

We can now realize any element (y, g) € GL(J) x O(J+/J) by an isometry of h+: we
declare the action on J to be y, on J' = Hom(J, Z) to be the transpose action y”, and the
action on the lattice summand (J @ J')+ ~ JL/J tobe g. Thus, the Type I boundary divisor
is the quotient of €17 — H by all of SL»(Z) x O(J+/J); we only get SL»(Z) because the
isometry must have spinor norm 1. ]

Lemma 4.14. For the connected elliptic subdiagrams G, one has Mg = Rg except for
the following diagrams given up to S, where the quotient Mg/ Rg is

(1) Z, for AT = [23]; Ay, )5, D}y Dies
Ay =103,....1, A =1[4,....2], and Dyg=[18,17,0,...,15];

(2) ZéfOi‘A17 == [1, ceey 17]

Proof. For a vector u € Mg, one has u € M < (u,v) € Z for all v € N, i.e. if and
only if (u,r;) € Z for the 24 roots r;. Now, for each of the lattices A = Rg, we check the
finitely many vectors in A*/A and see for which of them all the intersection numbers with the
24 roots r; are integral. As usual, Ay /Ap = Zp+41,D;;/Dp = Z% or Z4 for n even or odd, and
Er/En = Zo—p. o

Example 4.15. For the lattice 4, the vector

1
u=5(718+r1+73+75+719)€RG®Q

in fact lies in M because (u,r;) € Z for all roots r;. Note that u = w5 mod Ao, the funda-
mental weight of the Ag lattice for the middle node. Similarly for the A7 diagram in (2), the
vector u = % lell iriisin(Rg @ Q)N M.
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4D. Generalized Coxeter semifan. We start with a more general situation and then
specialize to our case. Let N be a hyperbolic lattice of signature (1,7 — 1), € C N the
positive cone, and € its rational closure. Let W C O(N) be a discrete group generated by
reflections in vectors {ry € N | k € K} such that r,f <Oandrg -rp > 0fork # k'. Let

K={lvrz00n€=HineE
k

be the fundamental domain of W. Then P = P(K) is a polytope in a hyperbolic space whose
faces by Vinberg [54] admit a description similar to Theorem 4.3.

Definition 4.16. We split the set K = I LI J into two subsets of active and inactive
mirrors. We call a face & ﬂjeyer of & irrelevant if V.C J. Let Wy = (w;, j € J) We
define a bigger chamber £ = | J new, (K) and a generalized Coxeter semifan F*™ as the
one whose maximal cones are g(£) for g € W.

Proposition 4.17. The following statements hold.
(1) One has & = ﬂie[,heWJ H;Eri). In particular, £ is convex and locally finite.
(2) The stabilizer group of £ in W is Wy.
(3) The support of F™ is €.
(4) The cones in F*™ are g(F) for g € W and the relevant faces F of K.

Proof.  Consider a single reflection w; in a vector r;, j € J and a neighboring chamber
w; (KR) =(); HrJ,r, where ' = w; (r¢). Then, fori # j and v € &, one has
k

27’,‘ i

rl--wj(v):ri-(v—

rj) >ri-v=w;(r;) - w;j(v).

A product of two generators of Wy is wjw;» = (w; wj/wj_l)wj, which is the same as
the reflection in the inactive mirror er- followed by the reflection in an inactive mirror of the
neighboring chamber w; (K). In the same way, any element 2 € Wj is a product of reflections
in inactive mirrors in a sequence of neighboring chambers.

By induction, we get r; - h(v) > h(ri)-h(v) =r;i-v >0 for any i € I and h € Wj.
Thus, & C H,j(ri). -

Vice versa, suppose v € € is such that i(r;) -v > Oforalli € [ andh € Wy.Letp € N
be a vector in the interior of K. Then p-r; € Z~¢ for all k € K. If there exists j € J such

thatv - r; <0, then

20 -1;
p-wj(v)=,o-(v— erj)<p-v.
T
Both p-v and p - w;(v) are positive integers and the set of vectors v with 0 < p-v < const
is finite. Therefore, after finitely many reflections in 4'(r;), i’ € Wy, we arrive at an element
h(v), h € Wy, suchthatr;-h(v) > 0for j € J.Foralli € I, we already have

ri -h(v) =h~Yrj)-v=>0.

Thus, h(v) € & and v € h~1(K). This proves (1). Parts (2) and (3) are immediate.
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For (4), clearly, each face of & is of the form g(F) for some face F of K. A face
F=K ﬂieyrl.l is not a face of L if the images g(&K) for g € W cover its open neighborhood.
This happens when Wy C Wy, i.e. V C J and F is irrelevant. |

We now apply this to our lattice N = H & E§ @ A;, the 24 roots ri, and the sets
I =10,...,17} and J = {18,...,23}. In this situation, the cone £ has infinitely many faces
and an infinite stabilizer group in O(N) = S3 x W(N). This explains the name semifan that
we use for the generalized Coxeter semifan &M

Corollary 4.18. The semifan F™ is a coarsening of the Coxeter fan F°*. For two
elliptic or maximal parabolic subdiagrams G1, Go C Geox, the corresponding cones of §*
map to the same cone in F if and only if G{el = G;el.

Remark 4.19. The same construction applies to an elliptic lattice or parabolic ambi-
ent diagram G.ox. When the subdiagram J is elliptic, the Weyl group Wy is finite. In this
case, the resulting semifan is a fan, and it can be alternatively defined as the normal fan of
a permutahedron.

The fan F* itself is the normal fan of the permutahedron, that is, an infinite polyhedron
Conv(W. p) for a point p in the interior of K. If ¢ is chosen to be on a lower-dimensional face of
R for an elliptic subdiagram J, with a finite Weyl group Wy, then &**™ is again the normal fan
of the permutahedron Conv(W.q). This is basically the “Wythoff construction” for the uniform
polytopes by Coxeter [13].

Looijenga [41,42] has constructed a generalization of both the Baily—Borel and toroidal
compactifications of an arithmetic quotients I'\ID of a symmetric Hermitian domain. The start-
ing data is a semifan supported on € in which the cones are not assumed to be finitely generated
or to have finite stabilizers. For example, the Baily—Borel compactification corresponds to the
semifan consisting only of the cone € itself and its null rays.

Definition 4.20. Let f;emi be the semi-toric compactification for the generalized Cox-
eter semifan ™,

Theorem 4.21. There is a morphism th"r — fzemi, an isomorphism on T'\ID, whose
induced map on strata is isogenous to the natural map of tori

Hom(Mg,C*) — Hom(Mgw,C*), Hom(Mg, &) — Hom(Mgr, €)

in Types 111, 11, respectively.

Proof. 'This follows directly from Proposition 4.17, Corollary 4.18, and the functoriality
of the semi-toric construction under refinement of semifans. ]

Note that |G| — |G™!| < 3, with the maximum achieved when there are three Ailrr dia-
grams in G. So the largest fiber dimension of the morphism in Theorem 4.21 is 3. For the
Type II boundary strata, G = G™ except when G = ESZ/T 1, in which case the morphism of
Theorem 4.21 loses 1 dimension.
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L 4
2

Figure 4. Fan of the toric surface 7" and the dual graph of negative curves on the surface
T" = Blpo.pe.p12(T)-

5. The mirror surfaces

In Dolgachev—Nikulin—Voisin mirror symmetry for K3 surfaces [14], the 19-dimensional
moduli space F, of polarized K3 surfaces with a rank 1 Picard lattice Zh, h? = 2, is mirror-
symmetric to the 1-dimensional moduli space of lattice-polarized K3 surfaces with a primitive
rank 19 sublattice H & E g @ A; C Pic S. We describe the latter explicitly and show that, for
a general surface S, its nef cone can be identified with the fundamental chamber & of the
Coxeter fan §°°%.

The K3 surfaces in this family admit several elliptic fibrations, one of which contains an
I3 Kodaira fiber. It turns out that they also come with an involution that fixes this /g fiber,
and the quotient surface 7 = S/t is a non-minimal rational elliptic surface with an /9 Kodaira
fiber in its minimal form.

5A. A toric model. We begin with a toric surface 7 whose fan is depicted in Figure 4
on the left. It is easy to see that T is smooth and projective. For each ray, we have a boundary
curve f,n One has fiz = -3fori =0,6,12, fl.z = —4 for other even i, and fiz = —1 for
odd i. The Picard rank is p(T) = 16. There are three toric rulings 7 — P! corresponding to
the opposite pairs of rays numbered 0, 9, 6, 15, and 12, 3, respectively.

5B. A rational elliptic surface. We define T as the blow-up of 7 at three points
P; € F;, i =0,6,12, each corresponding to the identity 1 € P! under the torus action. Let
the exceptional divisors of this blow-up be Fig, F19, F29, and let F; for 0 <i < 18 be the
strict transforms of the divisors F; on T .

The fiber over Py in the first ruling defined above is, after pullback, Fig + F»1, where
F»1 is a (—1)-curve intersecting Fg. Similarly, the pulled back fiber of the second fibration over
Pg is F19 + F,3, and the pulled back fiber of the third fibration over P, is Fro + F23. One
has Fl.2 = —4 for the even 0 <i < 18, and —1 for all other i. The intersection graph of F;’s
is given in Figure 4 on the right. The black vertices correspond to the (—4)-curves and white
vertices to the (—1)-curves. For the solid edges, one has F; - F; = 1, and for the dashed edges,
F - F; =3.
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The divisor
17
F=>)F

i=0
satisfies O (F) ~ OF and defines an elliptic fibration T — P!. Contracting the nine (—1)-
curves F1, F3, ..., F17 gives a relatively minimal elliptic fibration with an /9 Kodaira fiber
and three /; fibers. This is the extremal elliptic surface X911 in the terminology of [44, Theo-
rem 4.1]; it has three sections and three bisections, given by F; for 18 <i < 24. The excep-

tional curves not lying in the fibers are precisely the sections. Thus, F; for 0 <i < 24 are all
the negative curves on 7.

5C. An elliptic K3 double cover. Let 7:S — T be the double cover ramified in the
nine (—4)-curves Fy, F», ..., F1e and another fiber F’ of the elliptic fibration. Since there
are three special I; fibers, one gets a 1-parameter family of such surfaces, with three mem-
bers of the family having a rational double point. For a very general choice of F’, one has
p(S) = 19. A more detailed discussion of the moduli space of these mirror K3s may be found
in [15, Section 5].

For the preimages E; of the exceptional curves, one has 7*(F;) = 2E; for the even
0 <i < 18 and n*(F;) = E; for all other i. Then El2 = —2 for all 0 <i < 24 and the inter-
section graph of E;’s is the Coxeter graph of Figure 2. Thus, E; generate a 19-dimensional
lattice N = H & E% @ Aj. Since det N = 2 is square-free, it follows that Pic.S = N. Thus,
S is a 2-elementary K3 surface described by Nikulin and Kondo. Note that the graph of the
(—2)-curves in [35, Figure 1] is exactly our Coxeter graph.

The elliptic fibration on 7 induces an elliptic fibration on S with an /g fiber, which is
Ay7in Dynkin notation. The preimage of aruling on 7 for the rays 0, 9 (or 6, 15 or 12, 3) gives
an elliptic fibration on S with EsEgA; ﬁbers) The preimage of a ruling for the rays 2,10 (or
4,14 or 8, 16) gives an elliptic fibration with D10E7 fibers. The three subdiagrams D16A1 give
yet three more elliptic fibrations on S which also double cover rulings on 7', see Section SE.

5D. The nef cones of the rational and K3 surfaces.

Lemma 5.1. For a surface S as above with p = 19, the nef cone is a finite, polyhedral
cone equal to
Nef(S) ={A | A- E; = 0|24 curves E;}.

Under the identification Pic(S) = N, it maps isomorphically to a fundamental chamber K of
the Coxeter fan §°°*. The double cover defines identifications

7*:Pic(T)g — Pic(S)g. 7*:Nef(T) — Nef(S).

However, the lattice structures on Pic(T') and Pic(S) are different.

Proof. The nef cone of an algebraic surface is the intersection of the closure of the
positive cone € = {1 | A2 >0, A-h > 0} C Pic(S)r with the half spaces A - E > 0 for the
irreducible curves E with E? < 0. By [35], the 24 curves E; are the only negative curves
on S. We thus get the same inequalities that define a fundamental chamber K of F°*.

The pullback of a negative curve is a sum of negative curves. Thus, F; for 0 <i < 24 are
the only negative curves on 7', and 7 *: Nef(T) = Nef(.S). |
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Figure 5. Fan of the toric surface T .

5E. A second toric model. Let T — T be the contraction of the disjoint (—1)-curves
Fio, Fa, F»1. Justas T, the surface T is also a smooth projective toric surface with p(T) =16.
Its fan is shown in Figure 5.

6. Family of TAS? over the Coxeter fan

We now define a family of polarized IAS? over the Coxeter fan (our “Voronoi” decom-
positions). We motivate the construction with mirror symmetry.

As we saw in Section 4, a compactification of F> is governed by a fan decomposition & of
the rational closure of the positive cone of N = H & E§e2 @® A1.EachA € N, A2 > 0, deter-
mines a Picard-Lefschetz transformation of a one-parameter degeneration of complex struc-
ture, whose logarithm is given by (log 7)) - x = (x - §)A — (x - A)é. Mirror symmetry dictates
that the complex moduli of F» are interchanged with the Kdhler moduli of the Dolgachev—
Nikulin—Voisin mirror K3 surface S from Section 5. This is instantiated in the isomorphisms
Pic(S) = N, Nef(S) = K.

To make the mirror correspondence more precise, consider some A € N, A2 > 0. The
symplectic geometry of (S, w) in Kéhler class [w] = A should be interchanged with the com-
plex geometry of a degenerating family of degree 2 surfaces, whose monodromy vector is A.
We have a mechanism for this interchange—the Monodromy Theorem of Section 2G. It states
that the IAS? on the base of a Lagrangian torus fibration 11: (S, ) — B should be identified
with the dual complex B = I'(X)) of a Kulikov degeneration X — (C, 0) whose monodromy
vector is A.

Finally, we recall the construction S — T as a double cover of a rational surface. This
motivates a construction of B for any monodromy vector A and thus any Type III degeneration:
we should produce a Symington polytope P for the rational surface 7', then glue two copies
B = P U P together to form an IAS? which is the base of a Lagrangian torus fibration
w: (S, w) — B satisfying [w] = A.

We also give an explicit description of the Type II degenerations corresponding to the
cusps of &, when A2 = 0.

6A. Construction of IAS?. Let 7: S — T be the double cover of a special K3 ratio-
nal by a special K3 surface as defined in Section 5. Let L € Pic(T) ® R be a nef class. Let
aj = n*(L) - E; for the (—2)-curves E; C S, and let b; = L - F; for the (—1)- and (—4)-
curves on 7. Thus, a; = b; forthe even 0 <i < 18, and a; = 2b; for all other i.
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Let ¢: T — T be the blow-up of the first toric model, which contracts exceptional curves
Fig, F1o, F»o meeting Fy, Fs, Fi2.Seth; = L - F;. Then

L =¢*(L) —b1gE18 — b19E19 — bao Exo.
b() = b_() — blg, b6 = 56 — b19, b12 = b_12 — b20, b,’ = 51‘ for other i.

Construction 6.1. In Lemma 5.1, we identified tkle nef cones of S and T with a funda-
mental chamber & of the Coxeter fan F*. Solet L = b € Nef(T) = K be a nef R-divisor.

First, assume that all b; > 0; a fortiori, all b; > 0. Let P be the Symington polytope
obtained from the moment polytope P for L by three almost toric blow-ups of size b1g, b19, b2o
on sides 0, 6, 12 as shown in Figure 6. This introduces three 7, singularities in the interior of
P whose monodromy-invariant lines parallel the side from which the surgery triangle was
removed. So P is an integral-affine disc with 18 boundary components. The location of the
cut on the sides 0, 6, 12 can be chosen arbitrarily; ultimately, choices will produce Kulikov
models differing by “nodal slides” defined below, which do not affect anything. We make the
symmetric choice: with the cut centered around the midpoint of the side.

By [18, Theorem 5.3], the class L on T is nef if and only if it is possible to fit surgery
triangles of the appropriate size inside the polytope for a toric model without overlapping. In
our case, this is also easy to see directly.

Define an integral-affine sphere B := P U P°P by gluing together two copies of P. This
requires introducing an /; singularity at each corner of P, whose monodromy-invariant lines
are shown dashed in Figure 6. More precisely, we can take the top figure for P in Figure 6, and
take its isometric reflection along the edge 3 (with edges 9 or 15, it is similar). This produces
a copy of P°P attached to P along 3, but there is a gap between edge 4 and its reflection.
This gap is closed exactly by gluing edge 4 and its reflection with a unit shear in the dotted
direction. Once this gluing is made, we must introduce another singularity to glue edge 5 and
its reflection. And so on for edges 0, 1, 2, 3, 4, 5, 6 (and similarly for the other edges).

The general case is obtained as a limit of the above construction by sending some of the
b;’s to zero.

Definition 6.2. For any real vectord = (A - 17);efo,... 23} With A € &, A2 > 0, this con-
struction defines an integral affine structure B(a) on a sphere with 24 singularities, some of
which may coalesce, an IAS? for short. We sometimes suppress the dependence on a.

When all a; > 0, we define an integral-affine divisor Rjy whose supporting graph is the
equator, that is, the common boundary of P and P°P. The multiplicities are 2 for the even
sides and 1 for the odd sides. The assumption a; > 0 implies that the IAS? has 18 isolated I;
singularities on the equator. By Remark 2.32, this suffices to define Rja uniquely.

When some a; = 0, the definition of Ry is quite subtle. It is delayed until Section 6C,
but the supporting graph is still the equator, and the multiplicities are the same values, 1 and 2,
for the odd and even sides i € {0, ..., 17} with a; # 0.

The pair (B, Rya) is an analogue of a Voronoi decomposition in the case of abelian
varieties. As a varies continuously, so do they.

Lemma 6.3. One has (7*L)? = 2L? = vol(B), where the latter is the lattice volume,
twice of the Euclidean one.
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Figure 6. An example of the same IAS? glued in two different ways.
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Proof. By definition, vol(B) = 2 vol(P) and vol(P) = vol(P) — b3g — b3y — b3,. Itis
easy to see that L2 = L? — bfs — bfg — b%o. For any toric variety with a nef class, its volume
is the lattice volume of the moment polytope; this gives L? = vol P. |

Remark 6.4. By definition, b3 is the lattice distance from the singularity to the side 0.
The linear relation n(Eg) = n(A;) of Lemma 4.7 implies that b5 is the lattice distance to the
opposite side 9. Similarly for b9, ba> and bag, b23.

Example 6.5. Figure 6 shows a concrete example with

b_0=56=512:3’ b2=b4:"'=b16=2, b1=b3=-~-=b17=1,
b18=b19=b20=1, b0=b6=b12=2, b21 =b22=b23=29-

The green interior region is an open chart for the integral-affine structure on the disc P. In the
a-coordinates, a; = 2-1for0 <i <2l and a1 = azp; = azz = 2-29.

The second picture gives an alternative way of presenting the same IAS?, using the sec-
ond toric model 7. It is obtained by cutting a different ray emanating from the I, singularity,
which, instead of hitting the edge 12, goes in the opposite direction, towards edge 3.

Recall that, in Lemma 4.7, we defined the vectors n(K) for the affine Dynkin diagrams
A7, Eg, A™, D19, E7, D16 and A7}, using notations of Table 1.

Lemma 6.6. The circumference in the vertical direction, that is, twice the lattice dis-
tance in P and in P between the sides 3 and 12, is ev(n3 12), where

312 = n(ELM) = n(EP) = n(Aim)

and ev(ri) = a; is the evaluation map. Similarly, the circumference in the 8-16 direction is
ev(ng,i6), 18,16 = n(D10) = n(E7); the circumference in the 2-4 direction in the second pre-
sentation (i.e. around a singularity, close to the sic’lve 12) isev(na,4), n2,4 = n(Die) = n(A7);
and the circumference along the equator is ev(n(A17)).

Proof. This follows by observation using Lemma 4.7. |

Example 6.7. 1In the example of Figure 6, all the a; = 2 for i # 21,22, 23. Tt follows
and is indeed very amusing to observe that the projections of sides 13, 14, 15,16, 17,0, 1, 2, and
18 to a vertical line have lattice lengths 1, 2, 3, 4, 5, 6, 4, 2, and 3, which are the multiplicities
of the simple roots in H(Eg). Similarly, the projections of the sides 18, 17,0, ..., 6, 7, 19 to
a horizontal line have lattice lengths 1, 1, 2, ..., 2, 1, 1, which are the multiplicities for D 10
and similarly for E.

Corollary 6.8. Near the rays L?> = 0 of & = Nef(S), the sphere B with its integral-
affine structure degenerates to an interval as follows.

(1) A17. The Symington polytope P degenerates to a segment from the boundary of P to the
north pole, and B degenerates to a longitude.

(2) 51017?7. Both P and B degenerate to the side 8, identified with the side 16.
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3) E%/T 1. Both P and B degenerate to the side 3, identified with the side 12.
4) 1316; 1. Both P and B degenerate to the side 2, identified with the side 4.

In cases (2), (3), (4), the interval lies in the equator.

Definition 6.9. We define the family of IAS? over the fundamental chamber & by Con-
struction 6.1. By Lemma 6.3, this gives a family outside of the boundary rays with L? = 0,
where IAS? degenerates to an interval.

We then extend it to a family over € by reflections in the Weyl group W(N). This is
well defined because K is a fundamental domain of the reflection group and because, on the
boundary of & where some a; = 0, the limits of the structures from both sides coincide.

Remark 6.10. As we mentioned, the locations of the cuts on the sides 0, 6, 12 are quite
arbitrary and may be moved by a “nodal slide”. Instead of the symmetric choice for the cuts,
one could also make a “vertex-preferred” choice: for this choice, if b; are integral, then the
coordinates of the three internal singularities are also integral. For the symmetric choice, they
are only half-integral.

This is quite similar to the case of abelian varieties where, given an integral positive-
definite symmetric bilinear form B: M x M — 7 on M ~ 728, the Voronoi decomposition
fB(Vor B) in Ngr = My has only half-integral coordinates, but in low dimensions, there is
a “vertex-preferred” linear shift £ so that £ + fg(Vor B) has vertices in the lattice N = M *.

6B. Collisions of singularities in IAS%2. We now describe how the 24 singularities
collide and the resulting singularities of the integral-affine structures.

Theorem 6.11. For a big and nef class L € Nef(S), the possibilities for the collisions of
the 24 singular points are in bijection with the elliptic subdiagrams G of the Coxeter diagram
Geox, excepting 6.12. Each collision point, excepting 6.12, is in bijection with a connected
component Gy, of G.

Proof. InLemma 5.1, we made an identification of Nef(.S') with the fundamental cham-
ber K. Now we simply apply Theorem 4.3. With the noted insignificant exceptions, the colli-
sions correspond to the collections of indices {i | a; = 0} C {0, ...,23}, i.e. to the faces of &,
by virtue of Construction 6.1. O

6.12. The exceptions, which play no role in the end, occur as artifacts of the “symmetric
choice” of cuts for the Symington polytope P. A collision is insignificant if a different choice
of cut would get rid of the collision, for instance, when two cuts are made that have the same
apex in the interior of P.

Lemma 6.13. The singularities appearing B(a) as some collection of a; — 0 fori € Gy
(such subdiagrams are listed in Table 1) are exactly those listed in Table 2 with the same Dynkin
label.

Decorations “—” from Table 1 are dropped in Table 2 as they do not affect the resulting
integral-affine singularity.
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Definition Name Charge
I(n+1) Ap n—+1
12,2,n—=2) D, n+2
1(2,3,3) Ee 8
1(2,3,4) E7 9
1(2,3,5) Eg 10
12,3,n—=3) D,_, n+2
I(n+1,1) Ay n+2
I(n,n,2) AS,_, 2n+2

Table 2. Possible integral-affine singularities on B(a) for some d € K.

Proof. A singularity resulting from a collision as @; — 0 is determined by (and in fact,
is defined by, see Definition 2.13) tracking the monodromy directions of the /; singularities as
they coalesce. This presents the coalesced singular point in the form I(n10y,...,n; ). The
results are determined by direct geometric examination of Figure 6, and tabulated in Table 2.

For example, the Eg diagram formed from nodes i € {18,16,17,0,1,2,3,4} of G.ox
corresponds to the coalescence where these lengths a; all approach zero. This results in the
collision of 10 total I; singularities. Choosing monodromy-invariant cut directions for each
singularity in a counterclockwise fashion about the center of edge 0 (like a windmill) and
letting a; — 0, we see that this collision can be presented as /(5, 1,3, 1) ~ 1(2, 3, 5), which is
the “Eg” integral affine singularity. |

6C. Polarization of the IAS%2. We now define the polarizing divisor Ris on B, when
some singularities have collided. By Definition 2.30 and Remark 2.35, the data of Ryp is spec-
ified by a nef line bundle L; on an anticanonical pair (V;, D;) for which &(V;, D;) models
each integral-affine singularity. This line bundle is furthermore required to have intersection
numbers n;; = L; - D;; agreeing with the weighted balanced graph in B.

The graph underlying Rja is supported on the equator and has exactly two nonzero
weights n;; € {1,2} emanating from an equatorial vertex v; € §F(V;, D;). These weights are
notationally incorporated into the decorations of the corresponding Dynkin subdiagram Gy, by
the — and ’ decorations, see the discussion following Table 1. For each singularity, we must
give an anticanonical pair (V;, D;) in the c.b.e.c. describing the singularity, and the appropriate
line bundle L; — V;.

Theorem 6.14. Let 1o be the involution of B switching the hemispheres P, P°? and
fixing the equator pointwise. For each singularity v; on the equator of B, consider the defor-
mation class of “involution pairs” (V,',Ei + eﬁi), see [ 7] and Section TA, notated in [7] by
exactly the same decorated Dynkin symbol of the corresponding subdiagram, listed in Table 1.

Let 1; be the involution, so R; = Fix(;), and let i; be the induced involution on the mini-
mal resolution ;2 (V;, D) — (Vi, D). Then v; = &(V;, D;) as integral-affine singularities,
and 1; induces the same the action as ua. Furthermore, denoting R; = n* (R;), the nef line
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bundle L; := Oy, (R;) has intersection numbersn;j = L; - D;; which give the weighted graph
on the equator described in Definition 6.2.

Proof. Essentially, the proof is by direct calculation of all the cases. We simply check
that §(V;, D;) is the correct integral-affine singularity, and L; - D;; are the correct values. We
perform this check below for some representative examples. O

Remark 6.15. The proposition should not come as a surprise—the notation for subdia-
grams of G¢x was reverse-engineered so that Theorem 6.14 becomes true.

For notational convenience, we drop the index i.

Example 6.16 ("Ag and 4;,). (V.D) = (P2, D1 + D3) is a projective plane with a line
D plus conic D, as anticanonical divisor. The singularity of %(V, D) is an /; singularity, and
the degrees for Rya must be 1, 2 on the components D, D, corresponding to equatorial edges,
respectively.

The pair (V, D) admits an involution ¢ fixing another line R, and an isolated point on Dj.
The line bundle L = Oy (R) = Op2(1), which gives the correct multiplicities 1,2 on the two
equatorial edges of Rja. The two cases "o and A, are, respectively, distinguished by whether
the line is on the left (clockwise) or right (counterclockwise) side of the equator.

Example 6.17 (A3,—1). As the singularity is /(2n) = I(n, 0, n,0), see Remark 2.21,
we can model the c.b.e.c. as the blow-up

(V.D) = (V,D1 + Dy + D3+ Ds) —> (P' xPl.sy + fi + 52 + f5).

at n points on s, then n points on s2. The edges corresponding to the equator of B correspond
to the two fibers f1, f> and are required to intersect the polarization with degree 2. There is an
involution ¢: (V, D) — (V, D) preserving f and switching the strict transforms of sy and s»,

which have classes
n 2n
D =S—Ze,~ and D3 =s— Z e;.
i=1 i=n+1
Here, ¢; are the exceptional divisors.

Assuming the points blown up are chosen generically, the ramification divisor of ¢ is the
strict transform of the divisor on P! x P! in the linear system |2s 4 nf'| which passes through
all the 2n points. It has the class R = 2s +nf — 21221 e; with R? = 2n. The line bundle
L = Oy (R) has intersection numbers L - Dy, = L-Dgy=2and L-Dy = L-D3 =0 with
the boundary. Thus, it gives the correct intersection numbers for Ry as it passes through an
1(2n) singularity on the equator.

Finally, the stable model V is the result of contracting D; and D3 which are the only
curves on which L has degree 0. The involution descends and defines the A5;_; involution
pair from [7].

Example 6.18 (4, _,). As the singularity is /(n,n,2) = I(n,1,n,1), the c.be.c. is
represented by blowing up an A»,—1 pair at one point on each of f1, f> with the exceptional
classes g1, g2. We blow up at a pointin R N f1 and R N f5, respectively. So the resulting pair
(V, D1 + D3 + D3 + Dy) still admits an involution ¢ lifting the involution of the A5, —; pair.
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The boundary curves have classes

n 2n
Dl=S—Z€i, D3 =s— Z ei, Dy=f—g1, Ds=f—go,
i=1 i=n+1

2n
R=2s+nf - e —(g1+g2)
i=1

The polarization is defined to be L = Oy (R), and note that

L-Dy=L-Dy=1 and L-D; =L -D3=0,

as desired. The stable model is again the result of contracting D and D3 and gives the 4}, _,

involution pair.

Example 6.19 (D5,,). The easiest model for D, is a pair (V, D1 + D3), whose com-
ponents are a fiber f and the 2n-fold blow-up of a bisection in class 2s + f, on P! x P!
Taking some corner blow-ups and a toric model, one finds the pseudo-fan is

F(V,D)=1(2,2,2n—2),

as desired, and that D; and D, correspond to the edges emanating from v along the equator.

There is an involution ¢ preserving f and switching the two sheets of the bisection. Its
ramification divisor has class R =2s +nf — 21221 e;, R? = 2n. Setting L = Oy (R), one
has L - D1 = L - Dy = 2, as desired. In this case, L is already ample, so the stable model is
the same surface, and it is the D, involution pair.

Example 6.20 (D’2n). The Dén surface is obtained from the D,, surface by an addi-
tional blow-up at one of the two points Dy N R. This gives the singularity 7(2, 3,2n — 2),
which is the same as for £}, but in these two cases, the equator sits differently with respect to
the shearing rays. The involution on the D, pair lifts to give an involution.

Example 6.21 (E£,). For Es, the singularity is /(2,3,5) = 1(5, 1,3, 1), which can be
represented by blowing up 5, 1, 3, 1 points, respectively, on the four sides of an anticanonical
square in P! x P!. Contracting the two boundary exceptional curves gives the blow-up of
a nodal cubic in P2 at 8 smooth points, and at the node. Then R is the fixed locus of the
Bertini involution, which intersects each boundary component with degree 1, as desired. Here,
L = O(R) is already ample.

For "E7, there are 7 blow-ups on the cubic and an additional blow-up at the node, and
for "E¢ , there are two more blow-ups at the node. The involution is the Geiser involution. See
[7, § 4.5] for more details.

Remark 6.22. In Examples 6.17, 6.18, 6.19, 6.20, 6.21, the description of R as Fix(¢) is
valid only when the blow-ups are chosen generically. This is because, as we vary the blow-up
points on a smooth anticanonical pair, the fixed loci Fix(¢) do not vary in a flat manner. The
resolution of this issue is to work with the A DE surfaces of [7], on which R; = Fix(t;) does
vary in a flat manner. Then the pullback R; to the minimal resolutions also varies in a flat
manner.
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The same phenomenon occurs even for smooth degree 2 K3 surfaces acquiring a (—2)-
curve, such as the minimal resolution of a double cover of P? ramified over a nodal sextic. The
divisor R on such a smooth K3 is not Fix(¢) but rather the pullback of Fix(¢) for the involution ¢
of the ADE K3 surface.

Proposition 6.23 (Reconstructing the polarization). The line bundles L; defining the
polarization Ry at a singularity v; = §(V;, D;) are uniquely characterized by

(1) the intersection numbers n;; = L; - Dj; € {0, 1,2},
(2) the ;-invariance of the class of L;,

3) Ll.2 = the number of equatorial 1 singularities involved in the collision.
Proof.  As for Theorem 6.14, this simply requires a direct check in all cases. O

This completes the construction of a family (B(d), Ria) of polarized IAS?, varying over
C, which is combinatorially constant exactly along the cones of Fcox.

6D. Kulikov degenerations and their monodromy. The goal of this section is to ver-
ify that the monodromy invariant of a Kulikov model X — (C, 0) whose central fiber satisfies
['(Xo) = B(a) isinfacta € K.

Definition 6.24 (The parity condition). We say that @ € Z?* satisfies the parity condi-
tion if a; = 0 mod 2 for i odd, and all i > 18. Equivalently that all b; € Z.

Let N =H & Eg @ A be our standard lattice of signature (1, 18) as in Section 4. For
each vector a € Z2>‘B coming from an integral point in & and satisfying the parity condition,
we define a combinatorial type of polarized Kulikov surface. Then we prove that a Kulikov
degeneration with this central fiber has the monodromy A.

Construction 6.25. Suppose that @ € K satisfies the parity condition so that B(a) has
singularities only at integral points. Let ;a be the orientation-reversing involution of B(a)
which switches P and P°P, fixing the equator pointwise. Choose an (15 -invariant triangulation
T of B(a) into triangles of lattice volume 1 which contains the equator Ry as a set of edges.

We now apply Proposition 2.22 to produce a Kulikov surface Xo = (J;(Vi, D;) for
which &(V;, D;) = star(v;) as an integral-affine surface, and I'(Xo) = B(a). This specifies
a unique deformation type of X but not its continuous moduli.

To choose from the continuous moduli, first, we pick an anticanonical pair (V;, D;) on
the equator admitting an involution ¢; which induces ¢a on &(V;, D;). This is possible by
Theorem 6.14. Then we glue the equatorial edges of X by ensuring that R; glue into a Cartier
divisor, i.e. R; N D;j = R;j N Dj; as multisets. Finally, we glue the northern and southern
hemispheres of X onto this equatorial band of surfaces, in an arbitrary involution-invariant
manner.

The resulting Kulikov surface X admits an involution which we denote ¢y and which
acts on I'(Xg) by t1a. Furthermore, by construction, there is a Cartier divisor R C X given
by R = |J; R;. We show in Section 6G that it is possible to glue so that this involutive surface
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X is also d-semistable (see Section 2A), but for the moment, assume this. In particular, X
is smoothable by [20].

Definition 6.26. We write Xo(a) for the Kulikov surface defined in Construction 6.25
and X (a) for a smoothing of it.

Theorem 6.27. Let a satisfy the parity condition and suppose B(a) is generic.
(1) Let X(a) — (C,0) be a Kulikov degeneration defined above.
(2) Let u:(S,w) — B(a) be a Lagrangian torus fibration over B(a).
(3) Let ¢p: S — X be the diffeomorphism of Theorem 2.43.

Define v := ¢«[Zia] € 81/8, where Sip := YRy, Then {v, 8} /8 is isometric to N and the
monodromy invariant is A = @ mod O (N).

Proof. By construction of ¢, ¢«[Z1a] € 81 /8 is invariant under the Picard—Lefschetz
transformation, hence perpendicular to the monodromy invariant A. So A € {v, §}*/6.

We describe a collection of 24 spheres {E;} of self-intersection —2 in (S, w), which
intersect according to the Coxeter diagram G.ox. They are all presented as non-Lagrangian
visible surfaces. Let y; fori = 0, ..., 17 be the i-th edge of P. Then the monodromy-invariant
vectors «; at the two endpoints of y; are parallel. By Construction 2.39 and Example 2.41,
there is a visible surface E; := Xy, o) fibering over y;. Now, let i = 18,19, 20. Define y;
as a path which connects the singularity of P over the edge 0, 6, 12), to the mirror singularity
in P°P, crossing the edge 0, 6, 12, respectively. As before, let E; := 3(y;,a;) Where «; is the
(common) vanishing cycle at the two endpoints of y;. Finally, we define E; fori = 21,22,23
similarly, but this time connecting the singularity in P to the mirror one in P°P via a path y;
which crosses the edge 9, 15, 3, respectively. It is an easy check that if the E; are properly
oriented, the intersection numbers E; - E; give exactly a system of roots as in G¢ox.

We directly compute by perturbing and counting signed intersection points that

[Z1a] - [Ei] = 0.

Since the classes [E;] generate a lattice of determinant 2 and rank 19, we conclude that ¢«[E;]
generate the rank 19 lattice {§, v} /8 over Z and that this lattice is isometric to N, with the
isometry identifying ¢«[E;] and r;.

Finally, we wish to show A and a define the same element of N modulo O (N). We
have the following formula for the symplectic area of a visible surface:

1
W] - E; = [0 det(a;, v}(1)) di = a;

for all i. Hence A - ¢«[E;] = a; for all i. This shows that A and a represent the same lattice
pointin &, i.e. A = @ mod O (N). O

Corollary 6.28. The vector v € 81 /8 is imprimitive with v = 3w and w? = 2.
Proof. By taking a generic perturbation of Xy off itself and counting signed intersec-

tions, we see that v2 = 18. Also, v lies in span{¢«[E;]} C 61 /8, a one-dimensional lattice of
determinant 2, which is necessarily generated by a vector w with w? = 2. Hence v = 3w. O
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Theorem 6.29. Theorem 6.27 holds, even when B(a) is not generic.

Proof. The primary issue with the proof of Theorem 6.27 in the non-generic case is
that there is no smooth Lagrangian torus fibration u: (S, ®) — B(d) when B(a) has more
complicated singularities such as 45, _,. So we cannot directly apply Theorem 2.43.

Let a(t) be a one-parameter family over ¢ € [0, 1] such that a; () > 0 for all # > 0 and
a; (0) results in a collision of /; singularities. Let N > 0 be a large integer. For all ¢, let B’ (a(t))
be the result of performing nodal slides (Definition 2.27) of fixed length lying in N~'Z, to
every singularity involved in a collision. Then, as ¢ — 0, the singularities no longer collide,
and rather the collection of singularities of B(a) are factored into /; singularities by the nodal
slides. Let

w(®): (S(t), w(t)) — B(a(t)) fort e (0,1],
W (t): (S’ (t), ' (t)) = B'(a(t)) fort €]0,1]

be the corresponding families of almost toric fibrations. The fibration p(0) does not exist unless
B(a) has all unprimed singularities, but ©/(0) does. Define

a(t) =[Sl € H*(S(), Z).

The o(t) are identified under the Gauss—Manin connection on the fiber bundle S(¢) — (0, 1].
Define o’ () by parallel transport of o (¢) along the nodal slide connecting B(a(t)) to B’ (a(t)).
It is easy to see that o”(¢) is also represented by a visible surface X, (¢) which fibers over
Ria (1) and the segments along which the nodal slides were made. Since 1/(0) exists (as the I
singularities no longer collide), we have that 6’ (0) = [X[, (0)] is the parallel transport of o’ ().

As the slide parameters lie in N ~1Z, these parameters are integral on the order N refine-
ment. So B’(a(0))[N] admits a triangulation into lattice triangles. By Proposition 2.22, we get
a Kulikov degeneration X'[N] — (C, 0) such that I'(X3[N]) = B'(a(0))[N].

The nodal slides destroy the involution symmetry of B(a(0))[N] and any chance of X
having an involution. But we may apply the first half of Theorem 2.43 to B’(a(0))[N] to
conclude that the vanishing cycle is identified with [14/(0) ! (p)] and the monodromy invariant
A'[N] is identified with N [w]’(0). Furthermore, the class ¢«0”’(0) is invariant under Picard—
Lefschetz, and the conclusion of Theorem 6.27,

A[N] = Na(0) mod OF(N),

holds by continuity: we have [@(t)] = [@’(¢)] because nodal slides leave the class of the sym-
plectic form invariant. Hence

@' (O)] = lim[o'(1)] = lim[o()] = lim a(t) = a(0).

Integral length nodal slides correspond to M1 modifications of X’[N] by Proposition 2.28.
Thus, there is a sequence of such modifications after which we have a Kulikov degeneration
X"[N] — C satisfying I'(X§[N]) = B(a(0))[N]. After a series of M2 modifications corre-
sponding to retriangulation (again Proposition 2.28), we can produce a Type III degeneration
X[N] — C such that the dual complex is the standard order N refinement of a triangulated
IAS? B(a(0)). We conclude by Proposition 2.29 that X[N] — C is in fact an order N base
change of a Kulikov degeneration X’ — C such that I'(X¢) = B(a(0)), whose vanishing cycle
is the same, and whose monodromy-invariant A is a(0).



Alexeev, Engel and Thompson, Compactification of moduli of K3 surfaces 43

Furthermore, we have produced not just a class ¢+’ (0) but an actual surface ¢ (X[, (0))
on the general fiber X; (note the M1 and M2 modifications act trivially on the punctured
family). Under the Clemens collapsing map X; — Xo, the surface ¢ (%1, (0)) is pinched at
the double curves to produce a union of surfaces R; C V; on the equator such that

R; N Dij = Rj N D,’j.

We note that the involution is restored in the limit @; — 0 when undoing the nodal slides.
The class [R;] is invariant under the involution on an anticanonical pair of deformation type
(Vi, D;). We also know the values of [R;]> and [R;]- D;; by continuity, so we can apply
the reconstruction proposition, Proposition 6.23, to determine R; uniquely as the class of the
ramification locus. o

6E. An example: The A’18 ray. Consider the A/18 subdiagram of G.ox where a; = 0
fori € [18,0,1,...,16]. The corresponding cone in F* is a ray. Take a to be twice the inte-
gral generator so that it satisfies the parity condition, Definition 6.24. Then a17 = 6. Relations
in N determine (ay9, a2, az1,daz2,a23) = (10, 8,30, 14,22). Recall from Section 6 that a
corresponds to line bundle M in the nef cone Pic S of the mirror K3 satisfying M - E; = a;.
Letting 7: S — T' be the double cover of the rational elliptic surface, we have M = 7*L,
where L - F; = b; with b = (0,...,0,3,0,5,4,15,7,11). Then we may further blow down
¢: T — T to the first “6-6-6” toric model. The values b; = (p«L) .F;are bg = 5,b1p = 4,
b17 = 3 with all other b; = 0.

Take a moment polygon of T with polarization L = ¢4 L and apply two Symington
surgeries of size 5 and 4 on the edges associated to 56 and 512, respectively, producing the
green integral-affine disc P (a) with blue boundary depicted in the upper part of Figure 7. We
double the disc so that the blue edge becomes the equator of the IAS? B(a).

We triangulate B(a) into lattice triangles in an involution-invariant manner, respecting the
blue edge. The singular red stars and non-singular black points form the vertices v;. Finally, we
interpret each vertex as the pseudo-fan F(V;, Y ; Di /) an anticanonical pair and glue according
to the combinatorics of the triangulation. The resulting Kulikov surface X is shown in the
lower part of Figure 7, with double curves in gray, self-intersections in purple, and triple points
in yellow.

The line bundles R; are trivial on all but three components, those along the blue line. On
the outer component, R; is the fixed locus on involution on a resolution of the type A’ ¢ involu-
tion pair. On the two other equatorial components, R; is the fiber of a ruling along the equator.
These glue to form the Cartier divisor R. Taking the image of a multiple of O, (R), we get
the stable model: this contracts the northern and southern hemispheres to a point, contracts
a ruling on two equatorial components, and is a birational morphism of the outer component to
the polarized A’ ¢ involution pair.

The resulting stable model is irreducible, and is the contraction of an anticanonical pair
with cycle of self-intersections (—10,—2,—1,—2,—10,—1) to a singular surface with two
boundary components glued. It has two cyclic quotient singularities at the north and south
poles whose resolutions are a chain of rational curves of self-intersections (—10, —2) and the
images of the (—1)-curves which are glued.

6F. Type II Kulikov models. It remains to determine the Kulikov models correspond-
ing to the rational cusps of K.
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Construction 6.30. Toavectord # 0 € & witha? = 0, we associate a Type II Kulikov
surface Xo(d) with an involution o and a stable surface (Xo (@), €R).

For the relevant connected parabolic diagrams, we have the Type II AD E involution pairs
(Xg, Dy) of [7] which h glue to a stable surface Xo(a) with an involution 7o and fixed locus R.
For the diagrams E A1 D10E7, D16A1 where there are two components, the elliptic curves
Dy, must be 1somorphlc to a fixed E.

Now we describe the Kulikov models. If @ = mag with primitive dg, then the dual com-
plex T'(Xo(a)) will be an interval [0, m]. A triangulation in this case is the subdivision into
intervals of length 1.

For 510E7 and 51712( 1, the surface Xo(a) is constructed by taking the minimal res-
olution of each component of Xo(a) and gluing these components, with a chain of m — 1
PP!-bundles over E inserted between them, like an accordion.

In the E{%/T 1 case, we assume after an order 2 base change that m is even. At the ends,
we put the minimal resolutions of two Eg involution pairs. We build a chain of surfaces as in
the previous case, but on the middle component, we blow up a palr of pomts on the boundary
of P! x E switched by the involution. This corresponds to the A = A irr diagram.

In the A7 case, resolve the two simple elliptic singularities of the A7 involution pair
Xo(a@) = (V,p1.p2) to obtain a surface (V, Dy + D,) which is ruled over an elliptic curve
with 18 broken fibers, and whose anticanonical divisor D U D5 is the disjoint union of two
elliptic curves E of self-intersection —9. We again assume m is even, and put the anticanonical
pair (V, D1 + D) at the m /2 vertex. We add ruled surfaces over the same elliptic curve E for
the integral points / # 0, m /2, m and cap both ends of the segment by the rational anticanonical
pair (P2, E).

Remark 6.31. The Type II Kulikov models can also be constructed directly from the
segment, together with the data of how it degenerated from an IAS?; an analogue of the Mon-
odromy Theorem, Theorem 2.43, likely holds. This requires first generalizing pseudo-fans to
allow blow-ups of E x P!, corresponding to the surfaces in the interior of the interval. The
ends of the interval are anticanonical pairs (V, D) with D smooth. These obviously have no
toric models, but can be constructed via node smoothing surgeries, cf. [16, Proposition 3.12].
For example, in the A7 case, the three surgery triangles consume all of P. At the north pole,
this dictates three node smoothing surgeries on the anticanonical pair (P2, L1 + Lo + L3),
giving the pair (P2, E), as in Construction 6.30.

6G. Deformations of Kulikov models with involution. We now prove that the Kulikov
surfaces Xo(a) constructed

(1) can be made d-semistable and admit a smoothing into F>, and

(2) the union R C Xo(a) of the curves R; C (V;, D;) from Theorem 6.14 is the flat limit of
the ramification divisor.

Once these are demonstrated, we show that

(3) every degeneration C* — F, admits a Kulikov limit of the form X(a) with R the flat
limit of the ramification divisor.

We first recall the basic statements about d -semistable Kulikov surfaces from [20,24,27,
39]. Let Xo be a Type III Kulikov surface with v irreducible components V;, e double curves
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Di; = V;NV;,and f triple points T;;x = V; N V; N Vi. One defines an important lattice of
“numerical Cartier divisors”

A = ker(@Pic Vi — @Pic D,'j)
i i<j

with the homomorphism given by restricting line bundle and applying +1 signs. The map is
surjective over Q by [24, Proposition 7.2]. The set of isomorphism classes of not necessarily
d-semistable Type III surfaces of the combinatorial type X is isogenous to Hom(K, C*).

For a given y € Hom(A, C*), the Picard group of the corresponding surface is ker(y).
The surface is d -semistable if and only if the following v divisors are Cartier:

S,‘ = ZD,‘j —Dj,' € 1~\
J
Note that ) ; & = 0. Thus, the d -semistable surfaces correspond to the points of multiplicative
group Hom(A, C*), where

z _ i Zéi
i &)

By [21,24], the Clemens—Schmid exact sequence identifies A as isometric to

A = coker(E — A).

S s=rtcI1t/r oo Jt/g

in Types III or II, respectively.
The dimension of the space of the d -semistable surfaces is

dp()—e—(w-D=Qe-2v0+24)—e—(v—1)=e—3v+25=19

1

because e — 3v = —6 for a triangulation of a sphere.

Lemma 6.32. For all d, there is at least one d -semistable Kulikov surface Xo(a) which
admits an involution acting by switching the hemispheres of B(a), and acts in the prescribed
way on the equatorial components (cf. Theorem 6.14).

Proof. Within any deformation type, the Kulikov surface X for which v = 1 is the one
for which all moduli of components and gluing data are trivial: only —1 (in toric coordinates)
is blown up on a toric model of a component (V;, D;), and all double curves D;; and D;; are
identified by gluing (in toric coordinates) by —1.

For this surface, it is automatic that the equatorial edges D;; are glued in such a way that
R; N D;; = R; N Dj;. Thus, the union of the equatorial components admits an involution, and
by uniqueness of this Kulikov surface, the involution extends across the two hemispheres.

Finally, since ¥ = 1, the d-semistability condition is automatic. O

Lemma 6.33. Any d-semistable equisingular deformation of the Kulikov surface Xo(a)
from Lemma 6.32 keeping [R] Cartier smooths to a degree 2 K3 surface. The space of such de-
Sformations is isogenous to Hom(A/%Z [R], C*) in Type Il and Hom(A/%Z[R], &) in Type II.
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Proof. To prove the second part, observe that Corollary 6.28 implies [X14] is 3-divisible
in { f. [w]}*/f and therefore [R] is 3-divisible in {§,A}1/§ = A. Since %[R] is Cartier on the
surface with ¢ = 1, any deformation keeping [R] Cartier also keeps %[R] Cartier. Thus, any
deformation keeping [R] Cartier admits a line bundle L, with L2 = 2.

By [20], the analytic smoothing component S of X is 20-dimensional and analytically
locally isomorphic to an extension of vector spaces

0 — Hom(A,C) — S — H°(&xt' (Q;,. Ox,)) — 0.

The first space forms the tangent space to equisingular d -semistable deformations, and by d -
semistability, the third space has dimension one. The hyperplane S;g; C S keeping [R] Cartier
fits into an exact subsequence

0— Hom(A/%Z[R], C) = Sgp—> C—0.

and a deformation is first-order smoothing if and only if it has nonzero image in C. So there
are smoothings keeping [R] Cartier and admitting a line bundle L, L? = 2. The first part of the
lemma follows. ]

Lemma 6.34. Any equisingular deformation as in Lemma 6.33 admits an involution g
and a Cartier divisor R representing the deformation of [R], realizing it as a Kulikov surface
Xo(a) coming from Constructions 6.25, 6.30.

Proof. 1t suffices to prove that the deformations which keep the class [R] Cartier also
admit an involution ¢¢ acting in the desired way on Xy and are, therefore, instances of Con-
struction 6.25 (caveat lector: R and Fix(to) need not be equal, see Remark 6.22).

First, we suppose B(a) is generic. In this case, we prove that a deformation keeps [R]
Cartier if and only if it deforms the involution ¢¢. The reverse implication is easy, as the Cartier
divisor R can be reconstructed from ¢g; it is the pullback of R; = Fix(z; ) from the stable models
of the equatorial components.

Next we show that the first-order d -semistable equisingular deformations of X keeping
[R] Cartier preserve the involution. The tangent space to the d-semistable equisingular defor-
mations is Hom(A, C). Here, the target vector space C depends on the orientation of I'(Xy),
so the involution to acts on it as (—1). Thus, the tangent space to deformations preserving
the involution is Hom(A /A 4+, C), where A is the (+1)-eigenspace of tp on A. Obviously,
[R] € A+. So all we have to show is that (n4,n_) := (rank Ay, rank A_) = (1, 18). We now
compute the ranks of the (4+1) and (—1)-eigenspaces for all the lattices involved.

Let us denote by eg, ey the edges of the triangulation of the sphere that appear on the
equator and in the northern hemisphere. One has ¢ = eg + 2en. Similarly, v = vg + 2vy
for the vertices and ¢ = g + 2gn = 18 + 6 for the charges.

For an irreducible component, the Picard rank is p(V;) = e’ + ¢’ — 2, where we only
count the edges and charges belonging to V;. For a symmetric pair of surfaces in the north-
ern and southern hemispheres, this gives (eﬁ'v + qfv -2, eﬁ\, + qﬁv — 2). For a surface in the
equator, (e + ey + gy — 1,ely + g% + g%y —1). Adding up the eigenspaces for P Pic V;
gives

(2eg +2eny —vE —2vN +qn.2eNy —VE —2UN +4E +qN)-



48 Alexeev, Engel and Thompson, Compactification of moduli of K3 surfaces

For the lattice € Pic D;;, it is of course (eg + en, en), and for E, itis (vg + vy — 1, vpy).
Putting this together, the ranks (n4,n_) are

1 1 1 1
(5(6 —3v) + §(€E —VE) +gqn + 1, 5(6 —3v) — E(eE —VvE) +4qE +61N).

Usinge —3v = —6and eg = vg, we have (ny,n—-) = (gy — 2.9 +qn — 3) = (1, 18).

When I'(Xj) is non-generic, the computation has an additional subtlety: the action of
the involution on Pic(V;) for an equatorial component varies (see Remark 6.22) as one varies
the involution pair (V;, D; 4+ €R;). But choosing a generic member of the space of (V;, D;)
admitting an involution ¢; gives a specified action on Pic(V;), and for this generic choice,
(ng,n-) = (1,18).

We now lift to higher-order deformations, noting that these higher-order lifts form a torsor
over the first-order deformation space Hom(A, C). Thus, the involution ¢y acts on higher-order
deformations by an affine-linear transformation, whose linear part fixes an 18-dimensional sub-
space. It follows that the involution fixes an 18-dimensional affine-linear subspace. So the
involution can be lifted to higher order. Furthermore, these lifts are exactly those preserving
the line bundle since the fixed locus of the involution is Cartier. We conclude that deformations
over an analytic open subset of Hom(A, C*) have an involution. This open subset is Zariski
dense since the condition of having such an involution is algebraic.

We now specialize from this sublocus of Hom(A, C*) of Kulikov surfaces with involu-
tion, observing that a limiting Kulikov surface X still admits an involution, and the limiting
class [R] is still Cartier. Alternatively, we can cite [7, Theorem B]—the spaces of ADE sur-
faces are parameterized by tori (C*)", so by varying the moduli of the equatorial components
and the edge gluings, the space of Xo(a) fills out all of (C*)!8, as opposed to some Zariski
open subset.

In the Type II case, a dimension count shows that varying moduli of the ADE surfaces
and gluings from Construction 6.30, with a fixed elliptic curve E, produces an abelian variety
isogenous to £!7. Thus, additionally varying j(E) fills out the entire abelian variety fibration
Hom(A/ %Z[R], &) over the modular curve. m]

Theorem 6.35. Let Xo(a) be a d-semistable Kulikov surface from Constructions 6.25,
6.30. The Cartier divisor R C Xo(a) is the flat limit of the ramification divisors R* C X™* on
any smoothing X, — (C, 0) keeping [R] Cartier.

Furthermore, every degenerating family (X*, R*) — C* of degree 2 K3 surfaces with
ramification divisor admits, after some finite base change, a Kulikov model X — (C, 0) of this
Sform.

Proof. Let X(a) be a generic element of Hom(A / %Z[R], C*). Then each anticanoni-
cal pair (V;, D;) with involution ¢; is generic, and the involution ¢ acts on A with eigenspaces
of dimension (1, 18). The argument of Lemma 6.34 shows that any smoothing keeping [R]
Cartier preserves the involution because ¢¢ acts on H°(&xt!(Q! - Ox,)) by negation.

So there is an involution ¢ on any Kulikov model X smoothing X¢ which keeps [R]
Cartier. This implies lim; ¢ Fix(¢;) = Fix (o) because X is smooth, so Fix(¢) consists of only
0- and 2-dimensional components. In particular, each 2-dimensional component is irreducible
and forms a flat family of divisors. Furthermore, since we are in the generic case, Fix(t;) = Ry
for all ¢ including 0.
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For Xo(a) non-generic, i.e. having (—2)-curves in equatorial components, and a general
smoothing X — (C, 0), the involution ¢ does not extend to a regular involution ¢ of X . Instead,
X* admits an involution (* which only extends as a birational involution ¢: X --> X whose
locus of indeterminacy is the (—2)-curves in the equatorial components, and the restriction
t %o (@) extends to ¢o.

We conclude that the flat limit of R* differs from Fix (o) at most along the equatorial
(—2)-curves, as does R, by construction. So lim;—o R; = R+ Y a;C; for C; these (—2)-
curves. On the other hand, J?% = R? by construction, R - C; = 0, and C; span a negative-
definite lattice, so we conclude that a¢; = 0 for all i. This completes the proof of the first
paragraph in the theorem.

To prove the second paragraph, we observe that, after a finite base change, any degen-
eration X* — C™ has unipotent monodromy and thus has some monodromy invariant A € K.
After a further order 2 base change, we can ensure vector d € Z2>40 defined by (A - 1) eq0,...,23)
satisfies the parity condition. Let X¢o(a) be one of the corresponding Kulikov surfaces. By
Theorem 6.29, the monodromy invariant of a smoothing X (@) — (C, 0) is, in fact, equal to A.

It remains to show that we can vary the continuous moduli of X (a) until our given family
X* — C* agrees with X*(a). By Lemmas 6.33, 6.34, the d -semistable surfaces Xo(a) keep-
ing [R] Cartier form a family ¥¢(a) over (a variety isogenous to) (C*)!® or €*17 in Types III
and II, respectively.

A result of Friedman—Scattone [24, Lemmas 5.5, 5.6] shows that the smoothing compo-
nents of the fibers of X (@) keeping [R] Cartier can be glued together, to form a family ¥ (a) of
smooth and Kulikov K3 surfaces with line bundle. The base of X(a) is 19-dimensional and, up
to the action of a finite group, is identified with the toroidal extension F, — F2;L whose only
cones are the I'-orbits of the ray R>oA. The boundary divisor is exactly the base of X¢(a),
parameterizing the d-stable equisingular deformations of X¢(a) keeping [R] Cartier. Proposi-
tion 3.2 implies that X* — C™* is a subfamily of X(a) because the period map approximates
a co-character A ® C* which is completed at 0 in FZA. The theorem follows. o

7. Determination of stable models

The goal of this section is to determine the KSBA stable limit of any one parameter
degeneration (X, eR*) — C™* in F;,. We describe the components which will appear on any
stable limit of degree 2 K3 pairs (X, €R), and how they are glued.

7A. ADE and A D E surfaces. In this section, we describe the classification of invo-
lution pairs of [7] in more detail.

Definition 7.1. Let X be a normal projective surface with a reduced boundary divisor
D and an involution : X — X, (D) = D such that

(1) Kx + D ~ 0is a Cartier divisor linearly equivalent to 0,
(2) the ramification divisor R is Cartier and ample, and

(3) the pair (X, D + €R) has log-canonical singularities for 0 < € < 1.
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Such pairs were called (K + D)-trivial polarized involution pairs in [7], where they are clas-
sified in terms of the decorated ADFE diagrams in Type III and extended AD E diagrams in
Type 1L

The classification in [7] is done in terms of the quotients (Y, C) = (X, D)/t and the
branch divisors B C Y. The surface X is recovered as a double cover m: X — Y branched
in B.Then R = 7~ !(B)and D = 7~ 1(C).

In toric geometry, a lattice polytope P corresponds to a toric variety Yp with an ample
line bundle L p. For many Dynkin diagrams, there exists a polytope P corresponding to it in
an obvious way. Then Y is defined to be Yp and the branch divisor B to be a divisor in the
linear system |Lp]|.

For example, there are polytopes of shapes associated to A, Ds, E7 in Figure 3. In
general, the polytope P has the following vertices:

(1) Ap, A, for n odd and even, respectively: (2,2), (0,0), (n + 1,0).
(2) 4,,, Ap for n odd and even, respectively: (2,2), (1,0), (n + 2,0).
(3) Dy and D;: (2.2), (0,2), (0.0), (n — 2.0).

4) En (CEg, E7, "Eg): (2,2),(0,3),(0,0), (n —3,0).

(5) Dan:(0,2), (0,0), (2n — 4,0), (4,2).

(6) E7:(0,4), (0,0), (4,0).

(7) Es: (0,3),(0,0), (6,0).

In the ADE cases, the boundary D has two components. In the ADE cases, D is an
irreducible smooth elliptic curve.
The only non-toric initial cases are A,,—1 and two small exotic A shapes.

(8) Azn_1. The surface is cone Projz (O @ ¥) over an elliptic curve E, where ¥ is a line
bundle of degree n. The boundary C = 0 is empty and B € |-2Ky|.

9) /T’f Here, Y = P2, the boundary C is a smooth conic, and the branch curve B is a pos-
sibly singular conic. If B is smooth, then X = P! x P!, and if B is two lines, then
X =P(1,1,2) with R passing through the apex. Also included is a degenerate subcase
when P? degenerates to Y = P (1, 1,4) with R not passing through the apex.

(10) ffa. Here, Y = P(1,1,2) = IFg. The curve C is the image of C € |s + 3| on F,. The
branch curve is a conic section disjoint from the apex.

All other pairs are obtained from these by a process called “priming”: making up to 4
weighted (1,2) blow-ups Y’ — Y at the points of intersection of the branch divisor B with the
boundary C and then contracting parts of the boundary C’ on which —Ky- is no longer ample.
On the double cover m: X — Y, this corresponds to an ordinary smooth blow-up at a point of
R N D and then contracting parts of the boundary D’ on which R’ is no longer ample.

These “primed” surfaces Y are usually not toric. But they are toric in the 45,1, 45,
A, _, and D} cases for which there are also lattice polytopes. The polytope for 4, is obtained
from that for A, by cutting a corner, a triangle with lattice sides 1, 1, 2, which corresponds to
the weighted (1,2) blow-up. For the 4, 1 diagram, the corners on both sides are cut. For the
D}, diagram, the corner on the “right” side is cut. See a concrete example of a polytope of
shape 44 in Figure 3.
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Examples 6.16, 6.17, 6.18, 6.19, 6.20, 6.21 describe explicitly the minimal resolutions of
involution pairs (X, D) of shapes Ay, A2n—1,45,_;, D2n, D},,, En to smooth anticanonical
pairs admitting an involution.

Notation 7.2. In general, the involution pairs with elliptic diagram have two boundary
components, each isomorphic to P!, and meeting at two points to form a banana curve. We call
the two nodes the north and south poles, and the two components the left and right components.

7B. All degenerations of K3 surfaces of degree 2. Recall that the stable type (Defini-
tion 4.10) of an elliptic or maximal parabolic subdiagram of G.x was a cyclically ordered list
of its equatorial diagrams, with "4¢ and A, diagrams inserted in the space between diagrams.

Definition 7.3. Associated to every Type III stable type, we build a stable surface as
follows. For each diagram, we take an involution pair (X, Dy, ;) with the corresponding
label by [7] (see Section 7A). Then we successively glue the surfaces together,

(X, 0 = [ JXk. Dy, ),
k

along their boundary components, identifying the right component of Dy, to the left component
of Dy 41 and identifying the two north poles and the two south poles. The intersection complex
of the resulting surface is a sphere, decomposed like the slices of an orange. We glue in such
a way that the ramification divisors Ry glue to a Cartier, ample divisor R.

In Type II, we do something similar for stable types Eé, DioE7, D16A; by gluing the
two components along elliptic curves. Finally, the stable surface associated to Ay7 is simply
the A 17 involution pair.

The scheme-theoretic structure of the surface (X, () is uniquely determined by the re-
quirement that the gluing be seminormal with SNC double locus, see [32, Proposition 5.3,
Corollary 5.33].

Example 7.4. Consider the empty subdiagram of G, corresponding to the open cell
of K. Its stable type is (AO__AO)g, see Figure 3, and the corresponding stable surface is the
result of taking 18 copies of (P2, L + C) with a line and conic, and successively gluing conics
to conics, and lines to lines, in such a way that the fixed divisors, which are lines in each P2,
glue into a Cartier divisor.

This will be the unique maximal degeneration of 7;10.

Theorem 7.5. The stable limits of K3 pairs (X, €R) of degree 2, polarized by the
ramification divisor, are exactly the stable surfaces of Definition 7.3, formed from the union
of involution pairs associated to a stable type of an elliptic or maximal parabolic subdia-
gram of Geox. More precisely, if the monodromy-invariant A of a one-parameter degeneration
X* — C* lies in the relative interior A € 6° of a cone 0 € Feox, the stable limit is a stable
surface associated to the stable type of the subdiagram defining o.

Proof. Let X* — C™* be a degeneration of degree 2 K3 surfaces with monodromy
invariant A. By Theorem 6.35, there is some finite base change and an extension to a Kulikov
model X — (C,0) for which the central fiber X¢ = Xo(a) arises from Constructions 6.25
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and 6.30. Here, a € ZZ;B is the vector corresponding to A € & via A - r; = a;. The flat limit
of R is then a Cartier divisor on Xo(d) which is empty in the hemispheres of Xo(d) and
is the pullback of R; = Fix(¢;) on the involution pair (X, Dj) which is the contraction of
an equatorial component (see Theorem 6.14, but note that the involution pair is notated there
as (71 > 5,))

In particular, R C X is a relatively big and nef Cartier divisor not containing any strata
of Xo. By the proof of Theorem 3.14, the stable limit of X* — C™* can be computed as

Projc @D 7 Ox(nR).

n>0

which contracts each hemisphere of X to a single point, contracts the edges along the equator
by rulings, and contracts each equatorial vertex to the involution pair (X, Dy ). The resulting
stable surface is exactly that described in Definition 7.3.

It is worth remarking that, when a subdiagram of G . has an Ailrr or A {“ component,
there is an equatorial surface in Xo receiving two internal blow-ups switched by the involu-
tion, but the information of the location of these blow-ups is lost on the stable model because
they are contracted to points on a double curve. O

7C. Moduli of stable strata. The following proposition should be compared with Prop-
osition 4.13.

Proposition 7.6. The strata in f;lc are as follows.

(1) For a Type III stable type G™, Str(G™) is, up to an isogeny and a W(G™) action, the
root torus Hom(Rgrei, C*).

(2) For a Type II stable type G™, Str(G™) is, up to an isogeny and a W(G™) action,
Hom(Rgri, &) ~ &7, where €17 — My is the self-fiber product of the universal family
of elliptic curves & — My over its moduli stack.

Proof. The parameter space for a Type III stratum is, up to a finite group, the product
of the parameter spaces for the irreducible components (X, Di + €Ry) because the gluings
of double curves which make (_J, Ry Cartier are, up to a finite group, unique. By [7], each
of these is a quotient of torus isogenous to the root torus Hom(Rg, ., C*) by the Weyl group
W(Gy ). Without the additional data of an involution, this result is essentially due to Gross—
Hacking—Keel [27].

The same works for Type II strata. Such a stratum is a finite quotient of the fiber product
over M of the period domains of involution pairs with smooth elliptic anticanonical divisor.
The period point of an anticanonical pair (Vi, Dy) is the element of Hom(D~+, D) which
sends L — L|p, € Pic®(Dy) = Dg. The t-invariant period points form an abelian subvariety
isogenous to Hom(Rg, , Dy ), and the moduli space for each component is the quotient by
the (-invariant “admissible isometries” of H?2(V, Dy), cf. [22], which in our case is the Weyl
group W(Gy).

Fixing an elliptic curve D = Dy, and taking the product of moduli of components pro-
duces the quotient by W(G™!) of an abelian variety isogenous to Hom(Rgri, D). Finally, we
may vary the moduli of D over M, giving the fiber product. O
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8. Proof of main theorems

We now assemble the ingredients from the above sections to prove the main theorems. In
the proof of Theorem 6.35, we defined the toroidal extension Fp <> F2’l whose fan consists of
the T-orbit of aray R> oA, and a family X(a) — U(a) of Kulikov and smooth K3 surfaces, with
U(a) a finite cover of F2)L and @ = (A -17)iefo,....23y assumed to satisfy the parity condition.
Recall that the boundary divisor of U(a) was isogenous to Hom(A / %Z[R], C*) >~ (C*)18 or
Hom(A/%Z[R], &) ~ &*17 where A (see Section 6G) is the lattice A~ € I+/I or J+/J.

Theorem 8.1. Let A € o N N lie in the relative interior of a cone of §° for a subdi-
agram G C Geox. Assume a = (A - 17)iefo,... 23} satisfies the parity condition. Then the classi-
fying map U(a) --» 7521‘: is a morphism, and the induced morphism on the boundary divisor is
(isogenous to) the restriction map Hom(A/%Z[R], C* or &) = Hom(Rgw, C* or &) for the
natural inclusion Rgrs — Rg — A/ %Z[R], followed by the quotienting by a finite group.

Proof. The proof is essentially the same as Theorem 7.5, except we do not restrict
to a one-parameter subfamily. Let ) C X(a) be the universal ramification divisor and let
£ = O%5)(RN) be the corresponding line bundle, which is relatively big and nef. The fam-
ily of divisors Jt exists because the flat limit of the ramification divisor on any Kulikov model
is R C Xo(a) by Theorem 6.35.

By Shepherd-Barron [51], the higher cohomology groups of £” are zero on every fiber, so
forn > 4, " defines a contraction to a model with an ample line bundle. Since the divisors N
do not contain strata on any fiber by construction, the fibers in the contracted family are stable
pairs (X(a), et) — U(a), and the fibers over the boundary divisor have stable type determined
by G™, by Theorem 7.5. This proves that the classifying map is a morphism.

So the classifying map induces a morphism from Hom(A, C* or &) to the slc stratum
Str(G™) of Proposition 7.6. We claim that this morphism factors through the natural map of
tori induced by the inclusions Rgri <> Rg <> Aj; note that Rg < A because

leo = ot crtcit/)l = Rg CA.
Let (V;, D;) be an equatorial component of Xo, and define
A= span{D,'j}L C H*(V;, 7).

The period domain [22,27] for anticanonical pairs (V;, D;) is Hom(A;, C*), while the corre-
sponding period domain for involution pairs [7] is a torus with character lattice isogenous to
Rg; C A; (more canonically a quotient), consisting of periods of anticanonical pairs (V;, D;)
accepting an involution ¢; . Finally, observe that there is an inclusion €; A; < A as every class
in A; can be extended by O to a numerically Cartier class on X¢. This map induces the inclusion
Rg — A/%Z[R]. We conclude that the map on moduli Hom(A/%Z [R],C* or &) — Str(G™)
is induced by the claimed map of lattices. |

Theorem 8.2. The rational map ¢: fszemi -—> Fszlc is regular and the normalization map.
Proof. We first prove that the rational map ¢’ :ftz"r -—> fszlc is regular. For any ray

R>0A of the fan, the map extends over the interior of the corresponding divisor of ftzor by Theo-
rem 8.1. So, if there is any indeterminacy locus of ¢, then it is contained in the Type III locus.
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Suppose that ¢’ is not regular. Let FY" 2z4 F3 be a resolution of singularities
of ¢’. The preimage Z, = p~'(x) of a point x € 7‘2‘” is projective. By Theorem 7.5 and
Proposition 7.6, one has ¢(Z) C Str(G™). But by Proposition 7.6, every Type III stratum in
Fszlc is affine. So the map Z, — fszlc is constant. We conclude by Lemma 3.18.

The morphism ¢’ factors through ¢: F5™ — FY': In fact, by Theorem 8.1 and Theo-
rem 4.21, the curves contracted by Fz)‘ — fszemi and Fz)‘ — fszlc are the same, giving the claim.
Then ¢ is a birational morphism with finite fibers, so by Zariski’s Main Theorem, it is the
normalization. o

Corollary 8.3. The Stein factorization of Fy" — F3° is Fy" — F§™ — F3¢.
Proof. This follows from the fact that the fibers of ftzor — f%emi are connected. ]

Corollary 8.4. There is a regular map ?;emi — _;lc of Deligne—Mumford stacks, for
an appropriate choice of stack structure on F5™.

Remark 8.5. Corollary 8.4 is essentially a tautology by pulling back the stack structure,
but it is subtle from the perspective of arithmetic quotients.

(1) Even the interior is not the stack quotient [D : T']. The Heegner divisors associated to
roots B € h' have inertia in [D : T'] but not in F».

(2) Due to the presence of generic automorphisms on slc strata, we need a stacky fan: for each
cone o € %, we must choose a sublattice of span(o) N N, which introduces inertia at
the toric boundary components.

Similar to the enumeration of the strata of 7‘2‘” in Lemma 4.5 and Lemma 4.6, by looking
at the subdiagrams of G.ox without irrelevant connected components only, mod S3 or Dg, one
can enumerate the strata of F5™ or F zlc. In particular, we have the following lemma.

Lemma 8.6. Both in f%emi and in f;lc, there are 38 boundary divisors, of which 3 are
of Type Il and 35 are of Type I1l.

Remark 8.7. The normalization map f;emi — f;lc is not the identity map. For instance,
when a diagram G™! is entirely contained in the 18-cycle 0, ..., 17, the resulting stable pair
stratum is the same for all diagrams in the Dg dihedral group orbit of G™!. For semi-toric strata,
only diagrams related by D3 ~ S5 are identified.
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