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ABSTRACT: Chiral materials have shown tremendous potential
for many technological applications, such as optoelectronics,
sensing, magnetism, information technology, and imaging.
Characterization of these materials is mostly based on chiroptical
spectroscopies, such as electronic circular dichroism (ECD) and
circularly polarized luminescence (CPL). These experimental
measurements would greatly benefit from theoretical simulations
for interpretation of the spectra as well as predictions on new
materials. While ECD and CPL simulations are well established for
molecular systems, they are not for materials. In this Perspective,
we describe the theoretical quantities necessary to simulate ECD
and CPL spectra in oriented systems. Then, we discuss the
approximate strategies currently used to perform these calcu-
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lations, what computational machinery is already available to develop more general approaches, and some of the open challenges for
the simulation of ECD and CPL spectra in solid materials. When methods that are as reliable and computationally efficient as those
for molecules are developed, these simulations will provide invaluable insight and guidance for the rational design of optically active

materials.

1. INTRODUCTION

Molecular and supramolecular chirality have always played an
important role in chemistry, as life has developed around
building blocks of specific handedness (L-amino acids and D-
sugars), a phenomenon known as homochirality. This has
enormous implications, for instance, in drug design, as only one
enantiomer of a particular compound will have the desired
pharmacological effect. However, in recent years supramolecular
chirality has shown tremendous potential for other technological
applications, like optoelectronics, sensing, magnetism, informa-
tion technology, and imaging.'~'' These applications typically
require chromophoric groups that can easily absorb and emit
light and move energy or charge efficiently. The chirality in the
material may be an intrinsic property of the chromophore, like in
helicenes,'” ™" or be imprinted by attaching a chiral substituent
on an achiral chromophore.”®'? This molecular-scale chirality
then influences the aggregation of the constituent units, leading
to a chiral supramolecular assembly. However, the supra-
molecular structure is also influenced by the preparation
method, which often leads to polymorphism within the same
sample.’

Because of the nature of the technological applications of
these materials, their characterization often relies on spectro-
scopic techniques based on their interaction with chiral light, i.e.,
circularly polarized light. The dominant techniques are
electronic circular dichroism (ECD),”*°”** which measures
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the difference in absorption between left and right circularly
polarized light, and its emission analogue, circularly polarized
luminescence (CPL).'*'®!%2924=26 ECD is sensitive to both the
intrinsic chiral nature of the chromophoric units and the
supramolecular chirality of the assembly. CPL can provide
important information about the structural reorganization of the
material after absorption and charge transport dynamics.
Furthermore, the intrinsic luminescence of the material may
be a target property in and on itself, for instance, for the
fabrication of circularly polarized-organic light emitting diodes
(CP-OLEDs).' 7%

The application of these techniques relies on complementary
theoretical simulations, which can help elucidate structure—
property relations. However, while simulation of ECD and even
CPL spectra are now routine for molecules thanks to robust and
easy-to-use implementations of time-dependent density func-
tional theory (TDDFT) and excited state energy gradients
(which allow relatively reliable geometry optimizations of the
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first excited state),””” this is not the case for extended

materials. In fact, most simulations for these materials are based
on molecular clusters and excitonic models for the interaction
between spatially separated chromophores. However, these
approaches rely on significant assumptions, e.g., localized
excitations and structural rigidity, that may not always be
valid. Therefore, robust methods that are agnostic about the
electronic response are desirable, for instance, based on TDDFT
with periodic boundary conditions (PBCs), but so far they are
not commonly available. In this Perspective, we discuss the
theoretical quantities that need to be evaluated to simulate ECD
and CPL spectra of oriented solid materials and the current state
of the quantum mechanical methods to calculate these
quantities. This work does not aim to provide a comprehensive
review of the literature but rather to discuss the challenges and
the opportunities to develop computational tools for the
simulation of ECD and CPL spectra for materials that are as
reliable and accessible as for molecules. Such methods would
provide invaluable guidance for the interpretation of exper-
imental spectra and may help in the definition of rational design
principles for the development of new materials with target
chiroptical properties.

The paper is organized as follows. Section 2 describes the
theoretical quantities necessary to simulate ECD and CPL
spectra in oriented systems. In section 3, we discuss the
approximate strategies currently used to perform these
calculations, what computational machinery is already available
to develop more general approaches, and some of the open
challenges for the simulation of ECD and CPL spectra in solid
materials. Section 4 provides a summary of the work and
concluding remarks.

2. THEORY

ECD is defined as the difference in absorption between left and
right circularly polarized light for electronic transitions
(generally expressed in terms of the molar extinction coefficient)
whereas CPL is the corresponding dlﬁerence in emission
(generally expressed in terms of intensity):*

Aggep = &, — &

Alep =L — Iy (1)

Dissymmetry factors express the same quantities relative to
the total absorption and emission:
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Despite the difference in name, ECD and CPL describe the
same phenomenon in absorption and in emission, respectively.
Therefore, the key quantity for the simulation of both types of
spectra31n32rlented systems is the same, i.e., the rotatory strength
tensor:
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where i/f represent the initial and final electronic states with
transition frequency @y and Greek letters refer to Cartesian

1198

coordinates (repeated indexes imply a summation over all
values). For ECD, i is the ground state and f is an excited state,
while for CPL i is typically the first excited state (because of
Kasha’s rule) and f is the ground state. However, given the
symmetry of the tensors, the CPL rotatory strength is the same
as that for the ECD from the ground to the first excited state at
the optimized geometry of the first excited state. The transition
moment between the initial and final states for the electric dipole
is g, =
electric quadrupole ©,. For a beam along a given dlrectlon n,
the quantity corresponding to the measured observable is’

(il If), and similarly for the magnetic dipole mj; and the

R xi‘f — dR’ifn )
where the tensor R is
Rw/i - Tr( ) (7 aﬁ (5)

The rotatory strength expressions in eqs 3—5 are more
complicated than those for isotropic samples, which only involve
the terms with the transition magnetic dipole (the first line in eq
3). This is because in isotropic samples the measured quantity is
the spatial average of all possible orientations: R = Tr(R¥)/3,
and the terms with the quadrupole transition moment do not
contribute to this trace. However, for oriented systems like
crystals and thin films, one needs the full tensor defined above.

Since most calculations are performed with a static picture,
ie, computing RY from an optimized geometry possibly for
multiple final states, one can only obtain a stick spectrum.
Broadening is typically included with a Gaussian envelope, such
that the intensities (in cgs units of 107" esu® cm?) are

if
Ae(a)) — iR e—((w—(uof)/o’)2

2296 X 107 V7o (6)

where @y is the transition frequency and o is the broadening
parameter that are expressed in the same umts and RY is
expressed in cgs units of 107 erg esu cm G™'. A vibrational
progression can be included explicitly with techniques similar to
those used for molecules.*>*

The review above shows that simulations of ECD and CPL
require the evaluation of transition energies and moments for
extended systems. Currently, the most general formulation
employs PBCs. However, the electric and magnetic dipole
operators do not have the correct translational symmetry. An
approximate form of the electronic electric dipole operator (i =
—er) that satisfies PBCs has been introduced a few decades ago
to compute electric dipole polarizability tensors:>”*"

. ik —ik
r ~ je' rVke rer

(7)

where k is the wave vector in reciprocal space. More recently, an
equivalent form of the magnetic dipole and electric quadrupole
moments have been proposed in the context of optical
rotation:*”~*!
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where the underbar indicates quantities expressed in the
crystalline orbital (CO) basis with coefficients C, the tilde
indicates symmetrization with respect to forward and backward
replication of the unit cell along the translation vectors, p is the
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Figure 1. Schematic representation of the exciton chirality method (ECM) for the simulation of ECD. (A) Exciton-coupled chromophores and their
transition dipole moments. (B) Definition of the CD exciton couplet and its sign. (C) Formulation of the exciton chirality rule. Reprinted with

permission from ref 49. Copyright 2021 The Author.

momentum operator, and U is the vector of matrices that
transforms the CO coefficients C to their gradient with respect
to k, ,C = cu.”’ Although formulated for the OR, these
expressions can be used to compute the transition moments
between electronic states as shown in eq 3.

Alternatively, since molar rotation [«],, and molar ellipticity
[0],, (the latter is directly proportional to Ag) are related by
Kramers—Kronig (KK) transformations: >~ **
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one could also obtain the ECD spectrum in a certain frequency
region from the OR dispersion (ORD) curve in the same region,
and vice versa. This approach requires that a phenomenological
lifetime is included in the linear response function to avoid
unphysically large values of the property around its poles, which
makes the response function complex, even in real space.

A final note is that the discussion above concerns the
simulation of true ECD and CPL signals in chiral extended
materials. However, experimental measurements are plagued by
interference from macroscopic anisotropies in the solid state,
i.e,, linear dichroism (LD) and linear birefringence (LB); see for
instance ref 6. for a more detailed discussion. One interference
effect appears when the main axes of LD and LB do not align;
this is a real effect in the sense that it is not due to the instrument.
Other effects are instrumental artifacts that can be due to the
polarization modulation technique or the photomultiplier.
Experimentalists have devised various solutions to isolate or
eliminate these interference effects,”'®*>*~** but these are
beyond the scope of this work. Also in this case, simulations
would provide important validation for these techniques.

3. METHODS

In this section, we discuss methods that are currently available to
simulate ECD and CPL spectra as well as methods that provide
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some of the pieces of information necessary to evaluate the
spectra. The former are obviously more approximate methods,
which can be applied under opportune conditions, while the
latter are more general approaches that can be extended to cover
ECD and CPL.

Most of the calculations of ECD and CPL in materials have
been done using the exciton chirality method (ECM), which is
based on the exciton coupling between coupled oscillators; see
Figure 1."”"7>* This method can be used when a chiral
molecule contains two or more “separate” chromophores
undergoing electric-dipole-allowed transitions; in a molecular
material, the coupled transitions can occur between separate
molecular units. If the relative orientation of the chromophores
and the orientation of the electric transition dipole for each
chromophore are known, then the ECM provides a fairly simple
way to determine the ECD spectrum of the system. This method
still relies on quantum mechanical (QM) calculations to
evaluate the transition dipoles (or the 3D transition density in
more elaborate formulations) for the transitions on individual
chromophores.”” However, the QM calculations are limited to
individual molecules (or molecular fragments), bypassing the
burden of treating the extended system as a whole. The first
limitation of the ECM is that it requires knowledge of the
relative orientation of the chromophores. In part, this is a general
issue for chiral materials, e.g., when multiple polymorphs are
present in the sample or when large floppy chromophores are
used,® as discussed more in detail later on. However, it is
particularly taxing for the ECM based on molecular calculations
because the latter cannot easily recover the packing in a material
(using, for instance, standard geometry optimizations) unless it
is known by other means (e.g,, experiment) or the molecular
units are rigid (e.g., helicenes). A more important issue is
whether the overall spectrum is dominated by the excitonic
process, while other processes, like the intrinsic chirality of the
chromophore or electron delocalization, can be neglected. This
is hard to assess beforehand, which limits the predictive power of
the ECM. Therefore, a direct evaluation of the spectra from a
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QM calculation on the fully extended system would be
preferable.

An intermediate step between exciton models and full QM
calculations is represented by tight-binding models.” Tight-
binding models build an ad hoc Hamiltonian that only contains
interactions between nearest neighbors. Exciton and tight-
binding models were also combined to allow calculations when
computational resources were still limited.”*” These models
are very computationally efficient, but they are system-specific
and require reference data for the parametrization of the
Hamiltonian. Furthermore, longer-range interactions may be
important when excited state properties are involved, especially
with sensitive properties such as optical activity. Another
approach is to neglect the response of the ground state electron
density to the external field;* this corresponds to approximating
excited states as single Slater determinants built from the COs,
so that the excitation energies are just orbital energy differences
and the transition moments are computed between individual
Slater determinants. Although this strategy is also computation-
ally efficient because it sidesteps the linear response calculation,
it is not typically a good approximation to obtain excited state
energies from differences in orbital energies (otherwise,
TDDFT would not be so popular). From this author’s
experience with OR, the orbital response accounts for about
half of the property magnitude; considering the relationship
between OR and CD (see eq 10), it seems unlikely that this
approach can provide reliable results in general.

The most inclusive route for the simulation of ECD spectra is
the extension of molecular linear response methods to solids
with PBCs. Given the size of the typical chromophores involved,
the best balance between cost and accuracy would most likely be
obtained with TDDFT. Although this author is not aware of an
implementation of these methods for ECD in general-purpose
codes, many pieces are already available, and the time is mature
for such developments. A TDDFT-PBC implementation for 1D
periodic systems was proposed by Hirata and co-workers in a
standalone program, but the focus was only on excitation
energies and the method has not been generalized to 3D
periodicity.”” In more recent years, more general implementa-
tions of TDDFT have appeared, at least for standard UV/vis
absorption,*>*°~7°

However, these implementations often rely on the Tamm—
Dancoff approximation (TDA),*® which is more efficient but
less reliable,”! and are limited to the I’ point in reciprocal
space,®’ which simplifies the equations as the CO coefficients are
real but at the expense of accuracy. The choice of functional is
also not as simple as that for molecules. Optical activity and
excited state calculations typically require range-separated
hybrid functionals because they better describe the long-range
density response. However, the treatment of exact exchange is
still problematic for PBC codes. Common approaches include
the use of pure functionals (without exact exchange), hybrid
functionals with exchange only in the short-range (like
HSE06”%"%), or approximate procedures to include exchange
(e.g., the auxiliary density matrix method, ADMM®*),
Another issue is the size of the basis set involved. In molecular
calculations, large Gaussian-based basis sets with diffuse
functions are often recommended for accurate results,>>”* but
these basis sets are problematic for PBC calculations because of
linear dependence issues between replicated cells. For bulk
conducting materials, plane wave basis sets are used as they
naturally satisfy translational symmetry, but for semiconductors
or molecular crystals, a large number of these functions are
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necessary for convergence of energy and properties. Therefore,
mixed Gaussian/plane wave basis sets can be used,”® but they
have the same linear-dependence issues mentioned above. Thus,
although all of these approaches make PBC calculations feasible,
it is unclear whether the accuracy will be sufficient for the ECD
and CPL spectra. For instance, a potential issue is that the ECD
signal is much smaller (by 2 or 3 orders of magnitude) compared
to regular absorption, and each band is often the convolution of
multiple signals with opposite sign. Therefore, relatively small
errors on individual transitions could lead to qualitatively
incorrect spectra. Nonetheless, these limitations may be
overcome with a further developmental effort.

Another approach to compute excitation energies in extended
systems using linear-response DFT is as poles of the imaginary
part of the dielectric function (equivalent to the poles of the
electric dipole-electric dipole polarizability tensor).”* More
recently, this approach was extended to include band
intensities.”” Equivalently, one can solve the Bethe—Salpeter
equation on top of the GW approximation to evaluate the
dielectric function.””’®”” In this case, excitation energies are
obtained indirectly by scanning a frequency region to find the
poles of the polarizability tensor. To obtain the ECD spectrum,
one would need the appropriate combination of the polar-
izabilities for optical activity (electric dipole-magnetic dipole
and electric dipole-magnetic quadrupole). Similarly, the ECD
spectrum could be obtained from the ORD curve via a KK
transformation (see eq 10), which is obtained from the real part
of the same optical activity tensors. However, the OR tensor for
PBC methods would need to be extended to accommodate a
lifetime parameter. An example of both approaches for a
molecular case is reported in Figure 2. Finding the poles of a
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Figure 2. ECD spectrum of (15,55)-verbenone from the rotatory
strengths (solid line, antisymmetrized Lorentz broadening), from
Im(f3) (crosses), converted to 8¢ and from Re(f) (squares), and
converted to J¢ after the KK transformation. Inset: CD spectrum from
Im(f) and Re(f). In this notation, the real and imaginary parts of the
optical rotation parameter /Nj are proportional to the molar rotation and
the molar ellipticity, respectively; see eq 10. Reprinted with permission
from ref 44. Copyright 2006 AIP Publishing.

response function by scanning a frequency range rather than
calculating the excitation energies directly would circumvent the
need for a TDDFT-PBC implementation, but its applicability
seems cumbersome. In fact, one would need to repeat the OR
calculation at many frequencies, with tighter grids around the
poles’ regions, to obtain a reasonable discretization of the
dielectric function or of the KK integrals.

https://doi.org/10.1021/acs.jpca.3c08095
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LUMO+1) are shown in panel E. The calculated energies were shifted by —0.40 eV prior to conversion to wavelengths. Reprinted with permission

from ref 16. Copyright 2022 Royal Society of Chemistry.

The simulation of CPL spectra introduces another challenge
beyond those discussed so far: the transition occurs from the
minimum structure in the first excited state. Excited state
geometry optimizations are rather uncommon with PBC
methods, although some examples have appeared.”® Current
simulations of CPL spectra in extended systems rely on
geometry optimization of individual molecular units within the
material. This works as long as the chromophore is fairly rigid,
and again helicenes are a good example;'*~"" see the example in
Figure 3. However, many new materials are based on conjugated
polymers or floppy chromophores, where the nature of the
excited state electron density distribution may be different from
that of the ground state. In these cases, the geometry from where
the emission occurs may be significantly influenced by packing
of the solid state environment around the chromophore. Thus,
geometry optimization of the excited state geometry of the
extended system would be required for reliable simulations.

An important issue that goes beyond the development of
appropriate electronic structure methods is the conformational
search and polymorphism. Because of the nature of the systems
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involved in thin films and electronic materials, considering a
single geometric configuration may not be sufficient. In fact, in
many cases the material’s structure is unknown and the effective
signal is the sum of contributions form multiple polymorphs.®
Therefore, strategies for conformational searches will be
necessary, and spectra will be calculated for multiple
configurations. These searches could be performed with classical
molecular dynamics (MD) simulations or with other available
protocols.””’®”? Then, the relevant structures would be
optimized at the QM level in the ground state for ECD and
possibly in the first excited state for CPL. In the excited state,
one may find multiple minimum structures that could be
accessible from these ground state conformers. However, in
principle, one would also need to consider the dynamics in the
excited states directly, where multiple minima in the first excited
state could be reached from a vertical excitation to a higher
excited state from a particular ground state geometry. These
other first excited state minima cannot be found with a direct
geometry optimization from the ground state geometry. Instead,
one would need to perform an MD simulation directly in the

https://doi.org/10.1021/acs.jpca.3c08095
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Figure 4. Comparison of the conventional and modified LG-ECD as a function of the frequency for the hydrogen peroxide molecule. For each method,
the ECD is shown with the gauge origin placed in either the center of mass of the molecule [(0, 0, 0)"] or translated to (10% 10% 10%)" A. Reprinted

with permission from ref 83. Copyright 2022 The Authors.

excited state. Perhaps, one could use excited state charges from a
TDDFT calculation to perform a classical MD simulation in the
first excited state (similar to what is done for excited state
molecules in solution). Although not necessarily accurate, this
procedure may lead to multiple conformations in the first excited
state that could be refined with QM geometry optimization. This
protocol will obviously increase the overall computational cost,
as the DFT calculations will be repeated on multiple structures.
However, the number of relevant configurations will be
significantly smaller than those necessary when dealing with
solution phase simulations.

An issue that is characteristic of chiroptical simulations is the
choice of gauge for the representation of the dipole (and
quadrupole) operator. The representation in terms of the
position operator is called the length gauge (LG). This is the
natural choice for standard absorption simulations to calculate
the oscillator strength. However, since the electric dipole
interacts with the magnetic dipole (and electric quadrupole) in
the rotatory strength, the length gauge formulation leads to
values that are origin dependent. In OR calculations, this is
commonly solved by using basis functions that are explicitly
dependent on the magnetic field, known as London orbitals or
gauge including atomic orbitals (GIAOs).*® These can be used
for transition properties as well, but they lead to cumbersome
expressions.31 Therefore, most programs report the rotatory
strength in the velocity gauge (VG), where the electric dipole is
represented by the momentum operator. The two choices of
gauge are numerically equivalent only for exact methods or in
the complete basis set limit for variational methods like DFT
(although we showed that gauge invariance with approximate
functionals does not imply accuracy, as different functionals
converge to different results”*). Recently, we have proposed a
strategy to overcome the origin-dependence issue of the LG
rotatory strength without using GIAOs; a method we called
origin-invariant LG or LG(OI);"' =% see Figure 4. Both the VG
and LG(OI) approaches were implemented for the OR
calculations with DET-PBC* and can be easily extended to
TDDFT-PBC simulations of ECD and CPL spectra.

Although there is a growing interest in supramolecular organic
materials with chiroptical properties, the most luminescent
systems include heavy elements, especially lanthanides.””**~*
Emission often occurs between states of different spin due to
strong spin—orbit coupling. Therefore, calculations must
include relativistic effects to simulate the CPL spectra. A
number of studies have been published that include such effects
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for molecules; see for instance the plots in Figure 5, which report
circularly polarized phosphorescence (CPP, i.e., CPL from the
lowest triplet state to the ground singlet state) for an organic
molecule including vibrational effects at the Franck—Condon
(FC) and Herzberg—Teller (FCHT) levels."******” These
approaches need to be extended to periodic calculations.

A more accurate description of the ECD spectrum should
include vibronic effects. These contributions can come from
modes localized on a single molecular unit within the extended
system, through interactions between neighbors, or as collective
effects of the extended system. The first effect can be treated
with techniques used for molecules; see again Figure 5.°%*°
Models for interactions between molecular units have also been
developed within an excitonic picture.88 The last type of
interaction, exciton—phonon coupling, is harder to describe, and
it requires a vibrational calculation including PBCs.

4. CONCLUSIONS

In this Perspective, we discuss how to perform simulations of
ECD and CPL spectra for chiral oriented systems in the solid
phase. These materials have attracted increasing attention for a
variety of technological applications, including optoelectronics,
sensing, magnetism, information technology, and imaging.
Experimentally, the characterization of the materials virtually
always includes ECD spectroscopy, while strong CPL is often a
sought-after property for applications in devices. Theoretical
simulations that can help interpret the experimental spectra or
predict structures with specific chiroptical properties are
extremely desirable. However, so far, these simulations are
based on molecular calculations on individual chromophoric
systems or on exciton coupling models between two or more
isolated chromophoric units. These models are powerful, but
they rely on stringent assumptions that are not always valid (e.g.,
they do not work when electron conjugation extends across
chromophores).

Thus, more general approaches are desirable that make no
assumptions about the intrinsic electronic structure of the
system. Given the size of the chromophores involved in real
applications, the most promising approach is based on TDDFT-
PBC methods combined with fast and reliable conformational
search algorithms. In this work, we outline the required
quantities to be calculated and the corresponding challenges.
Much progress has been done in the past 10—20 years for these
types of methods, and most pieces are now available that can be
extended and properly combined for the simulation of ECD and
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Figure 5. Calculated FC and FCHT CPP sum spectra of (1R)-
camphorquinone. The spectra in panels (A) and (B) show the
contribution due to each triplet state; panels (C) and (D) show the sum
spectra. Intensities were in arbitrary units. Reprinted with permission
from ref 35. Copyright 2018 John Wiley and Sons.
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CPL spectra. Once software is developed that is sufficiently
robust and efficient, simulations will provide invaluable insight
and guidance for the rational design of optically active materials.
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