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Foliar diseases of maize are among the most important diseases of maize worldwide. This study focused on 4 major foliar diseases of
maize: Goss's wilt, gray leaf spot, northern corn leaf blight, and southern corn leaf blight. QTL mapping for resistance to Goss's wilt
was conducted in 4 disease resistance introgression line populations with Oh7B as the common recurrent parent and Ki3, NC262,
NC304, and NC344 as recurrent donor parents. Mapping results for Goss’s wilt resistance were combined with previous studies for
gray leaf spot, northern corn leaf blight, and southern corn leaf blight resistance in the same 4 populations. We conducted (1) individual
linkage mapping analysis to identify QTL specific to each disease and population; (2) Mahalanobis distance analysis to identify putative
multiple disease resistance regions for each population; and 3) joint linkage mapping to identify QTL across the 4 populations for each
disease. We identified 3 lines that were resistant to all 4 diseases. We mapped 13 Goss's wilt QTLs in the individual populations and an
additional 6 using joint linkage mapping. All Goss's wilt QTL had small effects, confirming that resistance to Goss’s wilt is highly quan-
titative. We report several potentially important chromosomal bins associated with multiple disease resistance including 1.02, 1.03, 3.04,
4.06, 4.08, and 9.03. Together, these findings indicate that disease QTL distribution is not random and that there are locations in the
genome that confer resistance to multiple diseases. Furthermore, resistance to bacterial and fungal diseases is not entirely distinct,
and we identified lines resistant to both fungi and bacteria, as well as loci that confer resistance to both bacterial and fungal diseases.
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(Miedaner and Juroszek 2021). Foliar diseases can reduce the ef-
fective photosynthetic area of the plant, reducing yield. Foliar dis-
eases caused the largest estimated maize yield losses in the
northern United States and Ontario, compared to root and seed-
ling rots, leaf blights, stalk rots, ear rots, and mycotoxin contam-
ination, according to surveys from 2012 through 2019 (Mueller
et al. 2016, 2020). Among the important maize foliar diseases are
the bacterial disease Goss’s wilt (GW) and leaf blight caused by
Clavibacter nebraskensis, and 3 fungal diseases; gray leaf spot
(GLS) caused by Cercospora zeae maydis, northern corn leaf blight
(NCLB) caused by Exserohilum turcicum, and southern corn leaf
blight (SCLB) caused by Bipolaris maydis.

GW was first detected in 1969 in south central Nebraska, re-
emerged in 2006 and since then, the disease has been a wide-
spread concern across the United States and Canada (Vidaver
and Mandel 1974; Jackson et al. 2007; Harding et al. 2018; Mueller
et al. 2020; Webster et al. 2020). In inoculated trials, GW caused
up to a 40% yield loss, and in severe infections ears may not de-
velop (Pataky 1988; Carson 1991; Cooper et al. 2019). For every
1% increase in R1 (silking stage) disease severity on a susceptible

Introduction

Crops need to fend off many pathogens throughout the growing
season and every year, there are major losses due to plant dis-
eases. Several diseases can cause yield impacts, but individual
diseases often vary from year to year in severity and importance.
Multiple disease resistance (MDR), defined as host resistance to 2
or more diseases (Nene 1988), is thus of importance. The genetic
architecture of MDR varies; it can be conferred either by a single
gene or many genes across the genome (Wiesner-Hanks and
Nelson 2016). In any given year, several diseases cause major
losses and, thus, MDR is important for disease management, pre-
venting crop losses and achieving yield stability. Although the
introgression of many separate resistance loci for multiple dis-
eases into a single variety is possible, the process can be time con-
suming and expensive (Singh et al. 2015). Therefore, pleiotropic
MDR alleles are highly desirable in breeding programs.

Maize is a staple crop and important for human consumption,
but, on average, 22.5% of the annual global yield of maize is lost
due to pathogens and pests (Savary et al. 2019). Climate change
has already begun to shift the range of maize diseases, in particu-

lar by favoring maize foliar diseases through improved pathogen
overwintering in maize residue (Broders et al. 2022); consequently,
the need for durable MDR will become especially crucial

hybrid, yield was reduced by 117 kg/ha (1.9 bu/acre) (Bauske and
Friskop 2021). Currently, there is no effective chemical control
available for the disease and very few options are available to
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growers other than genetic resistance, so host resistance is the
primary method used to manage GW (Mehl et al. 2015; Osdaghi
et al. 2023). Methods of breeding for resistance and sources of re-
sistance (Carson 1991; Cooper et al. 2019; Jindal et al. 2019; Mehl
etal. 2021), as well as regions and genes associated with resistance
have been investigated (Schaefer and Bernardo 2013; Singh et al.
2016; Cooper et al. 2018; Hu et al. 2018; Owusu et al. 2019; Singh
et al. 2019; Qiu, Cooper et al. 2020; Li et al. 2022; Hao et al. 2023).
GW, along with NCLB and GLS, was among the most destructive
diseases from 2012 to 2019 in the northern United States and
Ontario (Mueller et al. 2016, 2020).

A previous study (Wisser et al. 2006) documented evidence for
the nonrandom distribution of maize disease QTLs, suggesting
the existence of loci associated with resistance to more than 1 dis-
ease. Forinstance, McMullen and Simcox (1995) identified clusters
of QTLs in chromosomal bins 3.04 and 6.01 that were associated
with Fusarium stalk rot and European corn borer and single factor
genes for resistance to common rust, wheat streak mosaic virus,
and maize mosaic virus. Several genes conferring MDR, implicating
diverse mechanisms, have been reviewed by Wiesner-Hanks and
Nelson (2016) and Gou et al. (2023). In maize, an MDR gene
ZmCCoAOMT?2, which encodes a caffeoyl-CoA O-methyltransferase,
confers resistance to SCLB and GLS (Yang et al. 2017). Additionally,
ZmMM1, a MYB transcription repressor, confers resistance to
NCLB, GLS, and southern comn rust (Wang et al. 2021) and the
ZmFLR genes are involved in resistance to NCLB, SCLB, northern
leaf spot, and anthracnose stalk rot (Yu et al. 2022).

Near-isogenic lines are an excellent genetic resource for dis-
secting MDR. Previously, Wisser et al. (2011) screened a diversity
panel for NCLB, SCLB, and GLS and identified lines that were re-
sistant or susceptible to NCLB, SCLB, and GLS. Using these lines,
Lopez-Zuniga et al. (2019) created a set of BC3F 4.5 chromosome seg-
ment substitution line (CSSL) populations, referred to as the dis-
ease resistance introgression line (DRIL) populations. There are
8 DRIL populations that consist of lines containing segments
from 4 MDR donor lines introgressed into the genetic background
of 1 of 2 multiple disease susceptible (MDS) lines. These popula-
tions were developed to better capture the effects of resistance
lociin a susceptible background and to identify MDR near-isogen-
ic lines (NILs) to use in subsequent confirmation studies
(Lopez-Zuniga et al. 2019; Martins et al. 2019). We noted that the
MDR donor lines for these populations were also resistant to the
bacterial diseases GW and bacterial leaf streak (BLS), while the
MDS recurrent parents were susceptible (Cooper et al. 2019; Qiu,
Kaiser et al. 2020). Therefore, in addition to their use to map the
fungal diseases GLS, NLB, and SLB noted above, we have used
them to map resistance QTLs for GW and BLS (Qiu, Cooper et al.
2020; Qiu, Kaiser et al. 2020).

In this study, we examined 4 DRIL populations that share a
common recurrent parent, Oh7B, to identify disease resistance
QTLs to 4 foliar diseases (GW, GLS, NCLB, SCLB). The resistant do-
nors for the 4 populations we used in this study were Ki3, NC262,
NC304, and NC344. The NC lines all originate from the North
Carolina State University maize breeding program and have
some shared parentage (Nelson et al. 2016; Lopez-Zuniga et al.
2019). All 4 populations have been evaluated for NCLB, SCLB,
and GLS previously (Lopez-Zuniga et al. 2019). In a previous study,
we identified regions that conferred resistance to GW, BLS, NCLB,
GLS, and SCLB in the NC344 x Oh7B population (Qiu, Cooper et al.
2020). Here, we evaluated 3 DRIL populations, with resistance do-
nors Ki3, NC262, and NC304, for GW. We combined the existing
data for SCLB, NCLB, and GLS from Lopez-Zuniga et al. (2019)

with the newly generated GW data on the Ki3, NC262, and
NC304 populations to examine resistance to bacterial and fungal
diseases in maize (Supplementary Fig. 1). We adopted multiple
mapping approaches to identify the genetic regions underlying
MDR (Supplementary Fig. 1), which together provide an overview
of the potential resistance alleles available from the parents.
The overall goal of this study was to identify regions of the gen-
ome associated with resistance to GW and to identify regions of
the genome associated with resistance to multiple diseases. Our
objectives were to (1) identify GW QTL within individual DRIL po-
pulations, (2) identify GW QTL across all the DRIL populations,
and (3) identify regions associated with variation in MDR in each
individual population using a multivariate analysis. Overall, we
dissected the complicated genetic architecture of MDR in multiple
populations and identified regions associated with resistance to
multiple diseases that are candidates for future studies.

Materials and methods

Plant materials

Four maize DRIL populations first reported in Lopez-Zuniga et al.
(2019) were included in this study: DRIL38, DRIL58, DRIL68, and
DRIL78. The 4 populations share a common recurrent parent,
Oh7B, which is a MDS line and have introgressions from the
MDR donor lines Ki3, NC262, NC304, and NC344, respectively.
The populations were created by crossing the donor parent to
the recurrent parent Oh7B, followed by backcrossing for 3 genera-
tions to the recurrent parent and 4 generations of self-pollination
via single seed descent to generate BCsF4.s populations.

Field design

Three populations (DRIL38, DRIL58, and DRIL68) were evaluated
in 2018 and 2019 for GW severity at the University of Illinois
Crop Sciences Research and Education Centers. The DRIL38 popu-
lation was evaluated at Urbana, IL in 2018 and 2019, with 2 repli-
cations in 2018 and 2 replications in 2019. DRIL58 and DRIL68
populations were evaluated in Urbana, IL (2 replications) and
Savoy, IL (2 replications) in 2019. All trials were conducted using
an incomplete block design and designed using agricolae in the
statistical software R (de Mendiburu and de Mendiburu 2020;
R Core Team 2021). The 2 parental lines for each population
were included in each plot as check lines. Plots were 3.2 m with
0.76 m alleys and row spacing of 0.762 m. For each plot, a total
of 20 seeds for each individual line in the population were
machine-planted.

Phenotypic evaluation

Every plant in the plot was inoculated with C. nebraskensis isolate
16Cmn001 (107 colony-forming units per milliliter) (Cooper et al.
2018; Mullens and Jamann 2021) . Plants were inoculated twice 1
week apart, starting when the plants were at approximately the
V4 growth stage using the pin-prick method (Chang et al. 1977;
Pataky 1985). The plants were evaluated visually to assess the
necrotic area of the leaves on a per plot basis using a visual per-
centage rating with a 5% interval, as described in Cooper et al.
(2018). The first rating was taken at 45 days after planting in
2019 and each plot was evaluated 3 times with an approximate
7-dayinterval between ratings. For the DRIL38 population planted
in 2018 at Urbana, only 1 visual percentage rating was taken at 62
days after planting because there was less disease in this experi-
ment. Because of this, throughout the analyses, these data [the
DRIL38 2018 disease leaf area and 2019 area under the disease
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progress curve (AUDPC) values] were analyzed separately. For Md
and joint linkage mapping, only the 2019 AUDPC LsMeans were
used.

The number of plants in each plot was recorded, and in the la-
ter analysis, the phenotypic scores for plots with a stand count of
less than 4 were coded as missing data. For the 2019 field experi-
ments, each plot had 3 rating scores, and AUDPC values for
each plot were calculated in R using the package “agricolae” (de
Mendiburu and de Mendiburu 2020). Data collected in 2018 for
the DRIL38 population included only 1 visual rating so no
AUDPC value was calculated, and instead percentage disease
leaf area ratings were used for further analysis.

Phenotypic data analysis

LsMeans were estimated using the SAS program “proc mixed”. To
calculate the LsMeans: For the single environment (DRIL38
AUDPC and diseased leaf area) datasets, we fit the model:
Yim =4+ Gi +Rj + By + €jju

where u represents the overall mean, G; represents the fixed geno-
type effect, R; represents the random replication effect, B repre-
sents the random blocking effect that nested with the replication,
and ¢ represents the residuals.

To calculate the LSMeans for each genotype across environ-
ments, we fit the model (the DRILS8 and DRIL68 datasets):
Yijxim = # + Ei + Gj + Rk + By + EGyj + €ijiem-

In the combined environment model, u represents the overall
mean, E; represents the random environment effect, G; represents
the fixed genotype effect, Ry, represents the random replication
effect nested within environment, By represents the blocking ef-
fect nested within the replication and environment, EG; repre-
sents for the interaction between environment and genotype
effects, and ey represents for the residuals.

Using the models above, lines that were statistically different
(either more resistant or more susceptible) from Oh7B were iden-
tified using multiple comparison tests by performing contrasts
that compared the DRIL genotype to the recurrent parent using
only the values for Oh7B that were in the planting blocks for
that population. Contrasts were conducted using “proc mixed”
with Dunnett’s adjustment, and significance was determined
using a threshold of ¢=0.05. Only data from 2019 for DRIL38
were used to identify lines that were significantly different from
Oh7B.

We combined the GW data with pre-existing data for 3 other
fungal foliar diseases (GLS, NCLB and, SCLB) (Lopez-Zuniga et al.
2019) and, using the genotypic mean estimates, calculated correl-
ation coefficients using the “Spearman” method, a built-in func-
tion in R (Spearman 1904; R Core Team 2022).

QTL mapping

Processed genotypic data were obtained from Lopez-Zuniga et al.
(2019). For individual lines of interest, the number of introgres-
sions was counted by recording the number of times that there
was a stretch of more than 2 markers with the donor allele.
LsMeans were used as the phenotypic data for QTL mapping.
QTL mapping was conducted for each population separately using
the program ICIMapping version 4.2 (Meng et al. 2015). ICIMapping
uses a likelihood ratio test based on reducing collinearity between
markers and stepwise regression to identify significant markers in
populations consisting of non-idealized CSSLs (Wang et al. 2006,
2007). The function “CSL: QTL mapping with chromosome seg-
ment substitution lines” was used and the threshold was deter-
mined by a total of 1,000 permutations with a 0.10 type I error rate.

Multivariate analysis

A composite statistic based on Mahalanobis distance was used to
identify marker associations that represent multivariate outliers
as described by Lopez-Zuniga et al. (2019). Outlier markers are
those that do not follow the pattern of the majority of the data
point cloud (Rousseeuw and Van Zomeren 1990). Each of the 4 dis-
eases served as a variable and the Mahalanobis distance (MD)
method was used to combine the 4 variates to detect outlier mar-
kers. Data for NCLB, SCLB, and GLS were obtained from
Lopez-Zuniga et al. (2019). The MD multivariate analysis method
(Qiu, Cooper et al. 2020) was employed for the 3 populations,
namely DRIL38, DRIL58, and DRIL68. A multivariate analysis for
the DRIL78 population has already been published, and thus
was not conducted as part of this study (Qiu, Cooper et al. 2020).
Mahalanobis distance was calculated based on the 4 negative
log10 P-values of the LOD scores derived from the single-disease
mapping results. Outlier markers were detected based on
P-values for MD. To control for multiple comparisons, the false
discovery rate (FDR) was calculated by adjusting the P-values
using the “BH” method (Hochberg and Benjamini 1990) with the
p.adjust function in R. Markers were declared to be significant
using a 1% FDR.

Joint linkage mapping

To conduct joint linkage mapping, a common set of markers gen-
otyped across all 4 populations was required and separate from
the genotypic dataset used for the individual population QTL ana-
lyses. Previously, the markers used for the individual population
analyses were filtered based on each individual population and
so markers that were monomorphic within 1 population were re-
moved from that population and were kept for the other popula-
tions where that marker was polymorphic. We needed a marker
dataset that included markers in common across all populations
and had higher density (total marker number) than the combin-
ation of the processed marker data used for the individual QTL
mapping. To accomplish this and maximize the markers included
in the joint linkage mapping, we started with the raw SNP data,
which was obtained from Lopez-Zuniga et al. (2019). First, missing
data for lines were manually imputed according to the flanking
markers. Imputation was conducted for up to 2 consecutive miss-
ingmarker values. For each line in the population, if the 2 flanking
markers were same genotype, then the missing marker type was
imputed as the flanking marker; if the 2 flanking markers differed,
then the missing marker was imputed as the recurrent parent
(Oh7B) marker type.

Before conducting joint linkage mapping, we conducted quality
control of the genotypic data using the “qtl” package in R (Broman
et al. 2003). We imported the genotype with the cross type set to
“riself”. The homozygous marker type of the female parent,
Oh7B, in the 4 populations was coded as “AA”; the homozygous
marker type from donor parent was coded as “BB”; and the hetero-
zygous alleles were coded as “AB”. Quality control was conducted
using the following protocol:

1) Within a DRIL population, if the 2 parental lines were mono-
morphic for a certain marker, then any other genotype at
this marker was coded as missing (NA).

2) The percentage of missing genotypes for both lines in the po-
pulations and the markers was calculated. The lines and the
markers with more than 60 missing values were dropped
from the final joint stepwise regression analysis.

3) The populations were BCsF4 and thus the expected geno-
types were 93.8% for AA, 4.88% for BB, and 1.38% for AB.
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To identify possible outcrossed lines, introgression distor-
tion rates across all the populations were tested using chi-
square tests for each line and all the markers. A Bonferroni
correction with a 5% error rate was used.

Introgression distortion rates were then tested to identify
markers that deviated from the expected introgression ratio
for each population individually using a 1% error rate with a
Bonferroni correction. Since the chi-square test requires
that the expected value in any category be greater than 5,
the AB and BB categories were examined together.

*

After dropping the markers and lines that failed the quality
control parameters, a map with common markers for all 4 of the
populations (DRIL38, DRILS8, DRIL68, and DRIL78) was created
and used for the joint linkage mapping. The genotypic dataset
used for joint linkage mapping can be found in Supplementary
File 4.

Joint linkage mapping has greater power for QTL detection and
better mapping resolution since an overall larger population is
used (Buckler et al. 2009), and joint stepwise regression has been
used to analyze families of NILs (Kolkman et al. 2020). For joint
linkage mapping, the genotypic data were formatted as a
HapMap file using TASSEL (Bradbury et al. 2007). There was
some leftover heterozygosity and missing data that could not be
resolved with the manual imputation completed as described
above, so we used the “numerical” option in TASSELS5 program
(version: 20191112) to impute the missing data. The “Euclidean”
method with a 0.05 error rate was used for imputation.
Imputation was conducted for each population separately and a
joined genotypic dataset was created. The estimated combined

environment LsMeans values were used as the phenotypic data,
and the 4 populations were indicated as a factor in the phenotype
file. The data for GW for the DRIL78 population were obtained
from Qiu, Cooper et al. (2020). Joint stepwise regression analysis
(P=0.05, maximum included =100, permutation=1,000) was
conducted for each disease separately, and the markers were
nested within population.

Results
Disease distributions and correlations

DRIL38, DRIL58, and DRIL68 were evaluated in Urbana, IL for GW se-
verity in 2018 and 2019. The correlations between environments
were high. The Spearman correlation coefficient between environ-
ments for populations DRIL38, DRILS8, and DRIL68 was 0.47 (P<
0.0001), 0.80 (P<0.0001), and 0.71 (P<0.0001), respectively. We ob-
served substantial variation in disease severity in all 3 DRIL popula-
tions (Fig. 1). We identified lines that were significantly more
resistant to GW compared to the recurrent parent Oh7B in all popu-
lations, suggesting that GW resistance alleles derived from the donor
parent were segregatingin these populations. We did not observe any
lines that were completely immune, nor did we observe any hyper-
sensitive responses, which are associated with resistance genes.
Lines more susceptible than the recurrent parent were also observed
for all 3 populations, suggesting that the donor line also contributed
alleles that conferred susceptibility. It is also possible that there were
interactions between recurrent and donor parent genes that resulted
in lines more susceptible than the recurrent parent.

We hypothesized that there might be a relationship between
resistance to GW and the foliar fungal diseases for which these

(a) DRIL38 (2018) (b) DRIL38 (2019)
25
20+
20
- o 157
3 3
© o © 10
5_
04 0-
0 10 20 30 40 50 200 300 400 500 600 700
GW LSMeans GW LSMeans
(c) DRIL58 (Combined) (d) DRIL68 (Combined)
125
10.0-
L 751
C
3
O 504
2.5
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200 300 400 500 600 200 300 400 500 600
GW LSMeans GW LSMeans

Fig. 1. Phenotypic distribution of GW in the 3 populations. For the DRIL58 and DRIL68 populations, combined environment LsMeans estimations for
AUDPC of the GW data are presented. For the DRIL38 population, there was only 1 rating in 2018 and no AUDPC calculated. Thus, the DRIL38 2018
estimation distribution was not combined with the DRIL38 2019 estimation, which was based on the AUDPC calculated using 3 ratings. The solid line
indicates the LsMean of the common recurrent parent Oh7B and the dashed lines indicate the LsMeans of the donor parents, which is different for each
population. The donor line for DRIL38 population is Ki3; for DRIL58 population is NC262 and for DRIL68 population is NC304.
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Table 1. Correlation between diseases in 3 populations.

Population Disease
DRIL38 SCLB NCLB GLS
(Ki3/0Oh7B) GW 0.36™* 0.33"* 0.25™
N=191 SCLB 0.30"* 0.34"*
NCLB 0.45"*
DRIL58 SCLB NCLB GLS
(NC262/0h7B) GW 0.09 0.26™ 0.19
N=95 SCLB 0.16 0.13
NCLB 0.20
DRIL68 SCLB NCLB GLS
(NC304/0h7B) GW 0.045 0.36™" 0.18
N=99 SCLB 0.20* 0.33"*
NCLB 0.32*

Data for SCLB, NCLB, and GLS were obtained from Lopez-Zuniga et al. (2019).
*P<0.05, *P<0.01, and **P < 0.001.

populations have been evaluated previously, NCLB, SCLB, and
GLS. To test this hypothesis, we first examined the pairwise corre-
lations among the 4 diseases in each of the 3 populations DRIL38,
DRIL58, and DRIL68. The strongest correlations among diseases
were in the DRIL38 population, where resistance to GW was sig-
nificantly and positively correlated with resistance to all 3 fungal
diseases (p=0.25-0.36, P <0.001). The strongest relationship de-
tected was between resistance to GW and NCLB, with relatively
stable correlations across the 3 populations (p=0.26-0.36, P<
0.01). Resistance to GW and GLS, as well as GW and SCLB, was sig-
nificantly correlated in 1 of the 3 populations (Table 1;
Supplementary Fig. 2). GW and NCLB are both vascular diseases
(Mullens and Jamann 2021; Chung et al. 2010), and, thus, are be-
lieved to have more similarities in terms of how the pathogens
cause disease than GW and SCLB or GLS. GW and NCLB also
have similarities in terms of pathogen lifestyle, as they both ap-
pear to have a biotroph phase, which may also contribute to the
higher correlations (Kotze et al. 2019; Shumilak et al. 2023).

We conducted Dunnett’s tests to identify lines that were signifi-
cantly different than the recurrent parent for each population
(Table 2; Supplementary File 1). For the DRIL38, DRIL58, and
DRIL68 populations, 10, 40, and 20% of the lines were significantly
more resistant to GW than Oh7B, respectively (Table 2). We also
examined whether there was any overlap between lines signifi-
cantly different than the recurrent parent for GW and lines signifi-
cantly different for the 3 other foliar diseases. Lines that were
significantly different from Oh7B for multiple diseases were iden-
tified, including 3 lines that were associated with all 4 diseases
(Table 2; Supplementary File 1). The 3 lines significant using the
Dunnett’s tests for all diseases had at least 9 introgressions per
line with introgressions in at least 3 regions that were significant
in the Mahalanobis distance analysis.

GW QTL detection in multiple populations

QTL mapping was conducted for the 3 populations (DRIL38,
DRIL58, and DRIL68) for GW resistance. There were 13 GW resist-
ance QTLs detected across the 3 populations (Table 3). Significant
markers in bins 1.02 and 7.02 were identified in more than 1 popu-
lation (Table 3). The DRIL68 QTL in chromosomal bin 8.03 had the
largest effect estimate of all the QTL. The DRIL68 QTL detected in
chromosomal bin 3.09 explained the most phenotypic variation,
with 15% of the phenotypic variation explained, but otherwise
most QTL had small effects and explained less than 10% of the to-
tal phenotypic variation (Table 3). The resistant and susceptible
parents contributed both resistance and susceptibility alleles, as
indicated by the negative and positive additive effect estimates.

Table 2. Dunnett’s test for each population showing the number
of lines that were significantly different from the recurrent parent
Oh7B.

DRIL38 DRIL58 DRIL68
Ki3/Oh7B NC262/0h7B NC304/0h7B

Disease N=190 N=101 N=100
SCLB 36 (36/0) 35 (35/0) 37 (37/0)
NCLB 24 (24/0) 2 (2/0) 15 (15/0)
GLS 2 (2/0) 37 (37/0) 1(1/0)
GW 20 (19/1) 41 (41/0) 22 (19/3)
SCLB/NCLB 13 2 9
SCLB/GLS 2 14 1
SCLB/GW 9 21 11
NCLB/GLS 1 2 0
NCLB/GW 12 2 6
GLS/GW 1 19 0
SCLB/NCLB/GLS 1 2 0
SCLB/NCLB/GW 8 2 4
NCLB/GLS/GW 1 10 0
SCLB/NCLB/GLS/GW 1 2 0

For single diseases, the numbers in parentheses indicate the number of lines

that are significantly more resistant than Oh7B and the number of lines that are
significantly more susceptible than Oh7B, respectively. For multiple diseases,

more information can be found in Supplementary File 1.

While the resistant donor parent contributed most of the resist-
ance alleles mapped in the populations, based on the additive ef-
fect estimates from the single population mapping, Ki3 and NC304
both contributed a susceptibility allele for 1 QTL in the DRIL38 and
DRIL68 populations, respectively.

In the DRIL38 population, there was an enrichment for Ki3 al-
leles at the significant markers (QTL) from the individual popula-
tion mapping analysis, with 28% of the markers having the Ki3
allele in the Dunnett’s test significant lines compared to 10% of
the markers having the Ki3 allele in the lines that were not signifi-
cant using the Dunnett’s test. Of the 20 lines that were significant
from the Dunnett’s test, 3 had 3 Ki3 introgressions at the signifi-
cant markers, 6 had introgressions at 2 QTLs, 9 had introgressions
at 1 QTL, and 2 did not have any Ki3 introgressions at the QTL. In
the DRIL68 population, there was an enrichment for introgres-
sions from NC304 at the QTL in the lines that were significant
from the Dunnett’s test, where 18% of the markers had the
NC304 genotype, while only 6% had the NC304 alleles in the lines
that were not significant from the Dunnett’s test at the 5 QTLs. Of
the 22 lines that were significant in the Dunnett’s test in the
DRIL68 population, 1 had 3 introgressions at the QTL, 3 had 2 in-
trogressions and the QTL, and 11 had 1 QTL, and 7 did not have
any introgressions at the significant markers. In the DRIL58 popu-
lation, 10 of the 41 lines had introgressions at 2 of the QTL, 15 had
lintrogression at a QTL, and 16 did not have introgressions at the
QTL. These findings suggest that combining the populations and
conducting joint linkage mapping might improve the power to de-
tect QTL that were not detected in the individual populations.

Comparisons of QTL for multiple diseases across
multiple populations

Five regions were significant for more than 1 disease * population
combination (Table 4). These regions fell into 3 different
categories—(1) significant for multiple diseases in 1 population
(3regions), (2) significant for 1 disease across multiple populations
(2 regions), and (3) significant for multiple diseases across
multiple populations (4 regions). Of the 5 common significant
markers, 3 markers were associated with both GLS and GW,
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Table 3. Significant QTL detected for GW in 3 populations DRIL38, DRIL58, and DRIL68.

Peak marker Pop. Chr.? cM Pos.” Bin® Dataset LoD? Add® PVE (%)
PHM13094-8 DRIL68 1 25.64 8,348,403 1.01 Combined 8.1 -50.2 12.2
PHM4531-46 DRIL38 1 48.66 22,891,879 1.02 19Urbana 3.28 -21.3 5.22
DRIL58 1 48.66 22,891,879 1.02 Combined 421 -39.8 11.3
PZA00192-6 DRIL58 1 68.84 35,583,899 1.03 Combined 3.67 -35.4 9.75
PHM2187-46 DRIL38 1 121.1 157,149,026 1.05 19Urbana 5.05 30.4 8.20
PZA00289-11 DRILS8 1 180.4 216,101,748 1.07 Combined 5.33 -43.0 14.4
PHM2672-19 DRIL68 3 193.1 221,520,140 3.09 Combined 9.36 49.8 14.8
PZA00941-2 DRIL38 4 123.6 186,659,058 4.08 19Urbana 6.5 -37.0 10.8
PHM3691-18 DRIL38 5 89.15 38,506,897 5.03 19Urbana 4.62 —45.4 7.47
PZA02247-1 DRIL38 6 64.18 146,570,902 6.05 19Urbana 459 -27.2 7.50
PHM15501-6 DRIL38 7 72.81 30,693,107 7.02 18Urbana 2.81 -3.17 6.41
DRIL68 7 72.81 30,693,107 7.02 Combined 4.09 -30.7 5.59
PHM2350-17 DRIL58 8 55.4 23,964,235 8.03 Combined 2.95 -36.0 7.53
PHM4134-8 DRIL68 8 65.36 106,620,464 8.03 Combined 435 -68.3 6.09
PHM1871-19 DRIL68 9 60.81 28,413,009 9.03 Combined 7.16 -40.6 10.7

The combined environment datasets were used, except for the DRIL38 population, where mapping was conducted separately for each year.

Chromosome.
The physical position (RefGen_v3) of significant markers.
Chromosomal bin location of significant QTL (Davis et al. 1999).

® oA n - o

resistance.

/' Percentage of the phenotypic variance explained (PVE) by the detected QTL.

LOD value at the position of the peak likelihood of the QTL. A permutation test was conducted to determine the LOD threshold for the significant markers.
Additive effect estimates of the detected QTL. Effects are in terms of the disease rating scale used. A negative value indicates that the donor allele increased

Table 4. Common markers identified for multiple diseases across different populations in ICI mapping analysis.

Marker Population Dis® Chr? cM Pos® Bin‘
PHM4531-46 DRIL38 GW 1 48.66 22,891,879 1.02
NCLB
GLS
DRIL58 GW
PZA00192-6 DRIL78 GLS 1 68.84 35,583,899 1.03
DRIL58 GLS
PHM15864-8 DRIL78 GLS 4 87.18 151,565,558 4.06
GW
PZA00941-2 DRIL38 NCLB 4 123.58 186,659,058 4.08
GW
DRIL58 SCLB
PHM?229-15 DRIL38 GLS 9 60.82 30,087,788 9.03
DRIL68 SCLB
¢ Disease.
®  Chromosome.
; The physical position (RefGen_v3) of significant markers.

Chromosomal bin location of significant QTL (Davis et al. 1999).

indicating that resistance to these 2 diseases is possibly linked
(Table 4).

Identification of MDR QTL using the MD method

To identify QTL with effects on multiple diseases, multivariate
analysis was conducted using the results of individual linkage
mapping analyses. All the QTLs identified in the individual map-
ping analysis were significant in the multivariate analysis because
a significant Mahalanobis distance value can arise due to a single
trait (Fig. 2). Additionally, we were able to detect signal from mar-
kers that may not have been significant for any individual disease
but are associated with an effect on more than 1 disease (Fig. 2;
Supplementary File 3). Thus, this method allowed us to capture
markers that have a small effect on more than 1 disease.

In the DRIL38 (Ki3/Oh7B) population, Mahalanobis distance
identified 44 significant markers, of which 20 markers were iden-
tified in the single disease mapping analysis including 5 asso-
ciated with resistance to GW, 7 with resistance to GLS, 5 with
resistance to NCLB, and 6 with resistance to SCLB (Table 3;
Supplementary File 3). The QTL on chromosome 1 (marker
PHM4531-46) and on chromosome 4 (marker PZA00941-2) was

detected for multiple diseases in the single disease mapping ana-
lysis (Fig. 2). We observed QTL clustering. Bin 4.08 is an interesting
potential MDR region in the DRIL38 population, as this region was
associated with all 4 diseases (Supplementary File 3). Bins 5.03,
6.01, and 6.05 were also associated with MDR; 3 QTLs from the
multivariate analysis were identified in each of these bins and
were linked to more than 1 disease according to the individual dis-
ease mapping analysis (Fig. 2; Supplementary File 3).

In the DRIL58 (NC262/0Oh7B) population, 20 QTLs were identi-
fied in the multivariate analysis, of which 8 were also identified
in the single disease linkage mapping analysis (Supplementary
File 3). The highest number of QTLs (4) was detected for GW resist-
ance, including 3 on chromosome 1 and 1 on chromosome 8
(Fig. 2). Bins 1.01 and 9.03 were MDR regions in the DRIL58 popu-
lation since they both harbored atleast 2 QTLs based on the multi-
variate analysis (Fig. 2).

A total of 36 QTLs were identified in the DRIL68 (NC304/Oh7B)
population, and 17 of those were identified in single disease map-
ping analysis (Supplementary File 3). Single-disease related QTLs
were identified on all chromosomes except 5 and 6 (Fig. 2). Bin 3.09
and bin 9.03 were MDR regions. Both bins 3.09 and bin 9.03 were
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Fig. 2. Manhattan plot for individual and multivariate analysis. The dotted line indicates the 1% FDR for the Mahalanobis distance statistic. The dashed
line represents the Md value for the minimum LOD threshold for the 4 mapping analyses.
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Additive effect of identified QTL in four populations for four diseases
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Fig. 3. Additive effect of QTL in 4 populations for 4 diseases. The QTL detected from single disease mapping and joint linkage mapping are visualized by
chromosomal bin for each disease separately. The x-axis indicates the chromosomal bin that the significant marker was in. The donor line of the 4
individual populations and the joint linkage mappingis indicated on the y-axis. The additive value of the 4 individual populations is indicated by the color
of the box with positive values suggesting that donor allele increasing the resistance to the disease. For joint linkage mapping, only the presence of the
QTL was shown, as no additive effects were calculated. JL indicates joint linkage mapping.
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associated with resistance to GW and SCLB (Fig. 2). Although bin
3.09 is associated with resistance to GW and SCLB, the additive ef-
fect of the QTL in bin 3.09 for GW is negative while the additive va-
lue is positive for resistance to SCLB (Fig. 3). This suggests that the
donor allele or linked donor alleles in this region increased sus-
ceptibility to GW but resistance to SCLB.

Joint linkage mapping for individual diseases

Joint linkage mapping has more power to identify QTL shared by
multiple populations than analyzing each population individual-
ly, but has a lower power to detect QTL that are specific to a spe-
cific population (Buckler et al. 2009; Ogut et al. 2015; Kolkman et al.
2020). For example, joint linkage mapping can identify QTLs when
there were not enough lines with an introgression in a given region
in a single population, but when combining data across popula-
tions, a QTL can be detected. We conducted joint linkage mapping
to study disease resistance in 4 DRIL populations (DRIL38, DRILSS,
DRIL68, and DRIL78). Joint linkage mapping was performed in
TASSEL for each disease separately for the combined 4 popula-
tions. A total of 2 QTLs for resistance to GLS, 4 QTLs for resistance
to SCLB, 6 QTLs for resistance to GW, and 2 QTLs for resistance to
NCLB disease resistance were identified across the 4 populations
through joint linkage mapping (Table 5; Fig. 3). Among these,
QTLs in bin 3.04 (marker PZA00348-11) and in bin 9.03 (marker
PHM1871-19) were significant for multiple diseases (Table 5).
There were 2 QTLs in bin 1.01 (marker PZA00181-2 for SCLB and
PZA00175-2 for GW) located very close to each other (~0.2 Mb),
thus, we hypothesized that those 2 QTLs might be detecting the
same underlying resistance gene(s). Interestingly, this QTL in
bin 1.01 is also associated with multiple diseases (Table 5).

Discussion

In order to protect crops from multiple biotic threats, there is a
need to understand the genetic architecture of resistance to
both fungal and bacterial pathogens. By combining our data for
GW with previously published data for 3 fungal diseases, we
were able to identify genomic regions associated with resistance
to both bacterial and fungal diseases. For example, in contrast
to the DRIL78 population where no lines were significantly more
resistant or susceptible than Oh7B for more than 2 diseases
(Qiu, Cooper et al. 2020), 1 line in the DRIL38 and 2 lines in the

Table 5. Significant markers identified in the joint linkage
mapping.

Peak marker Chr.? cM Physical Pos.” BIN® Dis?
PZA00181-2 1 25.64 8,346,760 1.01 SCLB
PZA00175-2 1 25.86 8,553,473 1.01 GW
PHM13619-5 1 47.76 22,252,464 1.02 GLS
PZA00824-2 2 117.77 197,553,232 2.07 GW
PZA00348-11 3 68.94 32,780,891 3.04 GW

SCLB
PHM1959-26 3 105.64 170,153,721 3.06 GW
PHM259-11 4 52.47 14,374,208 4.03 GW
PHM15427-11 4 70.75 34,049,995 4.05 SCLB
PZA01332-2 4 137.84 207,440,469 4.09 NCLB
PHMS565-31 5 82.66 24,398,410 5.03 SCLB
PHM?2487-6 8 28.92 8,120,340 8.01 NCLB
PHM1871-19 9 60.81 28,413,009 9.03 GLS

GW

Chromosome.

The physical position (RefGen_v3) of significant markers.
Chromosomal bin location of significant QTL (Davis et al. 1999).
Disease.

a0 o8

DRIL58 populations were significantly more resistant than the re-
current parent for all 4 diseases. Several regions were implicated
in MDR including 1.02, 1.03, 3.04, 4.06, 4.08, and 9.03, which in-
cludes regions not previously described as regions conferring
MDR in any of the DRIL populations (Lopez-Zuniga et al. 2019;
Qiu, Cooper et al. 2020).

We used different mapping methods to identify disease resist-
ance QTL across multiple populations for multiple diseases, and
the results from the 3 mapping analyses were complimentary.
Using multivariate analysis, we were able to identify several
MDR QTLs that were not detected in individual mapping analyses.
Joint linkage mapping has higher power in cases where QTLs are
shared among families. Likewise, using joint linkage mapping,
we were able to detect QTL not detected in individual mapping
analysis, such as the SCLB resistance QTL in bin 1.01 and GW re-
sistance QTL in bin 4.03. However, in some cases, the markers
identified as significantin more than 1 population were not signifi-
cantinthejointlinkage mapping. For example, there was a QTL for
NCLBresistancein bin 3.06, butno QTL wasidentified in thisregion
in the jointlinkage mapping. Thisis also the case for the GW resist-
ance QTL in bin 1.02, the GLS resistance QTL in bin 1.07, and the
SCLB resistance QTL in bin 4.08. One possible explanation for
this could be that in our analysis, slightly different marker sets
were used in the single and joint population analyses. A similar
finding was reported in Singh et al. (2016) in that QTL were identi-
fled inindividual populations but not in the joint linkage mapping.

One objective of this study was to identify QTL associated with
resistance to GW in multiple populations. Between the individual
population analyses and the joint linkage mapping, we identified
19 regions that were associated with GW resistance. The mapping
results from this study, as well as previously published studies, all
indicate that resistance is largely quantitative, as defined by
Poland et al. (2009); (Nelson et al. 2018), as we observe a range of
phenotypes in segregating populations that very from moderately
resistant to susceptible. Based on the distributions and mapping
results, there do not appear to be large-effect QTL or resistance
genes for GW resistance in these populations, which is consistent
with previous studies using other populations (Cooper et al. 2018;
Cooper et al. 2019); however, Hu et al. (2018) identified a hypersen-
sitive response associated with the rust resistance locus rpl. In
this study, every line that was included had some disease, and
no lines included in this study exhibited a hypersensitive re-
sponse. Thus, resistance appears to be quantitative for GW resist-
ance in these populations, and we do not expect that resistance
genes underlie resistance in these populations.

Some of the QTL were identified in multiple DRIL populations in
theindividual mappinganalysis, such as the QTLin bins 1.02 (mark-
er PHM4531-46) and 7.02 (marker PHM15501-6). The significant
marker PHM4531-46 for the QTL in bin 1.02 was also detected in a
RIL population developed from B73 and HP301 for GW resistance
(Singh et al. 2016). Interestingly, this is a locus that has been shown
to be involved in resistance to other diseases including Stewart’s
wilt (another bacterial disease) and NCLB (also a vascular disease)
and a remorin gene has been implicated for disease resistance with-
inthislocus (Jamannetal. 2016). Additional study is needed to deter-
mine whether these previous findings relate to GW as well.
Additionally, Singh et al. (2016) identified QTL in bins 2.07 and 9.03
for GW resistance through joint linkage mapping in populations
with different parents than our study. Cooper et al. (2018) identified
QTL for GW resistance in bins 2.07 and 7.02 in the intermated
B73xMo17 population. The overlapping of GW QTLs in bins 1.01,
1.02,2.07,7.02, and 9.03 in this study and previous studies suggest
that these are important regions for GW resistance.
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One interesting finding from this study was that there were
lines that were significantly different than the recurrent parent
for multiple diseases. Of the 3 lines that were significant for all 3
diseases in the Dunnett’s test, DRIL38.172 has an introgression
at PHM4531-46 (bin 1.02), which was associated with resistance
to GW, NCLB, and GLS in the single disease mapping analysis.
Interestingly, none of the other lines that have introgressions at
that same region showed significant differences for all 4 diseases,
indicating that it may be the stacking of other QTL that conferred
MDR in that line. DRIL58.103 had an introgression at PZA00941-2
(bin 4.08) that was associated with resistance to SCLB in the
DRIL58 population. All 3 of these lines would be interesting to fol-
low up on, as well as following up on the MDR QTL at which these
lines had introgressions.

From the combined results of all the mapping methods, we
identified regions that were associated with multiple diseases
across different populations. The QTL located in bin 9.03 (marker
PHM1871-19) was associated with resistance to GLS, SCLB, and GW
in the 4 populations. This QTL was located ~12 Mb downstream of
the MDR gene ZmCCoAOMT2 encoding a caffeoyl-CoA
O-methyltransferase (Yang et al. 2017), which confers resistance
to SLB and GLS. A previous study identified bin 9.02-9.03 as confer-
ring resistance to multiple diseases (Belcher et al. 2012). Bin 9.03
was also detected as 1 of the largest QTL for SCLB resistance in a
RIL population developed from Kil4 and B73 (Zwonitzer et al.
2010). Bin 1.01 was another interesting QTL associated with
MDR. There were 2 significant markers located very close to
each other in bin 1.01 (marker PZA00181-2 and marker
PZA00175-2 are only 206,713 bp apart) that were significant for
SCLB and GW in the joint linkage mapping.

Bin 3.04 is a locus with effects on multiple diseases including
resistance to GW and SCLB. The colocalization of GW and SCLB re-
sistance at 3.04 could be due to the pleiotropic effect of a single
gene associated with multiple diseases or due to the effects of
multiple linked genes, each corresponding to the single disease.
We do not have high enough resolution and fine-mapping is re-
quired to distinguish linkage vs pleiotropy for bin 3.04. A leucine
rich repeat receptor kinase referred to as ChSK1 underlies a
SCLB resistance QTL at 3.04 and confers increased susceptibility
to SCLB (Chen et al. 2023). Previously, bin 3.04 has been reported
to confer resistance to multiple fungal diseases (Belcher et al.
2012; Lopez-Zuniga et al. 2019; Qiu, Cooper et al. 2020) and also
to European corn borer, Fusarium stalk rot, common rust, and
maize mosaic diseases (McMullen and Simcox 1995; Wisser et al.
2006). Bin 3.04 also harbors disease resistance gene including
rust resistance gene rp3 (Webb et al. 2002). Due to the low marker
density in this study, itis likely that there are several smaller QTLs
in bin 3.04 and each QTL may confer an effect to a different dis-
ease. Further investigation is needed.

Conclusions

In summary, we identified regions of the genome that conferred
resistance to GW and regions implicated in resistance to multiple
diseases. In order to take advantage of the data that have been col-
lected on multiple diseases and populations, we conducted 3 dif-
ferent types of analysis to detect GW and MDR QTL. We mapped
13 GW QTLs in the individual populations and an additional 6
using joint linkage mapping, including colocalizing QTL in bins
1.02, 7.02, and 8.03. This study confirms that resistance to GW is
highly quantitative and likely not based on major gene resistance.
We detected 3 lines that were resistant to all 4 diseases examined
in this study. Several regions were implicated in MDR including

1.02, 1.03, 3.04, 4.06, 4.08, and 9.03. These loci could be important
for breeding for MDR in maize and are targets of further study in-
cluding confirmation and fine-mapping.

Data availability

Supplemental data are available at 10.6084/m9.figshare.
22532314. Supplementary File 1 has the Dunnett’s test showing
lines that were statistically significant than Oh7B for each disease
in each population. Supplementary File 2 has the raw phenotypic
data. Supplementary File 3 has the comparison of individual map-
ping analysis and multivariate mapping analysis for multiple dis-
eases across multiple populations. Supplementary File 4 contains
the genotypic data used for QTL mapping and joint linkage
mapping.
Supplemental material available at G3 online.
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