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Foliar diseases of maize are among the most important diseases of maize worldwide. This study focused on 4 major foliar diseases of 
maize: Goss’s wilt, gray leaf spot, northern corn leaf blight, and southern corn leaf blight. QTL mapping for resistance to Goss’s wilt 
was conducted in 4 disease resistance introgression line populations with Oh7B as the common recurrent parent and Ki3, NC262, 
NC304, and NC344 as recurrent donor parents. Mapping results for Goss’s wilt resistance were combined with previous studies for 
gray leaf spot, northern corn leaf blight, and southern corn leaf blight resistance in the same 4 populations. We conducted (1) individual 
linkage mapping analysis to identify QTL specific to each disease and population; (2) Mahalanobis distance analysis to identify putative 
multiple disease resistance regions for each population; and 3) joint linkage mapping to identify QTL across the 4 populations for each 
disease. We identified 3 lines that were resistant to all 4 diseases. We mapped 13 Goss’s wilt QTLs in the individual populations and an 
additional 6 using joint linkage mapping. All Goss’s wilt QTL had small effects, confirming that resistance to Goss’s wilt is highly quan
titative. We report several potentially important chromosomal bins associated with multiple disease resistance including 1.02, 1.03, 3.04, 
4.06, 4.08, and 9.03. Together, these findings indicate that disease QTL distribution is not random and that there are locations in the 
genome that confer resistance to multiple diseases. Furthermore, resistance to bacterial and fungal diseases is not entirely distinct, 
and we identified lines resistant to both fungi and bacteria, as well as loci that confer resistance to both bacterial and fungal diseases.
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Introduction
Crops need to fend off many pathogens throughout the growing 
season and every year, there are major losses due to plant dis
eases. Several diseases can cause yield impacts, but individual 
diseases often vary from year to year in severity and importance. 
Multiple disease resistance (MDR), defined as host resistance to 2 
or more diseases (Nene 1988), is thus of importance. The genetic 
architecture of MDR varies; it can be conferred either by a single 
gene or many genes across the genome (Wiesner-Hanks and 
Nelson 2016). In any given year, several diseases cause major 
losses and, thus, MDR is important for disease management, pre
venting crop losses and achieving yield stability. Although the 
introgression of many separate resistance loci for multiple dis
eases into a single variety is possible, the process can be time con
suming and expensive (Singh et al. 2015). Therefore, pleiotropic 
MDR alleles are highly desirable in breeding programs.

Maize is a staple crop and important for human consumption, 
but, on average, 22.5% of the annual global yield of maize is lost 
due to pathogens and pests (Savary et al. 2019). Climate change 
has already begun to shift the range of maize diseases, in particu
lar by favoring maize foliar diseases through improved pathogen 
overwintering in maize residue (Broders et al. 2022); consequently, 
the need for durable MDR will become especially crucial 

(Miedaner and Juroszek 2021). Foliar diseases can reduce the ef
fective photosynthetic area of the plant, reducing yield. Foliar dis
eases caused the largest estimated maize yield losses in the 
northern United States and Ontario, compared to root and seed
ling rots, leaf blights, stalk rots, ear rots, and mycotoxin contam
ination, according to surveys from 2012 through 2019 (Mueller 
et al. 2016, 2020). Among the important maize foliar diseases are 
the bacterial disease Goss’s wilt (GW) and leaf blight caused by 
Clavibacter nebraskensis, and 3 fungal diseases; gray leaf spot 
(GLS) caused by Cercospora zeae maydis, northern corn leaf blight 
(NCLB) caused by Exserohilum turcicum, and southern corn leaf 
blight (SCLB) caused by Bipolaris maydis.

GW was first detected in 1969 in south central Nebraska, re- 
emerged in 2006 and since then, the disease has been a wide
spread concern across the United States and Canada (Vidaver 
and Mandel 1974; Jackson et al. 2007; Harding et al. 2018; Mueller 
et al. 2020; Webster et al. 2020). In inoculated trials, GW caused 
up to a 40% yield loss, and in severe infections ears may not de
velop (Pataky 1988; Carson 1991; Cooper et al. 2019). For every 
1% increase in R1 (silking stage) disease severity on a susceptible 
hybrid, yield was reduced by 117 kg/ha (1.9 bu/acre) (Bauske and 
Friskop 2021). Currently, there is no effective chemical control 
available for the disease and very few options are available to 
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growers other than genetic resistance, so host resistance is the 

primary method used to manage GW (Mehl et al. 2015; Osdaghi 
et al. 2023). Methods of breeding for resistance and sources of re

sistance (Carson 1991; Cooper et al. 2019; Jindal et al. 2019; Mehl 
et al. 2021), as well as regions and genes associated with resistance 

have been investigated (Schaefer and Bernardo 2013; Singh et al. 
2016; Cooper et al. 2018; Hu et al. 2018; Owusu et al. 2019; Singh 
et al. 2019; Qiu, Cooper et al. 2020; Li et al. 2022; Hao et al. 2023). 

GW, along with NCLB and GLS, was among the most destructive 
diseases from 2012 to 2019 in the northern United States and 

Ontario (Mueller et al. 2016, 2020).
A previous study (Wisser et al. 2006) documented evidence for 

the nonrandom distribution of maize disease QTLs, suggesting 
the existence of loci associated with resistance to more than 1 dis
ease. For instance, McMullen and Simcox (1995) identified clusters 
of QTLs in chromosomal bins 3.04 and 6.01 that were associated 
with Fusarium stalk rot and European corn borer and single factor 
genes for resistance to common rust, wheat streak mosaic virus, 
and maize mosaic virus. Several genes conferring MDR, implicating 
diverse mechanisms, have been reviewed by Wiesner-Hanks and 
Nelson (2016) and Gou et al. (2023). In maize, an MDR gene 
ZmCCoAOMT2, which encodes a caffeoyl-CoA O-methyltransferase, 
confers resistance to SCLB and GLS (Yang et al. 2017). Additionally, 
ZmMM1, a MYB transcription repressor, confers resistance to 
NCLB, GLS, and southern corn rust (Wang et al. 2021) and the 
ZmFLR genes are involved in resistance to NCLB, SCLB, northern 
leaf spot, and anthracnose stalk rot (Yu et al. 2022).

Near-isogenic lines are an excellent genetic resource for dis
secting MDR. Previously, Wisser et al. (2011) screened a diversity 
panel for NCLB, SCLB, and GLS and identified lines that were re
sistant or susceptible to NCLB, SCLB, and GLS. Using these lines, 
Lopez-Zuniga et al. (2019) created a set of BC3F4:5 chromosome seg
ment substitution line (CSSL) populations, referred to as the dis
ease resistance introgression line (DRIL) populations. There are 
8 DRIL populations that consist of lines containing segments 
from 4 MDR donor lines introgressed into the genetic background 
of 1 of 2 multiple disease susceptible (MDS) lines. These popula
tions were developed to better capture the effects of resistance 
loci in a susceptible background and to identify MDR near-isogen
ic lines (NILs) to use in subsequent confirmation studies 
(Lopez-Zuniga et al. 2019; Martins et al. 2019). We noted that the 
MDR donor lines for these populations were also resistant to the 
bacterial diseases GW and bacterial leaf streak (BLS), while the 
MDS recurrent parents were susceptible (Cooper et al. 2019; Qiu, 
Kaiser et al. 2020). Therefore, in addition to their use to map the 
fungal diseases GLS, NLB, and SLB noted above, we have used 
them to map resistance QTLs for GW and BLS (Qiu, Cooper et al. 
2020; Qiu, Kaiser et al. 2020).

In this study, we examined 4 DRIL populations that share a 
common recurrent parent, Oh7B, to identify disease resistance 
QTLs to 4 foliar diseases (GW, GLS, NCLB, SCLB). The resistant do
nors for the 4 populations we used in this study were Ki3, NC262, 
NC304, and NC344. The NC lines all originate from the North 
Carolina State University maize breeding program and have 
some shared parentage (Nelson et al. 2016; Lopez-Zuniga et al. 
2019). All 4 populations have been evaluated for NCLB, SCLB, 
and GLS previously (Lopez-Zuniga et al. 2019). In a previous study, 
we identified regions that conferred resistance to GW, BLS, NCLB, 
GLS, and SCLB in the NC344 × Oh7B population (Qiu, Cooper et al. 
2020). Here, we evaluated 3 DRIL populations, with resistance do
nors Ki3, NC262, and NC304, for GW. We combined the existing 
data for SCLB, NCLB, and GLS from Lopez-Zuniga et al. (2019)

with the newly generated GW data on the Ki3, NC262, and 
NC304 populations to examine resistance to bacterial and fungal 
diseases in maize (Supplementary Fig. 1). We adopted multiple 
mapping approaches to identify the genetic regions underlying 
MDR (Supplementary Fig. 1), which together provide an overview 
of the potential resistance alleles available from the parents.

The overall goal of this study was to identify regions of the gen
ome associated with resistance to GW and to identify regions of 
the genome associated with resistance to multiple diseases. Our 
objectives were to (1) identify GW QTL within individual DRIL po
pulations, (2) identify GW QTL across all the DRIL populations, 
and (3) identify regions associated with variation in MDR in each 
individual population using a multivariate analysis. Overall, we 
dissected the complicated genetic architecture of MDR in multiple 
populations and identified regions associated with resistance to 
multiple diseases that are candidates for future studies.

Materials and methods
Plant materials
Four maize DRIL populations first reported in Lopez-Zuniga et al. 
(2019) were included in this study: DRIL38, DRIL58, DRIL68, and 
DRIL78. The 4 populations share a common recurrent parent, 
Oh7B, which is a MDS line and have introgressions from the 
MDR donor lines Ki3, NC262, NC304, and NC344, respectively. 
The populations were created by crossing the donor parent to 
the recurrent parent Oh7B, followed by backcrossing for 3 genera
tions to the recurrent parent and 4 generations of self-pollination 
via single seed descent to generate BC3F4:5 populations.

Field design
Three populations (DRIL38, DRIL58, and DRIL68) were evaluated 
in 2018 and 2019 for GW severity at the University of Illinois 
Crop Sciences Research and Education Centers. The DRIL38 popu
lation was evaluated at Urbana, IL in 2018 and 2019, with 2 repli
cations in 2018 and 2 replications in 2019. DRIL58 and DRIL68 
populations were evaluated in Urbana, IL (2 replications) and 
Savoy, IL (2 replications) in 2019. All trials were conducted using 
an incomplete block design and designed using agricolae in the 
statistical software R (de Mendiburu and de Mendiburu 2020; 
R Core Team 2021). The 2 parental lines for each population 
were included in each plot as check lines. Plots were 3.2 m with 
0.76 m alleys and row spacing of 0.762 m. For each plot, a total 
of 20 seeds for each individual line in the population were 
machine-planted.

Phenotypic evaluation
Every plant in the plot was inoculated with C. nebraskensis isolate 
16Cmn001 (107 colony-forming units per milliliter) (Cooper et al. 
2018; Mullens and Jamann 2021) . Plants were inoculated twice 1 
week apart, starting when the plants were at approximately the 
V4 growth stage using the pin-prick method (Chang et al. 1977; 
Pataky 1985). The plants were evaluated visually to assess the 
necrotic area of the leaves on a per plot basis using a visual per
centage rating with a 5% interval, as described in Cooper et al. 
(2018). The first rating was taken at 45 days after planting in 
2019 and each plot was evaluated 3 times with an approximate 
7-day interval between ratings. For the DRIL38 population planted 
in 2018 at Urbana, only 1 visual percentage rating was taken at 62 
days after planting because there was less disease in this experi
ment. Because of this, throughout the analyses, these data [the 
DRIL38 2018 disease leaf area and 2019 area under the disease 
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progress curve (AUDPC) values] were analyzed separately. For Md 
and joint linkage mapping, only the 2019 AUDPC LsMeans were 
used.

The number of plants in each plot was recorded, and in the la
ter analysis, the phenotypic scores for plots with a stand count of 
less than 4 were coded as missing data. For the 2019 field experi
ments, each plot had 3 rating scores, and AUDPC values for 
each plot were calculated in R using the package “agricolae” (de 
Mendiburu and de Mendiburu 2020). Data collected in 2018 for 
the DRIL38 population included only 1 visual rating so no 
AUDPC value was calculated, and instead percentage disease 
leaf area ratings were used for further analysis.

Phenotypic data analysis
LsMeans were estimated using the SAS program “proc mixed”. To 
calculate the LsMeans: For the single environment (DRIL38 
AUDPC and diseased leaf area) datasets, we fit the model: 

Yijkl = μ + Gi + Rj + B(j)k + ϵijkl

where μ represents the overall mean, Gi represents the fixed geno
type effect, Rj represents the random replication effect, B(j)k repre
sents the random blocking effect that nested with the replication, 
and ϵijkl represents the residuals.

To calculate the LSMeans for each genotype across environ
ments, we fit the model (the DRIL58 and DRIL68 datasets): 
Yijklm = μ + Ei + Gj + R(i)k + B(ik)l + EGij + ϵijklm.

In the combined environment model, μ represents the overall 
mean, Ei represents the random environment effect, Gj represents 
the fixed genotype effect, R(i)k represents the random replication 
effect nested within environment, B(ik)l represents the blocking ef
fect nested within the replication and environment, EGij repre
sents for the interaction between environment and genotype 
effects, and ϵijkl represents for the residuals.

Using the models above, lines that were statistically different 
(either more resistant or more susceptible) from Oh7B were iden
tified using multiple comparison tests by performing contrasts 
that compared the DRIL genotype to the recurrent parent using 
only the values for Oh7B that were in the planting blocks for 
that population. Contrasts were conducted using “proc mixed” 
with Dunnett’s adjustment, and significance was determined 
using a threshold of α = 0.05. Only data from 2019 for DRIL38 
were used to identify lines that were significantly different from 
Oh7B.

We combined the GW data with pre-existing data for 3 other 
fungal foliar diseases (GLS, NCLB and, SCLB) (Lopez-Zuniga et al. 
2019) and, using the genotypic mean estimates, calculated correl
ation coefficients using the “Spearman” method, a built-in func
tion in R (Spearman 1904; R Core Team 2022).

QTL mapping
Processed genotypic data were obtained from Lopez-Zuniga et al. 
(2019). For individual lines of interest, the number of introgres
sions was counted by recording the number of times that there 
was a stretch of more than 2 markers with the donor allele. 
LsMeans were used as the phenotypic data for QTL mapping. 
QTL mapping was conducted for each population separately using 
the program ICIMapping version 4.2 (Meng et al. 2015). ICIMapping 
uses a likelihood ratio test based on reducing collinearity between 
markers and stepwise regression to identify significant markers in 
populations consisting of non-idealized CSSLs (Wang et al. 2006, 
2007). The function “CSL: QTL mapping with chromosome seg
ment substitution lines” was used and the threshold was deter
mined by a total of 1,000 permutations with a 0.10 type I error rate.

Multivariate analysis
A composite statistic based on Mahalanobis distance was used to 
identify marker associations that represent multivariate outliers 
as described by Lopez-Zuniga et al. (2019). Outlier markers are 
those that do not follow the pattern of the majority of the data 
point cloud (Rousseeuw and Van Zomeren 1990). Each of the 4 dis
eases served as a variable and the Mahalanobis distance (MD) 
method was used to combine the 4 variates to detect outlier mar
kers. Data for NCLB, SCLB, and GLS were obtained from 
Lopez-Zuniga et al. (2019). The MD multivariate analysis method 
(Qiu, Cooper et al. 2020) was employed for the 3 populations, 
namely DRIL38, DRIL58, and DRIL68. A multivariate analysis for 
the DRIL78 population has already been published, and thus 
was not conducted as part of this study (Qiu, Cooper et al. 2020). 
Mahalanobis distance was calculated based on the 4 negative 
log10 P-values of the LOD scores derived from the single-disease 
mapping results. Outlier markers were detected based on 
P-values for MD. To control for multiple comparisons, the false 
discovery rate (FDR) was calculated by adjusting the P-values 
using the “BH” method (Hochberg and Benjamini 1990) with the 
p.adjust function in R. Markers were declared to be significant 
using a 1% FDR.

Joint linkage mapping
To conduct joint linkage mapping, a common set of markers gen
otyped across all 4 populations was required and separate from 
the genotypic dataset used for the individual population QTL ana
lyses. Previously, the markers used for the individual population 
analyses were filtered based on each individual population and 
so markers that were monomorphic within 1 population were re
moved from that population and were kept for the other popula
tions where that marker was polymorphic. We needed a marker 
dataset that included markers in common across all populations 
and had higher density (total marker number) than the combin
ation of the processed marker data used for the individual QTL 
mapping. To accomplish this and maximize the markers included 
in the joint linkage mapping, we started with the raw SNP data, 
which was obtained from Lopez-Zuniga et al. (2019). First, missing 
data for lines were manually imputed according to the flanking 
markers. Imputation was conducted for up to 2 consecutive miss
ing marker values. For each line in the population, if the 2 flanking 
markers were same genotype, then the missing marker type was 
imputed as the flanking marker; if the 2 flanking markers differed, 
then the missing marker was imputed as the recurrent parent 
(Oh7B) marker type.

Before conducting joint linkage mapping, we conducted quality 
control of the genotypic data using the “qtl” package in R (Broman 
et al. 2003). We imported the genotype with the cross type set to 
“riself”. The homozygous marker type of the female parent, 
Oh7B, in the 4 populations was coded as “AA”; the homozygous 
marker type from donor parent was coded as “BB”; and the hetero
zygous alleles were coded as “AB”. Quality control was conducted 
using the following protocol: 

1) Within a DRIL population, if the 2 parental lines were mono
morphic for a certain marker, then any other genotype at 
this marker was coded as missing (NA).

2) The percentage of missing genotypes for both lines in the po
pulations and the markers was calculated. The lines and the 
markers with more than 60 missing values were dropped 
from the final joint stepwise regression analysis.

3) The populations were BC3F4 and thus the expected geno
types were 93.8% for AA, 4.88% for BB, and 1.38% for AB. 
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To identify possible outcrossed lines, introgression distor
tion rates across all the populations were tested using chi- 
square tests for each line and all the markers. A Bonferroni 
correction with a 5% error rate was used.

4) Introgression distortion rates were then tested to identify 
markers that deviated from the expected introgression ratio 
for each population individually using a 1% error rate with a 
Bonferroni correction. Since the chi-square test requires 
that the expected value in any category be greater than 5, 
the AB and BB categories were examined together.

After dropping the markers and lines that failed the quality 
control parameters, a map with common markers for all 4 of the 
populations (DRIL38, DRIL58, DRIL68, and DRIL78) was created 
and used for the joint linkage mapping. The genotypic dataset 
used for joint linkage mapping can be found in Supplementary 
File 4.

Joint linkage mapping has greater power for QTL detection and 
better mapping resolution since an overall larger population is 
used (Buckler et al. 2009), and joint stepwise regression has been 
used to analyze families of NILs (Kolkman et al. 2020). For joint 
linkage mapping, the genotypic data were formatted as a 
HapMap file using TASSEL (Bradbury et al. 2007). There was 
some leftover heterozygosity and missing data that could not be 
resolved with the manual imputation completed as described 
above, so we used the “numerical” option in TASSEL5 program 
(version: 20191112) to impute the missing data. The “Euclidean” 
method with a 0.05 error rate was used for imputation. 
Imputation was conducted for each population separately and a 
joined genotypic dataset was created. The estimated combined 

environment LsMeans values were used as the phenotypic data, 
and the 4 populations were indicated as a factor in the phenotype 
file. The data for GW for the DRIL78 population were obtained 
from Qiu, Cooper et al. (2020). Joint stepwise regression analysis 
(P = 0.05, maximum included = 100, permutation = 1,000) was 
conducted for each disease separately, and the markers were 
nested within population.

Results
Disease distributions and correlations
DRIL38, DRIL58, and DRIL68 were evaluated in Urbana, IL for GW se
verity in 2018 and 2019. The correlations between environments 
were high. The Spearman correlation coefficient between environ
ments for populations DRIL38, DRIL58, and DRIL68 was 0.47 (P <  
0.0001), 0.80 (P < 0.0001), and 0.71 (P < 0.0001), respectively. We ob
served substantial variation in disease severity in all 3 DRIL popula
tions (Fig. 1). We identified lines that were significantly more 
resistant to GW compared to the recurrent parent Oh7B in all popu
lations, suggesting that GW resistance alleles derived from the donor 
parent were segregating in these populations. We did not observe any 
lines that were completely immune, nor did we observe any hyper
sensitive responses, which are associated with resistance genes. 
Lines more susceptible than the recurrent parent were also observed 
for all 3 populations, suggesting that the donor line also contributed 
alleles that conferred susceptibility. It is also possible that there were 
interactions between recurrent and donor parent genes that resulted 
in lines more susceptible than the recurrent parent.

We hypothesized that there might be a relationship between 
resistance to GW and the foliar fungal diseases for which these 
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Fig. 1. Phenotypic distribution of GW in the 3 populations. For the DRIL58 and DRIL68 populations, combined environment LsMeans estimations for 
AUDPC of the GW data are presented. For the DRIL38 population, there was only 1 rating in 2018 and no AUDPC calculated. Thus, the DRIL38 2018 
estimation distribution was not combined with the DRIL38 2019 estimation, which was based on the AUDPC calculated using 3 ratings. The solid line 
indicates the LsMean of the common recurrent parent Oh7B and the dashed lines indicate the LsMeans of the donor parents, which is different for each 
population. The donor line for DRIL38 population is Ki3; for DRIL58 population is NC262 and for DRIL68 population is NC304.
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populations have been evaluated previously, NCLB, SCLB, and 
GLS. To test this hypothesis, we first examined the pairwise corre
lations among the 4 diseases in each of the 3 populations DRIL38, 
DRIL58, and DRIL68. The strongest correlations among diseases 
were in the DRIL38 population, where resistance to GW was sig
nificantly and positively correlated with resistance to all 3 fungal 
diseases (ρ = 0.25–0.36, P < 0.001). The strongest relationship de
tected was between resistance to GW and NCLB, with relatively 
stable correlations across the 3 populations (ρ = 0.26–0.36, P <  
0.01). Resistance to GW and GLS, as well as GW and SCLB, was sig
nificantly correlated in 1 of the 3 populations (Table 1; 
Supplementary Fig. 2). GW and NCLB are both vascular diseases 
(Mullens and Jamann 2021;  Chung et al. 2010), and, thus, are be
lieved to have more similarities in terms of how the pathogens 
cause disease than GW and SCLB or GLS. GW and NCLB also 
have similarities in terms of pathogen lifestyle, as they both ap
pear to have a biotroph phase, which may also contribute to the 
higher correlations (Kotze et al. 2019; Shumilak et al. 2023).

We conducted Dunnett’s tests to identify lines that were signifi
cantly different than the recurrent parent for each population 
(Table 2; Supplementary File 1). For the DRIL38, DRIL58, and 
DRIL68 populations, 10, 40, and 20% of the lines were significantly 
more resistant to GW than Oh7B, respectively (Table 2). We also 
examined whether there was any overlap between lines signifi
cantly different than the recurrent parent for GW and lines signifi
cantly different for the 3 other foliar diseases. Lines that were 
significantly different from Oh7B for multiple diseases were iden
tified, including 3 lines that were associated with all 4 diseases 
(Table 2; Supplementary File 1). The 3 lines significant using the 
Dunnett’s tests for all diseases had at least 9 introgressions per 
line with introgressions in at least 3 regions that were significant 
in the Mahalanobis distance analysis.

GW QTL detection in multiple populations
QTL mapping was conducted for the 3 populations (DRIL38, 
DRIL58, and DRIL68) for GW resistance. There were 13 GW resist
ance QTLs detected across the 3 populations (Table 3). Significant 
markers in bins 1.02 and 7.02 were identified in more than 1 popu
lation (Table 3). The DRIL68 QTL in chromosomal bin 8.03 had the 
largest effect estimate of all the QTL. The DRIL68 QTL detected in 
chromosomal bin 3.09 explained the most phenotypic variation, 
with 15% of the phenotypic variation explained, but otherwise 
most QTL had small effects and explained less than 10% of the to
tal phenotypic variation (Table 3). The resistant and susceptible 
parents contributed both resistance and susceptibility alleles, as 
indicated by the negative and positive additive effect estimates. 

While the resistant donor parent contributed most of the resist
ance alleles mapped in the populations, based on the additive ef
fect estimates from the single population mapping, Ki3 and NC304 
both contributed a susceptibility allele for 1 QTL in the DRIL38 and 
DRIL68 populations, respectively.

In the DRIL38 population, there was an enrichment for Ki3 al
leles at the significant markers (QTL) from the individual popula
tion mapping analysis, with 28% of the markers having the Ki3 
allele in the Dunnett’s test significant lines compared to 10% of 
the markers having the Ki3 allele in the lines that were not signifi
cant using the Dunnett’s test. Of the 20 lines that were significant 
from the Dunnett’s test, 3 had 3 Ki3 introgressions at the signifi
cant markers, 6 had introgressions at 2 QTLs, 9 had introgressions 
at 1 QTL, and 2 did not have any Ki3 introgressions at the QTL. In 
the DRIL68 population, there was an enrichment for introgres
sions from NC304 at the QTL in the lines that were significant 
from the Dunnett’s test, where 18% of the markers had the 
NC304 genotype, while only 6% had the NC304 alleles in the lines 
that were not significant from the Dunnett’s test at the 5 QTLs. Of 
the 22 lines that were significant in the Dunnett’s test in the 
DRIL68 population, 1 had 3 introgressions at the QTL, 3 had 2 in
trogressions and the QTL, and 11 had 1 QTL, and 7 did not have 
any introgressions at the significant markers. In the DRIL58 popu
lation, 10 of the 41 lines had introgressions at 2 of the QTL, 15 had 
1 introgression at a QTL, and 16 did not have introgressions at the 
QTL. These findings suggest that combining the populations and 
conducting joint linkage mapping might improve the power to de
tect QTL that were not detected in the individual populations.

Comparisons of QTL for multiple diseases across 
multiple populations
Five regions were significant for more than 1 disease ∗ population 
combination (Table 4). These regions fell into 3 different 
categories—(1) significant for multiple diseases in 1 population 
(3 regions), (2) significant for 1 disease across multiple populations 
(2 regions), and (3) significant for multiple diseases across 
multiple populations (4 regions). Of the 5 common significant 
markers, 3 markers were associated with both GLS and GW, 

Table 1. Correlation between diseases in 3 populations.

Population Disease

DRIL38 
(Ki3/Oh7B) 
N = 191

SCLB NCLB GLS
GW 0.36*** 0.33*** 0.25***
SCLB 0.30*** 0.34***
NCLB 0.45***

DRIL58 
(NC262/Oh7B) 
N = 95

SCLB NCLB GLS
GW 0.09 0.26** 0.19
SCLB 0.16 0.13
NCLB 0.20

DRIL68 
(NC304/Oh7B) 
N = 99

SCLB NCLB GLS
GW 0.045 0.36*** 0.18
SCLB 0.20* 0.33***
NCLB 0.32**

Data for SCLB, NCLB, and GLS were obtained from Lopez-Zuniga et al. (2019). 
*P < 0.05, **P < 0.01, and ***P < 0.001.

Table 2. Dunnett’s test for each population showing the number 
of lines that were significantly different from the recurrent parent 
Oh7B.

Disease

DRIL38 
Ki3/Oh7B 
N = 190

DRIL58 
NC262/Oh7B 

N = 101

DRIL68 
NC304/Oh7B 

N = 100

SCLB 36 (36/0) 35 (35/0) 37 (37/0)
NCLB 24 (24/0) 2 (2/0) 15 (15/0)
GLS 2 (2/0) 37 (37/0) 1 (1/0)
GW 20 (19/1) 41 (41/0) 22 (19/3)
SCLB/NCLB 13 2 9
SCLB/GLS 2 14 1
SCLB/GW 9 21 11
NCLB/GLS 1 2 0
NCLB/GW 12 2 6
GLS/GW 1 19 0
SCLB/NCLB/GLS 1 2 0
SCLB/NCLB/GW 8 2 4
NCLB/GLS/GW 1 10 0
SCLB/NCLB/GLS/GW 1 2 0

For single diseases, the numbers in parentheses indicate the number of lines 
that are significantly more resistant than Oh7B and the number of lines that are 
significantly more susceptible than Oh7B, respectively. For multiple diseases, 
more information can be found in Supplementary File 1.
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indicating that resistance to these 2 diseases is possibly linked 
(Table 4).

Identification of MDR QTL using the MD method
To identify QTL with effects on multiple diseases, multivariate 
analysis was conducted using the results of individual linkage 
mapping analyses. All the QTLs identified in the individual map
ping analysis were significant in the multivariate analysis because 
a significant Mahalanobis distance value can arise due to a single 
trait (Fig. 2). Additionally, we were able to detect signal from mar
kers that may not have been significant for any individual disease 
but are associated with an effect on more than 1 disease (Fig. 2; 
Supplementary File 3). Thus, this method allowed us to capture 
markers that have a small effect on more than 1 disease.

In the DRIL38 (Ki3/Oh7B) population, Mahalanobis distance 
identified 44 significant markers, of which 20 markers were iden
tified in the single disease mapping analysis including 5 asso
ciated with resistance to GW, 7 with resistance to GLS, 5 with 
resistance to NCLB, and 6 with resistance to SCLB (Table 3; 
Supplementary File 3). The QTL on chromosome 1 (marker 
PHM4531-46) and on chromosome 4 (marker PZA00941-2) was 

detected for multiple diseases in the single disease mapping ana
lysis (Fig. 2). We observed QTL clustering. Bin 4.08 is an interesting 
potential MDR region in the DRIL38 population, as this region was 
associated with all 4 diseases (Supplementary File 3). Bins 5.03, 
6.01, and 6.05 were also associated with MDR; 3 QTLs from the 

multivariate analysis were identified in each of these bins and 

were linked to more than 1 disease according to the individual dis

ease mapping analysis (Fig. 2; Supplementary File 3).
In the DRIL58 (NC262/Oh7B) population, 20 QTLs were identi

fied in the multivariate analysis, of which 8 were also identified 
in the single disease linkage mapping analysis (Supplementary 
File 3). The highest number of QTLs (4) was detected for GW resist
ance, including 3 on chromosome 1 and 1 on chromosome 8 
(Fig. 2). Bins 1.01 and 9.03 were MDR regions in the DRIL58 popu
lation since they both harbored at least 2 QTLs based on the multi
variate analysis (Fig. 2).

A total of 36 QTLs were identified in the DRIL68 (NC304/Oh7B) 
population, and 17 of those were identified in single disease map
ping analysis (Supplementary File 3). Single-disease related QTLs 
were identified on all chromosomes except 5 and 6 (Fig. 2). Bin 3.09 
and bin 9.03 were MDR regions. Both bins 3.09 and bin 9.03 were 

Table 3. Significant QTL detected for GW in 3 populations DRIL38, DRIL58, and DRIL68.

Peak marker Pop. Chr.a cM Pos.b Binc Dataset LODd Adde PVE (%)f

PHM13094-8 DRIL68 1 25.64 8,348,403 1.01 Combined 8.1 −50.2 12.2
PHM4531-46 DRIL38 1 48.66 22,891,879 1.02 19Urbana 3.28 −21.3 5.22

DRIL58 1 48.66 22,891,879 1.02 Combined 4.21 −39.8 11.3
PZA00192-6 DRIL58 1 68.84 35,583,899 1.03 Combined 3.67 −35.4 9.75
PHM2187-46 DRIL38 1 121.1 157,149,026 1.05 19Urbana 5.05 30.4 8.20
PZA00289-11 DRIL58 1 180.4 216,101,748 1.07 Combined 5.33 −43.0 14.4
PHM2672-19 DRIL68 3 193.1 221,520,140 3.09 Combined 9.36 49.8 14.8
PZA00941-2 DRIL38 4 123.6 186,659,058 4.08 19Urbana 6.5 −37.0 10.8
PHM3691-18 DRIL38 5 89.15 38,506,897 5.03 19Urbana 4.62 −45.4 7.47
PZA02247-1 DRIL38 6 64.18 146,570,902 6.05 19Urbana 4.59 −27.2 7.50
PHM15501-6 DRIL38 7 72.81 30,693,107 7.02 18Urbana 2.81 −3.17 6.41

DRIL68 7 72.81 30,693,107 7.02 Combined 4.09 −30.7 5.59
PHM2350-17 DRIL58 8 55.4 23,964,235 8.03 Combined 2.95 −36.0 7.53
PHM4134-8 DRIL68 8 65.36 106,620,464 8.03 Combined 4.35 −68.3 6.09
PHM1871-19 DRIL68 9 60.81 28,413,009 9.03 Combined 7.16 −40.6 10.7

The combined environment datasets were used, except for the DRIL38 population, where mapping was conducted separately for each year. 
a Chromosome. 
b The physical position (RefGen_v3) of significant markers. 
c Chromosomal bin location of significant QTL (Davis et al. 1999). 
d LOD value at the position of the peak likelihood of the QTL. A permutation test was conducted to determine the LOD threshold for the significant markers. 
e Additive effect estimates of the detected QTL. Effects are in terms of the disease rating scale used. A negative value indicates that the donor allele increased 

resistance. 
f Percentage of the phenotypic variance explained (PVE) by the detected QTL.

Table 4. Common markers identified for multiple diseases across different populations in ICI mapping analysis.

Marker Population Disa Chr.b cM Posc Bind

PHM4531-46 DRIL38 GW 1 48.66 22,891,879 1.02
NCLB
GLS

DRIL58 GW
PZA00192-6 DRIL78 GLS 1 68.84 35,583,899 1.03

DRIL58 GLS
PHM15864-8 DRIL78 GLS 4 87.18 151,565,558 4.06

GW
PZA00941-2 DRIL38 NCLB 4 123.58 186,659,058 4.08

GW
DRIL58 SCLB

PHM229-15 DRIL38 GLS 9 60.82 30,087,788 9.03
DRIL68 SCLB

a Disease. 
b Chromosome. 
c The physical position (RefGen_v3) of significant markers. 
d Chromosomal bin location of significant QTL (Davis et al. 1999).
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Fig. 2. Manhattan plot for individual and multivariate analysis. The dotted line indicates the 1% FDR for the Mahalanobis distance statistic. The dashed 
line represents the Md value for the minimum LOD threshold for the 4 mapping analyses.
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Fig. 3. Additive effect of QTL in 4 populations for 4 diseases. The QTL detected from single disease mapping and joint linkage mapping are visualized by 
chromosomal bin for each disease separately. The x-axis indicates the chromosomal bin that the significant marker was in. The donor line of the 4 
individual populations and the joint linkage mapping is indicated on the y-axis. The additive value of the 4 individual populations is indicated by the color 
of the box with positive values suggesting that donor allele increasing the resistance to the disease. For joint linkage mapping, only the presence of the 
QTL was shown, as no additive effects were calculated. JL indicates joint linkage mapping.
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associated with resistance to GW and SCLB (Fig. 2). Although bin 
3.09 is associated with resistance to GW and SCLB, the additive ef
fect of the QTL in bin 3.09 for GW is negative while the additive va
lue is positive for resistance to SCLB (Fig. 3). This suggests that the 
donor allele or linked donor alleles in this region increased sus
ceptibility to GW but resistance to SCLB.

Joint linkage mapping for individual diseases
Joint linkage mapping has more power to identify QTL shared by 
multiple populations than analyzing each population individual
ly, but has a lower power to detect QTL that are specific to a spe
cific population (Buckler et al. 2009; Ogut et al. 2015; Kolkman et al. 
2020). For example, joint linkage mapping can identify QTLs when 
there were not enough lines with an introgression in a given region 
in a single population, but when combining data across popula
tions, a QTL can be detected. We conducted joint linkage mapping 
to study disease resistance in 4 DRIL populations (DRIL38, DRIL58, 
DRIL68, and DRIL78). Joint linkage mapping was performed in 
TASSEL for each disease separately for the combined 4 popula
tions. A total of 2 QTLs for resistance to GLS, 4 QTLs for resistance 
to SCLB, 6 QTLs for resistance to GW, and 2 QTLs for resistance to 
NCLB disease resistance were identified across the 4 populations 
through joint linkage mapping (Table 5; Fig. 3). Among these, 
QTLs in bin 3.04 (marker PZA00348-11) and in bin 9.03 (marker 
PHM1871-19) were significant for multiple diseases (Table 5). 
There were 2 QTLs in bin 1.01 (marker PZA00181-2 for SCLB and 
PZA00175-2 for GW) located very close to each other (∼0.2 Mb), 
thus, we hypothesized that those 2 QTLs might be detecting the 
same underlying resistance gene(s). Interestingly, this QTL in 
bin 1.01 is also associated with multiple diseases (Table 5).

Discussion
In order to protect crops from multiple biotic threats, there is a 
need to understand the genetic architecture of resistance to 
both fungal and bacterial pathogens. By combining our data for 
GW with previously published data for 3 fungal diseases, we 
were able to identify genomic regions associated with resistance 
to both bacterial and fungal diseases. For example, in contrast 
to the DRIL78 population where no lines were significantly more 
resistant or susceptible than Oh7B for more than 2 diseases 
(Qiu, Cooper et al. 2020), 1 line in the DRIL38 and 2 lines in the 

DRIL58 populations were significantly more resistant than the re
current parent for all 4 diseases. Several regions were implicated 
in MDR including 1.02, 1.03, 3.04, 4.06, 4.08, and 9.03, which in
cludes regions not previously described as regions conferring 
MDR in any of the DRIL populations (Lopez-Zuniga et al. 2019; 
Qiu, Cooper et al. 2020).

We used different mapping methods to identify disease resist
ance QTL across multiple populations for multiple diseases, and 
the results from the 3 mapping analyses were complimentary. 
Using multivariate analysis, we were able to identify several 
MDR QTLs that were not detected in individual mapping analyses. 
Joint linkage mapping has higher power in cases where QTLs are 
shared among families. Likewise, using joint linkage mapping, 
we were able to detect QTL not detected in individual mapping 
analysis, such as the SCLB resistance QTL in bin 1.01 and GW re
sistance QTL in bin 4.03. However, in some cases, the markers 
identified as significant in more than 1 population were not signifi
cant in the joint linkage mapping. For example, there was a QTL for 
NCLB resistance in bin 3.06, but no QTL was identified in this region 
in the joint linkage mapping. This is also the case for the GW resist
ance QTL in bin 1.02, the GLS resistance QTL in bin 1.07, and the 
SCLB resistance QTL in bin 4.08. One possible explanation for 
this could be that in our analysis, slightly different marker sets 
were used in the single and joint population analyses. A similar 
finding was reported in Singh et al. (2016) in that QTL were identi
fied in individual populations but not in the joint linkage mapping.

One objective of this study was to identify QTL associated with 
resistance to GW in multiple populations. Between the individual 
population analyses and the joint linkage mapping, we identified 
19 regions that were associated with GW resistance. The mapping 
results from this study, as well as previously published studies, all 
indicate that resistance is largely quantitative, as defined by 
Poland et al. (2009); (Nelson et al. 2018), as we observe a range of 
phenotypes in segregating populations that very from moderately 
resistant to susceptible. Based on the distributions and mapping 
results, there do not appear to be large-effect QTL or resistance 
genes for GW resistance in these populations, which is consistent 
with previous studies using other populations (Cooper et al. 2018; 
Cooper et al. 2019); however, Hu et al. (2018) identified a hypersen
sitive response associated with the rust resistance locus rp1. In 
this study, every line that was included had some disease, and 
no lines included in this study exhibited a hypersensitive re
sponse. Thus, resistance appears to be quantitative for GW resist
ance in these populations, and we do not expect that resistance 
genes underlie resistance in these populations.

Some of the QTL were identified in multiple DRIL populations in 
the individual mapping analysis, such as the QTL in bins 1.02 (mark
er PHM4531-46) and 7.02 (marker PHM15501-6). The significant 
marker PHM4531-46 for the QTL in bin 1.02 was also detected in a 
RIL population developed from B73 and HP301 for GW resistance 
(Singh et al. 2016). Interestingly, this is a locus that has been shown 
to be involved in resistance to other diseases including Stewart’s 
wilt (another bacterial disease) and NCLB (also a vascular disease) 
and a remorin gene has been implicated for disease resistance with
in this locus (Jamann et al. 2016). Additional study is needed to deter
mine whether these previous findings relate to GW as well. 
Additionally, Singh et al. (2016) identified QTL in bins 2.07 and 9.03 
for GW resistance through joint linkage mapping in populations 
with different parents than our study. Cooper et al. (2018) identified 
QTL for GW resistance in bins 2.07 and 7.02 in the intermated 
B73×Mo17 population. The overlapping of GW QTLs in bins 1.01, 
1.02, 2.07, 7.02, and 9.03 in this study and previous studies suggest 
that these are important regions for GW resistance.

Table 5. Significant markers identified in the joint linkage 
mapping.

Peak marker Chr.a cM Physical Pos.b BINc Disd

PZA00181-2 1 25.64 8,346,760 1.01 SCLB
PZA00175-2 1 25.86 8,553,473 1.01 GW
PHM13619-5 1 47.76 22,252,464 1.02 GLS
PZA00824-2 2 117.77 197,553,232 2.07 GW
PZA00348-11 3 68.94 32,780,891 3.04 GW

SCLB
PHM1959-26 3 105.64 170,153,721 3.06 GW
PHM259-11 4 52.47 14,374,208 4.03 GW
PHM15427-11 4 70.75 34,049,995 4.05 SCLB
PZA01332-2 4 137.84 207,440,469 4.09 NCLB
PHM565-31 5 82.66 24,398,410 5.03 SCLB
PHM2487-6 8 28.92 8,120,340 8.01 NCLB
PHM1871-19 9 60.81 28,413,009 9.03 GLS

GW

a Chromosome. 
b The physical position (RefGen_v3) of significant markers. 
c Chromosomal bin location of significant QTL (Davis et al. 1999). 
d Disease.
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One interesting finding from this study was that there were 
lines that were significantly different than the recurrent parent 
for multiple diseases. Of the 3 lines that were significant for all 3 
diseases in the Dunnett’s test, DRIL38.172 has an introgression 
at PHM4531-46 (bin 1.02), which was associated with resistance 
to GW, NCLB, and GLS in the single disease mapping analysis. 
Interestingly, none of the other lines that have introgressions at 
that same region showed significant differences for all 4 diseases, 
indicating that it may be the stacking of other QTL that conferred 
MDR in that line. DRIL58.103 had an introgression at PZA00941-2 
(bin 4.08) that was associated with resistance to SCLB in the 
DRIL58 population. All 3 of these lines would be interesting to fol
low up on, as well as following up on the MDR QTL at which these 
lines had introgressions.

From the combined results of all the mapping methods, we 
identified regions that were associated with multiple diseases 
across different populations. The QTL located in bin 9.03 (marker 
PHM1871-19) was associated with resistance to GLS, SCLB, and GW 
in the 4 populations. This QTL was located ∼12 Mb downstream of 
the MDR gene ZmCCoAOMT2 encoding a caffeoyl-CoA 
O-methyltransferase (Yang et al. 2017), which confers resistance 
to SLB and GLS. A previous study identified bin 9.02–9.03 as confer
ring resistance to multiple diseases (Belcher et al. 2012). Bin 9.03 
was also detected as 1 of the largest QTL for SCLB resistance in a 
RIL population developed from Ki14 and B73 (Zwonitzer et al. 
2010). Bin 1.01 was another interesting QTL associated with 
MDR. There were 2 significant markers located very close to 
each other in bin 1.01 (marker PZA00181-2 and marker 
PZA00175-2 are only 206,713 bp apart) that were significant for 
SCLB and GW in the joint linkage mapping.

Bin 3.04 is a locus with effects on multiple diseases including 
resistance to GW and SCLB. The colocalization of GW and SCLB re
sistance at 3.04 could be due to the pleiotropic effect of a single 
gene associated with multiple diseases or due to the effects of 
multiple linked genes, each corresponding to the single disease. 
We do not have high enough resolution and fine-mapping is re
quired to distinguish linkage vs pleiotropy for bin 3.04. A leucine 
rich repeat receptor kinase referred to as ChSK1 underlies a 
SCLB resistance QTL at 3.04 and confers increased susceptibility 
to SCLB (Chen et al. 2023). Previously, bin 3.04 has been reported 
to confer resistance to multiple fungal diseases (Belcher et al. 
2012; Lopez-Zuniga et al. 2019; Qiu, Cooper et al. 2020) and also 
to European corn borer, Fusarium stalk rot, common rust, and 
maize mosaic diseases (McMullen and Simcox 1995; Wisser et al. 
2006). Bin 3.04 also harbors disease resistance gene including 
rust resistance gene rp3 (Webb et al. 2002). Due to the low marker 
density in this study, it is likely that there are several smaller QTLs 
in bin 3.04 and each QTL may confer an effect to a different dis
ease. Further investigation is needed.

Conclusions
In summary, we identified regions of the genome that conferred 
resistance to GW and regions implicated in resistance to multiple 
diseases. In order to take advantage of the data that have been col
lected on multiple diseases and populations, we conducted 3 dif
ferent types of analysis to detect GW and MDR QTL. We mapped 
13 GW QTLs in the individual populations and an additional 6 
using joint linkage mapping, including colocalizing QTL in bins 
1.02, 7.02, and 8.03. This study confirms that resistance to GW is 
highly quantitative and likely not based on major gene resistance. 
We detected 3 lines that were resistant to all 4 diseases examined 
in this study. Several regions were implicated in MDR including 

1.02, 1.03, 3.04, 4.06, 4.08, and 9.03. These loci could be important 
for breeding for MDR in maize and are targets of further study in
cluding confirmation and fine-mapping.

Data availability
Supplemental data are available at 10.6084/m9.figshare. 
22532314. Supplementary File 1 has the Dunnett’s test showing 
lines that were statistically significant than Oh7B for each disease 
in each population. Supplementary File 2 has the raw phenotypic 
data. Supplementary File 3 has the comparison of individual map
ping analysis and multivariate mapping analysis for multiple dis
eases across multiple populations. Supplementary File 4 contains 
the genotypic data used for QTL mapping and joint linkage 
mapping.

Supplemental material available at G3 online.
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