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f -DP has recently been proposed as a generalization of differential pri-

vacy allowing a lossless analysis of composition, post-processing, and pri-

vacy amplification via subsampling. In the setting of f -DP, we propose the

concept of a canonical noise distribution (CND), the first mechanism de-

signed for an arbitrary f -DP guarantee. The notion of CND captures whether

an additive privacy mechanism perfectly matches the privacy guarantee of a

given f . We prove that a CND always exists, and give a construction that pro-

duces a CND for any f . We show that private hypothesis tests are intimately

related to CNDs, allowing for the release of private p-values at no additional

privacy cost, as well as the construction of uniformly most powerful (UMP)

tests for binary data, within the general f -DP framework.

We apply our techniques to the problem of difference-of-proportions test-

ing, and construct a UMP unbiased (UMPU) “semiprivate” test which upper

bounds the performance of any f -DP test. Using this as a benchmark, we pro-

pose a private test based on the inversion of characteristic functions, which

allows for optimal inference on the two population parameters and is nearly as

powerful as the semiprivate UMPU. When specialized to the case of (ε,0)-

DP, we show empirically that our proposed test is more powerful than any

(ε/
√

2)-DP test and has more accurate type I errors than the classic normal

approximation test.

1. Introduction. The concept of differential privacy (DP) was introduced in Dwork et al.

(2006), which offers a framework for the construction of private mechanisms and a rigorous

notion of what it means to limit privacy loss when performing statistical releases on sensitive

data. DP requires that the randomized algorithm M performing the release has the property

that for any two datasets X and X′ which differ in one individual’s data (adjacent datasets),

the distributions of M(X) and M(X′) are “close.” Since this seminal paper, many variants

of differential privacy have been proposed; the variants primarily differ in how they formu-

late the notion of closeness. For example, pure and approximate DP are phrased in terms of

bounding the probabilities of sets of outputs, according to M(X) versus M(X′) (Dwork and

Roth (2014)), whereas concentrated (Bun and Steinke (2016)) and Rényi (Mironov (2017))

DP are based on bounding a divergence between M(X) and M(X′).
Wasserman and Zhou (2010) and Kairouz, Oh and Viswanath (2017) showed that pure

and approximate DP can be expressed as imposing constraints on the type I and type II er-

rors of hypothesis tests which seek to discriminate between two adjacent databases. Recently

Dong, Roth and Su (2022) expanded this view, defining f -DP which allows for an arbitrary

bound to be placed on the receiver–operator curve (ROC) or tradeoff function when testing

between two adjacent databases. It is shown in Dong, Roth and Su (2022) that f -DP retains

many of the useful properties of DP such as post-processing, composition, and subsampling

and allows for lossless calculation of the privacy cost of each of these operations. Further-

more, as special cases, f -DP contains both pure and approximate DP, as well as relatives
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of divergence-based notions of DP (e.g., Gaussian DP (GDP) is slightly stronger than zero-

concentrated DP).

In this paper, we study two fundamental privacy questions in the framework of f -DP. The

first is based on optimizing the basic mechanism of adding independent noise to a real-valued

statistic, and the second is about constructing hypothesis tests under the constraint of DP. We

show that in fact, the two problems are intricately related, where the “canonical additive

noise distribution” enables private p-values “for free,” and gives a closed-form construction

of certain optimal hypothesis tests.

One of the simplest and widely used type of privacy mechanism is noise addition, where

independent noise is added to a real-valued statistic. Additive mechanisms are not only widely

used by themselves, but are also often a key ingredient to more complex mechanisms such as

functional mechanism (Zhang et al. (2012)), objective perturbation (Chaudhuri, Monteleoni

and Sarwate (2011)), stochastic gradient descent (Abadi et al. (2016)), and the sparse vec-

tor technique (Dwork et al. (2009)), to name a few. The oldest and most widely used ad-

ditive mechanisms are the Laplace and Gaussian mechanisms, but there have since been

many proposed distributions which satisfy different definitions of DP. A natural question

is what noise distributions are “optimal” or “canonical” for a given definition of privacy. The

geometric mechanism/discrete Laplace mechanism is optimal for ε-DP counts, in terms of

maximizing Bayesian utility (Ghosh, Roughgarden and Sundararajan (2012)), the staircase

mechanism is optimal for ε-DP in terms of �1 or �2-error (Geng and Viswanath (2015)),

and the truncated-uniform-Laplace (Tulap) distribution generalizes both the discrete Laplace

and staircase mechanisms and is optimal for (ε, δ)-DP in terms of generating uniformly

most powerful (UMP) hypothesis tests and uniformly most accurate (UMA) confidence in-

tervals for Bernoulli data (Awan and Slavković (2018), Awan and Slavković (2020)). With

divergence-based definitions of privacy, Gaussian noise is argued to be canonical for (zero)

concentrated DP (Bun and Steinke (2016)), and the sinh-normal distribution is argued to be

canonical for truncated concentrated DP (Bun et al. (2018)).

In this paper, we give the first formal definition of a canonical noise distribution (CND)

which captures the notion of whether a distribution tightly matches a privacy guarantee f -DP.

We show that the Gaussian distribution is canonical for Gaussian differential privacy (GDP),

and the Tulap distribution is canonical for (ε, δ)-DP. We prove that a CND always exists for

any nontrivial symmetric tradeoff function f , and give a general construction to generate a

CND given any tradeoff function f . This construction results in the first general mechanism

for an arbitrary f -DP guarantee. In the special case of (ε, δ)-DP, our construction results in

the Tulap distribution.

Another privacy question is on the nature of DP hypothesis tests. Awan and Slavković

(2018) showed that for independent Bernoulli data, there exists uniformly most powerful

(UMP) (ε, δ)-DP tests which are based on the Tulap distribution, enabling “free” private p-

values, at no additional cost to privacy.

We show that for an arbitrary tradeoff function f and any f -DP test, a free private p-value

can always be generated in terms of a CND for f . We also extend the main results of Awan

and Slavković (2018) from (ε, δ)-DP to f -DP as well as from i.i.d. Bernoulli variables to

exchangeable binary data. This extension shows that the CND is the proper generalization of

the Tulap distribution, and gives an explicit construction of the most powerful f -DP test for

binary data, the first DP hypothesis test for a general f -DP guarantee.

We end with an extensive application to private difference-of-proportions testing. Testing

two population proportions is a common hypothesis testing setting that arises when there are

two groups with binary responses, such as A/B testing, clinical trials, and observational stud-

ies. As such, the techniques for testing these hypotheses are standardized and included in most

introductory statistics textbooks. However, there currently lacks a theoretically-based private
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test with accurate sensitivity and specificity. Karwa and Vadhan (2018) were the first to at-

tempt at tackling the private difference-of-proportions testing problem, and recently Awan

and Cai (2020) used a novel asymptotic method to calibrate the type I errors of a related

DP test in large sample sizes. Our application builds off of these prior works, with a much

improved analysis and strong theoretical basis in the f -DP framework.

We show that in general, there does not exist a UMP unbiased f -DP test for this problem,

but using our earlier results on most powerful f -DP tests for binary data, we show that there

does exist a UMP unbiased “semiprivate” test, which satisfies a weakened version of f -DP.

While this test does not satisfy f -DP, it does provide an upper bound on the power of any

f -DP test, and gives intuition on the structure of a good f -DP test for this problem. We then

design a novel f -DP test for the testing problem, based on using CNDs and an expression of

the sampling distribution in terms of characteristic functions, enabling efficient computation

via Gil-Pelaez inversion. Using theory of the parametric bootstrap, we argue that the test is

asymptotically unbiased and has asymptotically accurate type I errors. Empirically, we show

that the test has more accurate type I errors and p-values than the popularly used normal

approximation test, and that the power of our proposed test is nearly as powerful as the

semiprivate UMP unbiased test. In the case of ε-DP, we demonstrate through simulations

that our test has higher power than any (ε/
√

2)-DP test, indicating that it is nearly optimal.

Furthermore, our test has the benefit of allowing for optimal hypothesis tests and confidence

intervals for each of the population proportions, using the techniques of Awan and Slavković

(2020), as the proposed test is based on the same DP summary statistics.

Organization. In Section 2 we set the notation for the paper and review background dif-

ferential privacy. In Section 3, we introduce the concept of a canonical noise distribution, give

some basic properties of CNDs, and provide a general construction of a CND for any f -DP

privacy notion. In Section 4, we show that any f -DP hypothesis test must satisfy constraints

based on the function f , we give a general result for “free” DP p-values given an f -DP test

function, and develop most powerful f -DP tests for exchangeable binary data. In Section 5,

we consider the problem of privately testing the difference of population proportions. Specif-

ically in Section 5.1, we develop a uniformly most powerful unbiased “semiprivate” test,

which gives an upper bound on the power of any f -DP test, in Section 5.2 we propose an

f -DP test based on the inversion of characteristic functions, and in Section 5.3 we evaluate

the type I error and power of our two sample tests in simulations. Proofs and technical details

are deferred to the Supplementary Material (Awan and Vadhan (2023)).

Related work. Vu and Slavković (2009) was the first work in private hypothesis testing,

developing DP tests for population proportions as well as independence tests for 2 × 2 tables.

These tests use additive Laplace noise, and use a normal approximation to the sampling dis-

tribution to calibrate the type I errors. Solea (2014) develop tests for normally distributed data

using similar techniques. Wang, Lee and Kifer (2015) and Gaboardi et al. (2016) expanded

on Vu and Slavković (2009), developing additional tests for multinomials. Wang, Lee and

Kifer (2015) developed asymptotic sampling distributions for their tests, verifying the type

I errors via simulations, whereas Gaboardi et al. (2016) use Monte Carlo methods to esti-

mate and control the type I error. Uhler, Slavković and Fienberg (2013) develop DP p-values

for chi-squared tests of GWAS data, and derive the exact sampling distribution of the noisy

statistic. Kifer and Rogers (2016) develop private χ2 tests for goodness-of-fit and identity

problems which are designed to have the same asymptotic properties as the nonprivate tests.

Under “local differential privacy,” a notion of DP where even the data curator does not

have access to the original dataset, Gaboardi and Rogers (2018) develop multinomial tests

based on asymptotic distributions.
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The first uniformly most powerful hypothesis tests under DP for the testing of i.i.d.

Bernoulli data were developed by Awan and Slavković (2018). Their tests are based on the

Tulap distribution, an extension of the discrete Laplace and Staircase mechanisms. Awan and

Slavković (2020) expanded on these results to offer UMP unbiased two-sided DP tests as

well as optimal DP confidence intervals and confidence distributions for Bernoulli data.

Given a DP output, Sheffet (2017) and Barrientos et al. (2019) develop significance tests

for regression coefficients. Wang et al. (2018) develop general approximating distributions for

DP statistics, which can be used to construct hypothesis tests and confidence intervals, but

which are only applicable to limited models. Awan and Cai (2020) also provide asymptotic

techniques that can be used to conduct approximate hypothesis tests, given DP summary

statistics, but which may have limited accuracy in finite samples.

Rather than the classical regime of fixing the type I error, and minimizing the type II error,

there are several works on DP testing, where the goal is to optimize the sample complexity

required to generate a test which places both the type I and type II errors below a certain

threshold. Canonne et al. (2019) show that for simple hypothesis tests, a noisy clamped like-

lihood ratio test achieves optimal sample complexity. Cai, Daskalakis and Kamath (2017) and

Kakizaki, Fukuchi and Sakuma (2017) both study the problem of ε-DP discrete identity test-

ing from the sampling complexity perspective. Aliakbarpour, Diakonikolas and Rubinfeld

(2018) also studies ε-DP identitiy testing as well as DP equivalence testing. Acharya, Sun

and Zhang (2018) study identity and closeness testing of discrete distributions in the (ε, δ)-

DP framework. Bun et al. (2019) derive sample complexity bounds for differentially privacy

hypothesis selection, where the goal is to choose among a set of potential data generating dis-

tributions, which one has the smallest total variation distance to the true distribution. Suresh

(2021) develop an alternative to the Neyman–Pearson lemma for simple hypotheses, which

is robust to misspecification of the hypotheses; due to the connection between robustness and

differential privacy (Dwork and Lei (2009)), this could be a promising tool for developing

private tests.

Outside the hypothesis testing setting, there is some additional work on optimal population

inference under DP. Duchi, Jordan and Wainwright (2018) give general techniques to derive

minimax rates under local DP, and in particular give minimax optimal point estimates for the

mean, median, generalized linear models, and nonparametric density estimation. Karwa and

Vadhan (2017) develop nearly optimal confidence intervals for normally distributed data with

finite sample guarantees, which could potentially be inverted to give approximately UMP

unbiased tests.

Notable works that develop optimal DP mechanisms for general loss functions are Geng

and Viswanath (2015) and Ghosh, Roughgarden and Sundararajan (2012), which give mecha-

nisms that optimize symmetric convex loss functions, centered at a real-valued statistic. Sim-

ilarly, Awan and Slavković (2021) derive optimal mechanisms among the class of K-Norm

Mechanisms for a fixed statistic and sample size.

2. Background. In this section, we review some basic notation as well as background

on differential privacy. Notation and terminology regarding hypothesis testing is deferred to

Appendix A of the Supplementary Material (Awan and Vadhan (2023)).

We say that a real-valued function f (x) is increasing (decreasing) if a f b implies f (a) f
f (b) (resp. f (a) g f (b)). We say that f is strictly increasing (strictly decreasing) if a < b

implies f (a) < f (b) (resp. f (a) > f (b)). Given an increasing function f , we define its

inverse to be f −1(y) = inf{x ∈ R|y f f (x)}. For a decreasing function f , the inverse is

defined to be f −1(y) = inf{x ∈ R|y g f (x)}.
For a real-valued random variable X, its cumulative distribution function (cdf) is defined

as FX(t) = P(X f t), and its quantile function is F−1
X . A real-valued random variable is
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continuous if its cdf FX(t) is continuous in t , and X is symmetric about zero if FX(t) =
1 − FX(−t). For a random variable X ∼ P , with cdf F , we use P and F(·) interchangeably

to denote the distribution of X.

2.1. Differential privacy. In this section, we review the definition of f -DP which is for-

mulated in terms of constraints on hypothesis tests and relate it to other notions of DP in the

literature. A mechanism M is a randomized algorithm that takes as input a database D, and

outputs a (randomized) statistic M(D) in an abstract space Y . Given two databases X and

X′ which differ in one person’s contribution, a mechanism M satisfies differential privacy if

given the output of M it is difficult to determine whether the original database was X or X′.
The notion “differing in one person’s contribution” is often formalized in terms of a met-

ric. In this paper, we use the Hamming metric, which is defined as follows: For any set X ,

we write X n = {(x1, x2, . . . , xn)|xi ∈X for all 1 f i f n}. The Hamming metric on X n is de-

fined by H(X,X′) = #{i|Xi �= X′
i}. If H(X,X′) f 1, we call X and X′ adjacent databases.

Note that by using the Hamming metric, we assume that the sample size n is a public value

and does not require privacy protection.

All of the major variants of DP state that given a randomized algorithm M , for any two

adjacent databases X, X′, the distributions of M(X) and M(X′) should be “similar.” While

many DP variants measure similarity in terms of divergences, recently Dong, Roth and Su

(2022) proposed f -DP, which formalizes similarity in terms of constraints on hypothesis

tests.

For two probability distributions P and Q, the tradeoff function T (P,Q) : [0,1] → [0,1]
is defined as T (P,Q)(α) = inf{1 − EQφ|EP (φ) f α}, where the infinimum is over all mea-

surable tests φ. The tradeoff function can be interpreted as follows: If T (P,Q)(α) = β , then

the most powerful test φ which is trying to distinguish between H0 = {P } and H1 : {Q} at

type I error f α has type II error β . A larger tradeoff function means that it is harder to dis-

tinguish between P and Q. Note that the tradeoff function is closely related to the receiver–

operator curve (ROC), and captures the difficulty of distinguishing between P and Q. A func-

tion f : [0,1] → [0,1] is a tradeoff function if and only if f is convex, continuous, decreas-

ing, and f (x) f 1 − x for all x ∈ [0,1] (Dong, Roth and Su (2022), Proposition 1). We say

that a tradeoff function f is nontrivial if f (α) < 1 − α for some α ∈ (0,1); that is if f is not

identically equal to 1 − α.

DEFINITION 2.1 (f -DP: Dong, Roth and Su (2022)). Let f be a tradeoff function.

A mechanism M satisfies f -DP if for all D,D′ ∈X n such that H(D,D′) f 1, we have

T
(
M(D),M

(
D′)) g f.

See Figure 1 for examples of tradeoff functions which do and do not satisfy f -DP for a

particular f . In the above definition, the inequality T (M(D),M(D′)) g f is shorthand for

T (M(D),M(D′))(α) g f (α) for all α ∈ [0,1]. Without loss of generality, we can assume

that f is symmetric: f (α) = f −1(α), where f −1(α) = inf{t ∈ [0,1]|f (t) f α}. This is due

to the fact that adjacency of databases is a symmetric relation (Dong, Roth and Su (2022),

Proposition 2). For the remainder of the paper, we assume that f -DP also requires this sym-

metry.

Wasserman and Zhou (2010) and Kairouz, Oh and Viswanath (2017) both showed that

(ε, δ)-DP can be expressed in terms of hypothesis testing, and in fact Dong, Roth and Su

(2022) showed that (ε, δ)-DP can be expressed as a special case of f -DP.

DEFINITION 2.2 ((ε, δ)-DP: Dwork et al. (2006)). Let ε > 0 and δ g 0, and define

fε,δ(α) = max{0,1 − δ − exp(ε)α, exp(−ε)(1 − δ − α)}. Then we say that a mechanism

M satisfies (ε, δ)-DP if it satisfies fε,δ-DP.
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FIG. 1. A plot of three examples of T (M(D),M(D′)). Only the red, dashed tradeoff curve satisfies f -DP.

Another notable special case of f -DP is Gaussian DP (μ-GDP). Dong, Roth and Su (2022)

showed that μ-GDP is perhaps the most natural single-parameter privacy definition, due to

the central limit theorem for composition. Gaussian DP is closely related to zero-concentrated

differential privacy (zCDP) (Bun and Steinke (2016)), a very popular relaxation of DP. GDP

is slightly stronger than zCDP in that a mechanism satisfying GDP satisfies zCDP (Dong,

Roth and Su (2022), Corollary B.6), but the converse is not true (Dong, Roth and Su (2022),

Proposition B.7).

DEFINITION 2.3 (Gaussian differential privacy: Dong, Roth and Su (2022)). Let μ > 0

and define

Gμ(α) = T
(
N(0,1),N(μ,1)

)
(α) = 	

(
	−1(1 − α) − μ

)
,

where 	 is the cdf of N(0,1). We say that a mechanism M satisfies μ-Gaussian differential

privacy (μ-GDP) if it is Gμ-DP.

3. Canonical noise distributions. One of the most basic techniques of designing a pri-

vacy mechanism is through adding data-independent noise. The earliest DP mechanisms add

either Laplace or Gaussian noise, and there have since been several works developing opti-

mal additive mechanisms including the geometric (discrete Laplace) (Ghosh, Roughgarden

and Sundararajan (2012)), truncated-uniform-Laplace (Tulap) (Awan and Slavković (2018),

Awan and Slavković (2020)), and staircase mechanisms (Geng and Viswanath (2015)). There

have also been several works exploring multivariate and infinite-dimensional additive mecha-

nisms such as K-norm (Awan and Slavković (2021), Hardt and Talwar (2010)), elliptical per-

turbations (Reimherr and Awan (2019)), and Gaussian processes (Hall, Rinaldo and Wasser-

man (2013), Mirshani, Reimherr and Slavković (2019)).

While there are many choices of additive mechanisms to achieve f -DP, we are interested

in adding the least noise necessary in order to maximize the utility of the output. Rather than

measuring the amount of noise by its variance or entropy, we focus on whether the privacy

guarantee is tight.

In this section, we introduce the concept canonical noise distribution (CND), which cap-

tures whether a real-valued distribution is perfectly tailored to satisfy f -DP. We formalize
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this in Definition 3.1. We then show that for any symmetric f , we can always construct a

CND, where the construction is given in Definition 3.7 and proved to be a CND in Theo-

rem 3.9. We will see in Section 4 that CNDs are fundamental for understanding the nature of

f -DP hypothesis tests, for constructing “free” DP p-values, and for the design of uniformly

most powerful f -DP tests for binary data. We also see in Section 5 that CNDs are central to

our application of difference-of-proportions tests as well.

Before we define canonical noise distribution, we must introduce the sensitivity of a statis-

tic, a central concept of DP (Dwork et al. (2006)). A statistic T : X n → R has sensitivity


 > 0 if |T (X) − T (X′)| f 
 for all H(X,X′) f 1. As the sensitivity measures how much

a statistic can change when one person’s data is modified, additive noise must be scaled pro-

portionally to the sensitivity in order to protect privacy.

DEFINITION 3.1. Let f be a symmetric nontrivial tradeoff function. A continuous dis-

tribution function F is a canonical noise distribution (CND) for f if:

1. for every statistic S : X n → R with sensitivity 
 > 0, and N ∼ F(·), the mechanism

S(X) + 
N satisfies f -DP. Equivalently, for every m ∈ [0,1], T (F (·),F (· − m)) g f ,

2. f (α) = T (F (·),F (· − 1))(α) for all α ∈ (0,1),

3. T (F (·),F (· − 1))(α) = F(F−1(1 − α) − 1) for all α ∈ (0,1),

4. F(x) = 1 − F(−x) for all x ∈ R; that is, F is the cdf of a random variable which is

symmetric about zero.

The most important conditions of Definition 3.1 are 1 and 2, which state that the distri-

bution can be used to satisfy f -DP and that the privacy bound is tight. For property 1, the

value m can be interpreted as the quantity |S(X) − S(X′)|/
; then by the symmetry of F ,

it can be seen that T (S(X) + 
N,S(X′) + 
N) = T (F (·),F (· − m)). Condition 3 of Def-

inition 3.1 gives a closed form for the tradeoff function, and is equivalent to requiring that

the optimal rejection set for discerning between F(·) and F(· − 1) is of the form (x,∞)

for some x ∈ R. The last condition of Definition 3.1 enforces symmetry of the distribution,

which makes CNDs much easier to work with.

Finally note that conditions 1 and 2 are not equivalent. Adding excessive noise would

satisfy 1, but not 2, whereas a mechanism which fails T (F (·),F (·−m)) g T (F (·),F (·−1))

for some m ∈ (0,1) would not satisfy property 1. The following example illustrates both

cases.

EXAMPLE 3.2. Consider the discrete Laplace mechanism, which has cdf F(t) = 1−b
1+b

b|t |

for t ∈ Z and b ∈ (0,1). Then it can be verified that the discrete Laplace distribution with

b = exp(−ε) satisfies T (F (·),F (·− 1)) = fε,0, but not part 1 of Definition 3.1. For example,

if S(X) = 0 and S(X′) = 0.1, adding discrete Laplace noise N ∼ F results in distributions

with disjoint support, since S(X) + N takes values in Z, whereas S(X′) + N takes values in

Z+ 0.1. As the supports of the distributions are disjoint, we can have zero type I and type II

error when testing between X and X′, violating the fε,0 bound.

It is well known that the continuous Laplace mechanism with scale parameter 
/ε satisfies

ε-DP, when added to a 
-sensitivity statistic, and so satisfies property 1 of Definition 3.1

for fε,0. However, as Dong, Roth and Su (2022) noted, it can be verified that the Laplace

distribution does not satisfy property 2 of Definition 3.1, as there exists α ∈ (0,1) such that

the tradeoff function is strictly greater than fε,0 at α.

REMARK 3.3. Note that property 2 of Definition 3.1 captures the intuition that a privacy

mechanism should match the tradeoff function in the privacy guarantee to avoid introducing
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excessive noise. While this is indeed an intuitive idea, this has never previously been formal-

ized into a precise criterion for a privacy mechanism, as we do in Definition 3.1. Furthermore,

no prior work has attempted to build a mechanism that matches the tradeoff function for an

arbitrary f -DP guarantee. In Theorem 3.9, we not only prove that a CND exists, but give a

construction to build a CND for every f .

EXAMPLE 3.4 (CND for GDP). The distribution N(0,1/μ), which has cdf 	(1/μ) (	 is

the cdf of a standard normal) is a CND for Gμ, defined in Definition 2.3. Property 1 is proved

in (Dong, Roth and Su (2022)), properties 2 and 3 are easily verified, and the distribution

is obviously symmetric. Dong, Roth and Su (2022) state that “GDP precisely characterizes

the Gaussian mechanism.” From the opposite perspective, we argue that this is because the

normal distribution is a CND for Gμ.

PROPOSITION 3.5. Let f be a symmetric nontrivial tradeoff function. Let F be a CND

for f , and G be another cdf such that T (G(·),G(· − 1)) g f . Let N ∼ F and M ∼ G.

Then there exists a randomized function Proc : R → R which satisfies Proc(N)
d= M and

Proc(N + 1)
d= M + 1, where “

d=” means equal in distribution.

Proposition 3.5 follows from property 2 in Definition 3.1 along with Dong, Roth and Su

((2022), Theorem 2), which is based on Blackwell’s theorem (Blackwell (1950)). Proposi-

tion 3.5 shows that if we add noise from a CND to a statistic S(X) versus S(X) + 1, we can

post-process the result to obtain the same result as if we added noise from another distribution

that achieves f -DP. This shows in some sense that a CND adds the least noise necessary to

achieve f -DP. Note that Proposition 3.5 does not imply that a CND is optimal in every sense:

for example, Geng and Viswanath (2015) derived the minimum variance additive (ε,0)-DP

mechanism, which is not a CND for fε,0. We will see in Section 4 that the properties of

Definition 3.1 do lead to optimal properties of DP hypothesis tests.

In the remainder of this section, we show that given any tradeoff function f , we can always

construct a canonical noise distribution (CND), but that a CND need not be unique.

LEMMA 3.6. Let f be a symmetric nontrivial tradeoff function and let F be a CND

for f . Then F(x) = 1−f (F (x − 1)) when F(x − 1) > 0 and F(x) = f (1−F(x + 1)) when

F(x + 1) < 1.

PROOF SKETCH. The result follows from properties 2, 3, and 4 of Definition 3.1 along

with some algebra of cdfs. �

In the Lemma 3.6, we see that a CND satisfies an interesting recurrence relation. If we

know the value F(x) = c for some x ∈ R and c ∈ (0,1), then we know the value of F(y) for

all y ∈ Z+x. This means that if we specify F on an interval of length 1, such as [−1/2,1/2],
then F is completely determined by the recurrence relation. While there are many choices

to specify F on [−1/2,1/2], each of which may or may not lead to a CND. We show that

using a particular linear function in [−1/2,1/2] does indeed give a CND. The remainder of

this section is devoted to this construction of a CND and the proof that it has the properties

of Definition 3.1.

DEFINITION 3.7. Let f be a symmetric nontrivial tradeoff function, and let c ∈ [0,1/2)

be the unique fixed point of f : f (c) = c. We define Ff :R →R as

Ff (x) =

⎧
⎪⎪«
⎪⎪¬

f
(
1 − Ff (x + 1)

)
x < −1/2,

c(1/2 − x) + (1 − c)(x + 1/2) −1/2 f x f 1/2,

1 − f
(
Ff (x − 1)

)
x > 1/2.
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FIG. 2. Plots of CND construction of Definition 3.7. The vertical lines are at half-integer values.

In Definition 3.7, the fact that there is a unique fixed point follows from the fact that f is

convex and decreasing, and so intersects the line y = α at a unique value. In Lemma F.4 of the

Supplementary Material (Awan and Vadhan (2023)), we establish that the fixed point c lies

in the interval [0,1/2). Note that in Definition 3.7, the cdf corresponds to a uniform random

variable on the interval [−1/2,1/2], but due to the recursive nature of Ff and the fact that

f is in general nonlinear, the CND of Definition 3.7 need not be uniformly distributed on

any other intervals. See Figure 2 for a plot of the pdf and cdf of the CND of Definition 3.7

corresponding to the tradeoff function G1.

The following proposition verifies that Ff is a distribution function, as well as some other

properties, such as continuity, symmetry, and concavity/convexity.

PROPOSITION 3.8. Let f be a symmetric nontrivial tradeoff function, and let F := Ff .

Then:

1. F(x) is a cdf for a symmetric, continuous, real-valued random variable,

2. F(x) satisfies F(x) = 1 − f (F (x − 1)) whenever F(x − 1) > 0 and F(x) = f (1 −
F(x + 1)) whenever F(x + 1) < 1.

3. F ′(x) is decreasing on (−1/2,∞) and increasing on (−∞,1/2),

4. F(x) is strictly increasing on {x|0 < F(x) < 1}.

PROOF SKETCH. Most of the properties are proved by induction, checking that the prop-

erties hold on intervals of the type [x − 1/2, x + 1/2] for x ∈ Z as well as at the break points

at half-integer values. The full proof is found in Appendix F of the Supplementary Material

(Awan and Vadhan (2023)). �

Theorem 3.9 below states that for any nontrivial tradeoff function, the construction of

Definition 3.7 yields a canonical noise distribution. As we will see later, the existence (and

construction) of a CND will enable us to prove that any f -DP test can be post-processed from

a private test statistic, and this implies that we can always obtain hypothesis testing p-values

at no additional privacy cost, a generalization of the result of Awan and Slavković (2018)

which previously only held for (ε, δ)-DP and for Bernoulli data.
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THEOREM 3.9. Let f be a symmetric nontrivial tradeoff function and let Ff be as in

Definition 3.7. Then Ff is a canonical noise distribution for f .

PROOF SKETCH. Ff was already shown to be symmetric in Proposition 3.8. The two

equalities, f (α) = T (F (·),F (· − 1))(α) = F(F−1(1 − α) − 1) can also be easily verified

using the properties of Proposition 3.8. The main challenge is to show that T (F (·),F (· −
m)) g T (F (·),F (· − 1)) for m ∈ (0,1). Lemma F.5 in the Supplementary Material (Awan

and Vadhan (2023)) gives an alternative technical condition which makes it easier to verify

property 1 of Definition 3.1. �

It turns out that the properties of Definition 3.1 do not uniquely determine a distribution.

For instance, 	 the cdf of a standard normal is a CND for 1-GDP, but 	 is different from

the construction in Definition 3.7. See Figure 2 for the cdf and pdf of these two CNDs. Note

that the CND of Definition 3.7 is uniform in [−1/2,1/2] and has “kinks” at each half-integer

value. On the other hand, the standard normal is smooth. This example shows that for some

tradeoff functions there may be a more natural CND than the construction in Definition 3.7.

While there may be more natural CNDs in some settings, we emphasize the generality of

the construction in Definition 3.7. In Proposition F.6 of the Supplementary Material (Awan

and Vadhan (2023)), we present an exact method to sample from the CND of Definition 3.7

based on inverse transform sampling, allowing for straightforward implementation and ap-

plication of our CND results.

3.1. Canonical noise for (ε, δ)-DP. So far, we have developed a constructive and general

method of generating canonical noise distributions for f -DP. In the special case of (ε, δ)-DP,

the CND of Definition 3.7 is equal to the cdf of the Tulap distribution, proposed in Awan and

Slavković (2018), which is an extension of the Staircase mechanism (Geng and Viswanath

(2015)) from (ε,0)-DP to (ε, δ)-DP.

COROLLARY 3.10. The distribution Tulap(0, b, q), where b = exp(−ε) and q =
2δb

1−b+2δb
is a CND for fε,δ-DP, which agrees with the construction of Definition 3.7.

PROOF SKETCH. The cdf of Tulap(0, b, q) is defined in the full proof. From the defini-

tion, it is easy to verify that the cdf of a Tulap random variable agrees with Ff on [−1/2,1/2].
By Awan and Slavković ((2020), Lemma 2.8), the Tulap cdf also satisfies the recurrence re-

lation of Definition 3.7. �

It was claimed in both Awan and Slavković (2018) and Awan and Slavković (2020) that

adding Tulap noise satisfied (ε, δ)-DP, but their proof is actually incorrect and only holds for

integer-valued statistics. The above Corollary along with Theorem 3.9 offers a complete and

correct argument for Awan and Slavković ((2020), Theorem 2.11).

In Awan and Slavković (2018) and Awan and Slavković (2020), it was shown that the

Tulap distribution could be used to design optimal hypothesis tests and confidence intervals

for Bernoulli data. Our notion of a canonical noise distribution, and the fact that Tulap is a

CND for (ε, δ)-DP sheds some light on why it had such optimality properties (even further

explored in Section 4). The Tulap distribution is also closely related to discrete Laplace and

the Staircase distributions, which were shown by Ghosh, Roughgarden and Sundararajan

(2012) and Geng and Viswanath (2015) respectively to be optimal in terms of maximizing

various definitions of utility in (ε,0)-DP.

While continuous Laplace noise is commonly used in (ε,0)-DP, Dong, Roth and Su (2022)

pointed out that the tradeoff function for Laplace noise does not agree with fε,δ for any

values of ε and δ. From this observation, we conclude from Definition 3.1 that Laplace is

not a CND for (ε, δ)-DP. From the perspective of CNDs, Tulap noise is preferable over the

Laplace mechanism.
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4. The nature of f -DP tests. Recall that a test is a function φ : X n → [0,1], where φ(x)

represents the probability of rejecting the null hypothesis given that we observed x. However,

the mechanism corresponding to this test releases a random value drawn as Bern(φ(x)),

where 1 represents “Reject” and 0 represents “Accept.” we say that the test φ satisfies f -DP

if the corresponding mechanism Bern(φ(x)) satisfies f -DP. Intuitively, Lemma 4.1 shows

that a test satisfies f -DP if for adjacent databases x and x ′, the values φ(x) and φ(x′) are

close in terms of an inequality based on f .

LEMMA 4.1. Let f be a symmetric tradeoff function. A test φ : X n → [0,1] satisfies

f -DP if and only if φ(x) f 1 − f (φ(x ′)) for all x, x′ ∈ X n such that H(x, x′) f 1.

PROOF SKETCH. If we take the rejection region to be the set {1} then φ(x) is the type

I error and 1 − φ(x′) is the type II error. The f -DP guarantee requires that f (φ(x)) f 1 −
φ(x′), or equivalently, φ(x′) f 1−f (φ(x)). Using the rejection region {0} and some algebra,

we get φ(x) f 1−f (φ(x ′)). The full proof argues more precisely using the Neyman Pearson

lemma, considering also randomized tests. �

Lemma 4.1 greatly simplifies the search for f -DP hypothesis tests and generalizes the

bounds on private tests established in Awan and Slavković (2018).

EXAMPLE 4.2 ((ε, δ)-DP Tests). When we apply Lemma 4.1 to the setting of (ε, δ)-

DP, we have the two inequalities: (1 − φ(x)) g 1 − δ − exp(ε)φ(x′) and (1 − φ(x)) g
exp(−ε)(1 − δ − φ(x′)). Some algebra gives

φ(x) f
{
δ + exp(ε)φ

(
x′),

1 − exp(−ε)
(
1 − δ − φ

(
x′)),

which agrees with the constraints derived in Awan and Slavković (2018).

The result of Lemma 4.1 can also be expressed in terms of canonical noise distributions in

Corollary 4.3, giving the elegant relation that F−1(φ(x)) and F−1(φ(x′)) differ by at most 1

when x and x′ are adjacent.

COROLLARY 4.3 (Canonical noise distributions). Let f be a symmetric nontrivial trade-

off function and let F be a canonical noise distribution for f . Then a test φ satisfies f -DP if

and only if F−1(φ(x)) f F−1(φ(x′)) + 1 for all x, x′ ∈ X n such that H(x, x′) f 1.

PROOF SKETCH. The result follows from the fact that f (α) = F(F−1(1 − α) − 1), the

symmetry of F , and some algebra of cdfs. �

Corollary 4.3 is also important for the construction of “free” DP p-values in Section 4.1.

4.1. Free f -DP p-values. In Awan and Slavković (2018), it was shown that for Bernoulli

data, the uniformly most powerful DP test could also be expressed as the post-processing of

a privatized test statistic, offering p-values at no additional privacy cost. We generalize this

result using canonical noise distributions and show that any f -DP test can be expressed as a

post-processing threshold test based on a privatized test statistic, and that the test statistic can

also be used to give private p-values.

Typically in statistics, it is preferred to report a p-value rather than an accept/reject deci-

sion at a single type I error. A p-value provides a continuous summary of how much evidence

there is for the alternative hypothesis and allows for the reader to determine whether there
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is enough evidence to reject at the reader’s personal type I error. Lower p-values give more

evidence for the alternative hypothesis.

However, with privacy, one may wonder whether releasing a p-value rather than just the

accept/reject decision would result in an increased privacy cost, or conversely whether a p-

value at the same privacy level would have lower power. In fact, this question is related to

fundamental concepts in differential privacy such as post-processing, privacy amplification,

and composition. In Lemma 4.4, we recall the post-processing property of DP, which states

that after a DP result is released, no post-processing can compromise the DP guarantee.

LEMMA 4.4 (Post-processing: Dong, Roth and Su (2022)). Let M be an f -DP mech-

anism taking values in Y . Let Proc be a mechanism from Y to Z . Then Proc ◦ M satisfies

f -DP.

Theorem 4.5 is the main result of this section, demonstrating that given an arbitrary f -DP

hypothesis test, we can construct a summary statistic and p-value, with no additional privacy

cost, using a CND.

THEOREM 4.5. Let φ : X n → [0,1] be an f -DP test. Let F be a CND for f , and draw

N ∼ F . Then:

1. releasing T = F−1(φ(x)) + N satisfies f -DP,

2. the variable Z = I (T g 0), a post-processing of T , is distributed as Z|X = x ∼
Bern(φ(x)),

3. the value p = supθ0∈H0
EX∼θ0

F(F−1(φ(X)) − T ) is also a post-processing of T and

is a p-value for H0,

4. if H0 is a simple hypothesis and EH0
φ = α, then at type I error α, the p-value from

part 3 is as powerful as φ at every alternative.

PROOF SKETCH. Property 1 follows from Corollary 4.3, the observation that F−1(φ(x))

has sensitivity 1, and property 1 of Definition 3.1. Property 2 can be verified using algebra

of cdfs. Property 3 is a standard construction of a p-value (Casella and Berger (2002), The-

orem 8.3.27). Property 4 is a special case of Lemma F.8 in the Supplementary Material, a

general lemma about p-values. �

We see from Theorem 4.5 that given an f -DP test φ, we can report both a summary

statistic (namely, T ) as well as a p-value (a post-processing of T ) which contain strictly more

information than only sampling Bern(φ(x)). This shows that for simple null hypotheses, there

is no general privacy amplification when post-processing a p-value or test statistic to a binary

accept/reject decision.

While in part 3 of Theorem 4.5 there are no assumptions on H0, for some composite

null hypotheses the resulting p-value may have very low power. Part 4 states that if the null

hypothesis is a singleton, then the power is perfectly preserved.

We also remark that while the proof of Theorem 4.5 is not technical, it heavily relies on

the properties of the CND, showing that the notion of CND has exactly the right properties

for Theorem 4.5 to hold.

Note that Theorem 4.5 starts with an f -DP test, and shows how to get a private summary

statistic and p-values. However, constructing a private test φ is another matter. In Section 4.2,

we show that for exchangeable binary data, we can construct a most powerful f -DP test in

terms of a CND.
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REMARK 4.6. While recently there has been controversy around the use of p-values

in scientific research (Colquhoun (2017), Wasserstein and Lazar (2016)), this is mostly due

to the misuse or misinterpretation of a p-value. Many of the criticisms of p-values can be

addressed by including additional statistical measures such as the effect size, confidence in-

tervals, likelihood ratios, or Bayes factors. We view p-values as a valuable tool that is a

component of a complete statistical analysis. Since the p-values of Theorem 4.5 are a post-

processing of a private summary statistic, that statistic can also be potentially used for other

statistical inference tasks, such as in Awan and Slavković (2020).

4.2. Most powerful tests for exchangeable binary data. In this section, we extend the

main result of Awan and Slavković (2018), that of constructing most powerful DP tests, to

general f -DP as well as exchangeable distributions on {0,1}n. In contrast, the hypothesis

tests of Awan and Slavković (2018) were limited to (ε, δ)-DP and i.i.d. Bernoulli data. A dis-

tribution P on a set X n is exchangeable if given X ∼ P and a permutation π , X
d= π(X).

Note that i.i.d. data are always exchangeable, but there are exchangeable distributions that are

not i.i.d. For example, sampling without replacement results in exchangeable but non-i.i.d.

data.

In the next result, we extend Theorem 3.2 of Awan and Slavković (2018) from (ε, δ)-DP

to the setting of general f -DP. The argument is essentially identical. We include the proof for

completeness.

LEMMA 4.7 (Theorem 3.2 of Awan and Slavković (2018)). Let P be a set of exchange-

able distributions on X n. Let φ : X n → [0,1] be a test satisfying f -DP. Then there exists a

test φ′ : X n → [0,1] such that for all x ∈ X n, φ′(x) only depends on the empirical distribu-

tion of x, and
∫

φ′(x) dP =
∫

φ(x)dP for all P ∈ P .

PROOF. Define φ′(x) = 1
n!

∑
π∈σ(n) φ(π(x)), where σ(n) is the symmetric group on

n letters. Note that for any π ∈ σ(n), φ(π(·)) satisfies f -DP (just rearranging the sample

space). Furthermore,
∫

φ(π(x)) dP =
∫

φ(x)dP by exchangeability. Finally, by the convex-

ity of f , the set of tests φ which satisfy φ(x) f 1 − f (φ(x′)) is a convex set, and so is

closed under convex combinations. So, φ′ defined above satisfies f -DP, and by the linearity

of integrals, preserves the expectations. �

We work with the sample space X = {0,1}. Note that by Lemma 4.7, because we are

dealing with exchangeable distributions, the test need only depend on X = ∑n
i=1 Xi , so we

define φ(x) for x = 0,1,2, . . . , n. Since changing one Xi only changes X by ±1, we need

only relate φ(x) and φ(x − 1).

The main result of this section, Theorem 4.8 constructs not only the first private hypothesis

test in the general f -DP framework, but derives a most powerful f -DP test as well as a cor-

responding p-value in terms of the canonical noise distribution. The proof of Theorem 4.8 is

similar to the proof of Awan and Slavković ((2018), Theorem 4.5), further demonstrating that

the canonical noise distribution is the appropriate concept needed to extend their result from

(ε, δ)-DP to arbitrary f -DP. Just like in Awan and Slavković (2018), we have the surprising

result that the UMP DP test in this case only depends on the summary statistic x + N , where

N is a CND. The extension from Bernoulli distributions to arbitrary exchangeable binary

variables is simply an observation that the argument only depends on the likelihood ratio.

However, the extension to exchangeable distributions will allow us to apply Theorem 4.8 to

the difference-of-proportions problem in Section 5.
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THEOREM 4.8. Let f be a symmetric nontrivial tradeoff function and let F be a CND

of f . Let X = {0,1}. Let P and Q be two exchangeable distributions on X n with pmfs p and

q such that
q
p

is an increasing function of x = ∑n
i=1 xi . Let α ∈ (0,1). Then a most powerful

f -DP test φ with level α for H0 : X ∼ P versus H1 : X ∼ Q can be expressed in any of the

following forms:

1. There exists y ∈ {0,1,2, . . . , n} and c ∈ (0,1) such that for all x ∈ {0,1,2, . . . , n},

φ(x) =

⎧
⎪⎪«
⎪⎪¬

0 x < y,

c x = y,

1 − f
(
φ(x − 1)

)
x > y,

where if y > 0 then c satisfies c f 1 − f (0), and c and y are chosen such that EP φ(x) = α.

If f (0) = 1, then y = 0.

2. φ(x) = F(x − m), where m ∈ R is chosen such that EP φ(x) = α.

3. Let N ∼ F . Then T = X +N satisfies f -DP. Then p = EX∼P F(X − T ) is a p-value

and I (p f α)|X = I (T g m)|X ∼ Bern(φ(X)), where φ(x) agrees with 1 and 2 above.

PROOF SKETCH. Similar to the proof of Awan and Slavković ((2018), Theorem 4.5),

we begin by establishing the equivalence of forms 1 and 2, and arguing that there exists a

test of the form 2 by the Intermediate Value Theorem. Using Awan and Slavković ((2018),

Lemma 4.4), a variation of the Neyman Pearson lemma, we argue that the proposed φ is most

powerful. Statement 3 uses the expressions from Theorem 4.5 as well as some distributional

algebra of CNDs to get the explicit formula. �

While Theorem 4.5 took an f -DP test and produced “free” private p-values, Theorem 4.8

constructs an optimal test from scratch beginning only with a CND.

EXAMPLE 4.9. Let us consider what distributions fit within the framework of Theo-

rem 4.8. If the variables Xi are i.i.d., then they are distributed as Bernoulli. However, it is

possible for the variables to be exchangeable and not independent. For example, the sum

X = ∑n
i=1 Xi could be distributed as a hypergeometric or Fisher’s noncentral hypergeomet-

ric, which arises in two sample tests of proportions, see Section 5. For other exchangeable

binary distributions, see Dang, Keeton and Peng (2009).

REMARK 4.10. Theorem 4.8 and Corollary 4.3 show that the results of Awan and

Slavković (2020) extend to arbitrary f -DP. By simply modifying the Tulap distribution to

a CND, all of the other results of Awan and Slavković (2020) carry over as well. In particular,

for Bernoulli data, there exists a UMP one-sided test, a UMP unbiased two-sided test, UMA

one sided confidence interval and UMA unbiased two-sided confidence interval. All of these

quantities are a post-processing of the summary value X + N , where the noise N is drawn

from a CND F of f .

5. Extension to semiprivate difference-of-proportions tests. Testing two population

proportions is a common hypothesis testing problem, which arises in clinical trials with con-

trol and test groups, A/B testing, and observation studies comparing two groups (such as

men and women, students from two universities, or aspects of two different countries). As

such, the techniques for testing such hypotheses are standard and taught in many statistics

textbooks. However, there are limited techniques to test these hypotheses under f -DP.

In Appendix D of the Supplementary Material (Awan and Vadhan (2023)), we show that

there does not exist a UMP (unbiased) f -DP test. Nevertheless, we use the techniques devel-

oped earlier in this paper to derive a “semiprivate” UMP unbiased test, which gives an upper
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bound on the power of any f -DP UMP unbiased test. The novel concept of “semiprivacy” en-

forces some of the DP constraints but not others, and this framework may be of independent

interest when analyzing a combination of private and nonprivate releases (see Remark 5.4 for

more details). We then construct an f -DP test which allows for optimal inference on the two

population parameters, and which we show through simulations to have comparable power

to the semiprivate UMP unbiased test. In the case of ε-DP, we show through simulations that

the proposed DP test is similar to the semiprivate UMP unbiased test with privacy parameter

(ε/
√

2). We also demonstrate that the proposed test has more accurate p-values and type I

error than commonly used Normal approximation tests.

5.1. Semiprivate UMP unbiased test. In this section, we simplify the search for an f -

DP test for the difference of proportions, establishing a condition for the test to be unbiased.

However, as demonstrated through an example in Appendix D of the Supplementary Material

(Awan and Vadhan (2023)), there does not exist a UMP unbiased (UMPU) f -DP test. By

weakening the privacy guarantee, we develop a “semiprivate” UMPU test which is efficiently

implemented. While the “semiprivate” test does not satisfy f -DP, it gives an upper bound on

the power of any other unbiased f -DP test, and serves as a useful baseline in Section 5.3.

We observe independent Xi
iid∼ Bern(θX) for i = 1, . . . , n and Yj

iid∼ Bern(θY ) for j =
1, . . . ,m. For privacy, we consider two datasets adjacent if either one of the Xi is changed

or one of the Yi is changed (but only one total value). We consider m and n to be publicly

known values. We wish to test H0 : θX g θY versus H1 : θX < θY , subject to the constraint

of differential privacy. Such one-sided tests can also be converted to two-sided tests using a

Bonferroni correction, as discussed in Remark 5.9, at the end of Section 5.2.

By a similar argument as in Lemma 4.7, it is sufficient to consider tests which are functions

of the empirical distributions of X and Y . Equivalently, we may restrict to tests which are

functions of X = ∑n
i=1 Xi and Y = ∑m

j=1 Yj . We consider two databases adjacent if either

X changes by 1 or if Y changes by 1 (but not both). By Lemma 4.1, a test φ(x, y) satisfies

f -DP if the following set of inequalities hold for all pairs of (x, y):

φ(x, y) f 1 − f
(
φ(x + 1, y)

)
,

φ(x, y) f 1 − f
(
φ(x − 1, y)

)
,

φ(x, y) f 1 − f
(
φ(x, y + 1)

)
,

φ(x, y) f 1 − f
(
φ(x, y − 1)

)
.

(1)

Classically, it is known that even without privacy there is no uniformly most powerful

test for this problem. Traditionally, attention is restricted to unbiased tests. Recall that a test

is unbiased if for all θ1 ∈ �1 and θ0 ∈ �0, the power at θ1 is higher than at θ0 (here, θ

represents the pair (θX, θY )). Because the variables (X,Y ) have distribution in the expo-

nential family, the search for a UMP unbiased test can be restricted to tests which satisfy

EθX=θY
(φ(X,Y )|X + Y = z) = α (Schervish (2012), Proof of Theorem 4.124), since X + Y

is a complete sufficient statistic under H0. When θX = θY = θ0, X + Y ∼ Binom(m + n, θ0),

and Y |(X + Y = z) ∼ Hyper(m,n, z), where Hyper(m,n, z) is the hypergeometric distribu-

tion, where we draw m balls out of a total of m + n balls, and where z balls are white, and

the random variable counts the number of drawn white balls. This is equivalent to a per-

mutation test where we shuffle the labels of the observations. Lemma 5.1 summarizes these

observations.

LEMMA 5.1. Let X ∼ Binom(n, θX) and Y ∼ Binom(m, θY ) be independent. Consider

the test H0 : θX g θY and H1 : θX < θY . Let 	 be a set of tests. If there exists a UMP test
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φ ∈ 	 among those which satisfy

(2) EH∼Hyper(m,n,z)φ(z − H,H) = α,

for all α, then φ is UMP unbiased size α among 	.

PROOF. It is easy to verify that the power function is continuous, and that X + Y is a

boundedly complete sufficient statistic under H0. By Schervish ((2012), Proposition 4.92)

and Schervish ((2012), Lemma 4.122), the set of unbiased tests for this problem is a subset

of the tests which satisfy Equation (2). It is also clear that Equation (2) implies that the test

is size α. It follows that if a test is UMP among the tests in 	 satisfying Equation (2) then it

is UMP unbiased size α among 	. �

However, as demonstrated by an example given later in Appendix D of the Supplementary

Material (Awan and Vadhan (2023)), in general there is no UMP test for the hypothesis H0 :
θX g θY versus H1 : θX < θY among the set

(3) 	f =
{
φ(x, y)|φ satisfies inequalities (1) and Equation (2)

}
.

The reason for this is that Lemma 5.1 suggests that a UMP unbiased test relies on being

able to construct a UMP test, given X + Y = z. However, the inequalities (1) put constraints,

relating φ(x, y) for different values of z.

Instead of requiring that all of the inequalities (1) hold, we weaken the requirement of dif-

ferential privacy, to only include the constraints relating (x, y) with the same sum x + y = z.

We call the following the set of “semiprivate” tests:

	semi
f =

⎧
«
¬φ(x, y)

∣∣∣∣∣∣

for each z ∈ {0,1, . . . ,m + n},
there exists ψ ∈ 	f ,

s.t. φ(x, y) = ψ(x, y) for all x + y = z

«
¬
­ .

Intuitively, 	semi
f is the set of tests, which satisfy the set of implied constraints of (1), which

only relate (x, y) and (x +1, y −1). So, the summary z = X+Y is not protected at all, but for

any X + Y = z, (X,Y ) must satisfy f -DP. While these semiprivate tests are not necessarily

intended for the purpose of privacy protection, by weakening the privacy requirement, they

offer an upper bound on the performance of any DP test, as stated in Corollary 5.3.

THEOREM 5.2 (Semiprivate UMPU). Let f be a symmetric nontrivial tradeoff function

and let F be a CND for f . Let X ∼ Binom(n, θX) and Y ∼ Binom(m, θY ) be independent.

Let α ∈ (0,1) be given. For the hypothesis H0 : θX g θY versus H1 : θX < θY :

1. φ∗(x, y) = F(y − x − c(x + y)) is the UMPU test of size α among 	semi
f , where

c(x + y) is chosen such that EH∼Hyper(m,n,x+y)φ
∗((x + y) − H,H) = α.

2. Set T = Y − X + N , where N ∼ F , and set Z = X + Y . Then

p = EH∼Hyper(m,n,Z)F(2H − Z − T )

is the exact p-value corresponding to φ∗.

PROOF SKETCH. Lemma 5.1 reduced the problem to determining whether the test is

UMP among those which satisfy Equation (2). The technical Lemmas F.10 and F.12 in the

Supplementary Material (Awan and Vadhan (2023)), quantify the privacy of the semipri-

vate tests when viewed as a function of y (where z is fixed), and determine the CND of

the derived tradeoff function. Conditional on z, the distribution of Y is a Fisher noncentral

hypergeometric distribution (Fog (2008), Harkness (1965)). By Theorem 4.8, we can con-

struct the most powerful DP test based on the CND. Finally, we verify a monotone likelihood
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ratio property of the noncentral hypergeometrics to argue that the test is uniformly most

powerful. �

Corollary 5.3 shows that while the semiprivate UMPU test does not satisfy f -DP, we can

use it as a benchmark to compare other tests, as it gives an upper bound on the highest possible

power of any unbiased f -DP level α test.

COROLLARY 5.3. Let φ∗(x, y) be the UMPU size α test among 	semi
f , and let φ(x, y)

be any unbiased, level α test in 	f . Then for every pair of values of θX f θY ,

EX∼θX
Y∼θY

φ∗(X,Y ) g EX∼θX
Y∼θY

φ(X,Y ).

REMARK 5.4. The semiprivate framework could potentially be of independent interest,

as it is an example of a setting where some statistics are preserved exactly, whereas others are

protected with privacy noise. For example, this is similar to the framework used for the 2020

Decennial Census, where certain counts are preserved without any privacy noise, and the

other counts are sanitized by an additive noise mechanism. While they phrase their privacy

guarantee in terms of post-processing, one could also view it as a “semiprivate” procedure,

where their privacy guarantee only holds for the databases which agree with the preserved

counts. This is an alternative perspective to subspace differential privacy (Gao, Gong and Yu

(2022)), which restricts the output of a mechanism rather than the input database.

5.2. Designing an f -DP test for difference-of-proportions. Based on the negative result

of Appendix D, we consider a different approach to building a well-performing DP test.

A common nonprivate test for H0 : θX g θY versus H1 : θX < θY for X ∼ Binom(n, θX)

and Y ∼ Binom(m, θY ) is based on the test statistic Y/m − X/n, which is intuitive as this

quantity captures the sample evidence for the difference between θX and θY . In fact this

statistic has the important property that its expectation under the null does not depend on

the parameter θX = θY . If this were not the case, then tests based on this statistic would have

limited power (Robins, van der Vaart and Ventura (2000)). However, the sampling distribution

of this quantity depends on the parameter θ0 = θX = θY under the null (e.g., for θ0 = 1/2, the

variance of Y/m − X/n is higher than when θ0 is larger or smaller). Typically, the central

limit theorem is used to justify that

Y/m − X/n√
(1/m + 1/n)θ̂0(1 − θ̂0)

≈ N(0,1),

where θ̂0 = X+Y
m+n

is the maximum likelihood estimator for θ0 under the null. The central limit

approximation works well in large samples, but for small samples this approximation can be

inadequate as demonstrated in the simulations of Section 5.3.

5.2.1. Inversion-based parametric bootstrap f -DP test. In this section, we consider tests

based on the following privatized summary quantities X+N1 and Y +N2, where N1,N2
iid∼ F

where F is a CND of f . The vector (X + N1, Y + N2) satisfies f -DP, since only one of X

and Y changes by at most 1, between adjacent databases.

REMARK 5.5. Basing our test on these two noisy statistics has a few important benefits.

As noted in Remark 4.10, given X + N1 and Y + N2 we can perform optimal hypothesis

tests and confidence intervals for θX and θY combining Theorem 4.8, Corollary 4.3 and the

other results of Awan and Slavković (2020). In general this is not the case for an arbitrary
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f -DP test of H0 : θX g θY versus H1 : θX < θY . While 4.5 says that we can always get a

summary statistic and p-value out of an arbitrary f -DP test, these values may not contain

enough information to do inference (let alone optimal inference) for θX and θY separately.

We consider the quantity T = m−1(Y + N2) − n−1(X + N1). Asymptotics tells us that

under the null hypothesis, T/
√

(1/m + 1/n)θ0(1 − θ0)
d→ N(0,1), which is the same sam-

pling distribution as without privacy. However, as many other researchers have noted, while

these approximations are serviceable in classical settings, the approximations are too poor

when privacy noise is introduced (Wang et al. (2018)). One reason for this is that the noise

introduced to achieve privacy, such as Laplace or Tulap, often has heavier tails than the limit

distribution, which is often Gaussian.

We notice that T is a linear combination of independent random variables. So, we can

use characteristic functions to derive the sampling distribution of T under a specific null

parameter θ0. We use ψX(·) to denote the characteristic function of a random variable X:

ψX(t) := EXeitX . Recall that for independent random variables X1, . . . ,Xn and real values

a1, . . . , an, if X = ∑n
i=1 aiXi , then ψX(t) = ∏n

i=1 ψXi
(ai t). Then, the characteristic function

of our test statistic T is given by

ψT ∼θ0
(t) = ψY∼θ0

(t/m)ψN2
(t/m)ψX∼θ0

(−t/n)ψN1
(−t/n).

We know the characteristic function for a binomial random variable, and for many common

DP distributions N , we have formulas for ψN as well.

We can use the following inversion formula to evaluate the cdf of T .

LEMMA 5.6 (Inversion formula: Gil-Pelaez). Let X be a real-valued continuous random

variable, with characteristic function ψX(t). Then the cdf of X can be evaluated as

FX(x) =
∫ ∞

0

Im(e−itxψX(t))

t
dt,

where Im(·) returns the imaginary component of a complex number: Im(z) = (z − z∗)/(2i),

where z∗ is the complex conjugate of z.

Lemma 5.6 gives a computationally tractable method of evaluating the exact sampling

distribution of T at a given null parameter. Since larger values of T give more evidence of

the alternative hypothesis, p(T ) = 1 − FT ∼θ0
(T ) is a p-value for the null hypothesis H0 :

θX = θY = θ0 (Casella and Berger (2002), Theorem 8.3.27). However, this p-value depends

on the null parameter θ0, which we likely do not know. A solution is to substitute an estimator

for θ0 under the null hypothesis that θX = θY , based on the privatized statistics X + N1 and

Y + N2. A natural estimator is θ̂0 = min{max{X+N1+Y+N2
m+n

,0},1}. Plugging this estimate in

for θ0 gives the approximate p-value:

p̃(T , θ̂0) = 1 − F
T0∼θ̂0

(T ).

This approximate p-value is our recommended f -DP test for the difference-of-proportions

testing problem, and the procedure is summarized in Algorithm 1 for the cases of (ε,0)-DP

and μ-GDP. While p-value is not exact, and is thus not guaranteed to have the intended

type I error, the results of Robins, van der Vaart and Ventura (2000) imply that this p-value

is asymptotically uniform under the null, implying that the test is asymptotically unbiased,

with asymptotically accurate type I errors. Furthermore, as we demonstrate in Section 5.3,

even with sample sizes as small as n,m g 30, the approximation is incredibly accurate, of-

fering accuracy even higher than the classic normal approximation test, which is widely used

and accepted. We also show in Section 5.3 that the power of the test is comparable to the

semiprivate test of Section 5.1 indicating that it is nearly optimal.
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Algorithm 1: ε-DP or μ-GDP approximate p-value, based on inversion

1 Let X, Y , m, and n be given. Let either ε or μ be given.;

2 if ε-DP then

3 Draw N1,N2
iid∼ Tulap(0, exp(−ε),0);

4 Set ψN (t) = [1−exp(−ε)]2[exp(−it/2)−exp(it/2)]
it[1−exp(it−ε)][1−exp(−it−ε)] ;

5 end

6 if μ-GDP then

7 Draw N1,N2
iid∼ N(0,1/μ2);

8 Set ψN (t) = exp(−t2/(2μ2));

9 end

10 Set ψY∼θ (t) = ((1 − θ) + θ exp(it))m and ψX∼θ (t) = ((1 − θ) + θ exp(it))n;

11 Set X̂ = X + N1 and Ŷ = Y + N2;

12 Set T = Ŷ /m − X̂/n;

13 Set θ̂ = min{max{ X̂+Ŷ
m+n

,0},1};
14 Set ψT ∼θ (t) = ψY∼θ (t/m)ψX∼θ (−t/n)ψN (t/m)ψN (−t/n);

15 Output p-value and summary values: p = 1 −
∫ ∞

0

Im(exp(itT )ψ
T ∼θ̂

(t))

t
dt , X + N1,

Y + N2

REMARK 5.7. While the p-value generated from Algorithm 1 may seem complex, it is

relatively easy to implement. For instance in R, the command integrate can perform an

accurate numerical integral. Another strength of Algorithm 1 is that the running time does

not depend on the sample size m or n, whereas the semiprivate test runs in O(m) time.

REMARK 5.8. Algorithm 1 can be viewed as an exact evaluation of a parametric boot-

strap, where we by-pass the need for sampling by numerically computing the cdf. As such,

we avoid the additional error and running time produced by the Monte Carlo sampling.

REMARK 5.9. While we focus on the one-sided hypothesis H0 : θX g θY versus H1 :
θX < θY , the test of Algorithm 1 can be easily modified to produce a “two-sided” test for

H0 : θX = θY versus H1 : θX �= θY . Call p the one-sided p-value from Algorithm 1. Then

p2 = 2 min{p,1 − p} is a p-value for the two-sided test. This procedure is an example

of a Bonferroni correction or an intersection-union test (Casella and Berger (2002), Sec-

tion 8.2.3).

5.3. Simulations. In this section, we perform several simulations to compare the perfor-

mance of our proposed DP test to other competing DP tests, the semiprivate UMPU test, as

well as popularly used nonprivate tests. While our results can be applied to arbitrary f -DP,

we only run our simulations for (ε,0)-DP as this privacy definition is commonly used and

introduces noise that is difficult to incorporate.

In Section 5.3.3, we consider the empirical power of the tests, and show that the inversion

DP test out-performs other DP tests, and by comparing against the semiprivate test with

privacy budget ε/
√

2, show that it is observed to be more powerful than any (ε/
√

2)-DP test

(see Remark 5.10 for the intuition behind the factor of 1/
√

2). In Section 5.3.1, we consider

the type I error of the various tests, and show that the observed type I error of the inversion

test is more accurate than the commonly used nonprivate normal approximation test. We also

show that naïve DP normal approximation tests have unacceptably inaccurate empirical type
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I errors. In Section 5.3.2, we plot the empirical cumulative distribution functions of the p-

values from the various tests demonstrating from another perspective that the proposed test

has accurate type I error.

5.3.1. Type I error. The first simulation that we consider, and one of the most impor-

tant, demonstrates the reliability of the type I error guarantees of our proposed test against

alternative tests. Recall that in the best practices of scientific research, many approximate

statistical tests are widely used and accepted. For instance, most hypothesis testing tools are

based on asymptotic theory, such as the central limit theorem, which approximates the sam-

pling distribution. As such, many widely used tests do not have exact type I error guarantees,

but the error of these tests has been determined to be small enough for practical purposes.

In Section 5.2, our proposed inversion-based test also involves an approximation to the sam-

pling distribution. We demonstrate in the following simulation that the type I errors of this

proposed test are more accurate than the widely accepted normal approximation test.

For the simulation, we measure the empirical type I error as the null θ0 takes values in

{0.05,0.1, . . . ,0.95} and sample sizes are set to m = n = 30, based on 20,000 replicates for

each θ0 value. We consider two values for the nominal type I error: in the left plot of Figure 3

we set α = 0.01 and in the right plot of Figure 3 we set α = 0.05. The dotted horizontal lines

represent a 95% Monte Carlo confidence interval assuming that the true type I error is equal

to the nominal level. As there are 19 unique theta values, if a curve crosses these thresholds

more than once, this is evidence that the type I error is not appropriately calibrated. For

this simulation, we only consider approximate tests as the nonprivate UMPU test and the

semiprivate test have perfectly calibrated type I errors.

In red is the classic normal approximation test, described in Section 5.2. Such approxima-

tions are often considered accurate enough when the sample sizes n and m are greater than 30.

Some rules of thumb for this problem require that there are at least 8 successes and failures in

each group for the approximation to be accurate enough (Akritas (2015), page 321). We see

in the left plot of Figure 3 that while this test has reasonable empirical type I error for mod-

erate values of θ0, the test is overly conservative for extreme values of θ0. In the right plot of

Figure 3, we see that the normal approximation test is much less reliable in this setting, with

seven of the nineteen values outside of the 95% confidence region. We see that at extreme

values of θ0, the actual type I error rates are much higher than the nominal level, resulting

FIG. 3. Empirical type I error as θ0 varies in {0.05,0.1, . . . ,0.95}. The nominal α level is 0.01 (left) and 0.05

(right). m = n = 30, ε = 0.1, and results are over 20,000 replicates for each θ0.
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in excessive false positives. It is interesting that the type I errors are over-conservative when

α = 0.01 and inflated when α = 0.05. In general, it is hard to predict whether in a particular

setting the type I errors will be too high or too low.

In green is an ε-DP normal approximation test, proposed by Karwa and Vadhan (2018)

which is analogous to the one-sample test of Vu and Slavković (2009). See Appendix E of the

Supplementary Material (Awan and Vadhan (2023)) for a description of the method. While

the empirical type I errors of this test are acceptable when α = 0.05, we see that for α = 0.01,

the empirical type I error is approximately 0.016 and is entirely outside the confidence region.

In light blue is an ε-DP, which splits the budget between privatizing T = Y − X and

Z = X + Y , and plugs in the results into the semiprivate test of Theorem 5.2. The test is

described in Algorithm 3, which appears in Appendix E of the Supplementary Material (Awan

and Vadhan (2023)). The empirical type I errors for the plugin test are slightly higher than

expected, crossing the confidence band three times in the left plot and once in the right plot,

but are much more reliable than the normal approximation tests discussed above.

Finally, in magenta is the inversion-based test of Algorithm 1. The empirical type I errors

of the inversion-based test lie entirely within the confidence bands for both settings of α. This

indicates that for the settings of these simulations, the type I errors of the inversion test are

indistinguishable from the nominal level, and are much more accurate than the classic normal

approximation test or a DP normal approximation test, such as in Vu and Slavković (2009).

5.3.2. P -Values. In this section, we consider the empirical cumulative distribution func-

tion of the p-values, while holding θ0 fixed. This can be interpreted as varying the nominal

α value on the x-axis, with the empirical type I error on the y-axis. This differs from the pre-

vious simulation, where we varied the null value of θ along the x-axis, but left the nominal

value of α fixed. Combined with the previous results, this simulation gives a more complete

picture of how accurate the type I errors are, for a spectrum of nominal α values.

For the simulation, we set θ0 = 0.95, n = 30, m = 40, and ε = 0.1. We chose to investigate

θ0 = 0.95 since the type I errors in Section 5.3.1 were found to be more inaccurate for extreme

values of θ0. The results are based on 100,000 replicates with these settings. The simulation

includes the same tests as in Section 5.3.1, marked with the same color scheme, as well as

a test based on the simulation-based method of Awan and Cai (2020). Included is a dotted

black line of intercept 0 and slope 1, which represents perfectly calibrated type I error rates.

We see that for these simulation settings, the nonprivate normal approximation test has

inflated type I errors for nominal α values between 0.02 and 0.2. The DP normal approxi-

mation test has inflated type I error rates for nominal alpha values below 0.05, and deflated

type I error rates for larger values of α. The plugin test also has inflated type I errors in this

setting, while not as extreme as the normal approximate test. Finally, the curve for the in-

version test is visually indistinguishable from the dotted black line, indicating that this tests

has well-calibrated type I errors for this simulation setting, much improved over the other

approximate tests considered here.

Awan and Cai (2020) tackled the same DP testing problem, and also based their test on

adding Tulap noise to both X and Y . They implement their test a simulation-based algorithm,

which they argue gives asymptotically accurate type I errors. We include their test in this

section for comparison, and while Awan and Cai (2020) advocated this approach in large

samples, we see in the left plot of Figure 4 that it has greatly inflated type I errors for the

smaller sample sizes considered in this simulation.

5.3.3. Power. Finally, we compare the power of our candidate tests. We use the semipri-

vate UMPU test as a baseline for comparison: recall from Theorem 5.2 that the semiprivate

test has perfectly calibrated type I errors, and is uniformly more powerful than any DP unbi-

ased test. As such, it serves as an upper bound on the power of the other candidate tests. We
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FIG. 4. Simulation results comparing the p-values and power of various tests.

will see that the inversion test (with ε = 0.1) has power similar to the semiprivate UMPU with

ε = (0.1/
√

2), indicating that its power cannot be beaten by the most powerful (ε/
√

2)-DP

unbiased test.

For the simulation, we vary the sample size n = m along the x-axis and measure the

empirical power on the y-axis, at a nominal α level of 0.05. The privacy parameter is set

to ε = 0.1 and the results are based on 1000 replicates for each sample size. In black is

the nonprivate UMPU test, described Appendix C of the Supplementary Material, which is

guaranteed to be more powerful than any of the private tests considered in this paper. The

dotted dark blue curve is the semiprivate UMPU test of Section 5.1. Since the semiprivate

UMPU has a weaker privacy guarantee than DP, this test gives an upper bound on the power

of any DP test. We also include the semiprivate test implemented with ε = 0.1/
√

2 and ε =
0.1/2, with the same color and line scheme. We see that the plugin test, appearing in light

blue, has similar power as the semiprivate test with ε = 0.1/2, indicating that this test is more

powerful than any ε/2 test. In magenta, we have the inversion-based test, which has similar

power as the semiprivate test with ε = 0.1/
√

2, indicating that it is more powerful than any

ε/
√

2 test.

REMARK 5.10. That the inversion test has comparable power to the semiprivate test

with ε/
√

2 can be understood as follows: the semiprivate test is based on the test statistic

S = Y −X +N , where N is a Tulap random variable. On the other hand, the inversion test is

based on X̃ = X + N1 and Ỹ = Y + N2. If we tried to approximate the test statistic S using

X̃ and Ỹ , we end up with S̃ = Y − X + (N1 − N2). If the same privacy parameters are used

for N and N1, N2, then Var(N1 − N2) = 2 Var(N). By decreasing the privacy parameter of

N to ε/
√

2, we obtain equality of the variances.

6. Discussion. In this paper, we proposed the new concept canonical noise distribution,

which is an alternative to previous notions of an optimal noise adding mechanism for privacy.

We showed that a CND is a fundamental concept in f -DP, with connections to optimal private

hypothesis tests. Using CNDs and our results on f -DP hypothesis tests, we also developed
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a novel DP test for the difference-of-proportions, which was shown to have accurate type I

errors and nearly optimal power. The introduction of CNDs also raises several questions:

It was noted in Section 3 that a CND is generally not unique for a given tradeoff function.

While the construction in Definition 3.7 always results in a CND, and is easily sampled, it

may not be the most natural CND. For example, when applied to the tradeoff function G1,

we see in Figure 2 that the CND constructed by Definition 3.7 has a nondifferentiable pdf.

On the other hand, N(0,1) is also a CND for G1 which has a smooth pdf. One may wonder

if there is a more natural CND construction which recovers N(0,1) in the case of G1, as

well as whether there is a CND for fε,δ which has a smooth pdf. A recent paper that builds

upon the present work, Awan and Dong (2022), partially answers these questions, showing

that in some cases it is possible to construct a log-concave CND, which recovers N(0,1) in

the case of G1; surprisingly, Awan and Dong (2022) also show that the Tulap distribution is

the unique CND for fε,0, ruling out the possibility of a smooth CND for fε,0.

Another question is whether there is a natural and meaningful extension of CNDs to vector-

valued statistics. The follow-up paper, Awan and Dong (2022), partially answers this ques-

tion, giving a definition of a multivariate CND and general constructions under various as-

sumptions. While they show that there exists multivariate CNDs for many general classes of

tradeoff functions, including GDP, Laplace-DP, and (ε, δ)-DP, they also prove that there is no

multivariate CND for fε,0.

While this paper focused on the connection between CNDs and private hypothesis tests, it

is an open question whether there are other fundamental optimality properties of CNDs. It was

also noted in the Introduction that additive noise mechanisms often appear as a component

of more complex DP mechanisms, and it is worth investigating whether CNDs can be used

to optimize these other mechanisms for a particular f -DP guarantee.

The applications to DP hypothesis tests also raise many interesting questions. In general,

there always exists a most powerful DP test for any composite null and simple alternative, as

shown in Proposition B.1 of the Supplementary Material (Awan and Vadhan (2023)), which

can be expressed as the solution to a convex optimization problem. However, solving the

optimization problem is computationally burdensome for all but the simplest of problems. In

Theorem 4.8, we derived a closed-form expression for the most powerful DP test. Do there

exist closed-form expressions for other UMP DP tests to avoid computational optimization?

We also introduced the semiprivate framework which allowed us to derive an upper bound

on the power of any unbiased f -DP test. Can this framework be applied to other DP testing

problems to derive similar bounds? We also remarked that the semiprivate framework may be

useful to better understand the privacy guarantee of mechanisms where certain statistics are

privatized, whereas others are reported exactly, such as in the 2020 Decennial US Census—it

remains to be seen whether the semiprivate framework can give new results or new under-

standing in these settings.
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SUPPLEMENTARY MATERIAL

Supplement to “Canonical noise distributions and private hypothesis tests” (DOI:

10.1214/23-AOS2259SUPPA; .pdf). This document contains additional background material,

as well as the technical proofs and lemmas needed to establish the results of this paper.

Code for “Canonical noise distributions and private hypothesis tests” (DOI: 10.1214/

23-AOS2259SUPPB; .zip). This file contains the R code used to implement the simulations

and generate the figures of this paper.
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